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Summary 

 

 
Duodenal polyposis and cancer have become a key issue for patients with 
familial adenomatous polyposis (FAP) and MUTYH-associated polyposis 
(MAP). The incidence of duodenal adenomas in MAP appears to be lower 
than in FAP but the very limited available data suggest a comparable 
increase in relative risk and lifetime risk of duodenal cancer. The work 
reported in this thesis addressed gaps in current knowledge in endoscopic 
and molecular genetic aspects of duodenal polyposis in MAP and FAP. 
 
A prospective study examined the impact of chromoendoscopy on 
assessment of the duodenum in MAP and FAP. It demonstrated enhanced 
adenoma detection in both MAP (p=0.01368) and FAP (p=0.002516), but did 
not affect measurement of adenoma size. In both conditions there was a 
significant increase in Spigelman stage after chromoendoscopy compared to 
endoscopy without dye-spray.  
 
A European collaborative project established a cohort of 207 MAP patients 
who had undergone surveillance upper GI endoscopy. There was a 
cumulative incidence of 30% of duodenal adenomas, and a 2.3% cumulative 
incidence of duodenal adenocarcinoma in MAP by 70 years of age. Patients 
that were Y179C homozygotes had a greater number of duodenal adenomas 
(and consequently higher Spigelman score) than patients with either two 
truncating mutations, G396C homozygotes, or G396D / Y179C compound 
heterozygotes, consistent with a more severe colorectal phenotype 
previously reported in Y179C homozygotes. 
 
To investigate the somatic mutation rate and patterns of mutations in MAP 
and FAP duodenal adenomas, exome sequencing, Sanger sequencing and 
arrayCGH of adenoma tissue and matched blood DNA from patients 
undergoing upper GI surveillance was performed.  This demonstrated a 
higher load of somatic mutation in MAP than FAP adenomas (p=0.035). With 
the exception of APC and KRAS mutations, there were very few somatic 
mutations in genes that have been found to drive colorectal tumourigenesis, 
but several other genes including PLCL1 were found to be recurrently 
mutated in duodenal adenomas, suggesting that distinct molecular genetic 
pathways to adenoma development may be operating in the duodenum.   
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1. Introduction and background 

 

1.1 Inherited adenomatous polyposis syndromes 

Familial adenomatous polyposis (FAP; OMIM 611731, NM_001127511), MUTYH-

associated polyposis (MAP; OMIM 604933, NM_012222) and Polymerase proof-

reading associated polyposis (PPAP; OMIM 174762, NM_006231 and OMIM 

174761, NM_002691) are characterised by the development of colorectal adenomas 

that over time will progress to colorectal cancer, in contrast to Lynch Syndrome (LS), 

where multiple colorectal polyps are often not present at the time of cancer 

diagnosis. FAP and MAP are also defined by the development of extra-colonic 

manifestations, including duodenal adenomas and cancer, which have now become 

a leading cause of death as patients undergo prophylactic colectomy at an early 

stage in their disease. Life expectancy in these patients remains lower than that of 

the general population (Nugent et al. 1993). In PPAP, families with POLD1 

mutations had endometrial cancer as a feature, and one individual was reported to 

have two primary brain tumours. To date, there have been no reported occurrences 

of extra-colonic neoplasms in individuals with POLE mutations (Palles et al, 2013). 

Very recently, Weren et al (2015) applied whole exome sequencing to 51 patients 

with multiple colorectal adenomas who did not have identified mutations in APC or 

MUTYH.  They found that 7 members of 3 families had homozygous germline 

mutations in NTHL1. Tumours from affected individuals showed a significant 

increase in the proportion of C:G>T:A transitions, consistent with the predicted 

effects of  homozygous loss-of-function mutations on NTHL1 on the accumulation of 

somatic mutations. Major clinical features of NTHL1-associated polyposis include 

colorectal polyposis, CRC, and endometrial neoplasia but studies of larger patient 

cohorts are required to fully characterise this disorder. 
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These polyposis syndromes commonly have overlapping phenotypes, with similar 

numbers, distribution and histological subtype of polyps within the gastrointestinal 

(GI) tract, and so a molecular genetic diagnosis is required in order to facilitate 

planning of surveillance and preventive measures. Identification of a mutation can 

determine the risk of inheritance (autosomal dominant vs. recessive) and allows 

predictive testing of at-risk asymptomatic family members.  

 

 

1.2 Familial Adenomatous Polyposis (FAP) – Clinical Features 

FAP is an autosomal dominant disorder, first described in the literature in 1925 by 

Lockhart-Mummery (Lockhart-Mummery, 1925).  It occurs in approximately 1 in 

7000-8000 individuals (Cunningham et al. 2010). Multiple (>100) adenomas develop 

in the colorectum, and there is virtually a 100% life time risk of developing CRC. 

Traditionally, the clinical diagnosis of FAP is based on the identification of greater 

than 100 colorectal polyps (Vasen et al, 2008).The polyps usually appear by 

adolescence or the third decade of life; the average age at diagnosis of CRC being 

39 years if left untreated. Although historically, evidence suggests that the risk of 

developing CRC before the age of 20 years is low (Bussey, 1975), European 

registries have shown that there is a small proportion (1.3%) of patients that have 

developed CRC at ages 16-20 years and one case between age 11 and 15 years. 

No patient in this study had CRC at or before the age of 10 years (Vasen et al. 

2008). Prophylactic surveillance of the colorectum by endoscopy in FAP has been 

shown in FAP to reduce CRC and CRC-associated mortality (Bulow et al. 1995), 

and in FAP it has been recommended that endoscopic surveillance comprises a 2-

yearly flexible sigmoidoscopy starting at age 10-12 years until adenomas are 

detected (Vasen et al, 2008). Once adenomas are detected, patients should 

undergo at least biennial colonoscopy until colectomy is planned. The 2 year interval 

is based on evidence form studies on the natural history of FAP, that have 
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demonstrated that it takes on average 15-20 years from the first development of 

adenomas to the development of CRC (Bussey, 1975). However, the presence of 

symptoms, including rectal bleeding, mucous discharge, loose stools and abdominal 

or back pain should prompt urgent investigation at any age.  

 

Once florid polyposis develops, the most common form of treatment to prevent the 

development of CRC is a colectomy, and surgical options include a total colectomy 

with ileo-rectal anastomosis (IRA) and procto-colectomy with ileal pouch-anal 

anastomosis (IPAA). There are no guidelines regarding the exact timing of surgery, 

but the definition of ‘florid polyposis’ encompasses large numbers of adenomas 

>5mm in size and adenomas showing high grade dysplasia. Most FAP patients with 

the classical form of the disease undergo cancer prevention surgery between the 

age of 15 and 25 years. Factors including patient age, severity of rectal polyps, 

desire to have children, and possibly the site of the mutation in APC may influence 

the decision on the type of surgery undertaken. Patients with an IRA require regular 

endoscopic examination of the remaining rectum and removal of any new 

adenomas. Patients with a pouch should undergo annual endoscopic surveillance of 

the pouch.  

 

The duodenum is the second most common site for adenoma development in FAP. 

Duodenal adenomas are found in 30 to 70% of patients, and there is a risk of 

developing duodenal carcinoma of 5% (Vasen et al, 2008). Periampullary duodenal 

carcinoma is the commonest cause of cancer-related death in patients that have 

undergone prophylactic colectomy (Jagelman et al, 1988). There are also several 

extra-intestinal manifestations which include congenital hypertrophy of the retinal 

pigmented epithelium (CHRPE), epidermoid cysts, desmoid tumours, thyroid cancer 

and malignant brain tumours (Table 1.1). Desmoid tumours occur in 10-15% of 

cases (Gurbuz et al. 1994). They are benign connective tissue tumours that can 
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lead to life-threatening complications because they can grow to a significant size 

and encroach onto vital structures. Desmoids frequently arise in the abdominal wall 

and intra-abdominally in FAP and commonly recur after surgery. They are a cause 

of significant morbidity and mortality in FAP. Gastric fundic gland polyps and 

adenomas of the gastric antrum also occur, but no studies have confirmed an 

increased incidence of gastric cancer in FAP in Europe, however there are a few 

case reports of FAP-related gastric cancer that originate from Japan and Korea 

(Park et al, 1992). Gardner’s syndrome is now regarded as a phenotypic variant of 

FAP, and refers to the association of colonic polyps with osteomas of the jaw and 

epidermoid sebaceous cysts, particularly of the scalp. Turcot syndrome is also the 

consequence of a germline mutation in APC and is the association between multiple 

colorectal polyps and cerebellar medulloblastoma (Hamilton et al. 1995). 

 

There is a milder variant of the disease, characterised by the development of fewer 

adenomas and a later onset of colorectal cancer, known as attenuated FAP (AFAP). 

CRC develops 10-15 years later than in ‘classical’ FAP and there is a lower burden 

of extra-colonic features (Knudsen et al. 2003).  An international collaborative study 

proposed the following diagnostic criteria for AFAP: (1) a dominant mode of 

inheritance and (2) 3-99 colorectal adenomas at age 20 or over. However, only a 

minority of such patients have mutations in APC. Surveillance colonoscopy is 

recommended every 2 years starting from ages 18-20 years, as localised right-sided 

colonic adenoma development has been described in this cohort (Knudsen et al, 

2010). 
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Benign lesions Malignant lesions 

CHRPE (70-80%) 

Epidermoid cysts (50%) 

Osteoma (50-90%) 

Desmoid tumour (10-15%) 

Supernumery teeth (11-27%) 

Adrenal gland adenomas (7-13%) 

Thyroid cancer (2-3%) 

Brain tumour (<1%) 

Hepatoblastoma (~1%) 

 

Table 1.1 Extra-intestinal features in FAP, excluding duodenal adenomas and 

carcinoma. Deregulation of the APC gene has been shown to play a role in 

carcinogenesis of all these tissues (Vasen et al. 2008). 

 

 

 

1.2.1 The APC gene 

FAP is caused by a germline mutation in one of the adenomatous polyposis coli 

(APC) alleles located within chromosome region 5q21-22 (Bodmer et al. 1987). The 

chromosomal location was suggested by patients with colorectal polyposis in 

association with mental retardation, where a deletion in the chromosomal band 5q21 

was detected (Herrera et al, 1986). Accurate localisation of the gene to 5q21 

resulted from linkage analysis of families with FAP and led to positional cloning 

(Groden et al 1991). The APC gene consists of at least 21 exons (Santoro and 

Groden, 1997), and the largest of these, exon 15 encodes over three-quarters of the 

protein. Exons 2 to 15 are coding.  Due to splicing, there is a range of alternative 

transcripts, and the most common transcript consists of 15 exons spliced together to 

form a transcript 8535 base pairs long (Groden et al, 1991).   
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1.2.2 The APC protein 

APC is a large protein (312kDa) containing multiple functional domains which 

enable it to interact with numerous other proteins (Figure 1.1) (Fodde et al. 2001). 

The oligomerisation domain of APC is found at the N-terminus, and contains heptad 

repeats that allow APC to form homo-dimers (Su et al. 1993). Wild type APC may 

form dimers with both wild-type and truncated mutant APC proteins. The armadillo 

region is made of seven repeats and is highly conserved.  It binds to the regulatory 

B56 subunit of protein phosphatase 2A (PP2A), an enzyme that binds axin via its 

catalytic subunit (Hsu et al 1999). The armadillo region also binds to the APC-

stimulated guanine nucleotide exchange factor (ASEF) and KAP3 (Näthke, 2004).  

The central region of APC contains three 15-amino acid (aa) repeats followed by 

seven 20-aa repeats, both of which can bind to β-catenin (Rubinfeld 1993; Su et al. 

1993).  The 15-aa repeats can also bind to α-catenin (Su et al. 1993) and C-terminal 

binding protein (CtBP) (Hamada and Bienz, 2004) and are retained in the majority of 

mutant APC proteins. The 20-aa repeats contain a TPXXFSXXXSL motif (Groden et 

al. 1991) and can bind glycogen synthase kinase 3β (GSK3β) to form binding sites 

for β-catenin (Rubinfeld et al. 1996).  Downregulation of β-catenin is reliant on the 

presence of at least three of the seven 20AARs in APC (Rubinfield et al. 1997). 

Scattered between the 20-aa repeats are 3 segments of 31-32 amino acids, each 

containing the sequence SAMP.  SAMP repeats can bind to axin and its homologue 

conductin (also known as axin2) (Behrens, 1998; Hart et al. 1998).  The C-terminal 

region of APC contains a basic domain (Groden et al.1991) containing arginine and 

lysine residues that can bind microtubules (Hanson and Miller, 2005).  The EB/RP 

family members EB1 and RP1 also bind to APC through a C-terminal domain 

(Juwana et al. 1999).  The N-terminal and C-terminal regions of APC have been 

shown to interact, suggesting intramolecular interactions may also occur (Li and 

Näthke, 2005).   

 



8 

 

 

 

 

Figure 1.1 Functional domains of the APC protein. 

 

 

1.2.3 Functions of APC 

APC is a multifunctional protein involved in a variety of cellular processes including 

Wnt signalling, cell adhesion, cell migration, mitotic spindle formation, chromosomal 

segregation and apoptosis (Fodde et al 2001).  

 

 

1.2.4 Wnt signalling and cancer 

The Wnt pathway is crucial in controlling processes such as cell proliferation and 

differentiation, and the regulation of cell death. The APC protein has tumour 

suppressor functions and is a key part of the canonical Wnt signalling pathway, thus 

playing a central role in the development and homeostasis of the intestine and many 

other tissues. APC functions as part of a destruction complex influenced by Wnt 

signals (shown in figure 1.2, parts a-c) that targets β-catenin for degradation. The 
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destruction complex facilitates phosphorylation of both APC and β-catenin by 

GSK3β. Phosphorylation of APC results in improved β-catenin binding and the 

ultimate consequence of enhanced APC-mediated GSK3β phosphorylation and 

degradation of β-catenin.  If this is inhibited, abnormal accumulation of intracellular 

β-catenin occurs (Klaus and Bichmeier, 2008). This allows translocation of β-catenin 

into the nucleus, where it acts to activate the transcription of Wnt target genes such 

as cyclin D1 and c-myc, which are involved in cell cycle regulation. Constitutive 

activation of Wnt signalling results in an enlargement of the GI stem cell population 

by the inhibition of cell differentiation, or by stimulating de-differentiation (Kielman et 

al. 2002). This tips the balance between mitosis and cell loss in the colon and leads 

to tumourigenesis. Other mechanisms can also contribute to the neoplastic 

transformation of a cell through loss of regulation of Wnt signalling. Activating 

mutations of β-catenin in colonic tumours without an APC mutation (Sparks et al. 

1998) and variants of axin affecting the binding of GSK3β in colon cancer cell lines 

(Webster et al. 2000) have been reported. 
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Fig 1.2 - Wnt signalling in colonic epithelial cells. 

a) In the absence of Wnt, β-catenin is recruited to the destruction complex (that 

includes APC, CK1, Axin and GSK3β) and is subsequently proteosomally 

degraded. Restriction on the amount of intracellular β-catenin enables a 

transcriptional repressor Groucho and the TSCF/LEF machinery to interact, and 

represses Wnt target gene transcription. 
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Fig 1.2 - Wnt signalling in colonic epithelial cells. 

b) Activation of the Wnt receptor causes dishevelled to bind to and de-

phosphorylate axin preventing the formation of the destruction complex.  β-

catenin accumulates and translocates into the nucleus where it binds with 

TSCF/LEF transcription factors, activating transcription of Wnt target genes 

such as c-myc and cyclin D.  
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Fig 1.2 - Wnt signalling in colonic epithelial cells. 

c) When APC is inactivated in FAP, axin cannot bind to APC. The multiprotein 

degradation complex is unable to form, and GSK3β-mediated phosphorylation and 

subsequent β-catenin degradation is inhibited. 
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1.2.5 Germline APC mutations 

A large proportion of the germline mutations in FAP patients are seen in exon 15, as 

would be expected as it accounts for more than 75% of the coding sequence. The 

majority (~95%) are frameshift or nonsense, resulting in a truncated protein with 

abnormal function. Frameshift mutations are more frequent than nonsense 

mutations, and the most common nonsense changes are C>T mutations, which are 

thought to result from spontaneous deamination of 5-methylcytosine (Laurent-Puig 

et al. 1998). In 5% of FAP cases, deletions of the whole gene or exons have been 

reported (Sieber et al. 2002). Aretz et al (2005) identified 14 different large 

submicroscopic genomic deletions in 26 families of FAP patients where no point 

mutation had been identified. The size of deletions ranges from single exons to the 

whole gene, including the promoter region. Larger, cytogenetically detectable 

interstitial deletions at 5q22 have been reported in FAP patients with a degree of 

mental retardation and dysmorphism (Aretz et al.2005).  

 

The 1699 germline APC mutations recorded (figure 1.3) are spread evenly between 

codons 200 and 1600, but are rarely seen beyond codon 1600. The most frequent 

mutational hotspots are at codon 1309, where there is a 5bp (AAAAG) deletion 

(Beroud and Soussi, 1996) and at codon 1061. Together, these mutations account 

for a third of reported APC germline mutations (Beroud and Soussi, 1996).  

 

The most important functional domains of the APC gene from a mutation 

perspective are the first serine alanine methionine proline (axin binding) repeat at 

codon 1580 and the first, second and third 20-amino acid repeat (20AARs) which 

are involved in beta-catenin binding and degradation (Segditsas and Tomlinson, 

2006).  
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AFAP generally results from germline mutations at the 5’ or 3’ ends of APC (codons 

<163 and 1596-2644) or between codons 329 and 338 in the alternatively spliced 

region of exon 9 (Galiatsatos and Foulkes, 2006).  
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Small insertions
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Figure 1.3 Proportions of germline mutation type in APC. There are 1699 APC 

variants recorded on the Human Gene Mutation Database (Stenson et al. 2014). 

 

 

Whereas truncating germline mutations of the adenomatous polyposis coli (APC) 

gene give rise to FAP, missense polymorphisms of APC may confer a weak risk for 

colorectal cancer. The missense germline variant l1307K in Ashkenazi Jews is 

associated with an increased risk of developing multiple adenomas and CRC (Gryfe 

et al 1999; Frayling et al. 1998). The variant consists of a T→A substitution, which 

creates a poly (A) tract which is hypermutable and appears to be inherently prone to 

further mis-pairing and slippage, ultimately resulting in an APC allele that has 
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increased susceptibility to somatic inactivation (Laken et al. 1997; Zauber et al. 

2003).  A recent meta-analysis demonstrated that compared with those who carried 

the wild-type I1307K, Ashkenazi Jews who carried the I1307K variant were at a 

significantly increased risk for colorectal neoplasia, with a pooled odds ratio of 2.17 

(Liang et al. 2013). However the tumour risk associated with this variant is 

controversial and most tumours from I1307K patients have not shown a mutation 

within the poly (A) tract (Sieber et al. 2003) which may suggest an additional distinct 

predisposition to CRC. Another missense germline APC variant E1317Q (Frayling et 

al.1998) has been associated with colorectal tumourigenesis, but has also been 

detected in normal controls. It codes for a mutation in APC that occurs in a 

functionally significant region of the gene and might act through a dominant negative 

effect on the APC/ β- catenin pathway (see section 1.2.4; Wnt signalling and 

cancer), resulting in a predisposition to adenoma formation (Frayling et al. 1998). 

Most studies have lacked the statistical power to confirm the role of E1317Q in CRC 

risk, and as carriers often lack a personal or family history of colorectal adenoma or 

carcinoma, this suggests it has a low penetrance (Lamlum et al. 2000).  

 

10-25% of FAP cases have no family history of polyposis, suggesting a new 

spontaneous mutation has been acquired. Somatic mosaicism for APC gene 

mutations, where the new mutation occurs post-fertilisation and is present in only a 

subset of cells or tissues may be responsible for a proportion of these sporadic 

cases. In their cohorts of sporadic FAP cases, Aretz (2006) and Hes (2008) reported 

that 11% and 21% respectively showed somatic mosaicism. 
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1.2.6 Somatic APC mutations 

Molecular genetic evidence has established that inactivation of both copies of the 

APC gene is required for tumour development, suggesting that APC follows 

Knudson’s 2 hit model for tumour suppressor genes (Powell et al. 1992). In FAP 

somatic mutations provide the ‘second hit’ that is necessary for tumour formation 

(Knudson, 1996; figure 1.4) and are found in the majority of colorectal adenomas 

and carcinomas, including in adenomas less than 5mm in size (Powell et al. 1992). 

Somatic APC inactivation may be due to protein truncating mutations or allelic loss 

that may be manifest as loss of heterozygosity (LOH). 

 

Somatic mutations/LOH are detected in over 75% of sporadic CRCs as well as in 

tumours from FAP patients (Miyoshi et al, 1992; Rowan et al, 2000). The spectrum 

and location of somatic mutations in sporadic colorectal tumours is similar to that 

seen in FAP polyps. It has been suggested that the number of adenomas in the 

colon in FAP is too great for each one to acquire an individual second hit and that 

multiple adenomas may arise from one original somatic mutation rather than distinct 

somatic events (Segditsas and Tomlinson, 2006).  

 

Over 60% of all somatic mutations in APC occur within the mutation cluster region 

(MCR), which accounts for less than 10% of the coding sequence of the gene 

between amino acid 1281 and 1580 of exon 15 (Cheadle et al. 2002). There are two 

mutational hotspots for somatic mutations at codons 1309 and 1450 within the MCR 

(Beroud and Soussi, 1996) seen in both sporadic and FAP tumours, and at codon 

1554 in sporadic tumours (Rowan et al. 2000). The vast majority of APC mutations 

result in a truncated protein that lacks all axin binding motifs and a variable number 

of 20AARs which ultimately act to inactivate the β-catenin down-regulating activity of 

APC.  
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The locations of the APC mutations therefore determine the number of 20-amino-

acid beta-catenin binding and degradation repeats that remain in the truncated 

protein. In the colorectum, most FAP tumours retain one to two 20-AARs, and this is 

also observed in sporadic CRCs with APC mutations. However, in the duodenum, 

three to four 20-AARs are commonly retained, which is thought to modulate the level 

of wnt signalling that results from somatic APC mutations (Crabtree et al. 2003; 

Lamlum et al. 1999). 

 

 

 

 

Figure 1.4 – Knudson’s two hit hypothesis for loss of tumour suppressor function in 

tumourigenesis. In inherited disease, a mutation of one allele is inherited in every 

cell, and a mutation of the second allele is acquired in tumourigenic cells. In 

sporadic disease two somatic mutations are required (Knudson, 1996). 
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1.2.6.1 Types of mutations 

The proportions of somatic frameshifts and point mutations in APC are almost equal 

to that of germline mutations (Beroud and Soussi, 1996). Somatic mutations result in 

truncation of the APC protein either by a nonsense mutation (30%) or by a 

frameshift mutation (68%) (Crabtree et al. 2003). Less than 15% of all the somatic 

mutations in APC in FAP are due to G:C→T:A transversions (Thierry Soussi 

database). Most patients have no notable excess of any particular type of somatic 

mutation (Crabtree et al. 2003; Albuqerque 2002; Miyaki et al. 1994). In their study 

of 133 FAP colorectal adenomas, Albuquerque et al (2002) reported that 79% of 

somatic APC mutations found were point mutations, with 21% showing allelic loss. 

Orbrador-Hevia et al. 2010reported a detectable second-hit in the APC gene in only 

25% of FAP adenomas, with LOH being found more frequently than point mutations, 

however only the MCR region of the gene was analysed. 

 

Single base pair deletions and insertions (indels) account for 33% of all somatic 

mutations in APC (Nagase et al. 1992). Micro insertions and deletions in the APC 

gene are commonly found to cause frameshifts where the correct reading of the 

frame is disrupted. Frameshift mutations were described in 71% of FAP tumours, 

with a large proportion of these being 1- to 16 base pair deletions (Miyaki et al. 

1995). In non-FAP sporadic colorectal tumours, 59% of APC mutations were 

frameshift. In tumours arising in the stomach or duodenum of FAP patients, there is 

a similar somatic mutation spectrum to colorectal tumours.  In 75 gastro- duodenal 

polyps from 21 FAP patients, 47 somatic mutations were described; 77% were 

frameshift mutations, including 11 cases of 2/4 bp deletion and 25 cases of 1-2 bp 

deletion (Toyooka et al. 1995). AG or AGAG deletion at codons 1462-1465 was 

detected in 10 tumours, and an A insertion at codons 1554-1556 was detected in 22 

cases. However, there is a higher frequency of mutations in codon 1450 in the 

colorectum (Miyaki et al. 1994). 
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Base pair substitutions include missense variants, where one amino acid is 

substituted for that of another, nonsense mutations in which a premature stop codon 

is introduced, and splice site alterations. In colorectal tumours in FAP, 29% of the 

somatic mutations identified were nonsense point mutations (Miyaki et al. 1994). 

 

Transitions and transversions which involve the substitution of two-ring purines 

(A>G) or one ring pyrimidines (C>T) are generally more frequent than transversions 

that involved changes of purine for pyrimidine bases. Of the point mutations in the 

colorectal tumours of patients with FAP, 65% of all the point mutations were GC>AT 

transitions, 22 of the 34 described were found to occur at the CpG sequence (Miyaki 

et al. 1994). When somatic alterations in the MCR were analysed, only four somatic 

mutations were detected in 60 adenomas studied and these were all nonsense 

mutations near to codon 1300. One of them was a C→T transition and the rest were 

transversions (Obrador-Hevia et al. 2010). In MAP, the majority of adenomas have 

G:C→T:A transversions (section 1.3.1). 

 

Splicing is a complex process by which introns are removed from pre-

messangerRNA (mRNA) and successive exons are joined to produce a mature 

mRNA molecule. Splicing mutations can generate several outcomes on the mature 

mRNA, including exon skipping from classical splice site mutations and single 

nucleotide substitutions within introns, which create de novo, splice sites resulting in 

cryptic exon inclusion. Single nucleotide substitutions within exons can act to cause 

the creation of de novo splice sites resulting in the loss of sections of an exon if 

these new splicing sites are used. Aretz et al (2004) described 917 FAP patients in 

whom about 5% (23/441) of the identified mutations were localized in intronic splice-

site sequences. They demonstrated by complementary DNA (cDNA) analysis that 

mutations at invariant AG/GT sites led to a reduction of splicing efficiency that 
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usually results in complete deletion of the corresponding exons. In two cases, 

mutations generated new splice sites or led to the use of cryptic splice sites, which 

resulted in frameshifts at transcript level with similar deleterious effects on 

phenotype as mutations resulting in exon skipping. The use of new splice sites has 

also been published for mutations at other invariant splice sites in the APC gene 

(Wallis et al., 1999; Charames et al., 2002).  

 

Methylation of CpG dinucleotides is a common transition in mammalian DNA and 

involved the deamination of methylated cytosine in CpG dinucleotides, most 

commonly resulting in a C>T transition (Cooper and Krawczak, 1993). Methylation 

of cytosines in CpG dinucleotides located in the promoter region of tumour 

suppressor genes can result in transcriptional silencing. The majority of germline 

and somatic point mutations in the APC gene are C>T transitions occurring at GCA 

codons (Beroud and Soussi, 1996). 

 

 

1.2.6.2 Loss of heterozygosity (LOH) 

LOH at 5q21 usually occurs by mitotic recombination where there is loss of the wild 

type allele and reduplication of the mutated allele leading to copy neutral LOH. LOH 

can also occur by deletion or chromosomal loss due to non-disjunction (Serra et al. 

2001). It is seen in both FAP tumours and sporadic CRCs. In sporadic CRC, APC 

LOH may be seen in 30-40% of cases (Rowan et al. 2000). Two studies of FAP 

reported allelic loss as the second hit in 20% and 22% of tumours (Lamlum et al. 

1999; Crabtree et al. 2003). 
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1.2.6.3 Copy number variations (CNVs) 

At least 85% of sporadic CRCs have chromosomal instability (CIN) (Issa, 2008). 

Aneuploidy is a consequence of chromosomal instability that leads to the gain or   

loss of whole chromosomes or parts of chromosomes (partial aneuploidy) (Gordon 

et al. 2012). Copy number variations (CNVs) are common forms of structural 

variants due to CIN, and are defined as a gain or a loss of copies of DNA segments 

that are larger the 1kb in length, when compared to a reference genome (Redon et 

al, 2006). CNVs can affect gene expression and are associated with disease 

susceptibility, and it alterations in gene dosage can be correlated with changes in 

expression level (Chaignat et al. 2012, Thomas et al. 2015). 

 

Previous studies on CRCs have reported gains at chromosome 8q, 13 and 20q and 

losses at chromosome 8p, 17p and 18q (Lassmann et al. 2007; Jones et al. 2005; 

Alcock et al. 2003; Lipska et al. 2007). Loss of chromosome 18 has frequently been 

observed in CRC, and this chromosome harbours a number of tumour suppressor 

genes, for example SMAD4 (Thiagalingham et al 1996). CNVs affecting tumour 

suppressor genes, oncogenes, or non-coding RNAs may all contribute to cancer 

development. For example, loss of an APC allele at chromosome 5q21 can lead to 

its deregulated expression in CRC (Camps et al 2009). Voorham et al (2012) 

demonstrated copy number changes in 60% of all flat and polypoid colorectal 

adenomas and specific loss of 5q15.5-q31.1 in adenomas that had a flat 

morphology that are thought to follow a more aggressive course. Loss of 5q has 

also been described in CRC cases with metastases (Diep et al. 2006), Cardoso et al 

(2006) reported that up to 80% and 60% of MAP and FAP colorectal polyps showed 

aneuploid changes respectively. Both MAP and FAP adenomas were characterised 

by frequent losses at chromosome 1p, 17, 19 and 22 with gains affecting 

chromosomes 17 and 13. Their data suggested that a considerable degree of 

aneuploid change occurs at an early stage of adenoma development. However, this 
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contrasted with the findings of Lipton et al (2003), where flow cytometry analysis of 

13 MAP adenomas was reported to show no detectable aneuploid change.  

 

 

1.2.6.4 Hypermethylation of the 1A promoter 

Hypermethylation of the 1A promoter region of the APC gene has been postulated 

as a possible second hit, acting to prevent expression of the APC protein (Esteller et 

al. 2000). It has been detected in colorectal carcinomas and adenomas, but not in 

adjacent normal colonic mucosa, and has also been reported in oesophageal, 

gastric, hepatic and pancreatic carcinomas in humans (Tsuchiya et al. 2000). 

However, it also is found in normal gastric mucosa, suggesting that it may be an 

alternative mechanism of APC inactivation in the early stages of colorectal tumour 

development but a normal event in gastric mucosa. In a further study, 

hypermethylation of APC promoter 1A has been shown to contribute to moderate 

activation of Wnt signalling (Wnt signalling and cancer; section 1.2.4) in a subset of 

serrated adenomas, but this was not found in traditional adenomas or CRC, 

however the numbers of polyps studied were small (Fu et al. 2009). 

 

 

1.2.7 Interdependence of the first and second hit in APC 

The precise nature of the somatic APC ‘second hit’ in FAP is highly dependent on 

the ‘first hit’ or germline mutation (Lamlum et al, 1999). This pattern is also seen in 

sporadic tumours with two somatic APC hits (Rowan et al, 2000). In FAP, if the 

germline mutations occur between codon 1194-1392, it has been demonstrated that 

there is strong selection for allelic loss of APC as the ‘second hit’ in development of 

a colorectal adenoma. If the germline mutation lies outside of this region, the 

‘second hit’ is most likely to produce a truncating mutation in the mutation cluster 

region (MCR) (Lamlum, 1999). LOH is strongly associated with germline mutations 
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between the first and second 20AAR (codons 1285-1379). Germline mutations 

before codon 1280 are associated with mutations between the second and third 

20AAR (codons 1400 and 1495), and germline mutations after codon 1400 are 

associated with somatic mutations before codon 1280 (Albuquerque et al. 2002; 

Crabtree et al. 2003). Most colorectal tumours therefore contain APC alleles that 

encode a total of two 20 AARs. 

 

Tumours from FAP patients carrying germline mutations close to codon 1300 show 

a high frequency of allelic loss and these patients tend to have a more severe form 

of the disease. Patients carrying germline mutations away from codon 1300 show 

LOH less frequently (Lamlum et al, 1999).  

 

 

1.2.8 The ‘just-right’ hypothesis 

The growth advantage gained by different combinations of APC mutations varies 

and is not based simply on loss of function (Rowan et al. 2000, Cheadle et al. 2002). 

Albuquerque et al (2002) proposed that rather than constitutive activation of wnt 

signalling (described in section 1.2.4), an optimum level of wnt signalling and a 

specific lower level activation of β-catenin signalling is favourable for tumourigenesis 

– the ‘just right’ hypothesis. The strongest selective advantage is believed to result 

when the function of APC is impaired sufficiently for β-catenin levels to over-activate 

growth genes, driving cell growth without apoptosis or cell death pathways being 

initiated. APC genotypes retaining one or two of the β-catenin binding repeats (and 

some residual activity) are most highly selected for. Thus, the mode of inactivation 

of the wildtype allele of the gene influences the extent of wnt pathway activation and 

the number and growth of polyps that arise. However, the association between ‘first 

hits’ and ‘second hits’ is not so strong that tumourigenesis arises only if the 
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genotype is optimum, some variation appears to be tolerated, with the ‘loose fit’ 

model more accurately describing this situation (Crabtree et al. 2003). 

 

 

1.2.9 The ‘three-hit’ hypothesis 

Studies on tumours from patients with attenuated FAP (AFAP) offered evidence for 

a new mechanism of tumour development. Unlike most tumours from classical FAP 

patients, AFAP tumours frequently contain two somatic mutations, one of which 

affects the germline mutant APC allele (Spirio et al. 1998; Su, L-K. et al. 2000; 

Sieber et al. 2006).  The highest frequency of these ‘third hits’ is found in tumours 

from patients with a germline mutation in the alternatively spliced region of exon 9.  

The third hit often leaves three 20-aa repeats intact on the germline mutant allele, 

with either LOH or a proximal somatic mutation of the wild type allele (Sieber et al. 

2006).  Not all AFAP tumours require three hits in APC which could be a result of 

modifier alleles affecting levels of functional APC protein and its splicing efficiency, 

or the presence of a third hit at another locus (Sieber et al, 2006).  

 

The three hit hypothesis has recently been refined, to the ‘multiple hit’ model. When 

true LOH occurs at APC, it typically involves no copy number change (Sieber et al. 

2002). However, in CRC, copy number changes at APC are common, and can take 

the form of a gain or deletion in aneuploid and near –diploid tumours – and it has 

been postulated that the copy number changes are effectively ‘third hits’ (Segditsas 

et al. 2009).  
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1.2.10 Genotype-phenotype variability in FAP  

Genotype/phenotype correlations for colonic disease in FAP have been well 

recognised and can be useful to guide management decisions. FAP patients do not 

all develop the same phenotype and this variation is partially accounted for by the 

position of the germline APC mutation.  In particular, mutations between codon 1250 

and codon 1464 are associated with classical FAP with severe polyposis (Laurent-

Puig et al. 1998), and a particularly severe form of disease with early onset of 

colorectal cancer has been found in patients with a mutation in codon 1309 (Freidl et 

al. 2001). The reason for the association of a particularly severe form of FAP with 

germline mutations around codon 1309 is likely related to selection for LOH “second 

hits” in these tumours that give an optimal level of β-catenin signalling for 

tumourigenesis.  LOH occurs spontaneously at a higher frequency than truncating 

mutations close to codon 1300 so the frequency of pathogenic mutations in these 

patients is effectively higher (Lamlum, H. et al, 1999; Crabtree, M. et al, 2003).  FAP 

patients with germline mutations between the second and third 20AARs have more 

severe disease than patients with mutations before the first 20AAR (not seen in 

AFAP), thought to be because patients with mutations before the first 20AAR are 

constrained to the second hit being between the second and third 20AAR, whereas 

those with a mutation between the second and third 20AAR can acquire a ‘just right’ 

second hit in a substantial part of the gene before the first 20AAR. Will et al (2010) 

observed the difference within the large bowel in the type of ‘second hit’ found in 

FAP polyps. They reported that patients with germline codon 1309 APC mutations, 

leaving 1 x 20AAR, have higher frequencies of LOH as the tumour location becomes 

more distal. This may partly explain why many FAP patients with codon 1309 have 

an increased polyp burden in the rectum.  

 

AFAP patients with 5’ germline mutations tend to have a more severe phenotype 

than those with mutations in exon 9 or at the 3’ end of APC (Soravia, 1998; Sieber 
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et al. 2006).    AFAP mutations often seem to result in production of an APC protein 

without adequate function, so that the wild type allele also needs to be mutated for 

tumour initiation to occur.  AFAP patients may therefore have a milder phenotype 

than classical FAP patients because of the requirement for ‘three mutational hits’ 

rather than two (Sieber, 2006).  

 

Extra-colonic manifestations are also associated with particular germline APC 

mutations. CHRPE is found in patients with germline mutations between codons 457 

and 1444 (Fearnhead et al. 2001) and desmoid tumours are associated with 

mutations at codons 1445-1580 (Friedl et al. 2001). Individuals appear to be at a 

higher risk of developing severe duodenal disease if the germline mutation lies 

between codons 976 and 1067 (Galiatsatos and Foulkes, 2006).  Papillary thyroid 

cancer has been found where germline mutations are located from codon 140 to 

1309, and an increased risk of osteomas is associated with mutations after codon 

1444 (Galiatsatos and Foulkes, 2006)   

 

 

1.3 MUTYH-Associated Polyposis (MAP) – Clinical features 

The true prevalence of MAP remains unclear, but it is thought to account for ~1% of 

all CRCs (Fleishman et al, 2004) and the phenotypic characteristics are still being 

determined. Most information on the MAP phenotype has come from studies of 

national or regional polyposis registers that are maintained in specialist centres. 

Patients can develop tens to hundreds of colorectal adenomas and colorectal 

cancer by the fifth or sixth decade of life, with an average age of diagnosis of CRC 

of 48 years (Sampson et al, 2003). The lifetime colorectal cancer risk if untreated 

may approach 100% (Farrington et al, 2005), with a preponderance for the right side 

of the colon. In a European collaborative study (Neilsen et al. 2009), 33% of the 

patients had at least another synchronous or metachronous CRC. One third of 
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individuals with bi-allelic mutations develop colorectal cancer in the absence of 

multiple adenomas (Croitoru et al. 2004; Tenesa et al. 2006). And only 2 cases of 

MAP with greater than 500 polyps have been reported (Aretz et al. 2006).The 

smaller number of colorectal polyps in MAP than in classical FAP is likely to signify 

the requirement for two rather than just one somatic mutation of APC for the 

commencement of adenoma formation, much as proposed in AFAP. In addition, co-

existing hyperplastic polyps have been reported in patients with MAP. One study 

reported the detection of hyperplastic polyps and / or sessile serrated adenomas in 

47% of MAP patients (Bopari et al. 2008). Mutational analysis of these hyperplastic 

polyps demonstrated G to T transversion mutations suggesting a similar mechanism 

of tumorigenesis as seen in MAP-associated adenomas. As there are smaller 

numbers of colorectal adenomas in individuals with MAP than FAP, some patients 

may be amenable to endoscopic removal of polyps, but if surgery is required, then 

an IRA is appropriate. If rectal polyposis is severe, then an IPAA is indicated (Vasen 

et al, 2008).  

 

Extra-colonic features of MAP include duodenal polyps (see section 1.6.2), gastric 

fundal polyps, sebaceous gland adenomas and epitheliomas. MAP carries an 

estimated cumulative lifetime risk of duodenal cancer of 4% (Vogt et al. 2009).  One 

case report described a MAP patient with 3 synchronous jejunal carcinomas at age 

39 years (de Ferro et al. 2009), and except for 2 carcinoid tumours in the small 

bowel, no other small bowel carcinomas have been reported. Two patients in a 

European register series of 270 were found to have carcinoid tumours of the 

appendix (Jones, 2007). Vogt et al. also reported on the incidence of extra-intestinal 

manifestations in MAP patients, with 28% having at least 1 extra-intestinal tumour. A 

total of 110 lesions were recorded, and of those, 44 (40%) were malignant. 

Compared to the general population, the incidence of extra-intestinal malignancies 

was almost doubled in MAP patients. The types of cancers described included 
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breast, endometrial, ovarian, bladder and skin cancer. Benign lesions included 

sebaceous gland adenoma, epidermoid cysts, lipomas, and benign endometrial and 

breast tumours. In contrast to FAP, no osteomas or desmoids tumours were 

observed (Vogt et al, 2009). Key comparisons to FAP are shown in table 1.2. 

 

 FAP MAP 

Mode of inheritance  Autosomal dominant Autosomal recessive 

Gene APC MUTYH 

Primary pathway affected Wnt signalling Base excision repair (BER) 

Number of colorectal 
adenomas 

>100 10-100 

Average age of onset of 
CRC 

39 years 47 years 

Incidence of desmoid 
tumours 

10-15% No reported cases 

Duodenal adenomas 70-100% 17% 

 

Table 1.2 - Key differences in FAP and MAP 

 

In patients with a mono-allelic mutation in MUTYH (MUTYH heterozygotes) several 

studies have tried to estimate the risk of CRC. Farrington et al (2005) showed a 

statistically significant excess of MUTYH heterozygotes among CRC cases aged 

over 55 years, but this was not corroborated by a meta-analysis of case control 

studies which found only a non-significant increase in CRC (Balaguer et al, 2007). 

Analysis of a series of 350 obligate heterozygote parents of MAP patients from the 

UK, Netherlands and Germany suggests that any increase in CRC risk in MUTYH 

heterozygotes is modest (less than that for the first degree relatives of sporadic 

CRC patients), with no need for any regular colonoscopic surveillance (Sampson 

and Jones, 2009). However, Win et al (2014) described an estimated CRC risk of 

7.2% for male carriers of monoallelic mutations (95% confidence interval [CI], 4.6%-

11.3%) and 5.6% for female carriers of monoallelic mutations (95% CI, 3.6%-8.8%), 

up to 70 years of age, irrespective of family history. They conclude that the risks of 
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CRC for carriers of monoallelic mutations in MUTYH with a first-degree relative with 

CRC are sufficiently high to warrant more intensive screening than for the general 

population. 

 

 

1.3.1 The MUTYH gene 

MAP is an autosomal recessive polyposis syndrome caused by inherited mutations 

in the MUTYH gene, the human homolog of the E. coli mutY gene. It was first 

discovered in 2002 by a group in Cardiff, UK, through somatic mutation analysis of 

the APC gene in adenomas and a cancer from patients exhibiting multiple colorectal 

adenomas with no known germline mutation (Al-Tassan et al, 2002). This analysis 

revealed an excessive number of G:C→T:A transversions in APC in tumours from a 

single family. MUTYH has no known involvement in the Wnt pathway. Transversion 

mutations of G:C→T:A usually occur as a result of oxidative damage to guanine, 

which leads to production of the highly mutagenic 8-oxo-7,8- dihydro-2’-

deoxyguanosine (8-oxo-G). It is the role of DNA glycosylases OGG1 and MUTYH to 

remove 8-oxo-G and the mispaired adenine respectively, during the repair of 

oxidative damage by base excision repair pathway (BER; discussed in section 

1.3.5). Germline screening revealed bi-allelic mutations in MUTYH (Al-Tassan et al, 

2002; Jones et al 2002). Subsequent screening of 167 unrelated patients with 

multiple colorectal adenomas failed to identify any bi-allelic combinations of rare 

alleles in other BER enzymes such as NEIL1, NEIL2 or NEIL3 (Dalloso et al, 2008). 

MAP is the first polyposis syndrome with a recessive mode of inheritance. In MAP 

tumours LOH is rare, because of the predominance of G:C→T:A changes, and 

mutations between the first and second 20AAR are also rare when compared to 

sporadic colorectal tumours (Segditsas and Tomlinson, 2006). 
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1.3.2 The MUTYH protein 

MUTYH is a 59kDa protein when encoded by transcript α3 (Slupska et al. 1999; 

Tsai-Wu et al 2000) which has 41% identity to its Escherichia coli (E.coli) 

homologue, MutY (Slupska et al 1996).  It contains functional domains, enabling 

interaction with other proteins and DNA. The study of MutY functional domains and 

their homology to the MUTYH protein has made possible the identification of several 

highly conserved motifs in the N-terminal domain of MUTYH. These are the DNA 

minor groove reading motif, helix-hairpin-helix motif (HhH), pseudo HhH motif, iron-

sulphur cluster and adenine recognition motif (Guan et al 1998). Through a C-

terminal binding site which contains a QXXLXXFF motif, MUTYH can also interact 

with proliferating cell nuclear antigen (PCNA) (Parker et al 2001). There are six 

recognised MUTYH serine phosphorylation sites; three in the N-terminal region 

(codons 9, 49 and 85) and three within the C-terminal half of the protein at codons 

349, 494 and 504 (Parker et al. 2003).   

 

 

 

Figure 1.4 The functional domains of the MUTYH protein (adapted from Parker et 

al. 2003) 
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1.3.3 MUTYH Function 

MUTYH is a base excision repair (BER) DNA glycosylase located on chromosome 

1p34.1. It consists of 16 exons and encodes a protein 535 amino acids in length. It 

contributes to the maintenance of genomic stability through its role in the BER of 

oxidative DNA damage. As a result of oxidative DNA damage, there are 

approximately 104 lesions generated per cell, per day (Ames and Gold, 1991). Key 

causes of this oxidative damage are reactive oxygen species (ROS), which include 

hydroxyl radicals, superoxide and hydrogen peroxide, and can be by-products of 

cellular metabolism or secondary to environmental exposure. Substantial damage 

can result in the death of a cell, and partial damage can be repaired with no 

significant adverse outcome to the cell.  

 

 

 

1.3.4 MUTYH mutations 

Cheadle and Sampson (2007) previously reported 30 mutations that are predicted to 

produce truncated proteins in MUTYH, consisting of 11 nonsense, 9 small 

insertion/deletions and 10 splice site variants. There are currently 102 different 

germline mutations recorded for MUTYH that include 77 missense / nonsense 

mutations (table 1.3; Stenson et al 2014). To date, the commonest mutations result 

in MUTYH proteins containing amino acid substitutions Tyr165Cy (Y165C) and 

Gly382Asp (G382D), they accounts for approximately 73% of MAP patients reported 

in Caucasian populations (Cheadle and Sampson, 2007).   
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Mutation type Total number of mutations 

Missense / nonsense 77 

Splicing 14 

Regulatory 0 

Small deletions 13 

Small insertions 5 

Small indels 1 

Gross deletions 2 

Gross insertions / duplications 1 

Complex rearrangements 2 

Repeat variations 0 

 

Table 1.3 - Germline Human MUTYH variants recorded in the Human Gene 

Mutation database (Stenson et al, 2014). In contrast to APC where truncating 

mutations (small indels and nonsense) account for the majority of changes, in 

MUTYH the majority of mutations are missense and  there are far lower numbers of 

gross deletions and insertions.  The two genes show a very different mutational 

spectrum, probably related to their roles in dominant and recessive disorders 

respectively.  

 

 

The mutations Y165C and G382D are the most common mutations in Western 

populations. Their allelic frequency is estimated at 0.2 and 0.6% in the general 

population (Jones et al. 2009). The frequencies of other mutations have not been 

properly evaluated and are therefore likely to be underestimated. The frequency of 

mono-allelic MUTYH mutation carriers is estimated to be at least 1-2% in the 

general population (Win et al. 2011), and between 1-2 individuals out of 10 000 are 

thought to have bi-allelic mutations. 
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A specific somatic K-RAS mutation has been identified in some MAP adenomas and 

is associated with increased dysplasia.  The G12C activating mutation is the result 

of a G:C to T:A transversion (Lipton et al. 2003; Jones et al. 2004).   

 

 

1.3.5 Genotype-phenotype correlation in MAP 

Farrington et al (2005) predicted CRC in all G393D homozygotes, but only by the 

age of 65 years. Biallelic Y176C mutations have been previously suggested to have 

a greater effect on CRC risk than biallelic G393D mutations, although the difference 

was not statistically significant (Tenesa et al 2006). Balaguer et al (2007) reported 

individuals with a Y176C mutation (homozygotes or heterozygotes) were diagnosed 

with CRC at a younger age and had more adenomas and right-sided CRCs than 

CRC patients who did not carry this mutant allele. Nielsen et al (2009) reported on 

the results of a multicenter study, analysing genotype and phenotype data from 257 

MAP patients. Data included age at presentation of MAP, polyp count, and the 

occurrence, location, and age at presentation of CRC. They described patients with 

a homozygous G396D mutation or compound heterozygous G396D/Y179C 

mutations who presented later with MAP and had a significantly lower risk of 

developing CRC than patients with a homozygous Y179C mutation, concluding that 

the phenotypic effects of Y179C are relatively severe in comparison to those of 

G396D. The number of truncating MUTYH alleles a patient carries was also not 

found to correlate with disease severity in this study. 

 

Intra-familial variation in phenotype has been reported (Raoof, M. 2007), suggesting 

that as for other colorectal cancer syndromes, additional genetic or environmental 

factors are modifying the MAP phenotype (Crabtree et al. 2002).  
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1.3.6 Base Excision Repair (BER) 

The major mechanism that protects the cell against oxidative DNA damage is the 

multi-step BER pathway (Hazra et al, 2007), however this pathway can also repair 

damage that results from methylation, deamination and hydroxylation (Hoejimakers, 

2009). This process is shown in Figure 1.5.  

 

MUTYH repairs the most frequent and stable form of oxidative damage, 8-oxo-G.  

When an oxo-G: A mismatch is present in the next round of replication, a G→C to 

T→A transversion will occur (Shibutani et al, 1991). MUTYH recognises this 

mismatch and excises the undamaged adenine base. DNA polymerases can then 

restore an oxo-G: C. This can be acted on by another BER glycosylase, OGG1, that 

will then replace the oxidised guanine with a guanine. Guanine is at particular risk of 

oxidative damage due to its low oxidative potential (Neeley and Eissigmann, 2006). 
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Figure 1.5- Base excision repair. Following single base DNA damage, DNA 

glycosylases recognise and initiate repair by removing the damaged base. If 

monofunctional, such as MUTYH, it removes the base by hydrolysis of the N-

glycosidic bond, ‘flipping’ it out of the helix. This results in an apurinic/apyruic (AP) 

site which is incised to form a single strand break (SSB) by AP endonuclease 

(APEX1). AP sites can also occur spontaneously as a result of hydrolysis (Dianov et 

al, 2003). A 5’deoxyribose 5’-phosphate residue (dRP) and a normal 3’hydroxyl 

(3’OH) group is left. If the DNA glycosylase is bifunctional, it acts to first remove the 

bases and then scores open the phosphodiester DNA backbone using its own DNA 

lyase activity. Depending on the glycosylase, and the group at the 3’ end of the 

break, either APEX1 or polynucleotide kinase 3’ phosphatise (PNKP) process the 
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DNA in preparation for DNA synthesis. The pathway then follows either a long patch 

or short patch repair (Wilson and Bohr, 2007). Short patch repair is the most 

common in mammals. In short patch repair, DNA polymerase β (POLB) repairs the 

damaged base and removes the overhanging dRP (Matsumoto and Kim, 1995). The 

remaining break is sealed by an XRCC1 (X-ray repair cross complementing 1)/DNA 

ligase III (LIG3) complex. In long patch repair, POLB or polymerase Ɛ (POLE) 

elongate 2-12 nucleotides from the 3’incision site, this creates a flap (Dianov et al. 

2003). A repair patch is synthesised from the damaged cell, aided by proliferating 

cell nuclear antigen (PCNA) and replication factor C (RFC), and the flap is then 

excised by flap endonuclease 1 (FEN1).  The strand is then ligated by DNA ligase 

(LIG1). 

 

 

1.4 The adenoma to carcinoma sequence 

Bi-allelic mutations in APC appear to be sufficient for initiation of a tumour but the 

progression to malignancy requires multiple mutations in distinct genes. A model for 

the stages of tumourigenesis has been proposed, with the genetic events usually 

occurring over many years (Figure 1.6) (Vogelstein and Kinzler, 2004).  Each stage 

results from mutations in genes involved in cell cycle control and key signalling 

pathways.  Although different genes within the same pathway can be mutated in 

different colorectal cancers, only one gene in a particular pathway is usually mutated 

in any one CRC (Vogelstein and Kinzler, 2004). The type of genomic instability 

present in the adenoma or carcinoma influences the gene mutated in a specific 

pathway. 
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Figure 1.6 - The adenoma-carcinoma sequence pathway. This can occur via two 

main routes; the chromosomal instability pathway and the microsatellite instability 

pathway. The first step of tumorigenesis is the formation of an adenoma. 

 

 

 

1.4.1 Genomic instability 

Genomic instability is occurs in most cancers (Grady 2004). Major mechanisms of 

genomic instability in colorectal tumours include chromosomal instability (CIN) and 

microsatellite instability (MSI).  CIN results in structural aberrations or changes in 

chromosome copy number whereas MSI causes genetic alterations through 

defective DNA mismatch repair (MMR) proteins (Söreide et al. 2006).   

 

The alterations in CIN result from mitotic recombination or aberrant segregation of 

chromosomes at mitosis and lead to the aneuploidy seen in these cancers (Kinzler 

and Vogelstein, 1996).  Allelic loss (loss of heterozygosity, LOH) at 17p, 18q and 5q 

often occurs and these chromosomal regions harbour the loci of p53, SMAD4 and 

APC respectively (Terdiman, 2000).  Deletion of 1p and 8p is also frequently seen, 
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but the underlying genes involved are yet to be defined. KRAS, CTNNB1 and 

PIK3CA oncogenes are often mutated in CIN tumours (Santini et al. 2008; Sparks et 

al. 1998 and Samuels et al. 2004). Several studies have confirmed that CIN takes 

place at an early stage of tumourigenesis in both sporadic CRC (Shih et al 2001) 

and inherited CRC (Cardoso et al. 2006). 

 

MSI is the next most common form of genomic instability. Microsatellites are 

sequences consisting of 1-5 base pairs, repeated throughout all DNA (Wheeler et al. 

2000). During DNA replication, the microsatellites can mutate, requiring repair by 

MMR enzymes. Mutations of the genes encoding the MMR enzymes result in the 

accumulation of microsatellite mutations, particularly frameshift mutations (Söreide 

et al. 2006).  A small proportion of CRCs display genomic instability that does not 

involve CIN or MSI (Goel et al. 2003), but show hypermethylation of promoters 

containing CpG islands, known as the CpG island methylator phenotype (CIMP). 

This instability promotes tumorigenesis by transcriptionally silencing genes that 

prevent tumour formation (Toyota, 1999) 

 

 

1.4.2 Tumour suppressor genes 

The outcome of mutations in tumour suppressor genes is an absence or inactive 

form of the resulting protein.  Mutations that cause a truncated protein or lead to 

nonsense mediated decay (NMD), missense mutations that target residues essential 

for the proteins function, insertions, deletions or gene silencing by promoter 

hypermethylation (Vogelstein and Kinzler, 2004) lead to this loss of function. APC 

somatic mutations resulting in loss of function are the most common tumour 

suppressor gene defects observed in sporadic CRC (Groden et al. 1993). TP53 is 

critical in the development of a number of cancers and is mutated in 50% of CRC 

cases (Hollstein et al. 1991). An inactivating mutation of TP53 results in loss of 
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regulation of the cell cycle arrest and cell death. Other tumour suppressor genes 

involved in CRC tumourigenesis include SMAD4 (Woodford-Richens et al, 2001), 

TGFβRII (Markowitz et al 1995), PTEN (Nassif et al. 2004) and BAX (Rampino et al. 

1997).  In general, both alleles of a tumour suppressor gene need to be mutated to 

have a tumourigenic effect.   

 

 

1.4.3 Oncogenes 

An oncogene is a gene that becomes constitutively active when mutated or active 

when the wild type gene would not be. Only one allele of an oncogene needs to be 

somatically mutated for it to have a tumourigenic effect. Activation can be caused by 

chromosomal translocations (such as CIN), gene amplifications or point mutations 

within a specific part of the gene that consequently affects the activity of the protein 

(Vogelstein and Kinzler 2004). KRAS is an example of a commonly mutated gene in 

colorectal tumourigenesis, and is found to be mutated in 40-50% of CRCs. The 

KRAS gene encodes a protein essential to signal transduction through a number of 

intracellular pathways and couples growth factors to the mitogen-activated protein 

kinase (MAPK) cascade which results in expression of genes involved in cell 

proliferation. The KRAS protein is a membrane-associated GTP-coupled protein that 

is activated by the binding of GTP enabling it to stimulate the MAPK cascade. 

Mutation of the KRAS gene causes persistence of the active GTP protein and 

continued cell division signalling results, stimulating cell proliferation (Grady and 

Markowitz, 2002). Other oncogenes involved in CRC tumourigenesis include 

CTNNB1 (Morin et al. 1997), BRAF (Davies et al 2002) and PIK3CA (Samuels et al 

2004).   
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1.5 The duodenum – anatomy and function 

The duodenum is the first section of the small intestine, preceding the jejunum and 

ileum. Its position within the gastrointestinal tract is shown in figure 1.7. It is the 

shortest part of the small intestine measuring 25-38cm in length, often described as 

a C-shape or horseshoe shape, and is almost entirely retroperitoneal. Anatomically 

it is divided into four parts; the first part or duodenal bulb (5cm); the second or 

descending part (10cm); the third part (7.5cm) and the fourth part (2.5cm) that 

continues as the jejunum.  

 

 

 

Figure 1.7 - Schematic diagram of the gastrointestinal tract, highlighting the 

duodenum. www.cancer.gov 

 

In the second part of the duodenum the ampulla of Vater, also known as 

the hepatopancreatic ampulla, is formed by the union of the pancreatic duct and 

the common bile duct. The ampulla is specifically located at the major duodenal 

http://en.wikipedia.org/wiki/Human_gastrointestinal_tract
http://en.wikipedia.org/wiki/Pancreatic_duct
http://en.wikipedia.org/wiki/Common_bile_duct
http://en.wikipedia.org/wiki/Major_duodenal_papilla
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papilla. The ampulla of Vater is located halfway along the second part of 

the duodenum and marks the anatomical transition from foregut to midgut, and 

hence the point where the coeliac trunk stops supplying the gut and the superior 

mesenteric artery takes over. 

 

The small intestine has the same wall structure as the colon, consisting of mucosal, 

submucosal, muscularis and serosal layers. The first 5cm of mucosa within the 

duodenum is smooth, but in the second part of duodenum the mucosa which 

comprises a simple columnar epithelium and a lamina propria, forms finger like 

projections into the lumen known as villi. Deep cavities, the crypts of Lieberkuhn are 

found between the villi. The crypts and villi increase in size in the second and third 

parts of the duodenum, and increase the surface area available for the absorption of 

nutrients. The duodenum is largely responsible for the breakdown of food within the 

small intestine using enzymes, and also regulates the rate of emptying of the 

stomach via hormonal pathways. Secretin and cholecystokinin are released from 

cells within the duodenum in response to fatty and acidic stimuli from the contents of 

the stomach. In turn, this triggers the liver and gallbladder to release bicarbonate 

and digestive enzymes such as trypsin, lipase and amylase into the duodenum as 

required. In addition, Brunner’s glands are found exclusively in the duodenum, 

acting to neutralise gastric acids by secreting mucous and bicarbonate. 

 

 

1.5.1 Sporadic duodenal adenocarcinoma 

Despite the fact that the small intestine comprises 75% of the gastrointestinal tract, 

small bowel cancer is rare, accounting for less than 5% of gastrointestinal cancers 

(Neugut et al. 1998). The duodenum is the most frequently involved segment, with 

55-82% of small bowel cancer cases (Bilimoria et al. 2009). The average age onset 

http://en.wikipedia.org/wiki/Major_duodenal_papilla
http://en.wikipedia.org/wiki/Duodenum
http://en.wikipedia.org/wiki/Foregut
http://en.wikipedia.org/wiki/Midgut
http://en.wikipedia.org/wiki/Celiac_trunk
http://en.wikipedia.org/wiki/Superior_mesenteric_artery
http://en.wikipedia.org/wiki/Superior_mesenteric_artery
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is in the mid 60s, with an overall incidence of between 0.01 and 0.04% (Sexe et al. 

1996; Adedeji et al. 1995).  

 

Genetic predisposition aside, other predisposing conditions associated with small 

bowel cancer include Crohn’s disease, usually in an inflamed segment of small 

bowel, which may not include the duodenum, and coeliac disease which is thought 

to arise from immunological disruption and damage to epithelial cells that can induce 

premalignant change.  

 

Studies on the pathogenesis of small bowel carcinoma are limited by the small 

numbers of cases, but alcohol consumption and smoking have been shown to be 

positively associated with an increased risk (Chow et al. 1993). Because of the 

marked differences in small bowel and colorectal adenocarcinoma incidence, it has 

been proposed that this may result from different exposure to carcinogens. Possible 

explanations include a shorter contact time in the small bowel between cells and 

dietary carcinogens, due to a shorter transit time; epithelial cells in the small bowel 

have a wider range of enzymes, including benzopyrene hydroxylase, which may 

protect cells against carcinogens (Delaunoit et al. 2005); and a higher density of gut 

microbiotia in the colon, where the microbiotia produce xenobiotic transformation 

during which bile salts are deconjugated and dehydroxylated to form desoxycholic 

acid which may act as a tumour promoter (Schottenfeld et al. 2009).  

 

 

1.5.2 Clinical features of duodenal disease in FAP and MAP  

Although duodenal adenomas are found in 30-70% of FAP patients, the cumulative 

lifetime risk of developing duodenal adenomas is almost 100% (Nugent et al. 1993). 

Data so far suggests involvement of the upper gastrointestinal (GI) tract in MAP is 

not as common as in FAP. However historical data on upper GI adenomas in MAP 
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may be an underestimation, as upper GI endoscopy was not previously routinely 

advised in patients with between 10 and 100 colorectal polyps. A multicentre 

European study reporting on the extra-intestinal manifestation in a large cohort of 

MAP patients found duodenal polyps in 26 of 150 (17%), however only 16 were 

confirmed histologically as adenomas (Vogt et al. 2009). Therefore the confirmed 

duodenal adenoma frequency was actually 11% in this study. Hyperplastic duodenal 

polyps were observed in 1 patient, and in the other 9 patients the polyp type was 

unknown.  

 

The estimated lifetime risk of developing duodenal or periampullary cancer in FAP is 

approximately 4.5%, and between 100 and 330 times that for the general population 

(Offerhaus et al. 1992). The average age of diagnosis is 52 years, earlier than that 

of sporadic cases. In MAP, despite the lower frequency of duodenal adenomas than 

in FAP, the increase in relative risk and the lifetime risk of   duodenal cancer (~4%) 

appear similar (Vogt et al. 2009). The natural history of duodenal polyposis in MAP 

is less well defined than that in FAP. 

 

In FAP, adenomas can be found throughout the duodenum, but the most commonly 

affected sites are the second and third parts and the peri-ampullary region. Polyp 

distribution often mirrors mucosal exposure to bile, suggesting a role for bile in 

duodenal adenoma development (Spigelman et al. 1989). An excess of DNA 

adducts, described as chemical modifications of DNA implicated in the initiation of 

carcinogenesis, has been shown in duodenal biopsies from patients with FAP 

(Spigelman et al. 1991), supporting a role for bile in the pathogenesis of adenomas.  

 

FAP duodenal adenomas can be small and flat or lobulated (figure 1.9), but in more 

advanced cases mucosal carpeting can occur when larger plaques of abnormal 

tissue coalesce (figure 1.10). Microscopically, the adenomas are similar to colonic 
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adenomas, and histologically resemble sporadic adenomas (Dominizo et al. 1990). 

There is little data published on the morphology of duodenal polyps in MAP, 

however MAP adenomas in the colon are small, tubular and tubulovillous 

adenomas, usually with low grade dysplasia and MAP cancers are similar in 

histological appearance, stage and grade to sporadic colorectal cancers but often 

with a lymphocytic infiltrate similar to Lynch syndrome cancers (Nielsen et al. 2009)  

 

 

Figure 1.9 – Small flat adenoma in the duodenum of a FAP patient 

 

 

Figure 1.10 – 25mm plaque-like adenoma in the duodenum of a FAP patient 
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1.6 Surveillance of the upper gastrointestinal tract 

A system for rating the grade of severity of duodenal adenomatosis was developed 

by Spigelman et al (1989), using the results of data from an upper GI screening 

programme in FAP which aimed to identify patients that appeared to be at higher 

risk of duodenal cancer and improve outcomes. It remains the most commonly used 

method of risk-stratification in FAP patients. Points are accumulated for size, 

number, histology and severity of dysplasia of polyps (table 1.4). According to the 

updated Vienna classification of gastrointestinal epithelial neoplasia (low grade 

dysplasia or high grade dysplasia) (Schlemper et al. 2000), the Spigelman score has 

been modified by attributing one point for low grade and three points for high grade 

dysplasia; removing moderate grade dysplasia as a variable within the overall point 

scoring system.  

 

 1 POINT 2 POINTS 3 POINTS 

No of polyps 1-4 5-20 >20 

Polyp size (mm) 1-4 5-10 >10 

Histology Tubular Tubulovillous Villous 

Dysplasia Mild  Severe 

Stage 0 = 0 points; stage I = 1-4 points; stage II = 5-6 points; stage III = 7-8 points; 
stage IV = 9-12 points 
 
Table 1.4 – Modified Spigelman classification of duodenal polyposis in FAP 
 
 
 
An individual’s Spigelman stage is of importance because of the risk of disease 

progression and ultimately cancer development (discussed in chapters 2 and 3). It is 

also important because of the potential benefit from more intensive surveillance and 

early treatment. The aim of surveillance of the upper GI tract is ultimately to prevent 

the development of duodenal cancer. The recommended surveillance interval 

between upper GI endoscopic examinations therefore depends on the severity of 

duodenal disease and is based on our current understanding of growth rates and 
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outcomes. Groves et al (2002) proposed an algorithm for the management of 

duodenal polyposis in FAP, which has been recommended by the Mallorca group in 

their 2008 guidelines (Vasen et al. 2008; table 1.5). The American College of 

Gastroenterology recommend shorter surveillance intervals, and suggest 

surveillance should be repeated after 4 years in stage 0 disease; 2-3 years in stage I 

disease; 1-3 years in stage II and 6-12 months where there is stage III polyposis 

(Syngal et al. 2015). Both the Mallorca group and the American College of 

Gastroenterology recommend that surveillance should begin between the ages of 25 

and 30 years. For MAP, as there are no prospective studies on the development of 

duodenal adenomas, the Mallorca group advises upper GI endoscopy also should 

be initiated between the ages of 25 and 30 years, and that screening intervals 

should depend on disease severity, following the same protocol as based on 

Spigelman stage for FAP.   

 

 

SPIGELMAN SCORE SURVEILLANCE INTERVAL  
(YEARS) 

 
0/I 5 
II 3 
III 1-2 
IV Consider surgery 

 

Table 1.5 -Recommended upper GI endoscopic surveillance intervals in relation to   

Spigelman classification (Vasen et al. 2008) 

 

 

1.7 Management of Duodenal Disease 

There is no consensus about how to treat patients with duodenal polyposis in FAP 

or in MAP. Treatment options include continued endoscopic surveillance, 

endoscopic therapy, surgery and pharmacologic treatment. Management is 

generally individualised to each patient and where disease is more advanced often 
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involves a multidisciplinary team, including a surgeon, endoscopist, pathologist and 

a radiologist. The morbidity and potential mortality associated with interventions 

such as endoscopic treatment or surgery must be weighed against the risk of 

developing duodenal adenocarcinoma. Recent studies have suggested that 

duodenal adenomatosis in FAP progresses slowly and sequentially through stages 

defined by increasing size and dysplasia towards cancer (Serrano et al. 2014),  

highlighting the importance of  identifying and treating patients with higher stage 

disease in a more frequent and intensive manner.  Progression of duodenal 

adenomatosis and risk of cancer will be discussed in detail in chapter three. 

 

 

1.7.1 Lifelong endoscopic surveillance 

In patients with only a few small adenomas (Spigelman stages I and II), studies 

have shown that the risk of developing duodenal cancer is very low (Groves et al. 

2002; Lepisto et al. 2009; Bulow et al. 2011) and is outweighed by the potential risks 

of endoscopic or surgical intervention. In selected patients, lifelong surveillance 

might be indicated rather than attempts at adenoma eradication.   

 

 

1.7.2 Endoscopic therapy    

The rationale for endoscopic treatment of adenomas in the duodenum applies to 

patients with multiple larger adenomas (Spigelman stages III and IV), as their risk of 

duodenal cancer is higher. Data published only pertains to FAP, no studies have 

reported on endoscopic therapy of MAP duodenal adenomas. Endoscopic 

treatments available include endoscopic mucosal resection (EMR), snare excision 

polypectomy, thermal ablation, argon plasma coagulation (APC) and photodynamic 

therapy (PDT). Ablative therapies such as APC and PDT can be used to remove 

small or flat lesions, for polyps greater than 20mm, and for extensive ‘carpeting’ 
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lesions either as for debulking or for treatment of recurrent adenomatous tissue. 

APC is also used to treat the edge of a resection after EMR as studies have shown 

that routine use of APC can minimise the risk of recurrent adenoma formation in the 

colon (Zlantanic et al. 1999). Results of the use of PDT in eradication of neoplastic 

lesions in the upper GI tract have not been promising (Regula et al 1995; Mlkvy et 

al. 1995).  APC has a good technical success rate in achieving endoscopic ablation, 

however recurrent or persisting adenoma was reported in 12 of 16 patients (75%) in 

one recent study (Jaganmohan et al. 2012), with progression from tubular adenoma 

to tubulovillous adenoma observed in 4 patients despite ablation with APC. 

 

Duodenal adenomas are often flat and non-polypoid lesions, which can make 

traditional snare polypectomy difficult. Many centres now use EMR, where a 

submucosal injection of saline, indigo-carmine and adrenaline solution provides a 

cushion under the polyp, which facilitates removal and reduces the risks of bleeding 

and perforation (Groves et al. 2002). However, there is an increased risk of 

haemorrhage following EMR in the upper GI tract as compared to EMR during 

colonoscopy. Much of the available literature suggests that endoscopic treatment is 

usually associated with a significant risk of complications and rarely guarantees a 

completely adenoma-free duodenum. The duodenal wall is significantly thinner than 

the colon, with a mean thickness of 1.6mm in healthy subjects (Nyland et al. 2012) 

and so the perforation rate is much higher; 1:30-1:50 in experienced hands (Bjorn 

Rembacken, personal communication). Other challenges include limited space 

within the duodenum, reducing the manoeuvrability of the endoscope and the 

curved shape of the duodenum, which can make access to the lesion difficult and 

maintenance of a stable endoscope position very difficult (Basford et al. 2014). The 

location of the polyp, whether near the ampulla or in the more distal duodenum, can 

also affect recurrence rates and complication rates. Even in experienced hands the 

complications associated with endoscopic papillectomy are high compared to other 
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endoscopic procedures and include pancreatitis, cholangitis and papillary stenosis. 

Han et al (2006) reported a morbidity rate of 23% and mortality rate of 0.4% when 

evaluating cases series of endoscopic resection of ampullary adenomas. Serrano et 

al (2014) reported that amongst 104 endoscopic polypectomies in patients with 

advanced duodenal polyposis in FAP, the complication rate was 20%, with 11 cases 

of bleeding, 9 cases of pancreatitis and 1 death due to severe pancreatitis. All 

patients in this study developed recurrence after polypectomy and ablative 

techniques. Other studies have reported that the recurrence rate of adenoma 

development after endoscopic therapy was high (50%-100%), with a 17% 

complication rate (including perforation, haemorrhage and pancreatitis) (Apel et al. 

2005; Brosens et al. 2005).  Norton and colleagues (2002) reported slightly lower 

recurrence rates after one year of follow up, but the series also contained patients 

without FAP. A recent series by Moussata et al (2014) evaluated endoscopic 

treatment in 35 patients with stage IV polyposis, but only where ‘the adenomas 

appeared accessible by an endoscopic approach according to expert advice’. They 

reported a rate of 90% of “down- staging” to a lower Spigelman stage in addition to a 

high success rate of endoscopic ampullectomy, (95%) with local recurrence in 28%. 

However, a limitation of this study was the lack of a standardised endoscopic 

treatment approach and uncertainty if there was a significant effect on the overall 

outcomes. Ma et al (2014) also observed a recurrence rate of 58% after endoscopic 

ampullectomy in FAP, but there was no correlation between recurrence and 

resection margin, and of the 3 patients that went on to have surgery, this was not for 

recurrent adenomas; 2 cases were for high grade dysplasia and one was patient 

choice. 

 

However, sampling error in biopsy taking and polyp removal in high Spigelman 

stages remains a concern. In the St Mark’s and Middlesex series, 5 patients of 16 

(31%) undergoing prophylactic pancreaticoduodenectomy for apparently stage IV 
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polyposis were subsequently found to have ampullary carcinoma that had not been 

detected on biopsy (Gallagher et al. 2004).  

 

Lepisto et al (2009) demonstrated a reduction in Spigelman stage in half of patients 

1-3 months after endoscopic excision (papillectomies and snare excision), which 

was statistically significant, the majority of patients being stage II or III initially. Thus, 

it may be advantageous to try to achieve local disease control in those with stage II-

III disease, with the aim of delaying or avoiding radical surgery and its significant 

complication rates. Recently published data from St Mark’s Hospital Polyposis 

registry (Balmforth et al. 2011) followed up 41 patients with stage IV duodenal 

polyposis that were down-staged to either stage III, II or I disease either by 

endoscopic or pharmacological therapy. They found that all patients demonstrated 

an increased rate of disease progression back to severe disease in comparison to 

reported rates of primary disease progression. This suggests that once a patient has 

been classified as having stage IV disease, they should forever be managed as 

high-risk and that the current surveillance protocol should be amended accordingly.   

 

 

1.7.3 Surgical management 

The surgical options for management of duodenal disease in FAP include local 

surgical treatment, pancreas-sparing duodenectomy and (pylorus sparing) 

pancreaticoduodenectomy (Whipple’s procedure). There is often difficultly in 

deciding which surgical option is appropriate due to absence of randomised 

controlled trials. There is no literature available on the upper GI surgical 

management of MAP polyposis. Early surgical referral for patients with large 

duodenal adenomas, bulky ampullary disease or severe dysplasia on biopsy seems 

appropriate in view of reports of carcinoma detected in resection specimens in a 

significant number of patients undergoing supposedly prophylactic surgery 
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(Gallagher et al. 2006). Two patients (6%) with benign duodenal adenomatosis pre-

operatively were found to have cancer following surgical resection in one series 

(Van Hueman et al. 2011). Local surgical treatment includes duodenotomy with 

polypectomy and/or ampullectomy, but results have been disappointing. Penna et al 

(1998) reported recurrent disease in all patients after 6-36 months in patients 

undergoing duodenotomy with polypectomy, with progression to stage IV polyposis 

after a mean of 53 months. Brosens et al (2005) reviewed the results from studies of 

local surgical treatment and reported a high recurrence rate after local surgery in 

FAP patients with severe polyposis. In the most recent study by Lepisto et al (2009),   

Spigelman stages had decreased in 5 patients (29.4%), increased in 2 (11.8%) and 

remained unchanged in 6 (35.3%) patients at the first post-operative endoscopy 

performed 6 months to 2 years after duodenotomy. The change in mean Spigelman 

stage was statistically significant. Pancreaticoduodenectomy was subsequently 

performed on 6 (35.3%) of patients. Despite these results, duodenotomy may have 

a role in patients who have one or two worrying or dominant lesions where there is 

an otherwise minimally involved duodenum, especially if patients are young and 

where the aim is to delay major surgery. 

 

Severe polyposis (stage IV), failed endoscopic or local surgical treatment and 

carcinoma development are all indications for more radical surgery – either a 

Whipple’s procedure or pancreas-sparing duodenectomy. Published data confirms 

low recurrence rates of polyposis within the proximal small bowel with these 

procedures. However, there is significant morbidity and mortality associated with a 

Whipple’s procedure, with a mortality rate of 5% in expert centres. Immediate 

complications include pancreatic anastomotic failure, sepsis and bleeding as well as 

more chronic problems such as pancreatic endocrine insufficiency, where insulin 

therapy is required in 3-6%, and exocrine insufficiency seen in 30-60% of patients 

(Vasen et al. 1997).  Although preserving the pancreatic head in a pancreas-sparing 
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duodenectomy may result in limited pancreatic exocrine and endocrine insufficiency, 

the majority of malignancies occur in the periampullary region, and may not be 

obvious when undertaking duodenoscopy (Gallagher et al. 2004). Of the surgical 

outcomes reviewed by Brosens et al (2005) there was no significant difference in 

recurrence rates between the two operations. Farnell et al (2000) noted that in 25 

FAP and sporadic patients, there were no recurrences following either surgical 

method but that morbidity was higher after pancreas-sparing duodenectomy. A 

Dutch group have more recently reported that there was a 78% (14 of 18 patients) 

rate of newly formed adenomas in the neo-duodenum after duodenectomy, 

occurring after a mean of 46 months (Alderlieste et al. 2013). Advanced adenomas 

recurred in 7 patients, with 2 patients requiring further surgery.   The specific choice 

of procedure appears to be related to local expertise and polyp location, but caution 

must be taken when deciding on the surgical options as a prophylactic procedure.  

 

Other considerations include preservation of the pylorus, which decreases biliary 

reflux into the stomach - a risk factor for gastric polyp formation in FAP (Spigelman 

et al. 1991b) and the need for continued monitoring of the remaining proximal small 

bowel. The Mallorca Group have recommended that the Roux-en-Y be constructed 

in such a way that endoscopic follow up is possible as there is a risk of jejunal 

polyposis or jejunal carcinoma following duodenal surgery. 

 

Prophylactic radical surgery should be reserved for well informed and carefully 

chosen patients, in expert regional or national centres with experience of these 

complex procedures, and in patients where the burden of disease is weighed 

against the operative risks. However, some argue that the poor prognosis of 

duodenal cancer may justify an aggressive prophylactic surgical approach in 

advanced but ‘benign’ duodenal disease. 
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1.7.4 Pharmacological treatment 

In early duodenal disease, the risks of surgery far outweigh the risk of malignant 

progression. There are also those patients who are unsuitable for surgery even if 

they have advanced disease, due to other co-morbid conditions, and those lesions 

which cannot be removed endoscopically for technical reasons. Consequently, 

pharmacological treatment options have become a focus of ongoing research.  

 

In 1983, sulindac (a non-selective cyclo-oxygenase inhibitor) was shown to be 

effective in FAP (Waddell et al. 1983), reducing the number of colorectal adenomas 

by greater than 50%, as well as in the retained rectal segment after colectomy. 

However, it did not prevent initial adenoma development in FAP (Giardiello et al. 

2002). Further studies have since confirmed that non-steroidal anti-inflammatory 

drugs (NSAIDs) are beneficial in both sporadic and FAP-associated colorectal 

adenomas due to their anti-proliferative effects. Table 1.6 provides a brief summary 

of their mechanisms of action.  

 

COX  DEPENDENT  
MECHANISMS 

COX INDEPENDENT 
 MECHANISMS 

 Inhibition of COX-1 & COX-2 
enzymes 

 Block conversion of arachidonic 
acid to prostaglandins 

 Inhibition of prostaglandin 
synthesis 

 Disruption of cellular functions 
involving prostaglandins such as 
angiogenesis and cell 
proliferation. 

 

 COX-2 inhibition may induce 
apoptosis, via inhibition of PGE2 

 
 
NB: COX-1 expressed in most tissues, 
COX-2 expressed in response to growth 
factors, lipopolysaccharide, cytokines, 
mitogens and tumour promoters. 

 High doses of NSAIDs induce 
apoptosis in COX-1 or COX-2 
deficient cells 

 Prostaglandins do not rescue 
cells from apoptosis 

 Apoptosis induced via 
membrane bound and 
mitochondrial pathway 

 
Other targets for NSAIDS: 

 Beta-catenin  

 Proteins of the Bcl-2 family 

 TGF-beta signalling 

 Peroxisome proliferator 
activated receptor (PPAR) 
family 

 

Table 1.6 - Proposed mechanisms of action of NSAIDs in chemoprevention  
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However, these results have not been reproduced in the duodenum. Nugent et al 

(1993b) found no statistically significant difference in patients on 400mg sulindac 

daily after 6 months, although they did reveal a statistically significant effect on 

duodenal polyps less than 2mm. The authors reported that sulindac treatment 

actively reduced mucosal proliferation in both the duodenum and rectum. Cell 

proliferation is a well validated marker of tumour formation in the gastrointestinal 

tract, and an increase in the cell proliferation rate has been shown to equate with a 

rise in the rate of tumour formation in the colon in both animal and human studies. 

However the fall in mucosal proliferation was associated with significant polyp 

regression in the rectum, but not the duodenum. Another study of 8 patients with 

residual small periampullary polyps treated with 300mg sulindac daily for at least 10 

months, found that no patient showed regression of adenomas (Richards et al. 

1997). In addition, side effects meant that sulindac was discontinued in 3 patients.  

 

Celecoxib, a selective cyclo-oxygenase-2 inhibitor (COX-2) has been shown to 

reduce the number of colorectal adenomas by 25% (Steinbach et al. 2000) and is 

the only agent to have been shown to be of benefit in duodenal adenomas in FAP. 

At a dose of 400mg twice daily, celecoxib was found to have a statistically significant 

effect on duodenal polyp number, but not total polyp area, with a 14% reduction in 

the number of polyps after 16 months compared to placebo (Phillips et al. 2002). 

Although COX-2 inhibitors are reported to have fewer gastrointestinal related side 

effects than non-selective NSAIDs, there are significant concerns about the reported 

cardiovascular side effects. Meta-analysis has shown rofecoxib to have an 

increased risk of stroke or myocardial infarction (Wallace et al. 2001) but showed 

that celecoxib at a dose of 200mg per day was not associated with a higher risk of 

cardiovascular disease. At present, data is being collected to determine the long 

term side effects of higher dose celecoxib use in FAP. The Mallorca group 

guidelines conclude that the use of celecoxib might be justifiable for patients with 
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severe duodenal polyposis (Spigelman stage III-IV), because the endoscopic and 

surgical treatment in such cases are associated with significant complications, and 

that COX-2 inhibitors should only be considered in those patients with no 

cardiovascular risk factors until more data is available. 

 

Other agents that have been used in small trials include H2 receptor anatagonists 

(rantidine) (Wallace et al. 2001) and calcium with calciferol (Seow-Choen et al. 

1996). None of these trials found a significant reduction in the duodenal polyp 

number over the study period. A recently published randomised, placebo controlled 

trial described the use of an enteric coated formulation of eicosapentaenoic acid 

(EPA), as the free fatty acid EPA-FFA in patients with a retained rectum after 

ileorectal anastomosis in FAP (West et al. 2010). EPA is an omega-3 

polyunsaturated fatty acid which has been shown to have anticolorectal cancer 

activity in vitro and in pre-clinical models, although the precise mechanism of its 

antineoplastic action remains unclear. Polyp number, size and overall polyp burden 

all decreased significantly after treatment with EPA-FFA 2g daily compared with 

placebo over a 6 month period. This exciting development should now prompt future 

studies of this agent in duodenal adenomatosis. Oestrogen receptors (ERs) have 

been suggested as having a pivotal role in preventing malignant transformation of 

colon epithelial cells in humans (Weyant et al. 2001). Thus vegetable rich diets may 

prevent CRC due to their high content of phytoestrogens (Bjork et al. 2001). 

Phytoestrogens include a variety of vegetable derived compounds with oestrogen-

like chemical structure, and a recent study evaluating the effect of a patented blend 

of phytoestrogens and indigestible and insoluble fibres (Eviendep, CM&D Pharma 

Limtied, UK) has been shown to reduce the number of duodenal polyps in FAP 

patients with IPAA (Calabrese et al. 2013). The polyp number in the duodenum 

reduced by 33% and size was reduced by 51%, however this was a small study 

totalling 11 patients.  
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1.8 Aims 

 

The current study had threefold aims: 

 

a) To investigate the impact of chromoendoscopy on the characterisation of 

duodenal adenomatosis in patients with MAP and compare this to patients 

with FAP to establish effects on Spigelman staging and clinical management. 

 

b) To initiate a long term prospective study of duodenal disease in MAP and 

describe disease characteristics via a cross sectional study using initial data 

 

c) To characterise the somatic mutational landscape in duodenal adenomatosis 

in MAP and FAP using genomic approaches 
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Chapter 2 

 

 

The Role of Chromoendoscopy in the 

Surveillance of the Duodenum of Patients 

with MAP and FAP 
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2.1 Introduction 

The Spigelman scoring system for risk stratification of duodenal polyps in FAP was 

developed to allow an estimation of the risk of developing duodenal carcinoma. The 

Mallorca group advocate the same surveillance programme for MAP in the upper GI 

tract (2008). In FAP approximately 80% of patients have stage I-III disease and 10-

20% have stage IV disease (Vasen et al. 2008), and the risk of developing cancer in 

Spigelman stages III-IV is reported to be between 7-36% despite an overall cancer 

risk in all patients of 5%. However, recent data suggests this risk may be even 

higher with one recent study reporting a lifetime risk of duodenal carcinoma of 18% 

(Bulow et al. 2011). Studies have reported that advanced duodenal cancers have 

been shown to develop in 4 of 11 patients with duodenal polyps that were evaluated 

at stage III or less, and these patients were not diagnosed with cancer at 

surveillance but rather when they became symptomatic (Groves et al. 2002; Bjork et 

al. 2001; Nugent et al. 1995). In their 10 year prospective study Groves et al. (2002) 

estimated the cancer risk at 36% in patients with stage IV disease; 4 of 11 patients 

with Spigelman stage IV disease at initial examination went on to develop duodenal 

cancer. However, the progression of duodenal polyps in terms of size number and 

histology was slow, suggesting the transformation from adenoma to carcinomas 

may take longer than 15 to 20 years. Bulow et al (2004) reported a cumulative 

incidence of cancer of 4.5% at 57 years of age, and observed that this cancer risk 

was higher in patients with a Spigelman score of IV at the first endoscopy. Given 

this evidence, accurately identifying patients at an increased risk of harbouring or 

developing duodenal cancer is the principal goal. Because many patients with FAP 

develop duodenal polyps, yet the majority of patients do not develop invasive 

cancer, the clinical management of the duodenum in patients with FAP remains 

problematic. There is little published data on the natural history of duodenal 

adenomatosis and no long term studies of upper GI surveillance in MAP.  
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Endoscopic surveillance of the GI tract is recommended to be carried out with a 

forward-viewing and a side-viewing (ERCP) endoscope in order to obtain maximum 

views of the ampulla, stomach, duodenal bulb and second part of the duodenum; 

then into the third and fourth parts of the duodenum to the duodeno-jejunal junction 

(see figure 1.7). Conventional gastroscopes often do not adequately observe the 

third part of the duodenum and beyond. Saurin et al (2004) observed a progression 

in Spigelman score during follow up in 50% of patients, with high grade dysplasia 

developing in 32% of patients, a higher rate of progression that has been reported 

previously. A possible explanation for this may be the methodology of duodenal 

examination, which was carried out under general anaesthesia, allowing for a 

precise and comfortable examination of all parts of the duodenum.   However there 

is no evidence from any randomised controlled trials to support this explanation. 

Upper GI endoscopy examines the duodenum, but does not inspect any of the small 

bowel beyond the ligament of Treitz.  The clinical significance of small intestinal 

polyposis, in particular jejunal adenomas, in FAP is unclear. There have been 

several studies published that suggest the occurrence of small adenomas with low 

grade dysplasia in the proximal jejunum, with prevalence rates varying from 25-87%, 

but these largely are observed in patients with advanced stages of duodenal 

polyposis (Burke et al. 2005; Iaquinto et al. 2008; Monkemuller et al 2007). 

Adenomas in the jejunum and ileum are not known to occur in patients without 

duodenal adenomas. 

 

Invasive endoscopic methods of surveying the whole of the small bowel include 

single balloon enteroscopy (SBE) and double balloon enteroscopy (DBE). Both 

techniques have been shown to be safe and effective; providing good quality 

visualisation of the proximal jejunum and detection of adenomas (Gunther al al. 

2010; Yamada et al. 2014; Alderlieste et al. 2013). Videocapsule endoscopy (VCE) 

is a minimally invasive technique where a small capsule (25-30mm in length) 
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containing a video camera, white light–emitting diode illumination sources, a power 

source, and a radio telemetry transmitter, is swallowed by the patient in order to 

record thousands of high quality images as the capsule passes through the small 

bowel. Alderliste et al (2013) found that counting and estimating the size of polyps, 

identifying the junction between the duodenum and the jejunum when compared 

with enteroscopy was poor, with other studies reporting that the accuracy of VCE for 

detection of polyps within the duodenum itself as inadequate (Wong et al. 2006). 

Matsumoto et al. (2005) reported that DBE was superior to VCE for the detection of 

diminutive polyps in FAP. In contrast, Yamada et al (2014) reported a prevalence of 

40% of small intestinal polyps in their study of VCE in FAP, and showed that 

endoscopy and VCE detected different polyps in the duodenum. This led to a 

conclusion that VCE may actually detect additional duodenal polyps, but the 

numbers included in the study were small. Current data available suggests that 

although the finding of small adenomas distal to the duodenum is common, 

progression to advanced adenomas or carcinoma is rare, and that routine small 

bowel surveillance is not indicated in patients with FAP, even in those patients with 

advanced duodenal polyposis. In particular, the role of enteroscopy may be 

reserved for patients with symptoms that warrant investigation of the distal small 

bowel or in the context of pre-operative assessment to avoid reconstruction with a 

segment of jejunum that has a high number of adenomas. 

 

In the colon there is an overall polyp miss rate of 22% using white light endoscopy 

for sporadic polyps (van Rijn et al. 2006). Polyp detection rate in the colon is 

influenced by a variety of factors such as a family or personal history of CRC and 

polyps, and endoscopic factors such as colonoscopist technique, withdrawal time 

and the quality of bowel preparation. The detection or miss rate of lesions within the 

upper GI tract has not been as widely studied, and rarely in the duodenum. 

Moreover, many of the factors associated with miss rates in the colon are not 
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applicable to upper GI endoscopic examination. In the majority of patients 

undergoing upper GI endoscopy for a variety of presenting symptoms, no duodenal 

lesions are found (Kiesslich et al. 2003). Since the widespread adoption of the 

Spigelman score, there have been many developments that have led to significantly 

improved resolution in endoscopic images. Endoscopic techniques to optimise polyp 

detection rate have been sought to improve the overall miss rate of lesions during 

endoscopy. 

 

Chromoendoscopy (dye spray) was first used in the stomach (Yamakawa et al. 

1966) and Tada et al (1977) later described its use in the colon. There are three 

principal roles of chromoendoscopy: (1) to improve detection of lesions during 

screening or surveillance procedures, (2) to assess and distinguish non-neoplastic 

from neoplastic lesions and (3) to demarcate and define margins of lesions in order 

to delineate the extent of lesion and thus aid decision making as to endoscopic 

resectability.  

 

Methylene blue and indigo carmine are the two dyes commonly used in the 

detection of lesions (Shim 1999).  Methylene blue is actively absorbed into the 

intestinal epithelial cells, staining them blue and is classed as an absorptive (vital) 

stain. Abnormal mucosa is highlighted where there is absence of or altered uptake 

of dye. There have been concerns raised regarding this due to its potential to cause 

DNA damage to cells in vitro and in vivo, and the resulting carcinogenic effect (Davis 

et al. 2007). However, no published clinical evidence supports an increased 

malignancy risk associated with its use (Denis-Ribeiro M et al. 2008). Indigo carmine 

is a contrast (reactive) stain which combines a blue plant dye (indigo) and a red 

colouring (carmine) (Fennerty, 1994). This dye is not absorbed by the epithelial 

cells, but instead collects between the cells in the pits and grooves of the mucosal 

surface (Canto, 1999). 
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For lesion detection in the upper GI tract, the segment of mucosa to be examined 

must be clear of any pools of fluid or food residue. The dye is most commonly   

applied through a plastic spray catheter that is passed through the accessory 

channel of the gastroscope, until the tip is just seen in the lumen. A continuous 

stream of dye is injected by the endoscopy assistant through the catheter, during 

spiral withdrawal of the determined segment that is to be examined by the 

endoscopist (Wong Kee Song et al. 2007). An even coating of the mucosal surface 

is achieved by collapsing the lumen by aspiration of the carbon dioxide or air used to 

inflate the bowel or stomach, and then re-insufflated with any excess pools of dye 

aspirated to enable careful and methodical evaluation of the mucosal surface.  

 

Within the colon, there are many studies that have examined the impact of pan-

chromoendoscopy on polyp detection rates. Hurlstone et al (2004) reported 

significantly more adenomas identified in the dye spray (66%) versus control (33%) 

group in a randomised trial of 260 patients using 0.5% indigo carmine dye. They 

also demonstrated a higher number of flat and diminutive polyps in the 

chromoendoscopy group, especially in the right colon (p< 0.05). A Cochrane review 

of chromoendoscopy excluding patients with polyposis syndromes and inflammatory 

bowel disease concluded that chromoendoscopy identifies more patients with at 

least one adenoma and significantly more patients with three or more adenomas 

(Brown et al. 2007). 

 

In FAP, a single study of thirteen patients compared white light endoscopy with 

narrow band imaging (NBI) and autofluorescence imaging (AFI) (both are types of 

push button technology that are able to mimic the role of dye based 

chromoendoscopy), and chromoendoscopy with indigo carmine dye within the colon. 

NBI highlights mucosal surface structures and superficial microcapillaries, which can 

indicate neoplastic change.  A significantly greater number of lesions were identified 
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using chromoendoscopy than any of the other techniques (p<0.05) and this was 

particularly marked in flat polyps and those with a depressed element (Matsumoto et 

al. 2009). In patients with Lynch syndrome (LS), the findings are similar in the colon. 

The largest study to date of 109 patients confirmed significantly more adenomas 

and hyperplastic polyps were identified in the chromoendoscopy group compared to 

white light colonoscopy and NBI (Huneburg et al. 2009). This appears to be of 

particular significance when detecting small flat adenomas, as reported by 

Hurlestone et al (2005) and Lecomte et al (2005) in LS individuals. 

 

In the duodenum, Kiesslich et al (2003) showed significantly more duodenal lesions 

were found with use of chromoendoscopy in consecutive patients undergoing 

gastroscopy; patients with familial polyposis syndromes were excluded. They also 

reported that significantly more targeted biopsies were possible after 

chromoendoscopy. Most of these lesions were gastric metaplasia within the 

duodenal bulb, and did not translate into any change in the endoscopic diagnosis or 

in the overall management strategy of the patients. 

 

Potential applications to chromoendoscopy within the upper GI tract in FAP appear 

promising; the diagnostic yield of standard surveillance upper GI endoscopy was 

demonstrated to be improved by dye spraying alone in a small study of 10 patients 

with FAP undergoing upper GI endoscopic surveillance (Picasso et al. 2007). A 

more recent study of 43 patients has also demonstrated chromoendoscopy 

increases the detection of duodenal adenomas in FAP, but did not induce a 

significant change in Spigelman stage (Dekker et al. 2009). 

 

The effect of chromoendoscopy on the yield of duodenal adenoma detection in MAP 

has not been previously investigated. This study aims to evaluate the use of dye-

spray with indigo carmine in the duodenum to improve the identification of small 
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polyps that may be overlooked in MAP during standard white light endoscopic 

examination. It also aims to determine the impact on the Spigelman stage, and to 

compare this to individuals with FAP.   

 

 

2.2 Methods 

The research was approved by the South-East Wales research ethics committee in 

January 2010, reference number: 10-MRE09-43. Cases for the study were recruited 

prospectively. Patients with confirmed FAP or MAP on genetic testing were recruited 

from gastroenterology and genetics clinics at the University Hospital Llandough, 

Cardiff and the University Hospital of Wales Institute of Medical Genetics, Cardiff. 

The Institute of Medical Genetics upholds a register of patients in Wales with 

polyposis syndromes. In addition, patients with MAP were recruited from St Marks 

Hospital, Harrow and St Mary’s Hospital, Manchester. There were no healthy 

volunteer controls recruited for the study. Between August 2011 and December 

2013, 51 consecutive patients who were genetically verified with MAP and FAP and 

scheduled for surveillance endoscopy of the upper GI tract were invited to 

participate in the study. The endoscopies were performed in two academic centres 

in the United Kingdom (University Hospital Llandough in Penarth and St Mark’s 

Hospital in London). All participants completed a consent form prior to participation 

(appendix 1 of supplementary electronic data). 

 

At each centre, experienced endoscopists performed all endoscopies for this study 

(SD, AH, NS and S T-G). All gastrodudoenoscopies were performed using high 

resolution forward viewing video endoscopes (GIF-Q260, GIF-H260, GIF XQ260; 

Olympus Medical Systems) and a side viewing videoendoscope if the ampulla was 

not adequately visualised with the forward viewing videoendoscope.  Procedures 

were performed under general anaesthetic or conscious sedation using standard 
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doses of fentanyl and midazolam in line with British Society of Gastroenterology 

guidance (Teague 2003) depending on patient preference and the presence of co-

morbid conditions. Antispasmodic medication (Buscopan) was given during 

endoscopy at the discretion of the endoscopist.  

 

At introduction, the forward viewing endoscope was advanced until the 

duodenojejunal junction was reached. During withdrawal, the different parts of the 

duodenum (D2, D3 and duodenal bulb) were evaluated and the number and sizes of 

polyps recorded on a standardised proforma before staining (figure 2.1). Polyp size 

was estimated using Radial Jaw 3 biopsy forceps (Boston Scientific, Natick, USA), 

with a closed diameter of 2.2mm and an open diameter of 8mm. The endoscopist   

then sprayed a 0.3% solution of indigo carmine (3mls of indigo carmine and 7mls of 

water for injection) from D4 proximally to the duodenal bulb onto the duodenal 

mucosa, distributed in a homogenous fashion by a spraying catheter, passed 

through the endoscope channel. The residual dye was then suctioned away. After 

adequate coating of the duodenum with the dye solution, I independently recorded 

the size and number of polyps (being unaware of the first part of the examination) 

(figure 2.2). Biopsy samples were not taken until after staining and counting had 

taken place. Samples were taken from all lesions with high-grade morphology and 

lesions greater than 1cm. If the number of polyps was small, all lesions were 

sampled, but if there were numerous polyps at least three of the largest adenomas 

were biopsied in addition to the criteria above. To further aid accurate staging of 

duodenal disease, the patients were then examined using a side viewing 

videoendoscope to assess the ampulla if the forward view was not adequate. If it 

was adenomatous, a biopsy was taken. All procedures were conducted using the 

same structural and colour enhancement settings in each centre.  
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Figure 2.1 Duodenum of FAP patient pre-chromoendoscopy 
 
 
 

 
 
Figure 2.2 Duodenum of the same patient with FAP post-chromoendoscopy 
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The biopsies were evaluated by expert gastrointestinal pathologists at both centres. 

For all patients Spigelman point totals and stage before and after the application of 

chromoendoscopy were assessed. The following criteria were used: number of 

adenomas, largest size, the most advanced histology and most advanced grade of 

dysplasia. Only histologically confirmed adenomas were included in the analysis. 

 
 

 
2.2.1 Statistical analysis 

 
Statistical analysis for the study was performed using R (version 3.0.2) software. 

Statistical significance for the frequency of duodenal adenomas was calculated 

using the Wilcoxon signed-rank test and Mann-Whitney U test and a one-sided sign 

test was used for comparing the Spigelman stages. A P value of less than 0.05 was 

considered statistically significant. The study was powered for 92% at a 5% 

significance level (1 degree of freedom using a chi squared test to compare the 2 

conditions). Statistical data are expressed as medians.  

 

 

 

 
2.3 Results 

 
Between August 2011 and December 2013, 51 patients (19 FAP and 32 MAP) 

underwent gastrodudoenoscopies (table 2.1). Of the FAP patients, 8 were female 

and 11 male; median age 41 years (32-69). There were 17 female patients with 

MAP and 15 male patients with MAP; median age 54 years (25-81). No patient was 

on any pharmacological treatments for their duodenal disease. There were no 

complications relating to endoscopic examination (bleeding or perforation) and no 

complications relating to general anaesthesia or sedation were observed. 
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Case FAP 

or MAP 
Age Sex No. of 

polyps 
white 
light 

Additional 
no. of polyps 
after staining 

No. of 
polyp 
>1cm 

Stage 
before 

Stage 
after 

1 MAP 43 F 0 0 0 0 0 

2 MAP 55 M 0 0 0 0 0 

3 MAP 45 M 0 0 0 0 0 

4 MAP 59 F 0 1 0 0 I 

5 MAP 56 M 0 0 0 0 0 

6 MAP 68 F 0 0 0 0 0 

7 MAP 71 M 0 0 0 0 0 

8 MAP 81 F 0 0 0 0 0 

9 MAP 69 F 0 0 0 0 0 

10 MAP 74 M 0 0 0 0 0 

11 MAP 46 F 0 0 0 0 0 

12 MAP 60 M 6 9 2 III III 

13 MAP 46 F 0 1 0 0 II 

14 MAP 25 M 0 0 0 0 0 

15 MAP 62 F 1 2 0 I II 

16 MAP 25 F 0 0 0 0 0 

17 MAP 75 M 0 0 0 0 0 

18 MAP 61 F 1 0 0 II II 

19 MAP 54 F 1 1 0 II II 

20 MAP 48 M 1 2 1 II II 

21 MAP 49 F 1 1 1 II II 

22 MAP 40 M 0 0 0 0 0 

23 MAP 54 F 0 3 0 0 II 

24 MAP 29 F 0 0 0 0 0 

25 MAP 60 M 0 0 0 0 0 

26 MAP 57 M 0 0 0 0 0 

27 MAP 49 F 0 0 0 0 0 

28 MAP 42 M 0 4 0 0 II 

29 MAP 49 F 0 0 0 0 0 

30 MAP 54 M 0 0 0 0 0 

31 MAP 48 F 0 0 0 0 0 

32 MAP 52 M 0 0 0 0 0 

33 FAP 32 F 0 0 0 0 0 

34 FAP 52 M 0 0 0 0 0 

35 FAP 43 M 7 10 0 III III 

36 FAP 37 M 24 32 5 IV IV 

37 FAP 44 M 1 0 0 I I 

38 FAP 38 F 18 19 0 II III 

39 FAP 69 M 6 15 0 II II 

40 FAP 36 M 3 3 0 II II 

41 FAP 44 F 0 0 0 0 0 

42 FAP 38 M 0 0 0 0 0 

43 FAP 41 F 46 64 3 IV IV 

44 FAP 39 F 14 65 2 III III 

45 FAP 32 F 0 8 0 0 II 

46 FAP 39 M 10 51 4 III IV 

47 FAP 46 F 4 12 0 I II 

48 FAP 31 M 0 0 0 0 0 

49 FAP 46 M 0 0 0 0 0 

50 FAP 42 M 10 4 0 IV IV 

51 FAP 49 F 7 19 0 II III 

 

Table 2.1 Patient characteristics, polyp numbers and Spigelman scores pre- and 

post- chromoendoscopy 
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The difference in the ages of the patients in the FAP group compared to the MAP 

group was statistically significant (P=0.001). There was no difference in the 

calculated overall Spigelman stage pre or post dye spraying for any patient when 

comparing the traditional with the modified Spigelman score. 

 

 

2.3.1 Number of adenomas 

In MAP patients before staining, the median number of adenomas detected per 

patient was 0 (total 10, range 0-6). After staining, the median number did not change 

(total 34, range 0-15), however the increase in detected adenomas was significant 

(table 2.2). Additional duodenal adenomas were detected in 9 (28%) of procedures. 

The median number of additional adenomas detected was two per patient (total 22, 

range 1-9). 

 

 

Gastroduodenoscopy findings Pre-staining Post-staining P value 

 
Median number of duodenal 

adenomas (total) 
 

0 (10) 0 (33) 0.01368* 

 
Median largest size (range) 

 
5mm (2-50mm) 6mm (2-50mm) 0.3711 

 

Median Spigelman stage (range) 

 

0 (0-III) 

 

0 (0-III) 

 

0.03125* 

 

Table 2.2 - Duodenal adenoma characteristic in patients with MAP (n = 32). * 

indicates statistically significant result (P < 0.05). Despite no change in the median 

Spigelman scores, the Mann-Whiney and Wilcoxon tests are rank sum tests and not 

median tests. It is possible for groups to have different rank sums and yet have 

equal or nearly equal medians.  
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The median number of adenomas in the FAP cohort, per patient, was 4 (total 150, 

range 0-46). After staining the median number of adenomas that was detected was 

14 per patient (total 442, range 0-100), (p=0.002) (table 2.3). Additional adenomas 

after chromoendoscopy were detected in 13 patients (63% of FAP cases).  

 

 

 
Gastroduodenoscopy findings 

 
Pre-staining Post-staining P value 

 
Median number of duodenal 

adenomas (total) 
 

4 (150) 14 (442) 0.002516* 

 
Median largest size (range) 

 
6mm (2-23mm) 6mm (2-30mm) 0.1814 

 

Median Spigelman stage (range) 
 

II (0-IV) 
 

II (0-IV) 

 

0.03125* 

 

Table 2.3 - Duodenal adenoma characteristic in patients with FAP (n = 19). * 

indicates statistically significant with (P < 0.05). 

 

The number of duodenal adenomas observed post-staining was significantly higher 

in FAP than MAP (P = 0.0002452; Mann–Whitney U test).The post-staining 

Spigelman stage is significantly higher in FAP versus MAP (P = 0.0009646; Mann–

Whitney U test). 

 

 

2.3.2 Size of adenomas 

The median largest adenoma size was 5mm compared with 6mm after staining in 

MAP, and the size of the largest adenomas (15mm, 15mm, 25mm and 50mm) did 

not change after dye-spraying with indigo-carmine.  
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In FAP there was also no statistically significant increase in the median adenoma 

size after staining. However, whilst the largest adenoma did increase by 23mm to 

30mm after staining this did not affect the individual patient’s Spigelman points total 

or stage (IV). No significant statistical difference was observed between the post-

staining size of largest duodenal adenomas observed in MAP versus FAP (P ≈ 1; 

Mann–Whitney U test). There was no significant statistical difference in the overall 

numbers of adenomas greater than 1cm in patients with MAP versus FAP pre or 

post staining (P ≈ 1; Mann–Whitney U test).  

 

 

2.3.3 Histology of adenomas 

In all of the MAP patients, the worst histological diagnosis was tubular adenoma, 

and the most advanced grade of dysplasia was low grade (when reviewed by a GI 

pathologist, 3 patients had moderate grade dysplasia). In FAP there were tubular 

adenomas in 8 (42%) patients, tubulovillous adenomas in 4 (21%) patients and 

villous adenoma in 1 (5%) patient. Four of the FAP patients had moderate dysplasia 

on second review by a GI pathologist, and there was no high grade dysplasia 

detected. 

 

 

2.3.4 Endoscopic technique 

Using the side-viewing endoscope did not detect any additional ampullary 

adenomas compared with the forward viewing endoscope, and only one patient had 

an ampullary adenoma detected in this study. Biopsies confirmed a tubular 

adenoma with low grade dysplasia. One patient was observed to have four further 

polyps detected by side-viewing endoscopy after dye-spraying and counting. 
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2.3.5 Spigelman staging 

Prior to dye spraying, the Spigelman classification was stage 0 in 27 patients (84%) 

stage I in 2 patients (6.25%), stage II in 2 patients (6.25%) and stage III in 1 patient 

(3.5%) with MAP (table 2.4). Staining resulted in an increased Spigelman point total 

in 9/32 individuals (28%), with a corresponding upgrade in Spigelman stage in 6 

patients (18%) (from 0→I, n=1; from 0→II, n= 3; from I→II, n=2; p<0.05). In FAP 

patients staining resulted in an increased Spigelman point total in 13/19 individuals 

(68%), with a corresponding upgrade in Spigelman stage in 5 patients (26%) (from 

0→I, n=1; from I→II, n= 1; from I→IIII, n=2; from III→IV, n=1; p<0.05). 

 

 

 Present series 
MAP (n=32) 
 
Before              After 
staining         staining                           

Present series 
FAP (n=19) 
 
Before               After 
staining           staining        

Previous case series 
(Dekker E et al, 2009 
N=43) 
Before              After                  
staining         staining 
 

Spigelman 
stage 

 

   

0 27 (84%)        23(72%)        7 (37%)            6 (32%) 3 (7%)               2 (4%) 

 

I 2 (6.25%)       1 (3.5%) 

            

2 (10%)            1 (5%) 2 (4%)               2 (4%) 

II 2 (6.25%)        7 (22%) 4 (21%)            4 (21%) 11 (26%)       10 (23%) 

 

III 1 (3.5%)         1 (3.5%) 3 (16%)            4 (21%) 14 (33%)       15 (36%) 

 

IV 

 

0                         0 3 (16%)            4 (21%) 13 (30%)       14 (33%) 

 

Table 2.4 - Spectrum of Spigelman stages in FAP and MAP patients before and 

after staining, compared with a previous case series of FAP patients 
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The spectrum of Spigelman stages expressed as percentages of the total scores 

after staining for the present study and for patients with FAP (n=43) (Dekker et al. 

2009) and  a case series of 35 FAP patients undergoing duodenal surveillance 

endoscopy using indigo carmine dye spray (Saurin et al. 2004) is shown in figure 

2.1. The mean age of the patients in the Saurin study was 37 years (SD +/- 10.2).   

 

 

 

 

Figure 2.1 - Comparison of Spigelman stages (in percentages) in MAP and FAP 

compared to two previous studies of FAP where dye-spraying the duodenum was 

used to assess duodenal polyposis. 
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2.4 Discussion 

This novel study describes the largest prospective series of MAP patients in which 

duodenal adenomas are described and the additional value of chromoendoscopy for 

the evaluation of duodenal adenomas is assessed. It demonstrates that there is a 

significant increase in the numbers of duodenal adenomas identified following indigo 

carmine dye spraying in both MAP and FAP, and that this resulted in a significant 

increase in Spigelman stage in both conditions. This study has also shown a higher 

proportion of duodenal adenomas in MAP patients (28%) compared to previously 

reported data from a large multicentre European study where duodenal adenomas 

were found in 17% of patients (Vogt et al. 2009).  

 

 

2.4.1 Number of adenomas 

This study has shown that the number of duodenal adenomas detected was 

increased in both MAP and FAP patient cohorts following chromoendoscopy with 

indigo-carmine dye spray.  

 

Two previous studies have assessed adenoma number whilst investigating the role 

of chromoendoscopy in the duodenum in FAP. Picasso et al (2007) studied 10 

patients undergoing upper GI surveillance and found a statistically significant 

increase in the number of duodenal polyps following chromoendoscopy (p=0.03), 

revealing additional polyps in eight of the ten patients. Unlike this current study, the 

overall change in Spigelman stage was not assessed, so the implications for future 

surveillance unknown. Dekker et al (2009) studied 43 patients with FAP and showed 

that significantly more duodenal adenomas were detected after the application of 

indigo carmine but this did not result in a significant change in Spigelman stage or 

result in any major additional clinical consequences. Interestingly, of the 43 patients 

only 26 had an APC mutation that had previously been identified; the other 17 
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patients all had undergone colectomy because of >100 histologically confirmed 

colorectal adenomas.   

 

One limitation of the Dekker study was that the endoscopist was not blinded to the 

number of adenomas prior to staining, which may have biased the results. The 

current study was designed to blind the second ‘counting’ endoscopist but there 

remains the possibility of a systematic bias due to counting differences between the 

two endoscopists. Both previous studies are in agreement with our findings in FAP, 

but the increased adenoma detection in MAP has never been studied and is a novel 

finding. 

 

 

2.4.2 Size of adenomas  

This study has shown no significant effect of chromoendoscopy on the sizing of 

adenomas in either MAP or FAP; however the study was not powered to detect any 

apparent differences in size. Dekker et al (2009) reported that the largest adenomas 

detected at chromoendoscopy were significantly larger than before staining. This 

was considered to be due to better visualisation of the adenoma borders that 

extended further than could originally be seen. Interestingly, Picasso et al (2007) 

reported that the size of the polyps actually were smaller after dye spraying, with a 

median size of 4mm pre-chromoendoscopy compared to 3mm post-

chromoendoscopy (p=0.03), also explained by more precise demarcation from 

normal tissue. However, more lesions may look larger, but smaller lesions detected 

would result in the maximum diameter to increase but the median size overall to be 

smaller. This current study of chromoendoscopy also compares to NBI in showing 

no additional effect on size of chromoendoscopy in the FAP duodenum (Lopez-

Ceron et al. 2013). Generally, in studies of the outcomes of surgical intervention in 

FAP, it is the patients Spigelman stage that has been reported rather than the sizes 
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of lesions harbouring cancer (Saurin et al. 2004; Van Heuman et al. 2011; Bulow et 

al. 2011; Serrano et al. 2014). In their prospective 10 year study, Groves et al (2002) 

reported on six patients that progressed from duodenal adenoma to carcinoma. Four 

patients had initial Spigelman stage IV, with one patient stage III and one stage II 

disease. The maximum size of the largest polyp ranged from 2mm (in the stage II 

patient) to between 20mm and 40mm in the other five patients with stage III and IV 

disease and none had HGD on biopsy. Saurin et al (2004) found high grade 

dysplasia in all but one of adenomas that were greater than 1cm, and Lopez-Ceron 

et al (2013) found that when using NBI for detection of duodenal adenomas, the only 

trait that was significantly associated with advanced histology was an estimated 

polyp size of greater than 1cm, with a three-fold increased risk. Although high 

Spigelman stages do not necessarily imply advanced histological lesions, Saurin et 

al (2004) reported   an original Spigelman score equal to or greater than 7 or 8 was 

predictive of HGD development. However, the Spigelman score does not take into 

account very large adenoma sizes, using 1cm as the cut-off in risk stratifying 

patients, with polyps 20mm or above in size conferring no additional points. A 

modification to the classification to place more emphasis on adenoma size might 

improve the predictive value of the scoring system. 

 

HGD can be found in lesions less than 1cm, and size may be only one predictor of 

high risk adenomas. The focus of adenoma detection may need to be altered to 

distinguish particular lesions at high risk from their endoscopic appearance.   One 

small study of 14 patients showed potential for NBI to identify ampullary lesions with 

advanced dysplasia (Uchiyama et al. 2006), but this was not confirmed in a 

subsequent larger study (Lopez-Ceron et al. 2013). 
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2.4.3 Histology of adenomas 

One observation of this current study is that chromoendoscopy did not detect the 

presence of any endoscopic features of advanced histology, such as a loss of 

surface pit pattern. The current study used the updated Vienna classification and 

thus reported only on low grade or high grade dysplasia, but a specialist GI 

histopathologist also reviewed all the slides for moderate grade dysplasia. The 

Spigelman scores were re-calculated for any patient found to have moderate grade 

dysplasia, however this had no effect on any patient’s overall Spigelman stage. 

Given the lack data on the natural history of duodenal disease MAP it may not be 

prudent to await the endoscopic appearance of high grade dysplasia in these 

patients. 

 

A previous study of confocal laser endomicroscopy (CLE) - a technology that 

provides 1000x magnification imaging - failed to show superiority over magnifying 

NBI on the correct predication of histological grade of ampullary and non-ampullary 

adenomas in FAP but it was found to be better than HRE (Pittayanon et al. 2013). 

However, they were not able to predict HGD in these lesions. Use of endoscopic 

ultrasound (EUS) has been shown to upstage patients to advanced adenomas of 

the ampulla by providing an improved assessment of polyp dimensions including 

identifying growth into the papilla (Gluck et al. 2015). The treatment course was 

altered in 36% of patients by performing EUS, the effect of which was an increase in 

lesion size where EUS augmented previous endoscopic size estimate to more than 

10mm in 12 of 28 patients, including 2 cases that were defined as microadenomas. 

Biopsy specimens were not taken at EUS, and there could be no assessment of 

surface morphology of the lesions. Further evaluation of advanced surveillance 

techniques and their optimum use, perhaps in combination, in duodenal disease in 

FAP and MAP is required. 
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2.4.4 Endoscopic technique 

Dekker et al (2009) attributed the minor change in Spigelman score in their study to 

the use of high resolution endoscopy. They concluded that considerably improved 

endoscopic visualisation of duodenal adenomatosis with high resolution endoscopy 

leaves little room for further improvement of clinical consequence. However, a major 

limitation of the Dekker study was that the endoscopist was not blinded to the 

number of adenomas prior to staining, unlike the current study. A previous study has 

suggested that in patients that have duodenal disease progression, both time lapse 

and technical improvements were determinant factors (Mathus-Vliegen et al. 2011). 

In a mixed-model analysis, time-lapse, change in image resolution to high resolution 

technology and dysplasia ranking contributed consistently to an increased 

Spigelman score and stage. This suggests visibility and histology may result in an 

over-estimation of the clinical significance of duodenal polyposis by using the 

Spigelman system. However, other studies appear to demonstrate a lack of 

correlation between the findings seen at endoscopy and pathology results from  

biopsy specimens, and between progressive structural changes within the polyps 

and the pathology findings (Moozar et al. 2002) . This led the authors to argue that 

the overall aim of identifying patients who are at high risk of developing duodenal 

and ampullary cancer remains problematic. The importance of the polyp number, 

polyp size and even histology may need to be revised within the risk stratification 

model, but as yet no such alternative scoring system has been proposed. Further 

research is required to prospectively validate the Spigelman classification in the risk 

stratification of duodenal polyposis.  

 

In a large previous case series where high resolution endoscopy was not used in the 

upper GI surveillance of FAP patients (Bulow et al. 2004) there was a large 

percentage of patients with Spigelman stage 0 (34%) and a much smaller 

percentage of patients with stage IV disease (7%). This could be due to the fact that 
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high resolution endoscopy leads to an improved adenoma detection rate. The 

present study found that with use of high resolution endoscopy, for the FAP cohort 

31% had Spigelman stage 0 disease which is more in keeping with studies that did 

not use this technology. This may be explained by the small numbers in the FAP 

cohort (n=19).  Compared to the study by Dekker et al (2009), this current study has 

a larger proportion of Spigelman stage 0 disease, but although the distributions of 

Spigelman stages II-IV are not mirrored, both studies have the majority of their 

cohort observed to be stage II -IV. When compared to the only other published 

series where indigo-carmine dye spraying was used in duodenal surveillance 

(Saurin et al. 2004) interestingly no patients were reported to have with Spigelman 

stage 0 disease. When this group of 35 patients were followed up over a median of 

47 months, 42.8% of patients were found to have Spigelman stage IV disease. It 

must be borne in mind, however that 7 of these patients reported by Saurin et al. 

(2004) were referred to the study centre with severe duodenal polyposis, which may 

have introduced bias to the overall data.  

 

A recent pilot study (Pittayanon et al. 2013) demonstrated that magnifying NBI was 

able to distinguish between adenomas and non-adenomas better than high 

definition endoscopy in all 29 duodenal lesions studied in 14 FAP patients 

(P=0.003). Lopez-Ceron et al. (2013) are the only group that have evaluated the 

effect of NBI (following examination with high resolution endoscopy) on the detection 

rates of duodenal adenomas in patients with FAP. In contrast to this current study 

they found that in their study group of 37 patients, there was no clinically relevant 

upgrade in the Spigelman classification using NBI. They also concluded that there 

was no improvement in the detection of gastric polyps using NBI. More duodenal 

adenomas were detected in 16 examinations (35.6%), leading to an upgrade in the 

score in 5 patients but only an increase in Spigelman stage in two patients (2.2%) 

which was not statistically significant. The Spigelman stage in one patient increased 



80 

 

from II to III because of a higher score for number and size of polyps, and in the 

other patient the stage increased from III to IV solely due to increased polyp 

number.  

 

This current study supports the use of chromoendoscopy over NBI in the 

improvement of adenoma detection in duodenal polyposis, but further studies are 

needed to confirm this. 

 

The technique of chromoendoscopy itself is time-consuming and requires training. 

For example, for surveillance colonoscopy in inflammatory bowel disease, the British 

Society of Gastroenterology guidelines (2010) recommend a 3 point time allocation 

instead of a 2 point allocation for colonoscopy in order to provide enough time for 

the technique of dye-spraying (pan-colonic chromoendoscopy) and for careful 

inspection of the colonic mucosa. This would impact waiting times, and patients may 

prefer a prolonged procedure to be undertaken under general anaesthesia rather 

than in the endoscopy department, with resulting need for theatre time, staff and 

anaesthetic support. In addition, the upstaging of patients Spigelman scores would 

also have resource implications, as patients would require more frequent 

surveillance endoscopies. 

 

 

2.4.5 Spigelman Staging 

This study had an expected finding of a higher number of duodenal adenomas 

observed post-staining in FAP compared to MAP, with a post-staining Spigelman 

stage significantly higher in FAP. In MAP, the significant change in Spigelman score 

following dye spraying is of clinical importance because of the impact of more 

intensive duodenal surveillance programmes. Four MAP patients in this study who 

were Spigelman stage 0 pre-chromoendoscopy became stage I or II after dye 
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spraying, accounting for 44% of MAP patients that had adenomas detected in this 

study. Those MAP patients who have developed duodenal cancer have done so on 

a background of minimal duodenal polyps (Nielsen et al. 2009), in contrast to those 

who have developed duodenal cancer in FAP, suggesting that the acquisition of 

different mutations or a greater mutational load in MAP polyps. The MAP-associated 

DNA repair defect may drive a more rapid progression to cancer. Thus improved 

adenoma detection rates seen in MAP following chromoendoscopy has the potential 

to be clinically useful.  

 

The ages of patients with MAP in this study were significantly higher than that of the 

FAP patients. The numbers of adenomas were higher in the FAP group pre and post 

staining, but interestingly no significant statistical difference was observed between 

the post-staining size of largest duodenal adenomas observed in MAP versus FAP 

and there was no significant statistical difference in the overall numbers of 

adenomas greater than 1cm in patients with MAP versus FAP. In FAP, it is time 

since diagnosis, age and Spigelman stage at initial endoscopy that have been found 

to be determining features of the severity of duodenal polyposis (Saurin et al. 2002; 

Saurin et al 2004; Bulow et al. 2004; Vasen et al. 2008). These variables may not 

apply for MAP. As MAP was formally characterised in 2003, most patients in this 

study were relatively recently diagnosed compared to FAP. Our study suggests that 

the effect of increasing age on the number of polyps is not the same for MAP as it is 

for FAP. Lepisto et al. (2009) described a risk of severe dysplasia or cancer of 5.7% 

at 40 years, 15.2% at 50 years and 23.2% at 60 years, with a cumulative incidence 

of duodenal cancer of 34% at 75 years in their FAP cohort, which was not reflected 

in our small group of MAP patients. The natural history of duodenal polyposis in 

MAP is a topic that requires further study.  
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In this present study, in patients with FAP there was no change in Spigelman stage 

IV disease after dye-spraying, suggesting where there are greater than 20 small 

adenomas seen with white light endoscopy, detecting more adenomas is of limited 

benefit and that other factors may play a role in the malignant progression in 

duodenal adenomatosis. Whether detection of multiple small polyps ultimately 

influences the natural history of carcinoma development in FAP or MAP has yet to 

be determined.  

 

 

2.4.6 Study limitations 

A limitation of this study is the inability to determine the additional value of 

chromoendoscopy in the assessment of ampullary adenomas; because examination 

of this area with the side viewing endoscope was done after dye spaying had taken 

place. In addition, we were unable to systematically assess the utility of side- 

viewing endoscopy itself on the number of polyps in the peri-ampullary region, 

although data has shown that in a previous case series, ampullary adenomas were 

seen in 66% of cases with a side viewing endoscope (Burke et al. 1999). This study 

did not detect a large number of ampullary adenomas (only two patients had 

ampullary adenomas), which also may have caused bias as the majority of 

malignancies occur in the periampullary region. Also, no lesions with HGD were 

detected and our series may not be representative of the FAP and MAP population. 

In their prospective five nation study of the long term natural history duodenal 

adenomas in FAP, Bulow et al (2004) reported that 12% of adenomas were 

diagnosed only histologically, where no visible polyps were seen. This study did not 

incorporate the taking of routine biopsies of the background duodenal mucosa to 

exclude dysplasia and relied on the visualisation of precisely demarcated 

adenomatous tissue as morphological polyps. Picasso et al (2007) did take random 
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biopsies in their study, of mucosal folds in the second and upper third part of the 

duodenum, including the papilla, but found no additional adenomatous tissue. 

Dekker et al (2009) did not include the taking of random background biopsies in their 

protocol. In their study of the role of HRE and NBI in the evaluation of duodenal 

polyps Lopez-Ceron et al (2013) did not take any random biopsies. Of note, 

although not part of our study protocol, in all of the MAP patients included from the 

Cardiff cohort without visible polyps, background duodenal mucosal biopsies were 

taken. No patient had dysplasia reported on histology.  

 

 

2.4.7 Conclusions 

This study demonstrates that chromoendoscopy of the duodenum enhances 

adenoma detection in both MAP and FAP. In both conditions there was a significant 

increase in Spigelman stage after chromoendoscopy and therefore clinical 

consequence to the patient in terms of follow up according to current management 

guidelines. As screen-detected duodenal cancers have been shown to have a much 

better prognosis than symptomatic cancers in FAP - 8 years after a screen detected 

cancer versus 0.8 years (Bulow et al. 2011), there is a strong argument for regular 

endoscopic surveillance.  However, there are shortcomings in applying the same 

surveillance programme to MAP as in FAP because of a paucity of knowledge of the 

risk of malignant progression in MAP duodenal adenomas, with a need for further 

studies to focus on this question. 
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Chapter 3 

 

 

The clinical spectrum of duodenal 

adenomatosis in MAP: 

A European cross-sectional study 
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3.1 Introduction  

Although there have been no randomised controlled trials of surveillance of the 

upper GI tract versus no surveillance in FAP, screening of the duodenum may lead 

to the identification of patients with advanced but asymptomatic disease and 

therefore to treatment that may lead to the reduction of duodenal cancer related 

mortality (Vasen et al. 2008). Bulow et al (2011) recently showed a considerable 

improvement in prognosis of selected patients in a 20 year prospective follow up of 

patients undergoing a surveillance programme based on Spigelman classification 

combined with prophylactic surgery for advanced but benign disease. Duodenal 

polyposis is seen less frequently in MAP than FAP, occurring up to 17% of patients 

in the largest study to date (Vogt et al. 2009; table 3.1) and there is no current 

evidence to support adoption of the same surveillance approach. Indeed reports of a 

small number of MAP patients that have developed cancer suggest that may have 

done so with low Spigelman scores that would have resulted in an inappropriately 

extended surveillance interval when following recommendations for FAP (Nielsen et 

al, 2005; Nielsen et al, 2006; Stomorken et al, 2006; Croitoru et al. 2007; Beucher et 

al 2008). 

 

Study Number of patients with 
duodenal adenomas (%) 

 
Sieber et al. (2003) 

 
2 of 24 (8.3%) 

 
Nielsen et al. (2005) 

 
4 of 16 (25%) 

 
Lejeune et al (2006) 

 
3 of 39 (7.7%) 

 
Bouguen et al (2007) 

 
1 of 56 (1.8%) 

 
Vogt et al (2009) 

 
26 of 150 (17%) 

 
Walton et al (2014) 

 
13 of 34 (38%) 

 

Table 3.1 – Published studies reporting duodenal adenomas in MAP 
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The use of a staging system has aided in a better understanding of the natural 

history of duodenal polyposis in FAP and the risk of duodenal cancer.  Retrospective 

studies had shown a low frequency of progression with time (Burke et al. 1999; 

Matsumoto et al. 2000), but more recent studies have shown high rates of 

progression (table 3.2), and the development of HGD in 32% of patients (Saurin et 

al. 2004).  As discussed in section 2.1, prospective studies of duodenal surveillance 

(Groves et al. 2002; Bulow et al. 2004, 2011; Saurin et al. 2004) have shown a 

cumulative risk of the most advanced stage (IV) of duodenal polyposis to be 

between 35 and 52%, and this risk worsens substantially with increasing age. 

Progression to stage IV disease appears to carry a one in three risk of subsequent 

duodenal cancer (Groves et al. 2002). By comparison, the natural history of 

duodenal polyposis in MAP remains unclear. 

  

A better understanding of the natural history and development of duodenal 

adenomas in MAP may result in the surveillance strategy for upper GI disease being 

improved and rendered more clinically effective. A long-term prospective 

collaborative study was therefore established to collect data on the results of 

duodenal surveillance in MAP to better describe the endoscopic, morphological and 

histological features of duodenal adenomas in patients with MAP and to determine 

the effects intervention including endoscopic or surgical treatment. 
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Characteristic Saurin et al 
(2004) 

Bjork et al 
(2001) 

Groves et al 
(2002) 

Nugent et al  
(1994) 

Burke et al 
(1999) 

Matsumoto 
et al (2000) 

Lepisto et al  
(2009) 

Bulow et al 
(2011) 

Serrano et 
al (2014) 

 
Study type 

 
P 

 
R 

 
P 

 
P 

 
R 

 
R 

 
R 

 
P 

 
P 

 
No of subjects 

35 180 99 70 114 
 

18 129 304 218 

 
Mean age (years) 

37 - 42 42 - - 41 38 - 

 
Male sex, % 

57.1 - 55.2 55.7 - 38.8 49  49 

 
Mean follow up 
(months) 

47.9 72 - 40 51 196 102 168 - 

 
Stage progression, 
% of patients 

40.0 - 16.6 14.3 - - 34 44 32.5 

 
Stage IV polyposis, 
% 
      Initial 
examination 
      Final 
examination 

 
 
 
14 
 
35 

 
 
 
7.8 
 
- 

 
 
 
9.6 
 
14.0 

 
 
 
14.3 
 
17.1 

 
 
 
- 
 
- 

 
 
 
- 
 
- 

 
 
 
1.5 
 
12.4 

 
 
 
4.9 
 
- 

 
 
 
8 
 
30 

 
Number of Invasive 
carcinomas 

 
0 

 
5 

 
6 

 
3 

 
1 
 

 
0 

 
5 

 
20 

 
5 

 

Table 3.2 - Studies of progression of duodenal polyposis in FAP. P=prospective, R=retrospective study design.
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3.2 Methods 

A collaborative project was established between the Institute of Medical Genetics 

(IMG) Cardiff, UK; The Centre of Human and Clinical Genetics, Leiden, the 

Netherlands; St Marks Polyposis Registry in London, UK and two centres in France; 

Lyon and Paris, resulting in a cohort of 207 MAP patients with identified biallelic 

MUTYH mutations. These patients were identified from prospectively maintained 

polyposis registry databases, and data on upper GI surveillance procedures was 

retrospectively collected using medical notes, endoscopy reports and histopathology 

reports. Only those patients that had undergone a previous surveillance upper GI 

endoscopy as part of their routine clinical management were included in the study. 

The study was approved in the UK by the South-East Wales research ethics 

committee in January 2012, reference number: 11-WA/0208. Informed consent was 

obtained according to protocols approved by the appropriate national and / or local 

ethics committees.  A copy of the data sheet used for information collection can be 

found in appendix 2 in the electronic supplementary information.  

 

 

3.2.1 Genotype-phenotype analysis  

To examine potential genotype-phenotype correlations of duodenal disease in MAP, 

MUTYH genotypes were classified as described in previous studies (Nielsen et al. 

2009, Vogt et al. 2009). Genotypes were classified into six groups: (1) homozygotes 

for a non-truncating mutation, (2) compound heterozygotes for a non truncating and 

a truncating mutation, (3) homozygotes for a truncating mutation, (4) G396D 

homozygotes, (5) G396 / Y179C compound heterozygotes, and (6) Y179C 

homozygotes. Separate analyses for other biallelic combinations were not done, due 

to small numbers of corresponding MAP patients. 
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3.2.2 Statistical analysis 

Values of median and range are provided for non-normally distributed data. 

Categorical data are presented with absolute numbers and percentages. The 

change in mean Spigelman class after treatment was analysed by the Wilcoxon 

signed rank test, and the cumulative incidence of adenomas by age was calculated.  

 

To compare the number of polyps between the different genotypes, a one way 

ANOVA with Tukey post hoc testing was performed.  A P value of less than 0.05 

was considered statistically significant. Statistical analysis for the study was 

performed using R (version 3.0.2) 

 

 

 

3.3 Results 

The study included 207 patients from five countries (77 from the UK, 63 from The 

Netherlands 52 from France and 15 from Spain) with a median follow up of 5 years 

(range 0.5 to 25) years. The sex distribution of patients was 112 males and 95 

females.  

 

Of the 206 patients with complete clinical data, 100 had been diagnosed with 

colorectal cancer (48.5%) prior to the commencement of upper gastrointestinal 

surveillance.  The presence of other malignancies is shown in table 3.3.  

 

Data on all patients and their surveillance endoscopies can be found in appendix 3 

of the electronic supplementary information. 
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Cancer type Number of patients 
 

Endometrial cancer 3 

Breast cancer 2 

Prostate cancer 2 

Lymphoma 1 

Jejunal cancer 1 

Duodenal neuroendocrine tumour 1 

 
Table 3.3 - Retrospective identification of other malignant manifestations in 207 

MAP cases 

 

At the index endoscopy the median age was 51 years (range 21-81 years), and the 

Spigelman stage distribution was: stage 0, n=169 (82%); stage I, n=25 (12%); stage 

II, n=6 (3%); stage IV, n=0; duodenal adenocarcinoma, n=1 (0.5%). The incidence 

of adenomas at first endoscopy was 17% (table 3.4), median age 50.5 years (range 

21-70 years). Seventy-seven (37%) only had one endoscopy. In the total study 

period, 63 patients (30%) were found to have histologically confirmed duodenal 

adenomas, and the median age at which duodenal adenomas occurred was 51 

years (range 21-70 years). Random biopsies showed adenomatous tissue in one 

patient without visible polyps at endoscopy. 

 

Age range Number of patients Percentage overall Percentage of 
those with 
adenomas 

21-25 1 0.5% 3% 

26-30 0 0 0 

31-35 1 0.5% 3% 

36-40 4 2% 11% 

41-45 2 1% 6% 

46-50 9 4.5% 25% 

51-55 8 4% 22% 

56-60 4 2% 11% 

61-65 4 2% 11% 

65-70 3 1.5% 8% 

71-75 0 0 0 

75-80 0 0 0 

 

Table 3.4 – Ages of those with duodenal adenomas at first endoscopy 
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Of those that went on to have further surveillance endoscopy (n=130), the 

Spigelman stage distribution at last endoscopy was: stage 0, n=88; stage I, n=13; 

stage II, n=12; stage III, n= 11; stage IV, n=4; duodenal adenocarcinoma, n=2. 

Among those followed up that did not have evidence of adenomatosis at the 

beginning of the study the cumulative incidence of adenoma development was 

21.5%. Forty patients out of 130 that underwent repeat surveillance endoscopy had 

adenomas at the end of the study, a cumulative incidence of 30% by age 70 years, 

and the cumulative incidence of Spigelman stage IV disease was 3%.  The 

progression of duodenal adenomatosis is shown in figure 3.1. The median age at 

last endoscopy was 56 years (range 29-84 years).  

 

 

 

 

Figure 3.1 – Progression of duodenal adenomatosis in 207 patients with MAP from 

primary endoscopy to most recent endoscopy in the study period. 
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Of 169 patients that had no adenomas at first endoscopy, 22 (13%) went on to 

develop adenomas identified at a later endoscopy, 79 (47%) had a normal 

endoscopy and 67 (40%) had no further endoscopies. The median age of onset for 

those that developed adenomas was 54 years (range 41- 73 years). A total of 532 

surveillance upper GI endoscopies were undertaken during the study period. The 

median number of endoscopies undertaken in this study was 2 (range 1-13). The 

distribution of age and Spigelman scores at endoscopy is illustrated in figures 3.2. 

 

 

A B  

C D  
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E  

 

Figure 3.2 - Age distribution of all surveillance endoscopies by Spigelman stage. A= 

Spigelman stage 0, B= Spigelman stage I, C= Spigelman stage II, D- Spigelman 

stage III and E= Spigelman stage IV 

 

The cumulative incidence of adenomatosis at age 50 years was 9%; at age 60 

years, 22% and by age 70 years, 30% in this study. Of those patients that 

underwent repeat endoscopies, 24% of patients progressed to a higher Spigelman 

score. Two of 22 patients with stage 0 disease at first OGD progressed to stage IV, 

and 2 of 37 patients with stage I, II or II disease at OGD progressed to stage IV. 

There was a statistically significant difference (p= 0.041) in the time of adenoma 

progression when comparing those that were Spigelman stage 0 to those that were 

observed to have adenomas at first endoscopy.  Among those developing stage IV 

disease, the median time from first endoscopy to stage IV disease was 6.5 years. 

Nine patients (24%) that had adenomas at first endoscopy were found to have 

Spigelman stage 0 at follow up, this subgroup of patients had not undergone 

endoscopic therapy, but diagnostic biopsy only. Details of stage progression are 

shown in table 3.5.  

 



94 

 

Details of stage progression Duration observed (years) 

0 → I 4 

0 → I 3 

0 → I 3 

0 → I 5 

0 → I 7 

0 → I 12 

0 → 0 →0 → 0 →0→ I 6 

0 → I → II 13 

0 → I → II → II 11 

0 → 0→ 0 →0 → II 14 

0 → 0 →0 →0→ II →II 17 

0 → II 1 

0 → II 3 

0 → II 18 

0 → II→ III 5 

0 →  III 3 

0 →  III 3 

0 →  III 8 

0 → 0 → III 3 

0 → 0 → III 10 

0 → IV 3 

0 → IV 7 

I → II 1 

I → II 1 

I → II 4 

I → II 8 

I → III 1 

I → III 1 

I → III 2 

III → III → III → III → IV 6 

III → III → III → IV→ IV 8 

  

      Table 3.5 - Progression of Spigelman stages  
 

 

In total, 22 patients underwent therapeutic endoscopic treatment. Thirteen patients 

underwent endoscopic mucosal resection of adenomas greater than 1cm, two 

underwent argon plasma coagulation (APC) destruction of adenomas,  two patients 

underwent a combination of EMR and APC destruction, three patients underwent 

conventional biopsy removal of small polyps in combination with EMR, and one 

patient underwent biopsy removal of all small polyps <5mm. Two of the patients 

were noted to have high grade dysplasia in the biopsy specimen; one had a 

recurrence of high grade dysplasia after endoscopic treatment, the other patient 

developed high grade dysplasia on a background of Spigelman stage III disease 
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treated by EMR. This patient had been on sulindac therapy for over 10 years prior to 

the development of high grade dysplasia.  

 

After endoscopic therapy, the Spigelman stage decreased in 17 patients (77%), 

remained unchanged in 3 patients (14%) and worsened in one patient (4.5%). 

Follow up endoscopy has yet to be carried out in one patient. At the latest 

endoscopy, the Spigelman distribution in these 17 patients was: stage 0, 7 patients; 

stage I, 4 patients; stage II, 3 patients and stage III, 3 patients. The change in the 

mean Spigelman class after endoscopic therapy was statistically significant (p = 

0.0003). 

 

Five patients (13.5%) had an adenoma with high grade dysplasia at first endoscopy, 

and 5 (9%) of patients with low grade dysplasia or no polyps at previous endoscopy 

went on to develop an adenoma with high grade dysplasia. 

 

Three patients (1.5%) had a duodenal adenocarcinoma at a median age of 64 years 

(range 46 – 66 years). One was diagnosed at index endoscopy. The other two 

cases were asymptomatic interval cancers (‘screen detected’). One patient had a 

normal endoscopy (Spigelman 0) 11 years prior to diagnosis of cancer, the other 

patient developed cancer 1 year after Spigelman stage III adenomatosis. The 

cumulative incidence of developing duodenal adenocarcinoma in this study was 

2.3%. The proportion of patients with adenomas that developed duodenal cancer in 

this study was 4.5%. 

 

The median number of adenomas per patient across the study period was 2.5 

(range 1-32 adenomas). Four patients (7%) of those with adenomas had an 

adenoma size of greater than 2cm (2cm, 2.5cm, 3cm and 3cm) and 67% of patients 

were found to have between 1-4 adenomas in total. Nine polyps involved the 
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ampulla, and of these 7 were <1cm in size. The majority of polyps were in the 

second part of the duodenum and spared the ampulla, one patient had polyps 

detected in the jejunum. Three of the four patients with Spigelman stage IV disease 

had 1 adenoma, 1 adenoma and 2 adenomas respectively all 20mm or greater in 

size and all with histological confirmation of high grade dysplasia. The other patient 

had 20 adenomas, the largest being 10mm, and all low grade dysplasia with the 

most advanced type being a tubulovillous adenoma. 

 

Of those patients that had details of mutational status information available, it was 

possible to classify the genotypes into 6 groups (figure 3.3): 1) homozygotes for a 

non truncating mutation, n= 56; (2) compound heterozygotes for a non truncating 

and a truncating lesion, n=12; (3) homozygotes for a truncating mutation, n=37; (4) 

G396D homozygotes, n=30; (5) G396 / Y179C compound heterozygotes, n=28 and 

(6) Y179C homozygotes, n= 25.  

 

 

 

Figure 3.3 – Proportions of different genotype groups for MAP 

 

Group 1

Group 2

Group 3

Group 4

Group 5

Group 6
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Table 3.6 presents this data in relation to adenoma numbers and Spigelman stages. 

 

Genotype n Median age at last 
endoscopy 

(range) 

Total 
number of 
adenomas 
observed 

Median 
number of 
adenomas 
per patient 

(range) 
 

Median 
Spigelman 

score 
(range) 

No truncating 
mutation 
 

56 54.5 years 
(29-79) 

94 0 
(0-19) 

0 
(0-III) 

One truncating 
mutation 

 

12 53 years 
(46-79) 

8 0  
(0-3) 

0 
(0-II) 

Two truncating 
mutations 
 

37 51.5 years 
(27-74) 

32 0 
(0-8) 

0 
(0-III) 

G396D / G396D 
 
 

30 55 years 
(37-75) 

2 0 
(0-2) 

0 
(0-I) 

G396D / Y179C 
 
 

28 59 years 
(37-79) 

21 0 
(0-8) 

0 
(0-III) 

Y179C / Y179C 
 
 

25 52 years 
(29-75) 

92 1 
(0-19) 

0  
(0-III) 

 

Table 3.6 - Adenoma numbers and Spigelman stages in patients undergoing upper 

GI surveillance endoscopy by genotype. 

 

 

The mean polyp numbers differ significantly across some of the different genotype 

groups (P=0.00062; One-way ANOVA). There was a significant difference in the 

number polyps in the cohort with the Y179C homozygote genotype in comparison to 

those patients with two truncating mutations (P = 0.0076983), Y179C homozygotes 

and G396C homozygotes (P = 0.0003410) and Y179C homozygotes and G396D / 

Y179C heterozygotes (P = 0.0097043 groups appear to be significantly different 

(One-way ANOVA with Tukey Post Hoc Test; significance level = 0.05). There was 

no statistically significant difference in the ages of patients in each group. 
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3.4 Discussion  

This study is the largest reported cohort study of duodenal adenomatosis in patients 

with MAP, focusing on adenoma occurrence, progression of adenoma development 

and the morphological features of duodenal polyps.  

 

 

3.4.1 Duodenal adenoma incidence 

In keeping with previously reported data, we found that 17% of patients had 

adenomas at their first endoscopy. The largest published study of MAP patients to 

date (n=150) also reported that 17% of patients had duodenal adenomas, but no 

follow up data was reported (Vogt et al. 2009). This current study adds to the 

understanding of the natural history of duodenal adenomatosis in MAP and found 

that the majority of patients with MAP did not develop duodenal adenomatosis with a 

cumulative incidence of 30% of duodenal adenomas by a median age of 70 ( range 

21-80 years). This is in contrast to FAP patients where the lifetime incidence of 

adenomas in the duodenum is up to 95% (Nugent et al. 1993). Our study also found 

that only 3% of MAP patients developed the most advanced stage (Spigelman IV) 

by age 70 years which again contrasts with studies in FAP that have shown a risk of 

10-15-fold greater.  However, it should be noted that of the 207 patients that had an 

index endoscopy, 28% had not undergone a further upper GI endoscopy during the 

study period which may have affected led to an underestimate of the occurrence of 

stage IV disease. The majority of these patients had not undergone repeat 

surveillance as part of the management of low Spigelman score findings, where the 

surveillance interval is 5 years between endoscopies and it is reasonable to assume 

that these patients are at low risk of developing further adenomas. Only 4 patients 

were lost to follow up in this study.  
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The median age at first endoscopy in the study was 51 years, and this is likely to 

reflect the timing of MAP diagnosis. The median age of adenoma observation was 

found to be 51 years, and the cumulative incidence of adenomatosis at age 50 years 

was 9%; at age 60 years, 22% and by age 70 years, 29% all of which are much 

lower than in FAP (Bulow et al 2011).  

 

 

3.4.2 Adenoma Progression 

Walton et al. (2014) reported slow progression of duodenal adenomas in MAP, with 

only one patient of 34 progressing to another Spigelman stage over 5 years. 

However this was a small study and might not accurately represent the true 

progression of duodenal adenomas.  In comparison, we found that 24% of patients 

progressed to a higher Spigelman stage over the study period. Interestingly, 13.5% 

of patients had high grade dysplasia at first endoscopy, but this did not correlate to a 

high initial Spigelman score, as no patient had Spigelman stage IV disease. Recent 

studies of FAP have shown a higher percentage of overall stage progression of 

between 32 and 44% (Saurin et al. 2004; Lepisto et al. 2009; Bulow et al. 2011 and 

Serrano et al. 2014) but what is striking in our study is the very low rate of 

progression to stage IV disease. Spigelman stages do progress in MAP, and appear 

to do so with time and patient age. This appears to be a slow a process in MAP as it 

is in FAP, occurring over many years. However, as described by Serrano et al 

(2014) in a study of 218 FAP patients, they can progress from stage 0 to stages I, II, 

II or IV with no observation of change sequentially through stages. We found that 

the increase in Spigelman score in MAP appears to reflect mainly changes in 

histological grade rather than adenoma numbers suggesting that in MAP, the 

component parts of the total Spigelman score and their individual points weighting 

may require modification from the weightings used in FAP. In addition, in this study 

we found that once a patient had duodenal polyps, the rate of adenoma progression 
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was shown to be more rapid (p= 0.041) than in those that had no adenomas at first 

endoscopy. In the colorectum, after the primary diagnosis of polyposis a substantial 

proportion of patients were shown to develop CRC within a decade (Niewenhuis et 

al. 2012), an observation that suggests that there may be an accelerated pathway to 

cancer that could also occur in the duodenum. 

 

 

3.4.3 Number of adenomas 

The median number of adenomas per patient across the study period was 2.5, 67% 

of patients were found to have between 1-4 adenomas in total, confirming that MAP 

patients appear to have a lower polyp burden compared to FAP. In FAP, it has been 

reported that in more advanced cases mucosal carpeting can occur when larger 

plaques of abnormal tissue coalesce (Sarre et al. 1987; Iida et al. 1989), and this 

study has also shown the presence of large adenomas in MAP where four patients 

(7% of those with adenomas) had a single duodenal adenoma greater than 2cm in 

size. As seen in FAP (Seow-Choen et al. 1992), most lesions were located in the 

second part of the duodenum with relative sparing of the duodenal cap, but in 

contrast we did not observe a clustering of adenomas around the ampullary region. 

However, it was not known if participating centres routinely undertook surveillance 

with a side viewing endoscope to specific ally assess the ampullary region.  Two of 

the four patients with Spigelman stage IV disease had a single adenoma greater 

than 20mm in size, with one patient found to have 2 adenomas >20mm, all with 

histological confirmation of high grade dysplasia, again demonstrating the disparity 

with the common findings within a ‘classical’ FAP stage IV duodenum.  
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3.4.4 Effect of endoscopic therapy 

In their series of 129 patients with FAP, Lepisto et al. (2009) demonstrated a 

Spigelman stage decrease following endoscopic therapy of 50%. This current study 

also demonstrated a high rate of down-staging of 77% in MAP patients, which was 

statistically significant. In keeping with previous reports (discussed in section 1.7.2), 

it is important to mention that the patients with larger adenomas treated with APC 

alone or in combination with endoscopic resection had a 100% rate of adenoma 

recurrence in this study. Although no patient that underwent endoscopic down-

staging was found to develop duodenal cancer in this study, larger prospective 

studies are needed to definitively evaluate the role of endoscopic therapy in the 

longer-term and the impact on outcome. In addition, in this study a quarter of 

patients that had adenomas at first endoscopy were found to be Spigelman 0 at 

follow up endoscopy. The biopsying of small adenomas 3-4mm or less may have a 

coincidental therapeutic role, and it is interesting that there was no recurrence of 

these diminutive adenomas but this could be interpreted as observer bias, as even 

small changes in the number and size of polyps may change the Spigelman stage 

(Bulow et al. 2011).  

 

The one patient that had received pharmacological treatment with sulindac 

developed high grade dysplasia despite long-term use, which supports the findings 

in FAP that the effect on adenomas is much less in the duodenum than the 

colorectum (Nugent et al. 1993). However, the reported fall in mucosal proliferation 

as a marker for the rate of tumour formation observed in that study may have 

prevented carcinoma development in this patient. 
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3.4.5 Duodenal adenocarcinoma 

Three patients (1.5%) had a duodenal adenocarcinoma at a median age of 64 years 

in this study, with one was diagnosed at index endoscopy. The other two cases 

were asymptomatic interval cancers (‘screen detected’). The cumulative incidence of 

developing duodenal adenocarcinoma in this study was 2.3%, and compares to a 

recent study by Serrano et al (2014) that reported 5 duodenal cancers in a cohort of 

218 FAP patients. They concluded that this low rate compared to other studies was 

a result of effective surveillance and management of duodenal adenomas. However 

there was a 4.5% proportion of duodenal cancer in this current study in those 

patients that had duodenal adenomas detected at previous screening which has a 

greater implication for surveillance. The low rate of duodenal adenocarcinoma in 

MAP in our study may be attributable to endoscopic intervention. However, some 

study centres referred patients to different specialist centres for management of 

complex disease (e.g. six patients from the Netherlands) and the extent to which 

these other interventions may have prevented cancer is unknown. Only two patients 

underwent surgery for non-cancer polyposis, and minimisation of cancer overall in 

this study may be attributed to endoscopic intervention. 

 

Adenoma development (thus carcinoma development) in MAP patients likely 

develop at a later age than FAP due to the requirement of two somatic APC 

mutations in addition to the bi-allelic MUTYH germline mutation (Niuewenhuis et al. 

2012), and so as the median age of patients in our study was 51 years at index 

endoscopy, longer term follow up may demonstrate detection of additional duodenal 

cancers.   

 

In FAP, no patients with stage 0 or I disease at index endoscopy were reported to 

have developed a duodenal malignancy (Groves et al. 2002; Bulow et al. 2004; 

Saurin et al 2004; Bulow et al. 2011), which is in contrast to our findings in MAP 
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where one patient had a normal endoscopy (Spigelman 0) 11 years prior to 

diagnosis of cancer. However, this endoscopy took place before the advent of high 

resolution endoscopy, which is known to increase adenoma detection in FAP 

(Mathus-Vliegen et al. 2011), and so the possibility of ‘missed’ adenomas may have 

occurred. The other patient developed cancer 1 year after Spigelman stage III (6 

points) adenomatosis where the patient had less than 10 adenomas, maximum size 

4mm with tubulovillous histology and low grade dysplasia. This supports previous 

reports of duodenal adenocarcinoma occurring in the context of few adenomas in 

MAP (Nielsen et al. 2006). High initial Spigelman scores (>7) in FAP have been 

shown to be a risk factor for HGD and carcinoma development but Speigelman 

grading may be less appropriate  for stratifying risk in MAP. However, in this current 

study, there were too few HGD lesions and cancers detected to make an estimation 

of hazard ratios.  

 

 

3.4.6 Duodenal genotype-phenotype correlation 

Previous studies have investigated the influence of the site of mutation on the 

severity of duodenal polyposis in FAP in order to help inform appropriate 

surveillance and / or treatment decisions. Saurin et al. (2002) reported that a 

mutation within codon 279-1309 at the centre of the APC gene was associated with 

development of severe duodenal adenomatosis, but this was not confirmed by a 

larger study (Bulow et al. 2011). There is currently insufficient data to justify 

treatment decisions based on a patient’s mutational status. In MAP, a large multi-

centre genotype-phenotype study (Nielsen et al. 2009) found that Y179C 

homozygotes presented earlier and had a significantly increased colorectal cancer 

hazard risk than G396D homozygotes and G396D / Y179C compound 

heterozygotes. The most frequently mutated alleles seen in our 207 MAP cases (in 

the 135 where there was mutational data available) were also the missense 
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mutations Y179C (32.5% of mutations) and G396C (34% of mutations). This is the 

first study to investigate if there is a correlation between MUTYH genotype and 

duodenal phenotype. We found that in concordance with the colorectum, Y179C 

homozygotes had a greater number of duodenal adenomas than patients with two 

truncating mutations, G396C homozygotes and G396D / Y179C compound 

heterozygotes. The number of adenomas and the overall Spigelman score at last 

endoscopy were significantly different between these groups. Cells with bi-allelic 

Y179C mutations appear to contain lower levels of the MUTYH protein than cells 

with bi-allelic G396D mutations (Parker et al. 2005), and Y179C slows a lesser 

ability to recognise an 8-oxo-G:A mismatch than G396D and has severely defective 

glycosylase DNA binding ability (Ali et al. 2008). We found that there was no 

significant difference between truncating and non-truncating mutations, a finding 

also reported by Nielsen et al (2009), which is surprising as a more severe 

phenotype may be expected in the truncating mutation group because of the greater 

effect of the truncating mutation on the protein activity. It has been proposed that a 

complete loss of MUTYH function might act to reduce cell survival and lead to less 

tumour formation than if some functional protein remains (Nielsen et al. 2009). The 

lack of separate analysis of bi-allelic combinations of other mutations may have 

biased this study, but was not undertaken because of the small numbers.  

 

 

3.4.7 Extra-intestinal manifestations in MAP 

As in cases with defective mismatch repair in HNPCC, a germline defect in the BER 

repair pathway might be anticipated to result in tumours in many organs. Vogt et al 

(2009) reported overall 49 malignant lesions other than CRC in 237 MAP cases 

(21%), suggesting that malignancies may not be common in MAP. This current 

study reported a 5% incidence of other malignant lesions (not including those with 

duodenal cancer). 
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3.4.8 Study limitations 

The main shortcomings of this study were its retrospective design, and the fact there 

was no standardised method of surveillance (including use of a side –viewing 

endoscope) across the study centres. Some data was included before the 

introduction of high resolution endoscopes and some centres routinely use 

chromoendoscopy which has been found it improve adenoma detection rates in both 

MAP and FAP (chapter 2). In addition, only one patient in this study appeared to 

have undergone random biopsy, with no visible adenomas but dysplasia on 

histology. The importance of multiple random biopsies in the FAP duodenum was 

highlighted by Bulow et al (2004) who found 12% of adenomas diagnosed only 

histologically. The majority of surveillance in this study however was undertaken in 

the era of high resolution and magnifying endoscopes, so it can be argued that 

random biopsies are not required in the modern age of improved endoscopic optical 

diagnosis. Any bias from potential missed dysplasia in earlier endoscopies probably 

had a minimal effect on the overall results. There also appeared to be a lack of 

adherence to Spigelman surveillance protocols, which may reflect pressures on 

waiting times for surveillance procedures within different units.  

 

Our study also did not compare the duodenal findings with the patient's colorectal 

disease or management. Biasco et al (2006) reported on the surgical procedures for 

colorectal adenomatous disease in FAP, with only 8% of patients with a 

proctocolectomy and ileo-anal anastomosis developing Spigelman stage IV disease 

compared to 50% of patients who had an ileo-rectal anastomosis that developed 

stage IV disease. The authors suggested that patients who underwent a 

proctocolectomy and ileo-anal annastomosis might be at lower risk of developing 

advanced duodenal adenomatosis because of a reduced biliary secretion of bile 

acids, and reduction in the secondary bile acid deoxycholic acid which has been 

described in patients who have undergone this surgical technique. More recently, 
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Serrano et al (2014) suggested that the speed of progression of polyposis in the 

colon predicts the speed in the duodenum, another factor that was not investigated 

in this current study. 

 

 

3.4.9 Conclusions 

In conclusion, this study has shown that in the MAP duodenum there is a cumulative 

incidence of developing adenomas of 30% by age 70 years, which is significantly 

lower than FAP. There remains however, a risk of duodenal adenocarcinoma 

development. Similar to the colorectum, there appears to be no strong correlation 

between the polyp burden and the risk of cancer. The findings of this study have 

important implications for clinical practice as the burden of adenomatosis may not 

be a sufficient indicator for determining the surveillance interval in patients. The 

Spigelman staging system may not be appropriate for long-tem use in MAP, but 

further prospective studies are needed to identify what factors are associated with 

progression of disease, and indeed if progression of disease follows a model that 

can be applied to clinical management. The underlying molecular genetic 

mechanisms and alterations involved in the adenoma to carcinoma sequence 

pathway may be of greater importance than the phenotypic expression of polyps 

within the duodenum in determining which patient will develop cancer. An emerging 

challenge will be to identify molecular biomarkers for risk stratification in those at risk 

of duodenal carcinoma in MAP and FAP that is necessary in order to fulfil the 

promise of ‘personalised medicine.’ 
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4.1 Introduction 

Patients with MAP carry biallelic inactivating mutations in the MUTYH gene which 

increases the somatic mutation rate, generally resulting in an increase in G:C>T:A 

transversions. Previous research has shown that patients with MAP develop 

colorectal adenomas and carcinomas as a result of gaining secondary somatic 

mutations in drivers such as APC and KRAS. In one study, 100% of KRAS 

mutations in MAP colorectal adenomas were G to T transversions in codon 12 

compared to 13% in sporadic adenomas (Jones et al, 2002). This form of genetic 

instability is distinct from microsatellite instability (MSI), which is apparently absent 

in MAP tumours (Lipton et al, 2003). FAP develops subsequent to somatic loss of 

the remaining wildtype allele of APC, which leads to deregulation of the WNT 

pathway. The “just right” hypothesis, discussed in section 1.2.8, whereby optimal 

levels of WNT activation drive cell growth without inducing apoptosis is thought to 

influence the number of polyps and growth of these polyps. This is governed by the 

combined nature and effects of the germline and somatic APC mutations. 

 

In addition in one study, evaluation of the chromosomal instability (CIN) of MAP and 

FAP colorectal polyps suggested that up to 80% and 60% of MAP and FAP polyps 

respectively showed aneuploid changes, and that these changes detected at early 

stages of MUTYH-driven tumourigenesis may underlie accelerated tumour 

progression in MAP (Cardoso et al, 2006).  

 

However for both MAP and FAP adenomas, especially in the duodenum, there 

remains a lack of any comprehensive data that describes the pattern of somatic 

changes, rate of mutation and the genes that are mutated. 
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4.1.1 Upper gastrointestinal adenoma-carcinoma sequence 

Duodenal adenomas have been observed to progress to carcinoma following a 

pattern similar to colorectal adenomas, via an adenoma-carcinoma sequence 

(Brosens et al. 2005). Activation of the Wnt signalling pathway, by biallelic 

inactivating APC mutation is the initiating step. However, the molecular features of 

small bowel adenomas have not been extensively investigated and the genetic 

alterations that occur in duodenal tumours in FAP are poorly characterised. The 

same is true of MAP. Toyooka et al (1995) reported that somatic mutations in the 

“mutation cluster region” of APC were detected in 46% of duodenal adenomas, 67% 

of ampullary adenomas and 50% of ampullary cancers in FAP, with codons 1554-

1556 the most frequently mutated. They also described somatic APC gene mutation 

in small duodenal adenomas of only 1mm size with mild dysplasia, suggesting that 

this is an early event. In the Toyooka series, KRAS mutations were not detected, but 

this was thought to be due to the majority of polyps having low or moderate grade 

dysplasia. P53 mutations were not detected in any of the duodenal tumours 

analysed. In contrast, Gallinger et al (1995) found only 6% of periampullary 

duodenal tumours had APC mutations, but 37% had KRAS mutations.  

 

Kashiwagi et al. (1996) described that in patients with FAP, p53 expression was 

abundant in duodenal adenomas, and that p53 expression increased with 

progression along the adenoma-carcinoma sequence, being demonstrated in 100% 

of duodenal carcinomas and 72% of duodenal tubulovillous/villous adenomas. In 

patients without FAP, p53 over-expression has been shown to correlate with more 

advanced pathology in tumours in the oral mucosa, oesophagus, stomach, colon 

and duodenum (Ogden et al. 1992; Hardwick et al. 1994; Joypaul et al. 1993; 

Kaklamanis et al. 1993; Scarpa et al. 1993). Detection of p53 over-expression in the 

absence of a p53 mutation was postulated to reflect the presence of an abnormal 

cellular environment, particularly DNA damage, and its may be an additional marker 
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of risk for malignancy in FAP (Kashiwagi et al. 1996). Further data from this group 

also demonstrated 3 adenomas of 25 (12%) had point mutations in KRAS codon 12 

(Kashiwagi et al. 1997). 

 

A comparison of ampullary and FAP-associated duodenal adenomas concluded that 

duodenal adenomas share morphologic and molecular features with colorectal 

adenomas, suggesting that they develop via similar mechanisms (Wagner et al. 

2008). It also showed sporadic and FAP-related adenomas to have similar 

molecular features, regardless of their anatomical location. Wnt signalling pathway 

abnormalities occurred in sporadic non-ampullary polyps in 82%, in sporadic 

ampullary polyps in 77%, and in 67% of FAP polyps. KRAS mutations were 

observed infrequently, only seen in 18% of sporadic polyps and 9% of FAP polyps. 

Direct sequencing of p53 exons 5 to 8, revealed no detectable p53 mutations, and 

no BRAF mutations were found. In contrast to the studies by Kashiwagi et al (1996 

and 1997) no significant molecular differences between adenomas of the ampullary 

and non-ampullary mucosa were identified. 

 

SMAD4 mutations have been shown to play a role in polyp development in the 

upper intestine of mice (Takaku et al. 1998). Resnick et al. (1995) demonstrated that 

transforming growth factor alpha expression was greater in duodenal carcinomas 

than adenomas, and that epidermal growth factor receptor (EGF-R) expression 

correlated with the degree of dysplasia in duodenal adenomas.  

 

These studies suggest that the transition of adenoma to carcinoma may be driven 

by other molecular factors that have yet to be fully elucidated. 
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4.1.2 Study aims 

This study aims to determine the profiles of somatic mutations in MAP and FAP 

duodenal adenomas and the mutations rates and key drivers of tumorigenesis in 

each of these settings 

 

 

 

4.2 Materials and Methods 

 

4.2.1 Materials 

 

4.2.1.1 General buffers, solutions, reagents and chemicals 

 

Ethylenediaminetetraacetic acid (EDTA) 

0.5M EDTA adjusted to pH8.0 with NaOH pellets. (Sigma, cat no: ED2SS) 

 

Boric Acid (Sigma, cat no: B7901) 

 

Tris-Borate-EDTA (TBE) buffer (5X) 

0.445M Tris-HCL, 0.445M boric acid, 0.01M EDTA  

Diluted to 1X for use in gel electrophoresis with dH2O: 0.089M Tris, 0.089M boric 

acid and 0.002M EDTA 

 

Tris-EDTA (TE) Buffer (1x) 

10mM Tris-HCL pH8.0, 1mM EDTA pH8.0 

 

Ethanol (Fisher Scientific, cat no: E/0600/DF17) 

 

Propan-2-ol (Isopropanol) (Fisher Scientific, cat no: P/7490/17) 
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Sodium Acetate (Sigma, cat no: S2889) 

 

DNA extraction buffer 

Tris 10mM, EDTA 5mM and NaCl 100nm SDS 0.5% final volume 20ml 

 

Sodium Dodecyl Sulfate (SDS) (Sigma, cat no: L4390) 

 

AquaPhenol (Q-BIOgene, cat no: AQUAPH01) 

 

Chloroform:Isoamyl alcohol 24:1 (Sigma, cat no: C0549) 

 

Hi-Di™ Formamide (Applied Biosystems, cat no: 4311320) 

 

 

 

4.2.1.2 Molecular biology solutions and reagents 

 

Ethidium bromide (Sigma, cat no: E1510) 

 

DNA loading solution 

0.03g Bromophenol Blue (Sigma, cat no: B8026), 0.03g Xylene Cyanol (Sigma, cat 

no:X4126), 7.5g Ficoll 400 (Sigma, cat no: F9378) and 0.558g EDTA in 50ml dH2O 

 

1Kb plus ladder (250µg) 

Suitable for sizing linear double stranded DNA fragments from 100 to 12kb. The 

ladder consists of 12 bands ranging in size from 1000bp to 12000bp in exact 

1000bp increments as well as 7 bands from 100bp to 850bp (Invitrogen cat no: 

10787-018). 
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Primers 

All primers for use in PCR and sequencing were unless otherwise stated designed 

using Primer3 V. 0.4.0 (Rozen and Skaletsky, 2000) and synthesised by Eurogentec 

(Belgium) using standard purification and 10nm synthesis scale. All primers 

containing a FAM fluorescent label were synthesised on a 40nm scale. All primers 

were put through BLAT software (Kent, 2002) to ensure specificity.  

 

Agarose (multipurpose) (Roche, cat no: 11388991001) 

 

 

4.2.1.3 Molecular biology enzymes 

 

Megamix Gold (Microzone, cat no: 2MMG)  

 

Big Dye terminator v1 cycle sequencing kit (Applied Biosystems, cat no: 4337450) 

 

Power SYBR® Green PCR master mix (Applied Biosystems, cat no: 4367659) 

 

Shrimp Alkaline Phosphatase (SAP) (GE Healthcare, cat no: E70092Z)  

 

 

4.2.1.4 Restriction enzymes 

 

Exol (New England Biolabs, Cat no: M0293) 

 

 

 

 

 

http://jura.wi.mit.edu/rozen/
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4.2.1.5 Equipment and instruments 

A GSTORM thermocycler for PCR reactions and incubations was used (Lab Tech). 

Horizontal gel tank apparatus were supplied by Biorad. Centrifugations were 

performed in a bench-top microcentrifuge Eppendorf 5415C (Eppendorf). Purified 

sequencing reactions, LOH and MLPA were analysed using an ABI Prism 3730 

Genetic Analyser (Applied Biosystems). Relative quantification was completed on an 

ABI 7500 (Applied Biosystems). Following nucleic acid extraction, the resulting 

concentration was determined using 2µl of the DNA or RNA on a Nannodrop 8000 

spectrophotometer (Thermo Scientific). 

 

 

 

4.2.2 Methods 

 

4.2.2.1 Patient samples 

Fifty-two patients were recruited for this study, 32 were MAP patients and 20 were 

FAP patients. A blood sample (5mls EDTA) was taken from each patient and DNA 

was subsequently extracted as described below. This was to enable comparison 

with adenoma samples to facilitate identification of somatic mutations. Adenoma 

biopsy samples were taken at upper GI endoscopy at the University Hospital 

Llandough, Wales, UK and St Marks Hospital, London, UK. These samples were 

supplementary to the biopsies required for the patients’ routine care. A section of 

each adenoma biopsy was formalin fixed and sent for histological analysis by a 

specialist GI pathologist at the University Hospital Wales, Cardiff, to assess 

histological classification, degree of dysplasia and the percentage of adenomatous 

material. The remainder was fresh frozen with liquid nitrogen and stored at -80C 

until the DNA was extracted. All samples had material available for follow-up 

validation experiments. For exome sequencing, we attempted to age and sex match 
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patients with MAP and FAP as far as was possible. Figure 4.1 provides an overview 

of the analysis performed on the adenoma samples.  

 

 

Figure 4.1 – Flow chart of genetic analysis performed on the duodenal adenomas in 

the study 
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4.2.2.2 Histology 

A section from each adenoma was analysed to estimate what percentage (to the 

nearest 5%) of all the nuclei on the slide were epithelial adenoma nuclei in relation 

to the total number of nuclei comprising adenoma, non-neoplastic crypts, stroma / 

lamina propria / muscularis mucosae/ submucosa, lymphoid tissue and inflammatory 

cells.  

 

 

4.2.2.3 DNA extraction 

 

4.2.2.3.1 DNA extraction from peripheral blood 

DNA was extracted from all blood samples by the All Wales Medical Genetics 

Service (AWMGS) using an automated DNA extraction facility (Hamilton).  

 

4.2.2.3.2 DNA extraction from polyp tissue 

This was carried out in a PCR clean environment. Once removed from the freezer, 

tissue for DNA extraction was finely chopped up in phosphate buffered saline using 

a homogeniser and transferred to a 1.5ml microcentrifuge tube containing: 400µl 

extraction buffer, 4µl proteinase K (20mg/ml) and 4µl Rnase (10mg/ml).This was 

then left to incubate overnight at 45°C in a hot block. The following morning, 400µl 

phenol was added to each tube and placed on a tube rotator for 20-30minutes. It 

was then centrifuged at 13,000 rpm for 4-6 minutes using a microcentrifuge. The 

aqueous (top) and interphase was transferred to a fresh tube containing 400µl of 

phenol, after which it was placed on a tube rotator for a further 20 minutes. It was 

then centrifuged at 13, 000 rpm for 4-6 minutes. The aqueous phase (only the top) 

was when transferred to a 2ml tube and 40µl of 3M Sodium acetate pH5.2 was 

added, mixed gently and contents spun to the bottom of the tube. 100% ice cold 

ethanol (1ml) was added to the tube, and this was left at -20°C for at least 20 
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minutes (I left it overnight).  A precipitant (pellet) was not easily seen, so the tube 

was then centrifuged at 4°C at 13, 000rpm for 30 minutes. The ethanol was then 

decanted and pellets washed in 500µl of 70% ethanol for 10minutes on ice.  The 

tube was the given a quick spin for 60 seconds, after which the ethanol was 

removed via pipette and the tube left open to dry for 30-60 minutes. The pellet was 

then re-suspended in 50µl of Tris 10mM and stored at 4°C overnight. Extracted DNA 

was stored at -40 until used for analysis. 

 

 

4.2.2.4 Exome sequencing 

The Beijing Genomics Institute (BGI), Hong Kong, completed Exome sequencing on 

constitutional DNA samples and DNA extracted from adenomas using the 

SureSelect Human 50Mb capture kit (Agilent). Twenty adenomas were sequenced 

from 9 patients together with matched blood DNA from each patient. Five patients 

had MAP (10 adenomas sequenced) and 4 had FAP (10 adenomas sequenced).  

 

 

4.2.2.5 Validation of Single Nucleotide Variants (SNVs)   

Putative SNVs identified by exome sequencing were validated using a standard 

PCR protocol described below followed by Sanger sequencing (performed by myself 

and Dr Laura Thomas). Primers (100uM) were purchased from Eurofins in 1.2ml 

deep well plates. Resulting PCR products were quantified with Quant-IT reagent 

(Life Technologies) and a 96 well plate fluorometer. 10ng/ul PCR products were 

purified and sequenced by Eurofins using Sanger sequencing technology. Putative 

APC (NM_000038) and MUTYH (NM_012222) germline mutations were validated in 

the 9 constitutional DNA samples in addition to 1415 putative somatic SNVs 

(including those in APC) in the 20 adenoma samples. 

 



118 

 

4.2.2.6 Primer design 

Primers were designed by Primer 3 software (University of Massachusetts Medical 

School, U.S.A) and purchased from Eurofins (Luxembourg). The BLAT (BLAST –like 

Alignment Tool) algorithm to determine all possible regions to which a primer may 

bind was used to ensure primer specificity. 

 

 

4.2.2.7 Polymerase chain reaction (PCR) 

Direct sequencing allows the myriad of changes such as deletions, insertions and 

single base pair substitutions to be detected. The polymerase chain reaction allows 

the specific in vitro amplification of defined DNA target sequences within a source of 

DNA.  This occurs in an exponential manner.  Double stranded DNA templates are 

heat denatured and oligonucleotides bind specifically to complementary target sites 

on each strand.  Thermostable DNA polymerases extend the primers in the 5' to 3' 

direction by incorporating dNTPs to create a complementary DNA strand.  This cycle 

is repeated 20-40 times to produce up to 5g DNA (Mullis et al, 1986).         

 

PCR was completed with 12.5ul Megamix gold (Microzone), 2.5uM primers and 

5ng/ul of DNA in a 25ul reaction. A standard cycling method was used: 95°C 5mins, 

35x (95°C 1min, Ta 1min, 72°C 1min), 72°C 5mins. Annealing temperature was 

58°C unless otherwise stated.  
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Reagent Volume   25µl   Cycle Conditions  x35 Cycles 

DNA [5ng/µl]   1 

Megamix gold   12.5µl   95°C        5 minutes 

        

                                   95°C         1 minute 

Sense Primer [10uM]  0.25µl   60°C         1 minute 

Antisense Primer [10uM] 0.25µl   72°C                       1 minute 

H2O    11µl    72°C                       5 minutes 

 

 

4.2.2.7.1 Agarose gel electrophoresis 

1.5% agarose gels were made by combining 1.5g multipurpose agarose with 100ml 

of 1X TBE and heated in a microwave for 2 minutes to melt the agarose. 100ml of 

1.5% agarose gel was stained with 4µl of Ethidium Bromide, poured into the gel 

moulds and left to set prior to loading of PCR product. Unless otherwise stated, 4µl 

of PCR product was combined with 5µl of DNA loading dye and loaded onto the 

1.5% multipurpose agarose gels. Gel tank equipment (Biorad) was set to 100Volts 

(0.4Amps) and run for 30 minutes. After running the gel, bands were visualised 

under UV with a GelDoc Imaging Station and Quantity One Software (Biorad). 

 

 

 

4.2.2.8 DNA sequencing 

 

4.2.2.8.1 ExoSAP PCR purification 

This method of purification involves the enzymatic removal of excess nucleotides 

and primers from the PCR reactions. 1µl of SAP and ExoI was added to the PCR 

product to be purified in a 2:1 ratio. The PCR product was then incubated for 1 hour 

at 37ºC to activate the ExoI and then 80ºC for 15minutes to deactivate the ExoI. 
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4.2.2.8.2 Big Dye terminator reaction 

The BigDye terminator mix was prepared using the following reagents and cycle 

conditions: 

 

Reagent Volume  10µl                      Cycle Conditions     x30 Cycles          

DNA (PCR product)  1.5µl       96 ºC                       5 minutes      

BigDye    0.25µl 

Buffer    2µl                        96 ºC                       15 seconds 

Primer [10M]   0.16µl                   50 ºC                       15 seconds 

H2O    6.09µl 

                                                                            60 ºC                       4 minutes 

 

4.2.2.8.3 Isopropanol sequencing purification 

This method removes unincorporated dyes by isopropanol precipitation. 40µl of 75% 

isopropanol was added to each well and mixed gently. The reaction was incubated 

at room temperature for 30 minutes followed by centrifugation at 4000rpm for 45 

minutes. After centrifugation, the plate was inverted on to absorbent paper to 

remove the isopropanol and then placed inverted into the rotor bucket and 

centrifuged at 500rpm for 30 seconds. The plate was left to air dry in a dark box for 

10 minutes and DNA was finally resuspended in 10µl of Hi-Di™ Formamide and 

analysed on an ABI 3730 analyser (Applied Biosystems). 

 

 

4.2.2.9 Sequencing of WTX  

The open reading frame (ORF) of WTX (NC_000023.10) was sequenced in an 

additional 47 adenomas (27 MAP adenomas and 20 FAP adenomas) using the 

above PCR conditions. Primers, which were all M13 tagged, and annealing 

temperatures are detailed in table 4.1. Sequencing was completed by Eurofins 

(Luxembourg) and analysed using Sequencher software (performed by Julie 

Maynard). 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=NC_000023.10&from=63404997&to=63425624&strand=2&dopt=gb
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Gene/Primer 
name 

Primer sequence (5’→3’) 
Annealing 

temperature 
(
o
C) 

Product 
size (bp) 

WTX    

WTX1F TGT-AAA-ACG-ACG-GCC-AGT-AGT-GCC-TGG-AAG-
CCT-GAG 65 511 

WTX1R CAG-GAA-ACA-GCT-ATG-ACC-GCA-GGG-TAA-CTC-
AGG-CAA-AG 

WTX2F TGT-AAA-ACG-ACG-GCC-AGT-GTT-CTG-GGA-AAG-
GCA-GCT-C 54 448 

WTX2R CAG-GAA-ACA-GCT-ATG-ACC-GCC-TGG-CTC-TGA-
CCC-TCT 

WTX3F TGT-AAA-ACG-ACG-GCC-AGT-TAG-CAG-TAT-CCG-
CCG-TCA-C 63 468 

WTX3R CAG-GAA-ACA-GCT-ATG-ACC-GGC-CAT-TGG-GTG-
GGT-TTA 

WTX4F TGT-AAA-ACG-ACG-GCC-AGT-CCC-ATA-GCC-CAG-
AAA-CAG-G 44 466 

WTX4R CAG-GAA-ACA-GCT-ATG-ACC-GGG-CAG-TTT-CCC-
ACA-GAT-ATT 

WTX5F TGT-AAA-ACG-ACG-GCC-AGT-AAG-GAG-GTG-GGG-
AGG-AGA-T 58 556 

WTX5R CAG-GAA-ACA-GCT-ATG-ACC-AAA-GGC-AGT-CAT-
CTC-CAG-GT 

WTX6F TGT-AAA-ACG-ACG-GCC-AGT-ACC-CCG-AGA-CAG-
CTA-CAG-TG 52 420 

WTX6R CAG-GAA-ACA-GCT-ATG-ACC-CAT-AGG-CTT-CCC-
TGC-CAT-AA 

WTX7F TGT-AAA-ACG-ACG-GCC-AGT-TTG-TTG-TAT-TGG-
GAG-CTT-CG 43 436 

WTX7R CAG-GAA-ACA-GCT-ATG-ACC-GGT-GGG-GAA-AGC-
TGA-GGT-A 

WTX8F TGT-AAA-ACG-ACG-GCC-AGT-CCG-TCT-TAG-AGT-
ATC-AGA-TGA-GG 63 506 

WTX8R CAG-GAA-ACA-GCT-ATG-ACC-TCA-GAG-TCA-GAG-
CTG-CAG-GA 

WTX9F TGT-AAA-ACG-ACG-GCC-AGT-GGG-AAT-GCC-ACT-
GTG-AGT-TT 63 466 

WTX9R CAG-GAA-ACA-GCT-ATG-ACC-TCT-CCT-GTT-GAG-
GGC-CAT-AG 

WTX10F TGT-AAA-ACG-ACG-GCC-AGT-AAC-ATG-CCT-TCA-
ACA-ACT-ACC-A 58 475 

WTX10R CAG-GAA-ACA-GCT-ATG-ACC-CCA-ACT-GGT-TGG-
GGC-TTA-T 

WTX11F TGT-AAA-ACG-ACG-GCC-AGT-CTA-TGA-TTG-GCC-
TGC-TTG-G 58 376 

WTX11R CAG-GAA-ACA-GCT-ATG-ACC-ACA-GGC-AGC-AGC-
ACA-TCT-C 

WTX12F TGT-AAA-ACG-ACG-GCC-AGT-CGT-CCC-TCA-CAC-
CTA-CAC-CT 63 476 

WTX12R CAG-GAA-ACA-GCT-ATG-ACC-CTG-ATC-CCC-ATT-
CAC-ATG-CT 

 

Table 4.1 - Sequences of primers and PCR conditions used to screen WTX  
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4.2.2.10 KRAS codon 12 and 13 sequencing 

Codon’s 12 and 13 of KRAS (NM_033360) were analysed by PCR and Sanger 

sequencing using the conditions described above, an annealing temperature of 58°

C, and the following primer sequences: 5’-CCCTGACATACTCCCAAGGA-3’ and 5’-

CTCCTCCATCGACGCTTAAG-3’. Primers were designed by Primer 3 and 

purchased from Eurofins (Luxembourg). Sequencing was completed by Eurofins 

and analysed using Sequencher software (performed by Dr Laura Thomas). 

 

 

4.2.2.11 Loss of Heterozygosity Analysis (LOH) 

LOH analysis of APC was completed on all adenomas in which a pathogenic 

somatic SNV in the APC gene could not be identified (6 adenomas). Fluorescently 

tagged (FAM) SNP and STS markers were used in a PCR reaction as described 

above. Markers were chosen to span chromosome 5 to determine the extent of loss. 

with 3 markers within the APC gene; D5S406 (5p15.32 – 9.6cM from APC), 

D5S1965 (5q22.2 – 200kb from APC), D5S346 (5q22.2), rs2019720 (APC 

promoter), rs1914 (APC intron 7) and nt5037 (APC exon 15). All reactions for 

microsatellite markers were carried out at an annealing temperature of 58°C. 

Fluorescently tagged PCR products were run on an ABI 3100 and analysed using 

Genotyper and Genescan software (Applied Biosystems). LOH was considered to 

be present if the resulting trace from the adenoma showed a peak height of 50% or 

less of the corresponding peak height for the matched constitutional DNA samples. 

All assays were carried out in duplicate (performed by myself with assistance from 

Dr Laura Thomas). 
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4.2.2.12 Array CGH 

Microarray analysis was completed on forty-nine adenomas comprising 26 

adenomas from FAP patients and 23 adenomas from MAP patients and matched 

blood samples (with assistance from Sian Jose) using the BlueGnome CytoChip 

ISCA 8x60k (v2.0) array (GRCh37), BG_Annotation_Ens70_20130319.db following 

the manufacturers protocol. Briefly, this involved labelling of sample and reference 

DNA (matched blood DNA) with Cy3 and Cy5 dyes, respectively. The labelled 

genomic DNA was cleaned up using Amicon Ultracel-30 membrane filters, followed 

by vacuum centrifugation to concentrate the samples. The samples were 

reconstituted in 9.5ul of 1xTE and the DNA concentration, dye incorporation and 

specific activity of each sample was determined using a Nanodrop 

spectrophotometer. The Cy3 and Cy5 labelled samples were then combined. 

Hybridisation was carried out following the addition of COT, blocking agent and 

hybridisation buffer to each labelled, combined sample. Gasket slides were loaded 

into an Agilent Microarray Hybridisation Chamber base and the samples dispensed 

into each gasket well. The array slide was then placed over the gasket slide and the 

hybridisation chamber cover was placed over the base and incubated in a pre-

warmed hybridisation oven at 65°C, rotating at 20rpm for 16 hours to allow 

hybridisation. Finally the hybridised slides were washed to remove un-hybridised 

labelled DNA using the clear Hyb Wash System (Agilent). The slide was finally 

scanned at 3um scanning resolution using the Agilent microarray scanner. Array 

CGH results were analysed using CytoGenomics software (Agilent). For the 20 

adenomas that have undergone exome analysis in addition to the arrayCGH 

analysis, ExomeCNV caller was used to validate the arrayCGH results to confirm 

the presence or absence of the CNV in addition to qPCR analysis. 
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4.2.2.13 Quantitative PCR (qPCR) 

Relative quantification PCR (qPCR) can give an accurate comparison between the 

initial levels of template nucleic acid in different samples. qPCR analysis was used 

in addition to the exome data to confirm the CNVs identified by arrayCGH. qPCR 

was completed on the 7500 Real-Time PCR system (Applied Biosystems) using a 

SYBR Green PCR mastermix (Applied Biosystems) (performed by myself, Dr Laura 

Thomas and Dr Helena Leon-Brito). 

 

qPCR was used to determine a relative increase or decrease in copy number of the 

genes of interest as determined by the delta delta ct method [ΔΔct] (comparative ct) 

given by the equation: t=0=2-ΔΔct. The ct values of the samples of interest are 

compared with that of a control (calibrator sample - DNA derived from normal 

mucosa). The ct values of both the calibrator and the samples of interest are then 

normalized to an appropriate endogenous housekeeping gene (Beta Actin) (Ponchel 

et al, 2003, Livak and Schmittgen, 2001). Primers were designed using Primer3 and 

purchased from Eurofins. Relative quantification was carried out using the following 

reagents and cycle conditions: 

 

 

Reagent Volume  12.5µl              Cycle Conditions     x40 cycles 

DNA (5ng/µl)    1µl  50°C           2 minutes 

SYBR® Green   6.5µl                95°C                        10 minutes 

Sense Primer [2µM]  1µl    

Antisense Primer [2µM] 1µl                   95°C           15 seconds  

H2O    3µl                   60°C                         1 minute 

 

 

Three replicates were used per experiment and B Actin served as an endogenous 

control. Control reactions were used to eliminate the presence of contaminants in 
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the DNA samples and specificity of PCRs were determined by gel analysis and the 

addition of a dissociation step, producing a single peak upon analysis representing a 

specific reaction. All data was analysed with the ABI 7500 SDS System software 

(Applied Biosystems).  

 

 

4.2.2.14 Bioinformatics Analysis 

Bioinformatics analysis was carried out by Dr Kevin Ashelford. All samples were 

mapped and post-processed using a combination of BWA, samtools, picard, and 

GATK.  Variants were then called by five separate variant calling methods. Finally 

the results were collated to identify consensus calls. Specifically, reads were 

mapped against human reference hg19 using BWA mem, version 0.7.4.  Sorted 

indexed BAM files were then created with samtools version 0.1.19.  Mappings from 

multiple runs were merged with picard MergeSamFiles version 1.108.  Realignment 

around indels and recalibration of base quality values was achieved with Genome 

Analysis Toolkit (GATK) version 3.2.0 as per standard instructions with dbSNP 

version 138 to provide known variant sites. Read duplicates were flagged with 

Picard tool’s MarkDuplicates tool, version 1.108. Single Nucleotide Variants (SNVs) 

were then called for each tumour-normal pairing using (i) GATK UnifiedGenotyper 

(version 3.3.0), (ii) samtools/bcftools (version 0.1.19), (iii) VarScan somatic (version 

2.3.7), (iv) SomaticSniper (version 1.0.4), and (v) our own in-house script. GATK 

UnifiedGenotyper was run in conjunction with dbSNP version 138 as per standard 

instructions with VariantFiltration to provide basic filter annotations. Bcftools was 

applied to samtools mpileup output with parameter modifications (-q 15, -Q 10, -C 

50, -m 3, -F 0.0002, -d 100000).  Varscan somatic was applied to samtools 

view/mpileup output with parameter modifications (-q15, -Q 10). Somaticsniper was 

applied with parameter modifications (-q 15, -Q 15). In-house script simply called all 

variants regardless of quality down to a minimum of two reads based on samtools 
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mpileup output (with parameters -ABd100000). In all cases VCF outputs were 

annotated with ANNOVAR (July 2014 release) using UCSC KnownGene gene 

model, 1000 genomes (1000g2014sep_all), dbsnp 138, SIFT (ljb26_sift) and cosmic 

(cosmic70). Annotated VCF outputs from all five callers were then combined into a 

single spreadsheet using an in-house script. 

 

Following the above process, the raw putative SNVs were subjected to further 

filtering to identify a final list of putative SNVs. This included passing of quality 

control filters, inclusion of SNVs with a MAF of <1% (0.01) or novel SNVs that have 

not been reported in dbSNP or 1000 genomes databases. Protein truncating or 

altering (nonsynonymous and stopgain) SNVs were also selected and synonymous 

SNVs were excluded. For inclusion SNVs had to be called by at least 3 of the 5 SNV 

callers. Germline variants were also excluded by virtue of the presence of the SNV 

in the data from the matched blood DNA. Metrics associated with each sample 

including yield of data (Gb), percentage of reads mapped, percentage of reads that 

are on target and on target mean depth of coverage can be found in table 4.2. 

 

CNV analysis was performed on each tumour-normal pairing using exomeCNV 

version 1.4 (Sathirapongsasuti et al. 2011) run within R version 3.0.2 (http://www.r-

project.org). The procedure was based on that outlined in the manual 

(https://secure.genome.ucla.edu/index.php/ExomeCNV_User_Guide) and can be 

briefly summarised as follows. Coverage data for both normal and tumour samples 

were generated from BAM files using the DepthOfCoverage command within GATK 

version 3.2.0. In R, log coverage ratios between tumour and normal coverage 

datasets were prepared and CNVs for each exon called individually using the 

exomeCNV command classify.eCNV (assuming a contamination rate of 0.5; 

minimum specificity and sensitivity both set at 0.9999 and option=‘spec’). Finally, 

exonic CNVs were combined into larger segments using the exomeCNV command, 

http://www.r-project.org/
http://www.r-project.org/
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multi.CNV.analyze, and the resulting outputs converted into spreadsheets and BED 

files using in-house scripts for subsequent exploration (Sathirapongsasuti et al. 

2011). 

 

 

Sample Sample Type Yield (Gb) % Mapped % On Target 
On Target Mean 

Coverage 

17 Germline 11.29 99.93 66.68 122.33 

17A1 Adenoma 10.79 99.94 72.87 127.43 

17A2 Adenoma 10.63 99.97 73.19 125.48 

24 Germline 10.41 99.96 73.57 124.02 

24A1 Adenoma 10.47 99.96 76.03 128.5 

24A3 Adenoma 11.57 99.95 69.24 128.86 

24A8 Adenoma 10.26 99.96 71.12 116.56 

30 Germline 14.79 99.96 54.48 129.82 

30A1 Adenoma 11.82 99.97 73.9 140.55 

30A3 Adenoma 14.54 99.95 54.93 128.31 

36 Germline 14.22 99.96 59.89 136.76 

36A1 Adenoma 11.84 99.95 73.56 140.46 

36A3 Adenoma 13.29 99.96 63.75 136.17 

37 Germline 10.49 99.96 70.64 119.3 

37A1 Adenoma 11.2 99.95 71.82 129.7 

37A4 Adenoma 9.48 99.94 75.97 116.27 

38 Germline 11.03 99.89 74.43 132.57 

38A2 Adenoma 10.86 99.95 75.64 134.07 

44 Germline 11.04 99.96 75.64 134.07 

44A2 Adenoma 13.11 99.96 60.66 128.78 

44A4 Adenoma 14.78 99.87 55.69 132.1 

51 Germline 11.15 99.97 75.61 135.34 

51A1 Adenoma 12.76 99.93 65.44 134.32 

51A3 Adenoma 13.05 99.88 53.54 111.2 

51A4 Adenoma 12.26 99.96 70.7 139.49 

52 Germline 10.31 99.97 76.07 127.28 

52A2 Adenoma 10.36 99.97 72.13 120 

52A3 Adenoma 11.83 99.95 63.76 121.34 

52A4 Adenoma 10.48 99.95 73.34 124.23 

 

Table 4.2 - Exome sample metrics for each sample (adenoma or matched blood) 
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4.2.2.15 Statistical analysis  

The nonparametric Mann Whitney U test was used to determine the differences in 

frequencies of SNVs in the two disease contexts. Fishers exact was used test to find 

a significant difference between G>T for MAP versus FAP. A P value of less than 

0.05 was considered statistically significant. Statistical analysis for the study was 

performed using R (version 3.0.2) software. 
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4.3 Results 

 

4.3.1 Patient and adenoma characteristics 

23 patients (12 female: 11male) had duodenal adenomas at upper GI endoscopy 

(13 FAP, 10 MAP). The patient and adenoma characteristics for those that 

underwent exome sequencing are shown in table 4.3. Samples 17A2, 37A1 and 

37A4 were from adenomas arising from the ampulla, the rest were duodenal 

adenomas. 

 

Adenoma Age (years) 
Patient 

Sex 
Size of 

adenoma Histology 

% 
Adenomatous 

Tissue 
Spigelman 

Stage 

17A1 38 
 

F 
 

15mm TA LGD 80% IV 
 17A2 20mm TVA LGD 80% 

52A3  
37 

 

 
M 

 

25mm TVA LGD 80% 
 

IV 52A4 15mm TA LGD 60% 

52A2 8mm TA LGD 50% 

51A1  
42 

 
M 

10mm TA LGD 50% 

III 51A3 4mm TA LGD 30% 

51A4 2mm TA LGD 20% 

30A1  
49 

 

 
F 

 

4mm TA LGD 50% 
III 

30A3 8mm TA LGD 40% 

24A1 

59 M 

15mm TA LGD 40% 

III 24A3 15mm TA LGD 50% 

24A8 12mm TVA LGD 90% 

37A1 
63 F 

25mm TA LGD 40% 
II 

37A4 25mm TA LGD 70% 

36A1 
47 F 

3mm TA LGD 50% 
II 

36A3 8mm TA LGD 50% 

44A2 
42 M 

5mm TA LGD 60% 
II 

44A4 4mm TA LGD 60% 

38A2 47 M 30mm TA LGD 30% II 

 

Table 4.3 – Patient and adenoma characteristics of the those samples that 

underwent exome sequencing (blue=FAP, red=MAP) 
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4.3.2 APC and MUTYH Germline and Somatic Mutations 

 

4.3.2.1 Germline APC and MUTYH Variants 

Nine constitutional DNA samples were subjected to exome sequencing (matched 

with the 20 adenomas). Exome analysis confirmed the clinical and previous NHS 

molecular genetic diagnosis of 8/9 patients in this study. For one of the FAP 

patients, exons 4-5 of the APC gene were previously found to be deleted by 

diagnostic MLPA analysis (Cardiff and Vale NHS). For the remaining 3 FAP 

patients; 3 different monallelic APC germline mutations were identified (figure 4.2) 

and biallelic MUTYH germline mutations were identified in all 5 MAP patients (figure 

4.3). PCR and Sanger sequencing confirmed the presence in the original 

constitutional DNA samples of all of these variants.  

 

4.3.2.2 Somatic APC Variants 

Twenty-five somatic mutations (table 4.4) in the APC gene were identified in the 

adenoma samples. For two of the FAP adenomas (17A1 and 52A2), no somatic 

changes at the APC locus were identified (SNVs or LOH). In sample 30A3 the only 

mutation identified was a missense variant. PCR and Sanger sequencing confirmed 

all somatic APC sequence changes identified by exome analysis. Monoallelic 

somatic APC mutations, SNV or LOH were identified in 8/10 of the FAP polyps 

(80%), 7 SNVs and 1 instance of LOH. Biallelic somatic APC mutations, 18 SNV 

stop gains and 2 cases of LOH, were identified in all of the MAP adenomas  

 

4.3.2.3 LOH of the APC Gene.  

APC LOH was detected in 3 adenomas (1 FAP and 2 MAP). LOH was only 

identified at markers; rs2019720 (APC promoter), rs1914 (APC intron 7) and nt5037 

(APC exon 15). The LOH appeared to be copy neutral, as no CNVs were detected 

at the APC locus by array CGH, suggesting that the LOH was caused by mitotic 

recombination.  
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Sample Gene 

SNV/INDEL 

Sequencing Validation 

Exon c. p. Affect on protein Position 

17 APC 4-5 n/a n/a Exon deletion  112178795  n/a 
 

52 APC 15 3863 GA>A G1288fsX16  Frameshift 112175152 

  

30 APC 15 3198 ACAAT>CAAT R1067fsX59  Frameshift 112174489 

  

51 APC 5 637 C>T R213X  Stopgain  112176592 

  

 

Figure 4.2. – Germline APC validation 
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Sample Gene 
SNV/INDEL 

Reported 
Reported 
frequency 

Sequencing Validation 
Exon c. p. Affect on protein Position 

24 

MUTYH 7 536 A>G Y176C  
Nonsynonymous 
(HOM) 

45798475 rs34612342 N/A 

 

MUTYH 7 536 A>G Y176C  
Nonsynonymous 
(HOM) 

45798475 rs34612342 N/A 

 

37 

MUTYH 13 1214 C>T P405L  
Nonsynonymous 
(HET) 

45797201     
 

MUTYH 13 1187 G>A G396D  
Nonsynonymous 
(HET) 

45797228 rs36053993 T=0.004/8 
 

36 

MUTYH 14 1438 G>T E480X  Stopgain (HOM) 45796892 rs121908381 N/A 
 

MUTYH 14 1438 G>T  E480X  Stopgain (HOM) 45796892 rs121908381 N/A 

 

44 

MUTYH 13 1240 C>T  Q414X  Stopgain (HOM) 45797175     

 

MUTYH 13 1240 C>T  Q414X  Stopgain (HOM) 45797175     

 

38 

MUTYH 9 739 T>C  R247X  Stopgain (HET) 45798112     
 

MUTYH 7 526 G>A  Y176C  
Nonsynonymous 
(HET) 

45798475 rs34612342 N/A 

 

 
Figure 4.3 – Germline MUTYH validation
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Sample Gene 

SNV/INDEL 

Reported 
Reported 
frequency 

Exon c. p. Affect on protein Position 

17A1  APC  No mutation identified 

17A2 APC 15 4691 T>G L1564X Stopgain  112175982     

30A1 APC 15 4660 G>GA E1554fsX4 Frameshift  112175951     

30A3  APC  15  7504 G>A  G2502S  Nonsynonymous  112178795 rs2229995  A=0.0084/42 * 

51A1 APC 15 4606 G>T E1536X Stopgain 112175897     

51A3 APC 15 4660 G>GA E1554fsX4 Frameshift 112175951     

51A4  APC  LOH (nt5037) 

52A3 APC 15 4660 G>GA E1554fsX4 Frameshift 112175951     

52A4 APC 15 4348 C>T R1450X Stopgain 112175139 rs121913332 N/A 

52A2 APC  No mutation identified 

24A1 APC 15 4678 G>T E1559X Stopgain 112175969 

  

24A1 APC 15 LOH (rs2019720) 

24A3 APC  15 3502 G>T E1168X Stopgain 112174793 

  

24A3 APC 15 4654 G>T E1552X Stopgain 112175945 

  

24A8 APC 15 3502 G>T E1168X Stopgain 112174793 

  

24A8 APC  15 4654 G>T E1552X Stopgain 112175945 

  

36A1 APC 15 2962 G>T E988X Stopgain 112174253 

  

36A1 APC 15 LOH (nt5037) 

36A3 APC  15 3845 G>T S1282X Stopgain 112175136 

  

36A3 APC 15 472 6 G>T E1576X Stopgain 112176017 

  

37A1 APC 4 526 G>T E176X Stopgain 112111429 

 

  

37A1 APC  15 4660 G>GA E1554fsX4 Frameshift 112175951 

 

  

37A4 APC 15 526 G>T E176X Stopgain 112111429 

  

37A4 APC 15 4660 G>GA E1554fsX4 Frameshift 112175951 

 

  

38A2 APC  15 4381 G>T E1461X Stopgain 112175672 

 

  

38A2 APC 15 3460 G>T E1154X Stopgain 112174751 

 

  

44A2 
APC 

4 2311 G>T E771X 
Stopgain 

112173602 
  

44A2 APC  15 4630 G>T E1544X Stopgain 112175921 

  

44A4 APC 4 44588 G>T E1530X Stopgain 112175879 

 

  

44A4 APC 15 3406 G>T E1136X Stopgain 112174697 

 

  

Table 4.4 – Validated somatic mutations in FAP and MAP adenomas. *missense 

variant 
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4.3.3 Validation of exome-wide somatic SNVs  

Exome sequencing identified 1376 exome-wide somatic SNVs. Excluding the 

previously validated 25 APC somatic mutations, as described above, a further 1351 

exome-wide somatic SNVs required confirmation by PCR and Sanger in the original 

DNA samples. The frequencies of putative and confirmed somatic SNVs (including 

APC) in each adenoma sample are shown in table 4.5. Details of validated individual 

SNVs identified in the adenoma samples can be found in appendix 4 of the 

electronic supplementary material. Of the 1351 exome-wide SNVs, 112 SNVs failed 

to amplify or could not be sequenced. Consequently, validation of 1239 exome-wide 

SNVs across the 20 adenoma DNA samples was undertaken. Of these, 881, 

including 25 APC mutations (71%) were confirmed. There were between 41 and 2 

SNVs in each of the 10 FAP adenomas and between 158 and 6 SNVs in each of the 

10 MAP adenomas, the majority being nonsense mutations (table 4.4). There is a 

statistically significant difference in the frequency of SNVs in the two disease 

contexts (p=0.035), with more SNVs identified in MAP than FAP adenomas. Polyp 

size also showed a significant positive correlation with number of SNVs for both FAP 

and MAP; FAP (correlation coefficient of 0.66; p-value = 0.03721) and MAP 

(correlation coefficient of 0.65; p-value = 0.04346). 

 
 

 
4.3.4 WTX Gene Sequencing 

Frequent somatic mutations of WTX have recently been observed in FAP and MAP 

colorectal adenomas (J Sampson, personal communication). Surprisingly, no WTX 

mutations were found on exome sequencing of duodenal adenomas in the current 

study. Therefore, the WTX ORF was Sanger sequenced in an additional 47 

duodenal adenomas (20 FAP and 27 MAP) but again, no mutations were identified
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Adenoma  

Pre- 
Validation 
Exome-wide 
Somatic 
SNVs 

Pre-
Validation 
Total 
somatic 
SNVs 
(including 
APC) 

Failed 
PCR/Seq 

Not 
confirmed 

Confirmed 
Exome-wide 
SNVs 

Confirmed 
somatic 
APC SNVs 

Post-
Validation 
Total 
confirmed 
somatic 
SNVs 

% validated FAP/MAP Adenomatous Tissue 

17A1 25 25 5 2 21 0 21 84 

FAP 

80% 

17A2 46 47 1 4 41 1 42 89 80% 

52A3 65 66 6 33 26 1 27 40 80% 

52A4 83 84 6 46 31 1 32 37 60% 

52A2 27 27 2 19 6 0 6 22 50% 

51A1 38 39 1 5 32 1 33 84 50% 

51A3 54 55 9 35 12 1 13 22 30% 

51A4 33 33 7 24 2 0 2 6 20% 

30A1 37 38 7 12 17 1 18 46 50% 

30A3 55 56 3 23 29 1 30 53 40% 

24A1 27 28 1 3 23 1 24 85 

MAP 

40% 

24A3 47 49 2 6 39 2 41 83 50% 

24A8 92 94 6 6 80 2 82 87 50% 

37A1 219 221 17 43 158 2 160 72 40% 

37A4 102 104 10 30 62 2 64 61 70% 

36A1 14 15 2 3 9 1 10 64 50% 

36A3 131 133 5 10 116 2 118 89 50% 

44A2 67 69 7 15 45 2 47 67 60% 

44A4 14 16 2 6 6 2 8 43 60% 

38A2 175 177 13 36 126 2 128 72 30% 

Total 1351 1376 112 361 881 25 906 66 
  

 

Table 4.5 – Total somatic SNVs identified and validated
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Figure 4.4 – Comparison of total number of confirmed SNVs in MAP versus FAP 

adenomas.
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4.3.5 KRAS codon 12 and 13 sequencing 

KRAS c.34G>A; p.G12S was identified in 4 of 10 MAP polyps and c.35G>A; p.G12D 

was identified in 1 of 10 FAP polyps. In order to investigate further the apparent 

excess of MAP-associated KRAS mutations, 27 additional MAP adenomas and 20 

additional FAP adenomas were sequenced for codon 12 and 13 KRAS mutations. 

Additional mutations were found in 8 MAP and 3 FAP adenomas. In total 16 KRAS 

mutations were identified in 67 adenomas (24%; p = 0.070; table 4.6). 

 

Adenoma FAP / MAP Change Histology Polyp size 

4A1 
24A4 
29A2 
29A3 
38A4 
39A1 
39A4 
44A1 
54A1 
54A9 
54A10 
52A4 
24A3 
24A8 
37A1 
37A4 

FAP 
MAP 
FAP 
FAP 
MAP 
MAP 
MAP 
MAP 
MAP 
MAP 
MAP 
FAP 
MAP 
MAP 
MAP 
MAP 

c.37G>T; p.G13C 
c.34G>A; p.G12S 
c.35G>A; p.G12D 
c.35G>A; p.G12D 
c.34G>T; p.G12C 
c.35G>T; p.G12V 
c.35G>T; p.G12V 
c.34G>T; p.G12C 
c.34G>T; p.G12C 
c.34G>T; p.G12C 
c.34G>T; p.G12C 
c.35G>A; p.G12D 
c.34G>A; p.G12S 
c.34G>A; p.G12S 
c.34G>A; p.G12S 
c.34G>A; p.G12S 

TA LGD 
TA LGD 
TA LGD 
VA LGD 
TA LGD 
TA LGD 
TA LGD 
TA LGD 
TVA LGD 
TA LGD 
TA LGD 
TA LGD 
TA LGD 
TVA LGD 
TA LGD 
TA LGD 

3mm 
8mm 
4mm 
4mm 
5mm 
9mm 
9mm 
5mm 
8mm 
10mm 
12mm 
15mm 
15mm 
12mm 
25mm 
25mm 

 
Table 4.6 - KRAS mutations detected in FAP and MAP adenomas (red=original 

adenomas exome sequenced) 

 
 
 
4.3.6 Frequency of G>T transversions  

The number of G>T transversions was determined in each of the 20 adenoma 

samples and compared between FAP and MAP. There were significantly more G>T 

transversions in adenomas from MAP patients than FAP patients (p<0.001, figure 

4.5a and b). The percentage of truncating SNVs calculated from the total number of 

SNVs per sample demonstrated a significantly higher proportion of truncating SNVs 

in the MAP adenomas than FAP adenomas (p<0.0001). 
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Figure 4.5a – Number of G>T transversions in MAP and FAP 

 

 

 
Figure 4.5b –Differences between types of somatic mutations in MAP and FAP
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4.3.7 Frequently mutated Genes and common SNVs.  

Of the 906 confirmed somatic SNVs (881 exome wide and 25 APC) identified in the 

exome data from the 20 adenoma DNA samples, there were 14 genes, which had 

more than one SNV; APC (25 SNVs), PLCL1 (5 SNVs), SYNE1 (5 SNVs), KRAS (5 

SNVs), CPSF6 (4 SNVs), LRP1B (4 SNVs), DNAH5 (3 SNVs), IGFN1 (3 SNVs), 

DNAH2 (3 SNVs), DCHS2 (3 SNVs), PTCHD2 (3 SNVs), SLC4A3 (3 SNVs), ERBB3 

(3 SNVs), TTN (3 SNVs) (table 4.6a).  Additionally, recurrent mutations (i.e. the 

same SNV identified in between 2 and 5 individual samples) were detected in 9 of 

these genes (table 4.6b). 

 

 

 

Chr 

 

Position 

 

ref 

 

alt 

 

gene. id 

 

FAP samples 

 

MAP samples 

 

Chr 5    APC* 7 mutations in 7 18 mutations in 10 

Chr 2 198949617 G A  

 

PLCL1 

 

17A2  

Chr 2 198949560 G A 51A1  

Chr 2 198949768 G T  37A1 

Chr 2 198949880 G T  37A1 

Chr 2 198949880 G T  37A4 

Chr 6 152697533 T C  

 

SYNE 1 

 

30A3  

Chr 6 152563464 G T  37A1 

Chr 6 152527386 G A  36A3 

Chr 6 152647170 G A  36A3 

Chr 6 152748947 G T  38A2 

Chr 12    KRAS* 1 adenoma 4 adenomas 

Chr 12 69656302 G A  

 

CPSF6 

 37A1 

Chr 12 69656304 G A  37A1 

Chr 12 69656302 G A  37A4 

Chr 12 69656304 G A  37A4 

Chr 2 198949880 G T  

 
LRP1B 

 

 24A3 

Chr 2 141298667 C T  24A8 

Chr 2 141298667 C A  37A1 

Chr 2 141777585 C A  37A4 
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Chr 5 13735384 C T  

DNAH5 

51A1  

Chr 5 13882892 C A  36A3 

Chr 5 13811890 G A  38A2 

Chr 1 201181973 C T  

IGFN1 

52A5  

Chr 1 2011819731 C T 52A3  

Chr 1 201181973 C T 52A4  

Chr 17 7661866 G A  

DNAH2 

 24A3 

Chr 17 7661866 G A  24A8 

Chr 17 7720915 G A  44A2 

Chr 4 155156598 G A  

DCHS2 

51A1  

Chr 4 155158065 C T 51A1  

Chr 4 11561594 C T  24A8 

Chr 1 11561594 G T  

PTCHD2 

 37A1 

Chr 1 11584030 G T  37A1 

Chr 1 11591019 G T  37A2 

Chr 2 220500412 G A  

SLC4A3 

52A5  

Chr 2 220500412 G A 52A3  

Chr 2 220500412 G A 52A4  

Chr 12 56487261 C G  

ERBB3 

52A4  

Chr 12 56480320 C A  24A3 

Chr 12 56480320 C A  24A8 

Chr 2 179595059 A G  

TTN 

 37A1 

Chr 2 179416845 C A  38A2 

Chr 2 179436284 C A  38A2 

 

 

Table 4.6a – The most frequently mutated genes observed on exome sequencing 

(red = truncating mutation, black = missense mutation). Details of APC mutations 

are described in section 4.3.2 and KRAS mutations in 4.3.5 
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chromosome  position  ref alt gene.id 
number of times 

observed 

chr5  112175951 G  GA  APC  5  

chr12 25398285 C T KRAS 4 

chr2 220500412 G A SLC4A3 3 

chr1 201181973 C T IGFN1 3 

chr5 112111429 G  T  APC  2  

chr5  112174793 G  T  APC  2  

chr5  112174697 G  T  APC  2  

chr5  112175945 G  T  APC  2  

chr2 198949880 G T PLCL1 2 

chr12 69656302 G A CPSF6 2 

chr12 69656304 G A CPSF6 2 

chr12 56480320 C A ERBB3 2  

chr17 7661866 G A DNAH2 2  

chr2 141777585 C A LRP1B 2 

chr2 141298667 C T LRP1B 2  

 
 
  Table 4.6b – Recurrent somatic SNVs observed on exome sequencing  
 
 

 

 

4.3.8 Array CGH 

Array CGH was completed on 48 adenomas, 26 adenomas from FAP patients and 

22 adenomas from MAP patients. Six CNVs were detected in 3 adenomas, all of 

which were from MAP patients and included 1 copy number gain and 5 losses. No 

CNVs were identified in adenomas from FAP patients. The CNVs were detected on 

chromosomes 7, 8, 9 and 18 and ranged in size between 354kb and 157MB (table 

4.7, figures 4.6a and b). All CNVs were validated by the Exome data and confirmed 

by qPCR analysis. 
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Figure 4.6a – CNVs in MAP adenomas 44A2 and 38A
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Figure 4.6b – CNVs in MAP adenoma samples 37A1 
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Chromosome Location CNV Copy Start End Size (bp) No. of OMIM 
Genes 
 

No of HGNC 
Genes 

Adenoma 
Samples 

 
7 

 
7p22.3 – 7q36.3 

 
GAIN 

 
0.19 

 
54,215 

 
157,723,116 

 
157,688,802 

 
589 

 
1, 243 

 
38A2 
 
 

 
 
8 

 
8p.23.1 
 

 
DEL 

 
-0.30 

 
6,805,940 

 
9,615,505 

 
2,809,556 

 
15 
 

 
74 

 
37A1 

 
8p. 23.1 
 

 
DEL 

 
-0.62 

 
7,691,931 

 
8,046,302 

 
354,372 

 
3 

 
15 

 
44A2 

 
9 

 
9q22.32 
 

 
DEL 

 
-0.30 
 

 
99,121,641 

 
131,163,638 

 
32,041,998 

 
153 

 
293 

 
37A1 

 
 
18 

 
18p11.32 
 

 
DEL 

 
-0.20 
 

 
148,993 

 
9,371,093 

 
9,222,101 

 
24 

 
38 

 
44A2 

 
18q21.1 
 

 
DEL 

 
-0.22 

 
47,594,529 

 
78,012,800 

 
30,418,272 

 
70 

 
104 

 
44A2 

 
 
Table 4.7 Copy number gains and deletions in 3 MAP adenomas (OMIM: Online Mendelian inheritance in man; HGNC: Hugo gene 

nomenclature committee). 
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4.4 Discussion 

This is the first study that has explored the somatic mutational spectra of duodenal 

adenomas from patients with germline mutations in APC and MUTYH. 

 

 

4.4.1 Somatic mutations and LOH 

Somatic ‘second hits’ in APC are known to be necessary for adenoma development 

in FAP, and bi-allelic somatic mutations in MAP. In this study exome analysis and 

subsequent validation of putative variants with Sanger sequencing detected somatic 

APC mutations in 8/10 (80%) FAP duodenal adenomas and bi-allelic somatic APC 

mutations in 10/10 (100%) MAP adenomas. Duodenal adenomas showed APC LOH 

in 3/20 (15%) of cases (2 MAP and 1 FAP) in this study  LOH appeared to occur by 

mitotic recombination as there were no CNVs detected at the 5q locus by arrayCGH. 

Reports of LOH at the APC locus in the duodenum are very limited. One study on 

colorectal tumours detected no LOH in 13 CRCs from MAP patients (Johnson et al. 

2005), and Lipton et al (2003) found no APC LOH in MAP colorectal adenomas.  

The incidence of LOH in FAP colorectal adenomas has been reported at between 

22-40% (Lamlum et al. 1999, Crabtree et al. 2003, Will et al. 2008). Obrador-Hevia 

et al. (2010) reported LOH in 18% of colorectal FAP adenomas, with no associated 

loss of genetic material, similar to the current study. The current study suggests that 

APC mutations play a similar role in adenoma formation in the duodenum to the 

colorectum.  

 

Somatic APC mutations were not identified in two FAP adenomas (17A1 and 52A2). 

The raw data (from bam files) were reviewed for the APC ORF in both adenomas, 

but no evidence of a pathogenic somatic APC mutation was detected. The amount 

of dysplastic tissue in these 2 samples was high (50% and 80%) and had low grade 

dysplasia. This finding compared is consistent with the data of the Cancer Genome 
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Atlas (TCGA) that reports frequencies of 60-80% for APC mutations in various 

colorectal tumours studies. One recent study (Obrador-Hevia et al. 2010) only found 

detectable second hits in APC that were not LOH in 6% of FAP colorectal 

adenomas, but only the MCR of the gene was analysed. One FAP adenoma (30A3) 

had a missense variant identified in APC (and no LOH) of unclear pathogenicity. 

Functional testing of this mutation has not been reported, so it is a variant of 

unknown significance (VUS) however usually somatic APC mutations are truncating. 

Alternative genetic mechanisms accounting for the somatic inactivation of APC, 

such as defects in gene expression and promoter hypermethylation may have 

occurred but were not examined as part of this study. Hypermethylation is more 

typically associated with carcinomas than pre-malignant lesions (Hiltunen et al. 

1997; Brucher et al. 2006; Berkhout et al. 2007) and is rarely found in tumours from 

FAP patients (Schneikert and Behrens, 2007).  This study found no ‘third hits’ in any 

of the adenomas. It has been proposed that some MAP tumours may have third 

somatic APC mutations, as has been reported in AFAP, (Spirio et al. 1998; Su, L-K. 

2000; Sieber et al 2006) but this was not observed in MAP duodenal adenomas in 

this study. 

 

For 16 of the 18 adenomas in which somatic APC mutations were identified, a 

distinct somatic APC mutation was detected indicating that each adenoma arose 

through an independent mutational event. Adenomas 37A1 and 37A4 from the same 

MAP patient were situated adjacently in the duodenum at the ampulla, and appear 

to have a common ancestral cell of origin. They share the same somatic APC 

mutations (c.526 G>T; pE176X and c.4660 G>GA; p.E1554fsX4), but the adenomas 

appear to have then diverged as 37A1 has additional exome-wide somatic 

mutations that are not present in 37A4, with differing SNVs and total numbers of 

mutations found. Adenoma 37A1 possessed a greater number of mutations and was 

larger and flatter in morphology. Adenoma size has been positively correlated with 
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risk of advanced dysplasia in the colorectum (Atkin et al. 2002; Matsuda et al, 2011), 

and in the duodenum (Lopez-Ceron et al, 2013). Although both polyps had the same 

histological findings from the random biopsies taken the greater number of 

mutations within this larger polyp might be associated with an increased risk of later 

higher grade dysplasia.  Both 37A1 and 37A4 had a high depth of coverage on 

exome sequencing, indicating that the greater number of somatic hits in 37A1 is not 

likely to be a technical artefact.  

 

 

4.4.2 Frequency of SNVs in duodenal adenomas 

Exome analysis of duodenal adenomas from MAP and FAP patients has never 

previously been reported. In this study MAP adenomas were found to have a greater 

number of SNVs compared to FAP which was statistically significant (p=0.035). 

G:C>T:A mutations were the most commonly observed mutation in the MAP 

adenomas, and were significantly associated with MAP versus FAP adenomas 

(p<0.001). In addition, there was higher proportion of truncating SNVs in the MAP 

adenomas than FAP adenomas (p=0.007). This has also been reported in colorectal 

MAP adenomas (Al-Tassan et al. 2002; Jones et al. 2002), and is in keeping with 

the underlying mechanism associated with MUTYH dysfunction, whereby an 8-oxo-

G mismatch is not recognised or excised during base excision repair resulting in a 

G:C>T:A transversion in the next round of DNA replication. The higher number of 

somatic mutations (including truncating mutations) in MAP adenomas supports the 

proposal that they may carry a higher risk of progression to cancer than FAP 

adenomas 

 

A recent study by Rashid et al (2016), has explored the somatic mutational 

spectrum in FAP and MAP colorectal adenomas using exome sequencing and 

additional targeted sequencing. A higher mutation rate and greater frequency of 
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G>T transversions was observed in colorectal adenomas from MAP patients in 

comparison to those from FAP patients, similar to the duodenal findings in the 

current study. However, the pattern of driver gene involvement we found in the 

duodenum was significantly different from that reported in colorectal adenomas. In 

the colorectum, mutations were present in adenomas in important ‘traditional’ driver 

genes such as TP53, NRAS, FBXW7, NF1, BCL9L, MAP3K5 and PTEN. Mutations 

in these genes are completely absent from the duodenal exome dataset.  

 

Lack of TP53 mutations in duodenal adenomas and carcinomas have been reported 

in FAP. Toyooka et al (1995) found no TP53 mutations in 35 duodenal tumours, 

including two duodenal cancers, and Kashiwagi et al. 1997) reported only one TP53 

mutation in 25 duodenal adenomas studied. In the colorectum, TP53 mutations have 

only been reported in 3-5% of colonic FAP adenomas (Kichuci-Yanoshita et al. 

1992). Mutations in TP53 act to promote the malignant transformation of adenomas, 

at a late stage, to malignancy. The results from the current study are in keeping with 

expectations for duodenal adenoma with low grade dysplasia. Lipton et al (2003) 

found three TP53 mutations (all in carcinomas) in 14 colorectal cancers and 115 

adenomas in MAP patients, but unlike APC and KRAS these were not biased to 

G>T changes. The role of TP53 in MAP patient tumours is yet to be fully elucidated. 

 

 

4.4.3 KRAS mutations 

KRAS is a member of the RAS family of proto-oncogenes and is the most frequently 

mutated gene in all of human cancer (Pritchard and Grady, 2011) and mutations in 

codons 12 or 13 are found in 40% of CRCs (Downward, 2003). It acts as a 

downstream effector of EGFR that signals through BRAF to activate the MAPK 

pathway to promote cell growth and survival as discussed in section 1.4.3. KRAS 

mutations are not thought to be related to wnt pathway activation in FAP; there has 
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been no correlation found between β-catenin nuclear staining and the presence of 

KRAS mutations in FAP colorectal adenomas (Obrador-Hevia et al. 2010). 

Activating KRAS mutations are thought to usually occur after APC mutation in the 

adenoma-carcinoma sequence, but are still an early event in tumourigenesis 

(Vogelstein et al. 1998).  

 

KRAS was the second most frequently mutated gene after APC in this study 

occurring in 24% of the adenomas; 32% of MAP polyps and 13% of FAP polyps 

were found to have a KRAS mutation this was not found to be statistically 

significant, (although was approaching significance), but this was likely due to the 

numbers of adenomas in the study. Previous studies of FAP duodenal adenomas 

have described KRAS mutations in 12%, with no relation to the grade of dysplasia of 

the adenoma (Kashiwagi et al. 1997), 9% (Wagner et al. 2008) and 10% (Obrador-

Hevia et al. 2010) of duodenal adenomas. Schönleben et al, (2009), completed 

molecular analyses of KRAS, HRAS, NRAS and BRAF in duodenal adenomas and 

carcinomas. KRAS mutations at codons 12 and 13 were identified in 28.6% of 

adenomas and additionally 2 BRAF missense mutations, which have not been 

detected in this study. More recently, Sun et al (2014) detected KRAS mutations in 

26.3% of sporadic duodenal adenomas. Data in the colorectum in FAP also shows a 

similar proportion of KRAS mutations within adenoma tissue of between 3 and 25% 

(Farr et al. 1988; Miyaki et al. 1990; Sasaki et al. 1990: Ando et al. 1992).  

 

Rashid et al. (2016) also found KRAS G12C mutations in 12% of the MAP colorectal 

adenomas. This specific somatic KRAS mutation has previously been identified in 

18% of colorectal MAP adenomas, and association seen with increased dysplasia, 

villous content and size of the adenoma (Jones et al. 2004). The G12C activating 

mutation is the result of a G:C to T:A transversion (Lipton, L. et al, 2003; Jones, S. 

et al, 2004), and was found to occur more frequently in MAP than in sporadic or FAP 
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associated tumours (p<0.0002). KRAS mutations have also been previously 

described in the MAP duodenum (Nielsen et al, 2006) although that study included 

only one duodenal carcinoma and one duodenal adenoma. In this study there 

appears to be selection for KRAS only and not for any other proto-oncogenes of the 

Ras family such as NRAS or HRAS. All KRAS mutations were all at codons 12 and 

13 where the mutations prevent GTPase-activating proteins from hydrolysing the 

KRAS-bound GTP (Downward, 2003). No association of dysplasia grade with KRAS 

mutation,was found, but this may be due to the relatively small numbers of polyps 

analysed.  

 

 

4.4.4 Recurrently mutated genes: duodenum and colorectum 

When comparing our exome data from MAP and FAP duodenal adenonas with 

SNVs in MAP and FAP colorectal adenomas reported by Rashid et al (2016), we 

found, in addition to KRAS, mutations in 40 other genes common to both datasets. 

No specific SNVs were the same in both datasets.  A list of these common genes 

can be found in appendix 5 of the supplementary electronic data.  

 

Amongst the shared genes were PLCL1 (Phospholipase C-Like 1) and SYNE1 

(Spectrin Repeat Containing, Nuclear Envelope 1). Mutations in these genes were 

identified in 25% of the duodenal samples that underwent exome sequencing. 

PLCL1 can act as an inhibitor of PPP1C in the proton pump inhibitor (PPI) pathway. 

PLCL1 was one of the most commonly mutated genes in the duodenum and a novel 

finding in this study. It is involved in the Ca2+ signalling pathway of the PPI inhibitor 

pathway; Ca2+ is known to increase vesicular traffic to the membrane, thereby 

leading to more active proton pumps and increased acid secretion. Thus, inhibition 

or dysregulation of this pathway may lead to reduction in acid secretion in the 

parietal cells of the stomach, as with PPI medication. The profound reduction in 
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gastric acid secretion induced by PPIs leads to increased secretion of gastrin, and 

most PPI users have moderate hypergastrinaemia (Lamberts et al. 

1988; Klinkenberg-Knol et al. 1994). Hypergastrinaemia has been associated with 

an increased risk of gastric carcinoids, and gastric and colonic carcinomas (Havu, 

1986; Laine et al. 2000), although recent results for PPI use and colorectal cancer 

risk have shown no association (Robertson et al, 2007; van Soest et al, 2008). 

Long-term PPI use has been associated with an increased incidence of atrophic 

gastritis, a precursor of gastric adenocarcinoma (Uemura et al, 2001; Ye and Nyren, 

2003), however there have been no reports of an association between duodenal 

cancer and PPI use. In addition, the increase in gastric pH encourages growth of the 

gut microflora, increasing bacterial translocation and affecting various 

immunomodulatory and anti-inflammatory effects. Susceptibility to Salmonella, 

Campylobacter jejuni, invasive strains of Escheriscia coli, Clostridium Difficile, Vibrio 

Cholera and Listeria has been shown to be increased by PPI use (Bavishi et al. 

2011). Much less is known about the microbes that are present within the duodenum 

and the effects of PPI use, particularly because collecting samples for such studies 

is much more challenging. However, further research is needed, especially in light of 

the growing recognition of the composition of the duodenal microbiota and the 

association with gastrointestinal disorders; most duodenal microbiota studies have 

focused predominantly on small intestinal bacterial overgrowth, irritable bowel 

syndrome and coeliac disease. Immunological disruption may potentially be a 

mechanism for augmentation of the adenoma-carcinoma progression pathway in the 

duodenum in MAP and FAP patients and the role of PLCL1 may be of significant 

future interest. 

 

SYNE1 is a cytoskeletal protein and methylation of the SYNE1 gene promoter has 

been identified by a number of studies in a range of colorectal lesions including 

carcinomas, tubular adenomas, villous adenomas and sessile serrated adenomas 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib14
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib9
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib8
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib13
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib19
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib22
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib21
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib26
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694435/#bib26
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with or without dysplasia, indicating that deregulation of this gene may be 

associated with tumour progression (Schuebel et al, 2007; Dhir et al, 2011). 

 

We identified a single truncating mutation in ATRNL1 in one FAP adenoma. Rashid 

et al (2016) only identified missense mutations in this gene. ATRLN1 may play a 

role in melanocortin signalling pathways that regulate energy homeostasis, but little 

is known about this gene. 

 

One missense mutation was found in the KMT2C/MLL3 gene in a MAP duodenal 

adenoma whereas several MLL3 truncating mutations were detected in colon 

adenomas (Rashid et al, 2015). MLL genes encode histone methyltransferases, the 

chief protein components of chromatin, which act as spools around which DNA 

winds and MLLs are required for the correct expression of a variety of genes. 

Deletion of the region harbouring the MLL3 gene was noted to be the most 

frequently recurrent chromosomal abnormality in acute myeloid leukaemia (Ruault et 

al. 2002). Exome, sequencing has revealed a significant role of MLL3 in solid 

tumours (Ford and Dingwall, 2015). Inactivating mutations have been described in 

pancreatic ductal cell carcinoma and bile duct carcinoma, aggressive cutaneous 

squamous cell carcinoma, hepatocellular carcinoma and gastric adenocarcinoma 

(Balakrishnan et al, 2007; Biankin et al. 2012; Ong et al. 2012; Fujimoto et al. 2012; 

Zang et al. 2012; Pickering et al. 2014; Li et al 2014).  

 

 

4.4.5 SMAD4 mutations 

Interestingly, SMAD4 mutations were not observed in the colorectal dataset   

described by Rashid et al (in press), but were seen in our duodenal dataset. SMAD4 

is a postreceptor signalling pathway gene, and a member of the TGFβ superfamily. 
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Deregulation of TGFβ signalling, which is generally considered a tumour-suppressor 

pathway in the colon, occurs in the majority of colorectal cancers (Chittenden et al. 

2008). Bi-allelic inactivation of SMAD4 occurs in a significant proportion of advanced 

CRCs (Koyama et al. 1999) and it location on 18q results in vulnerability to deletion 

as it is found in the region commonly deleted in CRC. Mutations of SMAD4 and 

BMPR1A cause juvenile polyposis syndrome. In mouse models SMAD4 mutations   

have been associated with adenoma-carcinoma progression (Takaku et al. 1998), 

but no study has reported somatic SMAD4 mutations in FAP colorectal or duodenal 

adenomas. Lipton et al (2003) reported that MAP colorectal adenomas and 

carcinomas were found not to harbour somatic mutations in genes frequently 

mutated in MSI tumours such as BRAF, SMAD4 and TGFβIIR. 

 

 

4.4.6 WTX mutations 

Another important difference between the mutational spectrum in the colorectum 

and the duodenum appears to be the presence / absence of mutations in the WTX 

gene (APC membrane recruitment protein 1; AMER 1, FAM123B). The role of WTX 

mutations has been reported in advanced colorectal cancers, but until recently had 

not been investigated in the early stages of colorectal tumour development. There 

were no truncating mutations of WTX found in any of the 67 duodenal adenomas 

sequenced in this study. This is in contrast to the findings in colorectal adenomas 

according to Rashid et al (2016) who identified truncating WTX mutations in ~10% 

of colorectal adenomas in patients with FAP and MAP, second in frequency only to 

APC. WTX is on the X-chromosome, however mutations were found in adenomas 

from both males and females suggesting X-inactivation (lionization) may cause 

functional loss in females.  
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WTX was first described as a gene involved in kidney Wilm’s tumour development 

(Rivera et al. 2007). It has a role in the regulation of the wnt pathway, TP53 

signalling and in the localisation of the tumour suppressor protein WT1 (Kim et al 

2012; Rivera et al. 2009; Moisan et al. 2011). Sclerosing skeletal dysplasia has 

been linked to germline WTX mutations and1 of 25 reported cases in one study had   

early onset CRC (Jenkins et al. 2009). 

 

Major et al. (2007) has shown that WTX forms a complex with β-catenin, AXIN1, β-

transducin repeat containing protein 2 and APC, acting to promote ubiquitin post- 

translational modification and degradation of β-catenin. A further recent study 

(Sanz-Pamplona et al. 2015) has shown variants resulting in early stop-codons in 

WTX in approximately 10% of CRC tumours. Tumours lacking this tumour 

suppressor gene exhibited inhibition of the canonical wnt pathway. Losses of WTX 

by other mechanisms apart from mutation, such as methylation and copy number 

aberrations, were also reported. 

 

Therefore mutations in WTX appear to be associated with both early and late stage 

colorectal tumours. By comparison we did not identify any WTX mutations in the 

early stage duodenal tumours in the current study. The reasons for this, and any 

consequences in terms of tumour progression, are unclear. 

 

 

4.4.7 Other frequently mutated genes in duodenal adenomas 

Other genes that were frequently mutated were CPSF6, LRP1B, DNAH5, DNAH2, 

IGFN1, DCHS2, PTCHD2, SLC4A3, ERBB3 and TTN (table 4.6a).  

   

Cleavage and polyadenylation specific factor 6 (CPSF6) was mutated in two MAP 

polyps. It is involved in the production of mature messenger RNA for translation, 
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forming part of the larger process of gene expression. The protein encoded by this 

gene is one subunit of a cleavage factor required for 3' RNA cleavage and 

polyadenylation processing. The interaction of the protein with the RNA is one of the 

earliest steps in the assembly of the 3' end processing complex and facilitates the 

recruitment of other processing factors. Common forms of both alpha- and beta-

thalassemia (one of the world’s most common hereditary diseases) are both 

associated with point mutations within the polyadenylation signals of alpha-globin 

and beta-globin genes, respectively (Higgs et al., 1983; Orkin et al., 1985), leading 

to the generation of abnormal haemoglobin.. Rasaiyaah et al (2013) have reported 

that HIV-1 has evolved to use the CPSF6 protein to cloak its replication, allowing 

evasion of innate immune sensors and induction of a cell-autonomous innate 

immune response in primary human macrophages thus playing a critical role in HIV-

1 replication. 

Low density lipoprotein receptor-related protein B1 (LRP1B) belongs to the low 

density lipoprotein (LDL) receptor gene family. Mutations were found in 4 MAP 

adenomas. These receptors play a wide variety of roles in normal cell function and 

development due to their interactions with multiple ligands (Liu et al. 2001). LRP1B 

is preferentially inactivated in non-small cell lung cancer (NSCLC), and is thought to 

play an important role in tumorigenesis in this particular type of lung cancer (Liu et 

al. 2000).  

Dyneins are microtubule-associated motor protein complexes composed of several 

heavy, light, and intermediate chains. The axonemal dyneins, found in cilia and 

flagella, are components of the outer and inner dynein arms attached to the 

peripheral microtubule doublets. Dynein, Axonemal, Heavy Chain 5 (DNAH5) 

encodes a protein that functions as a force-generating protein with ATPase activity, 

whereby the release of ADP is thought to produce the force-producing power stroke. 
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Mutations in this gene cause primary ciliary dyskinesia type 3, as well as Kartagener 

syndrome (the classic triad of sinusitis, situs inversus and bronchiectasis), which are 

both diseases due to ciliary defects (Olbrich et al. 2002; Failly et al. 2009). DNAH2, 

which was also found to be mutated in three MAP adenomas, has been found to be 

expressed primarily in testes and the trachea (Chapelin et al. 1997) however no 

disease association has been described to date. 

Immunoglobulin-Like And Fibronectin Type III Domain Containing 1 (IGFN1) 

mutations were found in three adenomas form the same FAP patient. It has been 

found to be expressed in skeletal muscle in mice (Beatham et al. 2004), but little is 

known about this gene in relation to human disease. This same patient also had 

three mutations of Solute Carrier Family 4 (Anion Exchanger), Member 3 (SLC4A3) 

whose gene product (AE3) is a plasma membrane anion exchange protein of wide 

distribution. It mediates at least a part of the chloride-bicarbonate exchange in 

cardiac myocytes (Kopito et al. 1989). Reduced activity of AE3 in the brain 

contributed to promoting neuron hyperexcitability and the generation of seizures 

(Vilas et al. 2009). 

Dachsous Cadherin-Related 2 (DCHS2) encodes a calcium-dependent cell-

adhesion protein. The DCHS2 gene is expressed in the cerebral cortex and thus is a 

potential candidate for affecting age of onset in Alzheimers disease (Kamboh et al. 

2012), although no studies have linked this gene to tumourigenesis.  

Patched Domain Containing 2 (PTCHD2) functions as part of the Hedgehog (Hh) 

signaling pathway. The mechanism of Hh signalling is complex and remains 

incompletely understood (Briscoe and Therond, 2013) but it is essential for normal 

embryonic development and plays critical roles in adult tissue maintenance, renewal 

and regeneration particularly in normal mammalian gastrointestinal development. 

Aberrant Hh signalling is responsible for the initiation of a growing number of 
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cancers including, classically, basal cell carcinoma (Chidambaram et al. 1996), 

medulloblastoma (Cowan et al. 1997), and rhabdomyosarcoma (Berman et al. 

2002); more recently overactive Hh signalling has been implicated in pancreatic, 

lung, prostate, ovarian, and breast cancer in addition to CRC (Watkins et al. 2003; 

Thayer et al. 2003; Lees et al. 2005). This finding in MAP adenomas is therefore of 

interest, potentially as an alternative pathway that may predispose to carcinoma 

development. 

V-Erb-B2 Avian Erythroblastic Leukemia Viral Oncogene Homolog 3 (ERBB3) is a 

member of the epidermal growth factor receptor (EGFR) family of receptor tyrosine 

kinases. Amplification of this gene and/or overexpression of its protein have been 

reported in numerous cancers, because of uncontrolled cell division that ensues 

when EGFR is constantly activated (Lynch et al. 2004). However we did not identify 

any potentially activating mutations in our dataset which would be more likely to lead 

to loss of function. Cancers related to ERBB3 mutations include prostate, bladder, 

and breast (Koumakpayi et al. 2006; Hanrahan et al. 2014; Perez-Nadales and 

Lloyd, 2004). Although ERBB3 has limited inherent kinase activity, ligand stimulation 

promotes its dimerization with active kinases like ERBB2 and EGFR that can 

phosphorylate ERBB3 which then promotes transformation. Thus genomic 

alterations in ERBB3 may be a key means of promoting oncogenic signalling despite 

the protein lacking robust enzymatic activity (Hanrahan et al. 2014). Again, this is an 

interesting finding within the duodenal adenoma dataset. 

Titin (TTN) or connectin, encodes for a giant muscle protein expressed in cardiac 

and skeletal muscles which plays a key role in muscle assembly, force transmission   

and maintenance of resting tension (Itoh-Satoh et al. 2002). Mutations in TTN are 

associated with familial hypertrophic cardiomyopathy (Satoh et al. 1999), dilated 

cardiomyopathy (Gerull et al. 2002) and muscular dystrophy (Hackman et al. 2002). 
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However this data must be interpreted with caution as it has been previously 

reported that TTN is frequently mutated due simply to its size (Sanders et al. 2012). 

TTN also appears to be a gene frequently affected by rare and sometimes functional 

variants in the general population (Shyr et al. 2014).  

 

4.4.8 Array CGH 

The molecular mechanism responsible for CIN is not fully understood but this 

instability is thought to occur at an early stage of colorectal tumourigenesis (Shih et 

al. 2001).  Mutations in genes involved in the accurate mitotic segregation of 

chromosomes, including hBUB1 (Cahill et al. 1998), APC (Fodde et al, 2001) and 

hCDC4 (Rajagopalan et al. 2004), has been suggested as a possible cause of CIN. 

However the incidence of mutations found in checkpoint genes and/or other CIN 

candidate genes is low (Cahill et al. 1998; Wang et al. 2004) and APC-mutant 

polyps do not show major aneuploidy changes (Sieber et al. 2002). 

 

ArrayCGH was performed in this study to determine whether copy number losses or 

gains occurr in duodenal adenomas. Six CNVs (1 gain and 5 losses) were detected 

in 3 adenomas (15%), all of which were from MAP patients. CNV analysis has not 

been reported previously in duodenal adenomas, however, Berkhout et al, (2007), 

investigated chromosomal and methylation alterations in sporadic and FAP-

associated duodenal carcinomas. They identified CNVs in 4 of the 5 FAP-associated 

carcinomas. CNVs, particularly gains were detected on chromosomes 8, 17 and 19. 

In the current study one adenoma showed two deletions on chromosome 8, which 

were in chromosomal locations characterised by locus control regions (LCRs) and 

pseudogenes, indicating that they may be a common site for rearrangement. 
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Cardoso et al (2006) studied chromosomal instability in colorectal adenomas, 

identifying CNVs in 80% and 60% of MAP and FAP adenomas respectively. These 

CNVs included gains on chromosome 7 which we have also detected, as have other 

recent studies (Voorham et al, 2012; Loo et al, 2013). Jones et al (2007) found a 

small number of large scale genetic changes by arrayCGH in colorectal adenomas 

in FAP and MAP patients. Their results were in agreement with the results of 

Cardoso et al (2006), with the exception that chromosome 7 gains were not 

commonly observed. They reported a small excess of changes in MAP, compared 

with FAP colorectal adenomas, with all the relatively high level copy number change 

occurring in MAP polyps.  

 

The current study detected losses on chromosome 18 which are commonly 

associated with colorectal carcinomas and have also been identified in duodenal 

carcinomas (Blaker et al, 2002; Berkhout et al, 2007; Voorham et al, 2012; Loo et al, 

2013). Chromosome 18 CNVs typically involve terminal regions and so may be 

indicative of structural rearrangements. We also identified a deletion on 

chromosome 9, which has not previously been reported in the duodenum or 

colorectum. Two of the CNVs identified in this study were at chromosome 8p.23.1, a 

fragile site within the chromosome. Bartkova et al (2005) found an elevated 

breakage rate at fragile sites, specifically chromosome 8p.23.1/8p21.3, 9q32 and 

11p15.1 in colorectal tumours. Jones et al (2007) found no changes arising from 

chromosome breakage at this site in their FAP and MAP colorectal adenomas, but 

this study provides some evidence in support of the hypothesis that some copy 

number changes may result from this ‘different’ type of CIN.   

 

Importantly, CNVs were only identified in 15% of samples in this study, a relatively 

low frequency in comparison to the previously reported frequency of CNVs in 

colorectal adenomas. The low CNV rate could suggest that we have not identified all 
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CNVs that are actually present, perhaps in samples with low levels of adenomatous 

material. However, the arrayCGH technique utilised in this study was also used in 

previous CNV analyses of colorectal adenomas when a higher frequency of CNVs 

was found (Roger et al, 2013). Furthermore, in this study CNVs were detected in 

adenomas with low levels of neoplastic cells (30%) and confirmed by independent 

techniques. This suggests that cellular heterogeneity is unlikely to account for the 

low frequency of CNVs detected in this study. To ensure that adenomatous material 

is selected for analysis, macrodissection or laser capture microdissection could be 

incorporated into the arrayCGH protocol to sample the neoplastic portion of the 

adenoma, as reported by Cardoso et al, 2006. However, this usually requires 

working with formalin fixed paraffin embedded (FFPE) samples which can have 

major problems with DNA quality. 

 

Molecular alterations associated with the adenoma to carcinoma transition are well 

documented in the colorectum but data to support a similar pathway in the 

duodenum is limited. It is known that colorectal adenomas in MAP patients develop 

at a later age, perhaps due to the requirement for two somatic APC mutations in 

addition to the biallelic MUTYH germline mutations, whereas FAP patients only 

require one additional somatic APC mutation for adenoma development 

(Nieuwenhuis et al, 2012). However, it has also been suggested that the genetic 

changes (SNVs and CNVs) associated with MAP tumours in the colorectum may 

underlie accelerated cancer progression (Cardoso et al, 2006; Nieuwenhuis et al, 

2012). The exome and arrayCGH data presented here supports the idea that MAP 

duodenal adenomas have a greater burden of genetic changes than FAP duodenal 

polyps and may therefore also have faster tumour progression. 
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4.4.9 Study limitations 

A potential limitation of this study was the use of biopsy samples of adenoma tissue, 

thus the sample that underwent exome sequencing was a biopsy of adjacent tissue 

(or of the polyp was small, a divided portion of the sample taken), rather than the 

same piece of tissue that was histologically confirmed as an adenoma. The routine 

clinical management of patients undergoing upper GI surveillance differs from 

colorectal surveillance, where polyps are removed in their entirety. This risk is too 

high in the duodenum and so adenomas are not routinely removed unless thought to 

be high risk as discussed in previous chapters. Most studies on colorectal 

adenomas have been able to use much larger tissue samples from intact polyps. 

The possibility of sampling error cannot be entirely disregarded. Frozen sections to 

confirm dysplastic material could have been undertaken, but at the potential cost of 

loss of a proportion of the sample, and consequently DNA for analysis.  However, all 

samples taken for histology were confirmed adenomas, suggesting a degree of 

diagnostic accuracy. The fact that the vast majority of APC somatic mutations in 

each sample that underwent exome sequencing were identified further supports this.  

Although there was no standardised method of estimating the proportion of 

adenomatous tissue in each biopsy, the adenoma biopsy slides from St Mark’s 

Hospital were reviewed by the same GI pathologists (MM and GT) in Cardiff to 

ensure no discordance in reporting.  

 

The number of patients with adenomas, especially with MAP, in this study was not 

high, but this is a reflection of the nature of a rare manifestation of a rare disease. 

However, studies of MAP adenomas in the colorectum of patients usually include 

only a small number of patients, for example 11 patients (Jones et al. 2007), 22 

patients (Lipton et al. 2003) and 5 patients (Jones et al. 2004). The age matching 

and sex matching of MAP and FAP patients was limited by the patients that had 

adenomas at GI endoscopy, and because the average age of the MAP patients was 
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higher, likely because of a greater age of diagnosis; the oldest FAP patient in this 

study was 69 years old and the amount of dysplastic adenomatous tissue in the 

samples was only estimated at 50%.  

 

Only 10 samples underwent whole exome sequencing, and 47 samples were used 

for validation. Rashid et al (2015) whole exome sequenced 14 adenomas, with 55 

samples used for validation and the numbers in this current study are comparable, 

given the lower incidence of adenomas in the duodenum in both conditions.   

However, the aim of this study was to act as a pilot study to inform further larger 

studies of duodenal polyps.  

 

The next generation sequencing technique itself could have led to missing ‘hidden’ 

mutations, as it did not analyse any non-coding regions, removing introns, 

promoters and untranslating regions (UTRs; acting as gene regulating regions). One   

study on retinal dystrophies (Eisenberger et al. 2013) suggests UTR inclusion and 

quantitative analysis should be part of a comprehensive NGS approach due to the 

significant increase in diagnostic yield reported. This study incorporated CNV 

analysis, and >100x coverage seen in all adenoma samples is likely to have 

detected the most important driver mutations. 

 

Validation with Sanger sequencing is restricted by a limit of detection of 15-20% 

mutant alleles (Tsiatis et al. 2010). This means that low frequency alleles in 

heterogeneous tumour samples may be missed if they occur at a rate of less than 

<20%. Thus, some groups are endeavouring to develop comprehensive 

characterisation of genomic alteration occurring within individual tumours without the 

need for Sanger sequencing validation (Frampton et al. 2013). Techniques such co-

amplification at lower denaturation temperature PCR (COLD-PCR) can be used to 

detect these low level mutations that would likely have been missed using 
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conventional methods that do not enrich for variant sequence DNA. This study did 

not use COLD-PCR, however the APC mutations were seen at such a high 

frequency when validated by Sanger sequencing, that this acted as a benchmark to 

assume that other mutations in different genes (in a targeted manner given the 

exome data available) were highly likely to have been detected. 

 

Multiplex ligation-dependent probe amplification (MLPA) was not completed as part 

of this study and thus, small CNVs at 5q21-22 may have been missed through the 

arrayCGH technique that was used. Cellular heterogeneity is unlikely to contribute to 

the inability to detect these mutations, as exome-wide somatic SNVs were detected 

in both tumours lacking APC mutations through exome analysis and Sanger 

sequencing.  

 

Initially the GATK pipeline was used to identify mutations in APC and MUTYH in this 

study. This pipeline is able to identify a range of mutation types, including frameshift 

mutations in addition to SNVs. However, most indels identified during next 

generation sequencing are artefacts of the sequencing process and, due to the high 

volume of variants identified following exome sequencing, a somatic caller merging 

approach was used to filter variants to a manageable number in order for validation. 

Therefore, only SNVs were identified in the exome-wide data leading to a trade – off 

between sensitivity and specificity. 
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4.4.10 Conclusions 

This study found that, MAP adenomas carry a higher mutational load (SNVs and 

CNVs) than FAP adenomas. This finding would be consistent with MAP duodenal 

adenomas having greater risk of progressing down the adenoma-carcinoma 

pathway than the FAP adenomas.  If so, the Spigelman grading system that is 

based upon risk of progression to duodenal cancer in FAP may not be appropriate 

for MAP. In future, the system should perhaps be modified to take into account the 

underlying mutational spectrum in adenomas. Such a change would require 

confirmation of the findings of the initial studies reported here, a better 

understanding of the natural history of duodenal polyposis in MAP (informed by 

studies such as the European Prospective Study described in Chapter 3) and 

studies correlating mutational status and tumour progression. 
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Chapter 5 

 

General Discussion and Future Prospects 
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5.1 General Discussion 

Duodenal polyposis and carcinoma has become a major health problem in patients 

with FAP, and emerging data suggests this is also true in MAP. However detailed 

information about the burden of duodenal polyposis and progression of disease in 

MAP has remained undefined. The work described in this thesis has focused on 

determining whether techniques for enhanced adenoma detection in MAP can give 

a more accurate picture of the presence and extent of duodenal disease, 

investigating the natural history and progression of duodenal adenomas in MAP and 

to examine and compare the somatic mutational spectrum of MAP and FAP 

adenomas.  

 

These issues have received little attention thus far in MAP. Despite the significant 

implications for patients who undergo regular endoscopic surveillance, there is little 

evidence on which to base surveillance protocols or a decision about which lesions 

may benefit from an aggressive treatment approach. Radical prophylactic surgery is 

associated with high mortality rates, and duodenal cancer has a poor outcome.  

 

 

5.1.1 Benefit of enhanced duodenal adenoma detection rates in MAP and FAP 

Previous studies have demonstrated the benefit of enhanced detection rates of 

adenomas by use of chromoendoscopy both in sporadic colorectal disease (Brown 

et al. 2007) and in groups at high risk of colorectal cancer (Matsumoto et al. 2009). 

By applying this technique to the duodenum in MAP the study described in chapter 2 

demonstrated that chromoendoscopy increased the number of adenomas detected 

in MAP and that this resulted in a clinically significant change in the Spigelman 

score for those patients.  However, despite the positive clinical impact that this may 

have on patients if it were to be employed on a routine basis, there are significant 

time and resource implications. Chromoendoscopy takes longer than conventional 
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endoscopy, requires appropriate training, and by increasing the Spigelman stage 

leads to patients requiring more frequent surveillance endoscopies. In their 

prospective study of duodenal adenoma progression in FAP, Saurin et al (2004) 

found a higher rate of progression to high grade dysplasia compared to previous 

studies, thought to be due to the use of different methodology of duodenal 

examination, which included the routine utilisation of chromoendoscopy but also 

general anaesthesia. They concluded that these methods better identified neoplastic 

lesions.  

 

In the work reported in this thesis, the lower number of adenomas observed  in MAP 

as compared to FAP resulted in significant upstaging when chromoendoscopy was 

employed, suggesting that the accurate identification of polyps is of importance for 

subsequent clinical management at this present time using Spigelman staging in its 

current form. 

 

Whether there is any additional long-term benefit in detecting 1-2 small adenomas in 

MAP using chromoendoscopy remains to be seen. Polyp size in addition to 

multiplicity is a component of the Spigelman score, but the Spigelman stage may be 

a poor indicator of duodenal cancer risk in MAP, as one of the limitations of the 

staging system is that it confers equal weighting to each of the components used to 

stage duodenal adenomatosis. In the recent study reported by Lopez-Ceron et al. 

(2013) in FAP that the only endoscopic feature that predicted advanced histology of 

a duodenal adenoma was size greater than 1cm. Further studies are required to 

determine how best to optimise the Spigelman classification to order to facilitate 

accurate risk stratification in MAP patients.  

 

Emerging molecular imaging techniques such as confocal endoscopy which allows 

real time visualisation of mucosal surfaces with immediate histological images and 
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observation of the cellular and vascular networks are exciting developments that 

may push the boundaries of polyp detection and assessment. Neoplastic changes 

can be predicted with 97.4% sensitivity and 99.4% sensitivity when compared with 

histopathology (Kiesslich et al. 2004; Hurlestone et al 2008). Given the 

complications associated with adenoma resection in the duodenum, especially at 

the ampulla, and sampling error on biopsy, prospective studies are required to 

define its use in the evaluation of duodenal disease not just in MAP but in FAP as 

well.  This would lead to very prolonged procedures, with patients requiring deep 

sedation or general anaesthesia, but this may be moderated by a need for less 

frequent surveillance procedures. 

 

 

5.1.2 A European cross-sectional study duodenal adenomas in MAP 

Previously, it has been reported that there was a risk of duodenal adenoma 

development in MAP of 1.8% to 25%. However, this data is from case reports, 

anecdotal reports and retrospective case note studies. No data on the progression 

of adenomas or lifetime risk of adenomas has ever been reported. Although the 

current study was retrospective, detailed information was collected on 207 patients 

undergoing upper GI surveillance for MAP. The study detailed in chapter 3 has 

shown that in the MAP duodenum there is a cumulative incidence of developing 

adenomas of 30% by age 70 years, which is significantly lower than described in 

FAP. There remains however, a significant risk of duodenal adenocarcinoma 

development, and the cumulative incidence of developing duodenal 

adenocarcinoma by age 70 years in this study was 2.3%.  

 

This study is consistent with a small number of anecdotal reports that patients may 

develop duodenal adenocarcinoma in MAP on a background of a low number of 

polyps when compared to FAP.  
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The lack of a strong correlation between duodenal polyp burden and risk of cancer 

highlighted in this study has implications for the subsequent management of this 

group of patients.  As in the chromoendoscopy study (chapter 2), it can be 

concluded that the Spigelman staging system may not be appropriate for long-term 

use in MAP, and a high risk FAP Spigelman stage IV may not be equivalent to a 

‘high risk’ MAP duodenum. Future prospective studies of the phenotypic 

manifestation of duodenal disease in MAP are vital in order to learn more about the 

natural history of duodenal adenoma progression and which patients are at high risk 

of carcinoma development.  

 

As with previous studies on FAP, this study demonstrated down-staging of disease 

with endoscopic intervention in the short term, but previous work has shown that 

polyp recurrence is the norm. Longer-term studies are needed to determine if there 

is a similar risk of adenoma recurrence in MAP following endoscopic therapy.   

 

This thesis presents data showing that homozygotes for Y179C mutations had a 

greater number of duodenal adenomas than patients with two truncating mutations, 

G396C homozygotes and G396D / Y179C heterozygotes, suggesting a more severe 

phenotype in Y179C homozygotes that is also observed in the colorectum. In FAP 

several studies have shown that the severity of colonic polyposis is correlated with 

the site of the mutation in the APC gene, with mutations between codons 1250 and 

1464, especially those with a mutation at codon 1309, associated with a severe form 

of FAP. Several authors have proposed to use the outcome of genetic testing to 

guide the type of surgical procedure in patients with a relatively polyp-free rectum 

(Vasen et al. 1996, Bulow et al. 2000; Nieuwenhuis et al. 2007). The strength of 

genotype-phenotype correlation in MAP needs further investigation, but there may 

be potential to use genotype as one factor guiding surveillance in the future. 
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5.1.3 Somatic mutations in MAP and FAP duodenal adenomas 

Investigating the somatic mutational landscape in MAP and FAP duodenal 

adenomas established significant differences between the numbers of mutations – 

both SNVs and CNVs - seen in the MAP versus FAP adenomas. Furthermore, our 

data pointed to differences in the spectra of genes mutated in the duodenum 

compared to the colorectum. The significance of some of the novel mutations 

identified within the duodenum for tumorigenesis is difficult to assess and will require 

larger studies for confirmation. The absence of WTX mutations and prevalence of 

PLCL1 mutations in duodenal adenomas do however appear to be robust findings 

and deserve further investigation. 

 

Importantly, the study described in chapter 4 did not investigate all types of genetic 

and epigenetic changes that could lead to deregulation of cellular pathways and 

hence cellular growth, for example, gene expression changes were not assessed 

and further studies are required to gain a more complete picture of the genetic and 

epigenetic basis of duodenal tumorigenesis in MAP and FAP.  

 

The results from this thesis are consistent with previous observations that patients 

can develop duodenal cancer in MAP on a background of minimal polyposis, 

because each adenoma is on average more ‘genetically unstable’ than is the case in 

FAP. Thus Spigelman staging should perhaps be modified to take into account the 

underlying mutational spectrum in adenomas to more accurately identify which 

patients are at highest risk of developing duodenal cancer.  

 

From the data presented in this thesis it also appears that duodenal disease in MAP 

and FAP is heterogeneous even at an early stage of tumorigenesis, and a major 

challenge remains to identify the sub-groups or individual patients that would benefit 

from an enhanced surveillance strategy or early definitive prophylactic management 
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until medical therapies to target the initiating events of adenoma development 

before they become mutationally diverse are available.  

 

 

5.2 Future Prospects 

Long term prospective studies are required to further define the natural history of 

duodenal adenomas in MAP, in combination with further studies of the use of newer 

endoscopic technologies which may increase the yield of adenoma recognition and 

advanced neoplasia detection. Further investigation of the somatic mutational 

spectrum in larger numbers of adenomas and carcinomas is also needed. This 

would help to further define which common driver genes may be associated with 

tumour progression in the duodenum in FAP and MAP. These could prove to be 

important targets for therapeutic intervention.  

 

Results from this body of work suggest it is unlikely that any one biomarker will 

identify all patients at risk of duodenal cancer. Genetic biomarkers including 

mutations and changes in gene expression or methylation status need to be 

assessed in conjunction with endoscopic and host and microbiome factors to 

establish biomarkers that can guide patient management. .   

 

As next generation sequencing techniques advance, analysis of the ‘miRNAome’ 

and transcriptome by RNA-sequencing in MAP and FAP could identify novel 

mechanisms of tumorigenesis mediated via gene expression changes, and potential 

miRNA biomarkers. RNAseq could be used to identify differential expression (with or 

without changes in copy number) between normal mucosa and duodenal 

adenomas/carcinoma and also differential expression between duodenal adenomas 

and colorectal adenomas from the same patient to give insights into the effects of 

the different gastrointestinal environments on tumour development. 
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The identification of germline modifier genes in MAP and FAP as well as specific 

environmental agents that promote adenoma and carcinoma development in the 

duodenum will also enhance our understanding of these diseases and their 

progression. Investigation of the exome and transcriptome in the germline of 

patients with duodenal adenomas versus those who do not develop duodenal 

disease may reveal germline factors modifying the risk of duodenal polyposis.  The 

effects of bile (and thus pH) and gut organisms such as helicobacter pylori and how 

these relate to germline genetic variants warrant further study.  

 

Duodenal polyposis remains an under-researched area but as colorectal cancer is 

prevented or better treated in more patients with the polyposis syndromes, duodenal 

disease is emerging as an important area of clinical need. The work reported in this 

thesis provides some early insights into the clinical and genetic characteristics of 

duodenal polyposis and a basis for future studies. 
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