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Summary 

UK energy prices have doubled over the last decade, which has driven the UK Iron and Steel 

Industry to invest in energy efficient technologies. However, even with these relatively high 

prices the industry still finds it difficult to build a business case to justify waste heat recovery 

projects. The Steel Industry has large quantities of waste heat and there are technologies readily 

available for its capture, but often the issue has been finding a cost effective ‘end use’. Individual 

schemes incorporating both capturing and an ‘end use’ for the waste heat often incur high capital 

costs with resulting long payback times. This thesis defines the development and modelling of a 

strategy and methodology for the utilisation of waste heat recovery in a UK based Steelworks. 

The methodology involves the utilisation of the existing steam distribution circuit to link the 

possible waste heat schemes together with a single ‘end user’ thus limiting the capital 

requirement for each subsequent project. The thesis defines the development of a numerical 

model that is initially verified through extensive comparison to actual plant data from a series of 

pre-defined operational scenarios. The model is used to predict the pressure and temperature 

effects on the steam distribution system as the waste heat recovery boilers from various areas of 

the case study steelworks are connected up to it.  

The developed strategy stimulated significant capital investment for the CSSW and has 

generated over 100,000 MWh and is therefore saving over £7m and 50,000 tonnes of indirect 

CO2 emissions per annum. The thesis discusses and recommends further research and modelling 

for low, medium and high grade waste heat as well as the potential of a partial de-centralisation 

of the steam system. The output of the thesis is referenced by the DECC as an example of waste 

heat recovery in UK industry. 
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1. Introduction 
 

1.1. Thesis Context 

 Today the United Kingdom’s [UK’s] steel industry is under many pressures, two 

of which are closely interconnected and their origins both began in the early nineteen 

seventies. The first is the United Nation’s Earth Summit in 1972 that kick started the 

global ‘Climate Change’ efforts (UN 1972) and the effects of the ‘oil crisis’ in 1973 

initiated the requirement for global energy strategies (IEA 1994). Global policies on 

‘Climate Change’ and ‘sustainable energy sources’ are real issues for global 

sustainability and both have massive ramifications for the future of the steel industry. 

This chapter introduces the origins of Climate Change and sustainable energy policies 

and thus defines the roots of the current requirement to improve energy efficiency in the 

UK Steel Industry. 

1.2. Climate Change Policies 

The 1972 United Nations Stockholm Conference on the Human Environment, attended 

by 113 countries, was seen by many as far sighted and radical. However, few delegates 

grasped the sweeping implications of its principles. Most importantly it opened up 

debate, realization and worldwide awareness of the environment. In current times it’s 

hard to imagine a world without the ‘Environment’ being a central agenda for 

Governments, Businesses, Universities and Schools. Before 1972 there were no 

Ministers of the Environment, no Environmental Departments, no Environmental 

reports, no Environmental correspondents, no Environmental awareness campaigns, no 

Environmental legislation, no Environmental lessons at schools and Universities etc. 

The Stockholm conference  changed all that forever (U.N. 1972). The Nobel Prize 

winning Intergovernmental Panel on Climate Change [IPCC] was then established in 
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1988. The IPCCs report in 1990 pulled together key information and in 1992 led to the 

Rio de Janeiro Earth Summit which established the United Nations Framework 

Convention on Climate Change [UNFCCC] (UN 1992), the key international treaty to 

reduce global warming and cope with the consequences of climate change. The first 

Conference of the Parties [COP 1] took place in Berlin to outline specific targets on 

emissions (UN 1995). Then in 1997 the Kyoto conference developed the Kyoto 

Protocol [KP], which commits industrialised countries to stabilise Green House Gas 

[GHG] emissions (nrg4SD  2011) The Kyoto mechanisms are the International 

Emissions Trading [IET], Clean Development Mechanism [CDM] and the Joint 

Implementation [JI] (nrg4SD 2011). These mechanisms stimulated green investment 

and helped parties meet their emission targets in a cost-effective way. Under the KP, 

countries actual emissions have to be monitored and precise records of the trades carried 

out. As shown in Figure 1the Organisation for Economic Co-operation and 

Development [OECD] modelled outlook for global Green House Gas [GHG] emissions. 

The figure is an outlook to 2050 and shows the predicted GHG emissions under two 

scenarios namely  ‘Business as usual’ ,that is, the ‘do nothing’ option and then with 

some corrective measures applied, called the ’GHG Stabilisation Policy’. The trend 

shows a 60% increase in GHG emissions by 2015 if the world carries on as ‘Business as 

usual’.  
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Figure 1 : OECD GHG Emissions Outlook(OECD 2013) 

 

Figure 2 also graphically demonstrates, by the size of the inflated balloon, the relative 

emissions of CO2 per capita for the year 2008. If one takes China as an example, 

according to the United Nations [UN], in 2011 China had a population of around 

1.3billion compared to the USA 0.3billion (UN 2012). As China develops and becomes 

more ‘Western ‘, it would seem sensible to deduce that each capita of China would 

increase their CO2 emission to the comparable level of the USA. Figure 2 clearly and 

graphically demonstrates the difference in emissions per capita between the Developed 

world and the developing world including China, India and Mexico. In effect the figure 

illustrates the relative size of emissions per capita, represented by the size of the 

balloon, thus enabling an understanding of the huge impact that the development of 

India, China and Mexico will have on GHG emissions in the world. It is therefore clear 

that with the world developing the ‘business as usual’ option would hugely increase 

GHG emissions and present catastrophic effects on the environment. 
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Figure 2   Comparative CO2 Emissions per capita (Rivers 2008) 

In  June 2000, Europe  attempted to  implement all the elements of the KP, the 

European Commission [EC] launched the European Climate Change Programme 

[ECCP] (Rusche 2010). Its most significant contribution has been the launching, in 

2005, of the world’s first and largest GHG emissions trading scheme, the ‘European 

Union [EU] Emission Trading Scheme’ [EUETS].  In March 2007, the EU went onto 

endorse an integrated approach to climate and energy policy. The intensions were to 

combat climate change and increase the EU’s energy security, while strengthening its 

competitiveness. The EU committed to cutting its GHG emissions by 20%, below 1990 

levels, by 2020, known as the ‘20 20 target’ (EC 2014).  In 2008, the EU ‘Strategic 

Energy Technology Plan’ [SETPlan] was adopted as the technology pillar of the EU’s 

climate change and energy (EC 2010).  In February 2011, the EU endorsed objectives to 

reduce emissions by 80-90%, below 1990 levels, by 2050 and has published a roadmap 

for building a low carbon economy that will need to be followed by the EU and other 

developed countries (EC 2011b). Figure 3  shows the output of an exercise presented in 
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the Hague in 2011 (EC 2011) The exercise was to model current policy vs. a ‘best case 

scenario’ which assumes adoption of all currently available technologies and the 

required behavioural changes are made. It maps out, what it defines as, a cost efficient 

reduction in GHG emissions of 80% by 2050. From the figure it’s clear to see the 

relative reduction expected to be achieved by European industry. In fact the model 

defines an industrial sector milestone of an 83% to 87% reduction between 2010 and 

2050. The exercise states that ‘energy efficiency is the single most important 

contribution particularly up to 2020’. 

 

 

Figure 3 : EU Best Case Modelling (EC 2011) 

In March 2013 the EU launched the GREEN PAPER ‘A 2030 framework for 

climate and energy policies’(EC 2013a). The 2030 targets are a measured stepping 

stones to the 2050 goals. 
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The UK’s response was to launch the UK Climate Change Program [CCP] in November 

2000 (DETR 2000). The aims of the program were not only to cut GHG emissions by 

12.5%, from 1990 levels, in the period 2008 to 2012 [KP commitment], but to go 

beyond this target by cutting carbon dioxide emissions by 20% from 1990 levels by 

2010. 

On 26th November 2008, the UK ‘Climate Change Act’ became law putting in place a 

framework to achieve a mandatory 80% cut in carbon emissions by 2050, compared to 

1990 levels, and also setting an intermediate target of a 34% reduction by 2020 (GOV, 

2008). The Act’s main drivers have been the Renewables Obligation scheme, Housing 

and Community Grants, Carbon Reduction Commitment [CRC] Energy Efficiency 

Scheme, the Green Deal and Electricity Market Reform. In 2010 the Government 

published 2050 Pathways Analysis (GOV 2010), which considered in detail the changes 

the UK would have to make in order to reduce greenhouse gas emissions by at least 

80% by 2050. Then the ’UK Carbon Plan’(GOV 2011) was launched in 2011 with 

several main objectives including reducing emissions from business and industry. It 

stipulates an overall reduction of 70% in GHG emissions by UK industry. It details that 

industrial energy intensity could be cut by 40% through the adoption of further energy 

efficiency technologies. 

1.3. Climate Change and the Steel Industry 

As seen in Figure 4 around 19% of the Worlds GHG emissions are attributable to 

Industry. 
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Figure 4 Global Greenhouse Gas Emissions by Source (EPA 2014) 

 

 Figure 5 then goes on to demonstrate that about 27% of the emissions from 

global Industry is attributable to the Iron and Steel Industry. 

 

Figure 5 Percentage of Industrial Emissions per Industry type (IEA, 2007) 

 

According to the World Steel Association [WSA]  global steel production more than 

doubled between 1985 and 2010 (WSA 2013b).  As shown in figure 6 over 1.3 billion 

tons of steel are now manufactured and used every year with 45% now produced in 
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China. The effect of the modernisation of China can be clearly seen in Figure 6. Chinas 

steel production has increased from 8MTPA [Million Tonnes per Annum] to 45 MTPA 

between 1990 and 2010. China now consumes 33% of the world’s steel and its demand 

has been growing by 10% per year (Carbon Trust  2011) steel. China is obviously 

having a massive impact on global resources and GHG emissions. Strong growth will 

also accelerate in developing areas such as Latin America, Asia, Africa and the Indian 

sub-continent. Steel will be vital in raising the material and social welfare where more 

than 60% of steel consumption will be used to create new infrastructure(WSA 2012). 

 

Figure 6 Worldwide Steel Production (Carbon Trust 2011) 

As shown in Figure 7, on average, 2.3 tonnes of CO2 are emitted for every tonne of steel 

produced which is due to the energy intensity of steel production and its reliance on coal 

as the main energy source (Carbon Trust 2011). As shown in Figure 7, iron making in 

the Blast Furnace is responsible for ninety percent of steel industry emissions. The BF 

route is used for about 65% of all steel making (Carbon Trust 2011). Developing 

nations do not have the availability of scrap and are therefore forced to produce virgin 

iron using Blast Furnaces. For example, the Chinese steel industry mainly uses the BF 
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method but more developed nations have employed recycling of steel for decades and 

so there is a ready availability of scrap.(IEA 2007). 

 

Figure 7 Emissions per Steelmaking Process (Carbon Trust 2011) 

 

 There are a number of technologies and measures available to reduce direct and process 

CO2 emissions ,IEA-COAL (IEA-COAL 2012), from the different iron and steel 

making processes that involve: 

 minimising energy consumption and improving the energy efficiency of the 

process; 

 changing to a fuel and/or reducing agent with a lower CO2 emission factor; 

 capturing the CO2 and storing it underground.  

As detailed in the BREF (EC 2013b) and the Low Impact Steel Project [formerly 

ULCOS] website (LISP 2014), the main European project was ‘ULCOS’ which stands 

for ultra-low carbon dioxide [CO2] steelmaking. It was a consortium of 48 European 



 

 

10 

 

companies and organisations from 15 European countries that have launched a 

cooperative R&D initiative to enable a drastic reduction in carbon dioxide [CO2] 

emissions from steel production. The consortium consisted of all major EU steel 

companies, energy and engineering partners, research institutes and universities and is 

supported by the European Commission. The aim of the ULCOS project was to reduce 

CO2 emissions with the most advanced techniques by at least 50 percent. The total 

budget of the project was EUR 47 million [2004 – 2009]. The project was targeted to 

run beyond 2015 with some full size implementation in industrial production lines but 

with the realization of the potential costs and the economic downturn the project has 

been shelved.  

The EC document ‘Prospective Scenarios on Energy Efficiency and CO2 Emissions in 

the EU Iron & Steel Industry’ (EC 2012) details R&D innovative projects , including 

Carbon Capture and Storage [CCS], and projects completion timescales for pilot project 

between 2020 – 2040. 

Therefore most CO2 reduction initiatives are long term Capital intensive options for the 

industry thus focusing on smaller scale energy saving techniques are thus important for 

the shorter and medium term CO2 reduction plans for the industry(EC 2012).   

1.4. Energy Policies 

The 1973 ‘oil crisis’ was in effect a sudden price hike as a result of a retaliatory 

embargo by the Organization of Arab Petroleum Exporting Countries [OAPEC] on the 

United States of America [USA], United Kingdom [UK], Canada, Japan and 

the Netherlands. This crisis led to the realisation that worldwide coordination was 

required and so in 1973 the International Energy Association [IEA] was established 

within the framework of the Organisation for Economic Co-operation and Development 

[OECD] (IEA 2014). The World Energy Council [WEC], originally formed in 1923 as a 

http://en.wikipedia.org/wiki/Canada
http://en.wikipedia.org/wiki/Japan
http://en.wikipedia.org/wiki/Netherlands
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gathering of energy industry experts, then after the second world oil crisis in 1979, 

caused by the Iranian revolution, started to develop sustainability targets when its 

Conservation Commission published the report ‘World Energy: Looking ahead to 

2020’(Trotman 1984). Then following the oil price collapse and the world energy crisis 

in 1986, WEC published another landmark report ‘Global Energy Perspectives 2000-

2020’ in 1989 (WEC 1989).This report was an important consensus based on two global 

energy scenarios, one regarded as moderate and the other as conservative . The report 

gained worldwide attention and was used by many policymakers and decision-makers 

as they considered plans for the future. 

Further analyses and publications have been issued over the years with the 

emphasis moving more and more to sustainability. ‘World Energy Trilemma 2012: 

Time to get real – the case for sustainable energy policy’ (WEC 2012). ‘World Energy 

Scenarios: Global Transport Scenarios 2050’ (WEC 2011) and ‘World Energy Issues 

Monitor 2014’ (WEC 2014a) which was show cased at the seminar “Regional and 

Global Energy Panorama”, February, Columbia, 2013 (WEC 2014b). Special emphasis 

was placed on the important role of energy efficiency for business. As defined earlier in 

the chapter, European and UK Climate Change Policies are looking to industry to 

improve energy efficiency by employing technologies not yet fully deployed. Therefore 

both Climate change and Energy policies are looking at industry to reduce its energy 

intensity and so the focus on industrial energy efficiency will only increase.  

As far as the UK is concerned, the publication ‘UK Energy Policy 1980-2010 A 

history and lessons to be learnt’ (Peter and Jim 2012), describes the lack of development 

of the UK Energy Strategy. The political decisions starting in the 1980’s around the coal 

industry, the type of nuclear reactor, the ‘dash for gas’, Climate change, lack of decision 

making led to the UK becoming a net importer of energy in 2004(DECC 2013a). 
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The Department of Trade and Industry [Dti] published the white paper’ Meeting 

the Energy Challenge’ in 2007(DTi 2007) was seen as being the start of an Energy plan 

for the UK. The policy was very market led with little true direction from the 

government. Prolonged decisions and policy on renewable carbon electricity then 

caused confusion, concern and lack of investment in the UK (Peter and Jim 2012). In 

2008 the Department of Energy and Climate Change [DECC] was formed along with 

the Climate Change Act. The economic downturn then started to effect policies and, 

worried about increasing public debt, the government restricted the activities of the 

Green Bank and ‘feed in tariffs’.  

The White paper issued in 2011 ‘Planning our electric future: a White Paper for secure, 

affordable and low‑carbon electricity, (DECC 2011), with a forward by the Secretary 

of State “Since the market was privatised in the 1980s the system has worked: 

delivering secure and affordable electricity for the UK. But it cannot meet the 

challenges of the future. Around a quarter of our existing capacity – mainly coal and 

nuclear power stations – will close in the next decade. Keeping the lights on will mean 

raising a record amount of investment. However, the current market arrangements will 

not deliver investment at the scale and the pace that we need.”  So some recognition 

that leaving the country to market led decisions – has not worked. It then goes on to 

define the position as an “unprecedented challenge” and warns of the risk of 

‘blackouts’ which caused industry some alarm!  

The annual Energy Brief (DECC 2013a)published by DECC clearly demonstrates the 

advantages and disadvantages of the UK energy position. Figure 8 shows the declining 

GHG emissions between 1990 and 2012. The figure indicates around a 25% reduction 

over the 22 years and also shows that the country more than met the Kyoto Protocol 

target.  
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Figure 8 : UK GHG Emissions (DECC 2013a) 

The declining trend for the industrial sector of Figure 9 also shows a successful story by 

demonstrating how much the country’s industry has reduced its energy intensity. The 

figure shows an industrial energy intensity reduction of just short of 60%. Indicating a 

successful long term drive in energy efficiency, albeit, a flattening trend over the last 

decade. 

 

Figure 9 : UK Energy Intensity (DECC 2013a) 
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Figure 10 though shows one of the main areas of concern, that is, the reliance on 

imported energy to power the UK homes and Industry. As shown, between 1980 and 

2003 the country was in effect exporting energy. Now reliant on imports the UK is now 

prone to political and commercial activities outside of its control.  

 

Figure 10: UK Energy Import Dependency (DECC 2013a) 

Figure 11 then goes onto show the knock on cost effect to UK Industry. With 

increased Green taxes, as part of the drive to reduce GHG emissions, and increased 

reliance on imports are costing UK industry heavily.  What stands out is the long term 

declining electricity prices between 1980 and 2003 which correlates with the UK’s 

ability to export energy as shown in figure10. As the UK started to rely on imported 

energy, around 2003, figure11 clearly demonstrates the cost effect to UK industry. This 

will have discouraged investment in energy efficient technologies. With energy getting 

cheaper industry would have struggled to build a business case and invest. Then the 

sudden price hike has completely transformed industry’s attitude to energy efficiency. 
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Figure 11 : UK Industrial Fuel Prices (DECC 2013a) 

 With projected shortages of supply and increasing energy prices the UK’s 

energy position might be defined as ‘less than supportive’ to heavy industry. However, 

the sudden price rises have forced consumers to be more efficient. The American 

Council for an Energy Efficient Economy [ACEEE] has calculated that the UK is in fact 

the most energy efficient country in the world (ACEEE 2012). The ACEEE used several 

measures to determine Energy Use per Capita calculating total efficiency of generation 

and consumption. As previously shown in Figure 9, it can be seen that UK Industry has 

responded to the price rises and uncertainty of supply by reducing its energy intensity. 

High energy prices have forced UK industry to become more energy efficient even 

through the recent economic downturn. With energy prices so high, the payback on 

capital investments has reduced thus making investment in energy efficiency more 

viable.  

Figure 12 compares the price of electricity paid by UK industry to the rest of Europe. 

By offering incentives and methods of tax relieve local government can vary this 

amount accordingly. In the UK , with the government committed to reducing carbon 

emissions below 80% of the  1990 level by 2050 and the proposed new Green Tax laws, 
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on top of the EUETS and the other taxes, in 2011 the UK government  planned  to 

impose an additional £28.30 per MWh for the UK Steel Industry (ICF 2012).This would 

significantly have increased electricity prices in the UK and would have taken them 

above that of Japan. 

 

Figure 12 : Electricity and Gas Price Trends (EEF 2014) 

After much lobbying, in 2013, the UK Government introduced a “250m compensation 

package for ‘energy intensive industries’(GOV, 2014). As of August 2014, the detail for 

this compensation is not yet understood.  

Within Europe itself the Centre for European Policy Studies [CEPS] publication ‘The 

Steel Industry in the European Union: Composition and drivers of energy prices and 

costs’ discusses the various costs paid and drivers behind the energy prices and the 

effect on the competitiveness of the EU steel industry. (Studies, 2013) 
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1.5. Energy Flows in the Steel Industry 

The European Communities [EC] BREF document(EC 2013b) ,as shown in Figure 

13,defines and describes the main energy flows in an integrated steelworks. The energy 

demand is high with an integrated steelworks consuming as much electricity and gas as 

a medium sized city. The flows are complex and interlink the various process operations 

around the site. This results in difficulty of measurement and exacerbated inefficiencies. 

The waste gases from the Coke Ovens, Blast Furnace and Basic Oxygen Steelworks are 

all captured and reused, either as a Natural Gas replacement for heating purposes, or 

combusted in a boiler to generate steam for electrical generation. In fact it’s not unusual 

for a modern steelworks to be self sufficient for electricity and natural gas and even be 

in the position to occasionally export electricity. 
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Figure 13 Typical Energy Flows in an Integrated Steel Works (EC, 2013b) 
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1.6. Energy Efficiency in the Steel Industry 

As stated  by the World Steel Association (WSA), the world’s steel industry is now 50% 

more efficient than back in 1975(WSA 2013a). The WSA is one of the largest and most 

dynamic industry associations in the world. It represents around 85% of world steel 

production and acts as a focal point for the steel industry, providing global leadership on all 

major strategic issues affecting the industry.  

In the EU there is Eurofer and the EC published BREF (EC 2013b), in the USA there is the 

American Iron and Steel Institute and then there is Asia Pacific Partnership. There are also 

other bodies such as the ’International Steel Statistics Bureau’ [ISSB] and in the UK the 

‘UK steel’, The Carbon Trust, Engineers' Employers Federation [EEF] and of course 

DECC. All of which are either groups of companies, Government agencies or organisations 

that compile and produce statistics for the steel industry. 

When researching the subject, references go back as far as 1882 when Jeans, JS. (J.S.Jeans 

1881)published the paper “On the consumption and economy of fuel in the iron and steel 

manufacture” in the Iron and Steel Institutes Journal. Then in 1961, “The effect of the 

various steelmaking processes on the energy balances of integrated iron- and steelworks” 

published by the Iron and Steel Institute(Group 1961) which shows Sankey diagrams for 

the steel making processes used at the time highlighting energy losses such as waste heat.  

Through literature survey the technologies shown in Figure 14 are some of the available 

technologies that could possibly be employed. 
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Figure 14: Energy Reduction Technologies (EC 2012) 

The technologies listed are a summary of recommendations from the following 

publications. The two most important, all-encompassing publications are regarded as 

being:- 

 “Energy Use in the Steel Industry” (IISI 1998) 

 “Future Technologies for energy-efficient iron and steel making” (de et al. 1998) 

Both these documents are very comprehensive and are referenced many times by more 

recent publications. The 1998 IISI paper is in fact an update from an earlier IISI publication 

‘Energy in the Steel Industry’ 1982, and a published update in 1992 and 1996. It goes into 

real detail defining typical energy consumptions by the various parts of the process. It also 

details ‘case study’ examples and compares energy efficiencies of the differing 

technologies available at that time. The 1998 paper culminates the available technologies 

into two groups ‘Ecotech’ and ‘AllTech’. ‘Ecotech’ are technologies which were 
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financially viable and there likely to be adopted, and then ‘Alltech’ are all technologies that 

could be employed regardless of financial payback. The IISI paper (IISI 1998) shows the 

GJ/T of current technologies as being 17GJ/tls or greater and the the effect of employing 

‘Ecotech’ drops it down to 15GJ/TLS and then ‘Alltech’ would see a potential further 

reduction to 13GJ/TLS. Each process [ie Coke Making, Iron making etc] is Sankey 

diagrammed and available technologies explored. The publication also discusses R&D type 

technologies and projects their energy efficiency potential. The IISA became the WSA in 

1998 and its 2008 publication ‘Steel and Energy’ fact sheet. (WSA 2008) 

The US Environmental Protection Authority [EPA] publication, ‘Available and emerging 

technologies for reducing Greenhouse Gas emissions from the Iron and Steel 

Industry’(EPA 2012) gives a good over view of GHG and energy reduction technologies. 

Then the EPA’s other publication ’An Energy Star Guide for Energy and Plant Managers’ 

(EPA 2010) is written as a guide for plant managers and people managing energy plans for 

the steel industry. Then the ‘Asia Pacific Partnership for Clean Development and Climate’ 

publication ‘The State–of-the-Art Clean Technologies [SOACT] for Steelmaking 

Handbook’(Climate 2010) is written by the American Iron and Steel Institute and describes 

each process and the energy efficient opportunities and technologies that exist. ‘Energy 

Consumption and  CO2 Emissions Benchmarking and Modelling in Port Kembla 

Steelworks’ (Paul 2011) is an example of where a model has been developed of a 

steelworks. Energy efficient technologies are then applied to the model and improvement 

projections are made. For a European perspective the EC publication ‘Best Available 

Techniques [BAT] Reference Document for Iron and Steel Production’ (EC 2013b) is 

written almost for a layperson and each process is defined in great detail. Examples are 

given of typical installations and BAT. 



 

 

22 

 

The ‘Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron & 

Steel Industry’ (EC 2012) 

Looking more locally, the Centre for Low Carbon Futures publication “Technology 

Innovation for Energy Intensive Industry in the United Kingdom” (Futures 2011) 

The above documents provide up-to-date information with the basics of steelmaking, where 

energy is used, available technologies and their likely impact on energy efficiency. 

Although every steel works is very different and so not one rule will fit all. The papers do 

define a theoretical best practice and discuss technologies that may be employed to reduce 

energy consumption. From these publications it is possible to conclude that for an 

Integrated Steelworks the BAT would be somewhere around the 19 GJ/Tonne and the 

technologies listed in Figure 14 could be utilised in order to achieve such a Specific Energy 

Consumption [SEC].  

In summary, there are many publications discussing energy efficiency in the steel industry. 

Due to differing development and political histories, the fact is that not all steelworks are 

the same. With countries around the world having contrasting energy costs and policies 

each country will have a distinct attitude towards heavy Industry. It is therefore not possible 

to have one energy efficiency plan that would fit all steelworks. Each individual steelworks 

requires its own energy efficiency strategy and roadmap to fit its particular needs and 

drivers. 

1.7. Energy use in the UK steel Industry 

According to DECC (DECC 2012a) the Steel Industry Uses around 1.2% of UK energy and 

is 13% more efficient since 1990. However, as discussed earlier, with the UK now 

importing around 36% of its energy, industry is facing a period of uncertainty with energy 
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prices increasing and hence the associated manufacturing costs are difficult to control. Also 

with around 25% of the UK’s power generating capacity projected to close within the next 

10 years (DECC 2011), this obviously raises real concerns and uncertainties. The 

possibility of ‘industrial blackouts’ and ever increase energy prices are a significant threat 

to future industrial stability and growth. 

The UK Iron and Steel Industry accounts for about 16% of the UKs industrial GHG 

emissions (Futures 2011).  Technologies for GHG reductions are being developed (Futures 

2011) but these developments are experimentally based and will require large capital 

investment programs. It has been estimated that for the steel industry alone about 

£1.5billion of investment is needed (Futures 2011). In the current financial climate of low 

demand and poor prices for its products, this level of investment is not sustainable. The 

likely scenario is to close plants rather than invest. Hence more practical ways of tackling 

these discharges need to be considered. 

 Only a proportion of the industry’s GHG emissions are due to electricity and gas 

consumption (Allwood and Cullen 2012). Process operations such the recycling of scrap 

percentage in steelmaking and the levels of coal injection in Blast Furnaces for example are 

some of the main contributors to large discharges of CO2 per tonne per unit product. Hence 

energy and process efficiency still have a vital role to play in any plans for sustainable 

GHG emission reduction target(Allwood and Cullen 2012). 

With increasing energy costs followed by real concerns about security of electricity supply 

and the possibility of massive tax bills the Steel Industry in the UK has been forced to 

invest considerable resources into exploring the optimum road map for increased energy 
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efficiency and driving the self-sufficiency agenda in the context of poor demand for its 

products.    

 Figure 15 shows the trend for the Specific Energy Consumption [SEC] for the UK steel 

Industry. So between 1973 and 2012 the Industry become more efficient per Tonne. In 

1973 the SEC was 31.7 GJ/Tonne of product then by 2012 the SEC had reduced to 18.8 

GJ/Tonne. This represents an improvement of just under 60%. 

 

Figure 15 : UK steel Industry Energy Intensity (EEF 2014) 

 

In relation to the rest of the world WSA published data indicates a worldwide typical 

reduction of 50%  in energy consumption since the early 1975 for the top steel making 

countries (WSA 2008). So with the UK having a 60% reduction, although this is only a 

relative comparison, with an undefined base line, it does indicate that the UK Steel Industry 

has in general kept up-to-date.  
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However if digging into the detail and examining the Best Available Technique [BAT]  it 

soon becomes clear that the UK has some catching up to do for its primary steel production 

route in the Integrated Steelworks [ie Blast Furnace & Basic Oxygen Steel making]. 

The 18.8GJ/Tonne for 2013, shown in Figure 15, is of course an average of steel making 

via the BF and the EA manufacturing route. The EEF ‘key facts‘ (eef 2014) shows that for 

2013 16% was made via the EA route which, according to the EC paper (EC 2012), has a 

typical SEC of 11 GJ/Tonne where as the BF route has a typical SEC of 21 GJ/Tonne. 

So if 16% of the steel is made with a SEC of 11 GJ/Tonne then the 84% must have been 

made via the BF route with a SEC of at least 20 GJ/Tonne. 

If fact communications from an example UK steel works states a SEC of 24GJ/Tonne 

(Steel 2014) and then compare that to a BAT of maybe 15GJ/Tonne as quoted previously in 

the ‘Energy in the Steel Industry’ IISI paper (IISI 1998) it is clear to see that the UK has 

therefore probably has technologies that it has not employed.  

   

1.8. Summary and Aim of this work 

This chapter explains that Global, and local, Climate change and Energy Policies have put 

pressures on the steel Industry. Energy efficiency is defined as key to reducing GHG 

emissions and technologies to improve energy efficiency are explored. In the UK the lack 

of clear long term Energy Strategy has resulted in high energy prices and risks to security 

of supply of energy to Industry. This though, in itself, has driven Industry to be more 

efficient.  Even so, a simple examination of a UK Case Study Steel Works [CSSW] 
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highlights that its SEC is poor compared to BAT and therefore asks the question ‘is there 

an area of technology not yet employed by the UK integrated steel works?’. 

The aim of this project is to study a UK based ‘case study’ steelworks. Its energy systems 

and performance are to be analysed and compared against Best Practice. The case study 

works is therefore to be benchmarked, in terms of energy efficiency, and a technological 

area of energy efficiency that has not yet been exploited is to be identified. This technology 

is to be investigated, researched and its implementation modelled.   

The aims are thus:- 

1} Study UK based CSSW, Study its energy flows, compare against BAT and identify a 

technology not yet employed to improve Energy Efficiency. 

2} Research the technology identified in Aim 1.  

3} Investigate the potential impact on the CSSW. 

4} Model the technologies implementation. 

5} Scope a strategic outlook for the CSSW. 

 

1.9. Structure of the Thesis 

This Chapter has defined the context of the thesis, described the issues facing the UK steel 

industry and the potential technologies that could be employed to improve energy 

efficiency. The chapter finishes with a simple comparison of a UK case study SEC and 

compares it to BAT. Thus the chapter concludes that there is further potential for the CSSW 

to save energy and defines the aims of this project.  
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Chapter 2 is then an overview of the steel industry and an introduction to the CSSW 

finalising in the statement of the technology that’s implementation is to be modelled. 

Chapter 3 is an overview of Waste Heat recovery and Chapter 4 describes steam 

distribution and the possibility of its use when considering WHR at the CSSW. Chapter 5 is 

a critical assessment of the modelling software used to model the steam system at the 

CSSW. Chapter 5 also overviews the Model itself and thus defines the methodology and all 

assumptions made. Chapter 6 is a discussion about the results of the modelling and Chapter 

7 discusses the development of a WHR strategy for the CSSW.  

Chapter 8 covers the conclusions and Chapter 9 recommendations and details some further 

work proposals. 
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2. The Steel Industry 

2.1. Introduction  

This chapter provides an overview of the World, European Union [EU] and the UK steel 

industry. A UK based CSSW is described and its energy flows are examined and compared 

to best practice as defined in published literature. A technological area of energy savings 

that is not employed at the CSSW is defined and explored. 

2.2. How to Make Steel 

Steel has two main manufacturing routes, as shown in Figure 16, that is, the Blast Furnace 

or Electric Arc routes. The primary input for the Electric Arc is scrap steel, while the blast 

furnace relies on iron ore and coke as its main resources. The Blast Furnace [BF] combined 

with Basic Oxygen Steelmaking [BOS] as the predominant steel making process. In 

developing countries, where there tends to be a limited quantity of scrap, the Electric Arc 

furnace is not practicable. A ‘Secondary steelmaking’ process, for example Vacuum 

Degassing, is often employed to refine the steel to the required grade. 
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Figure 16 The Steelmaking Process (EEF 2014b) 

 

The refined steel is then cast into slab, billet or bloom in a Continuous Caster known as 

‘Concast’. The liquid Steel flows from a valve in the bottom of the ladle, into a holding 

tundish and then into the mould which has a water cooled outer body. The steel then starts 

to solidify as it drops out of the mould and into the ‘strand’ of supporting rollers where it is 

further cooled with sprayed water and is guided by water cooled rollers. As the steel 

solidifies throughout the strand it is guided and cooled further until it reaches the cutting 

machine, by which time it has fully solidified. The steel is then cut to the required length 

and sent for further processing as Slab, Billot or Bloom depending on the final product 

specification. As shown in Figure 17, most Slab, Billot or Bloom will then be processed 

through Hot Rolling. Some products will go on to be pickled, to remove the scaled layer on 

the surface of the steel, then cold rolled, annealed and possibly coated. Steelworks that 

contain BF, BOS, Concast and mills are known as ‘Integrated Steelworks’. 



 

 

30 

 

 

Figure 17 The Steel Manufacturing Process (EEF 2014c) 

2.3. Consumption of Steel 

The Engineering Employers Federation [EEF] website states ‘Steel is vital to our everyday 

life. We depend on steel for housing and health. Without it there would be no offices or 

retail parks. It is at the root of the quality of life that each of us enjoys today, helping to 

shelter us, to feed us and to facilitate both our working and our leisure day’ (EEF 2014a)  

Figure 18 shows 2011 data for the worldwide consumption of steel. It is clear that 51% of 

all steel made is used in construction highlighting how susceptible the steel industry is to 

the effects of economic volatility and has been more pronounced since 2008 when the 

current recession has started. The recent economic downturn and the slump in the 

construction sector has therefore had a major impact on the steel industry. 
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Figure 18 : Worldwide Consumption of steel (WSA 2012) 

  

2.4. The Worldwide Steel Industry 

The WSA website states (WSA 2014) ‘The industry directly employs more than two million 

people worldwide, with a further two million contractors and four million people in 

supporting industries. Considering steel’s position as the key product supplier to industries 

such as automotive, construction, transport, power and machine goods, and using a 

multiplier of 25:1, the steel industry is at the source of employment for more than 50 

million people. World crude steel production has increased from 851 megatonnes  in 2001 

to 1,548 Mt for the year 2012. [It was 28.3 Mt in 1900]. World average steel use per capita 

has steadily increased from 150 kg in 2001 to 215 kg in 2011. India, Brazil, South Korea 

and Turkey have all entered the top ten steel producers list in the past 40 years.’ 
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 The steel industry in differing countries around the world has historically been seen 

as a strategic core element to any successful country (Fairbrother et al 2004). The industry 

was historically nationalised and then in attempts to improve productivity has been globally 

privatised. The industry has also undergone several rationalisations and mergers to make 

itself more sustainable. Even so it has still been necessary for governments to step in and 

protect their steel industry from time to time [for example the US tariffs on imports 2002] 

(Fairbrother et al 2004). The publication by the EC (EC 2013c) explains the fact that the 

EU steel industry is at a big disadvantage at the moment due to worldwide governmental 

protection of the each countries steel industry. It explains that countries are placing import 

tariffs or export tariffs on raw materials as ways of protection. It presents a plan to try to 

help the EU steel industry in terms of training, access to foreign markets and increasing 

local EU demand.  

 

The EEF diagram shown in Figure 19 shows the ever increasing production of steel by 

year. As can be seen the amount made through the BF route is over 400% of that made by 

EA. The diagram also shows a small and decreasing amount of steel made from other 

routes. This would have been older technologies [ie Open Hearth] but also some from DRI 

[Direct Reduced Iron].  
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Figure 19 : World Steel Production  (EEF 2014d) 

 

2.5. The European Steel Industry 

The European steel industry sees itself as a technological and environmental leader. In its 

review of the European Steel Industry, February 2013, the European Commission states 

‘The European Steel industry is a world leader in its sector with a turnover of about EUR 

190 billion and direct employment of about 360 000 highly skilled people, producing 178 

million tonnes of steel per year in more than 500 steel production sites in 23 EU Member 

States. The European steel industry is among the world leaders in its environmental 

performance and resource efficiency.’(EC 2013). 
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   As shown in Figure 20 the main European steel makers produced about 11.7% of 

the world’s steel in 2012. It can also be seen that the EU consumes around 11.1% of world 

steel. This implies almost self-sufficiency but this is of course not the case as shown by 

Eurofer with the EU importing around a 10% of its steel consumption 2012 (Eurofer 2012). 

With free trade around the world the EU imports and exports differing grades and sections 

of steel for differing applications. Figure 20 again demonstrates the huge impact of a 

developing China. 

 
 

Figure 20 World Steel Production by Country (WSA 2012) 
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The steel industry in the EU is geographical spread around its member state countries (EC 

2013b). Figure 21 shows steel production by country in 2008. Germany is the main 

producer, followed by Italy, Spain, France then the UK with 7%. 

 

 

 

 

 
Figure 21 European Steel Production per Country (EC 2012) 

 

Figure 22 shows the historic production of steel in the EU between 2003 and 2012. The 

step change following the global downturn of 2008 is evident. The UKs steel production is 

within the ‘Other EU15’ category on the figure. Throughout Europe many steelworks were 

mothballed or suffered a reduction in volumes as producers tried to financially survive. 
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Figure 22 European Steel production per Country (ISSB 2014) 

 

 

2.6. UK Steel Industry 

Since the 1970’s the Steel Industry in the UK has been decimated. In 1967 when the steel 

industry was nationalised it had over 250,000 employees. It then suffered successive 

restructuring and was again privatised in 1988. Figure 23 (EEF 2014d) shows the declining 

production volumes and employees since 1991 as Blair described in his publication "The 

British iron and steel industry since 1945". 
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–  

Figure 23  UK Steel Production History (EEF 2014) 

  

Today the country only has three Integrated Steelworks  

 Port Talbot Steelworks [Owned by Tata Steel] 

 Scunthorpe Steelworks [Owned by Tata Steel] 

 Teesside Steelworks [Owned by SSI and restarted production in April 2012] 

There are EA and steel processing plants located in different parts of the country for 

example Celsa Steel in Cardiff.   

The UK faces many challenges in today’s business world as discussed by the Financial 

Times in its video ‘ Is there a future in UK steel?’ (FT 2014). The video expands on 
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concerns about the fact that the UK industry is investing but with tough challenges from 

Green Taxes and higher costs. To show this graphically Figure 24 shows the increase in 

iron ore prices and the volatility of the Coal price. It can be seen that Iron Ore price has 

doubled since 2008. Coal Prices also doubled between 2008 and 2010 but then mainly due 

to the shale gas developments in the USA the coal price has now dropped back to about 

half the price it was in 2008. 

 

Figure 24 Steel Industry Raw Material Prices (EEF 2014) 

Figure 25 then shows the relatively high prices of energy in the UK and compares it to 

other EU countries. As can be seen the electricity price is about 50% higher than other EU 

countries. The gas price is approximately 10% cheaper than the rest of Europe.  
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.  

Figure 25 European Energy Prices (EEF 2014) 

Figure 26 then shows the relative price of steel in the UK market when compared to the 

Retail Price Index [RPI]. As can be seen the relative market price of steel has dropped 

when compared to the RPI. Steel is in effect therefore cheaper now than ever before but its 

manufacturing costs are higher than ever before.  

 

Figure 26 UK Steel and Aluminium Retail Price (EEF 2014) 
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This then partly leads onto the picture presented in Figure 27. It shows an effect of this 

relatively high production cost and low market value, that is of course higher imports. 

Customers are able to buy in and import steel at a cheaper price. As shown in the Figure 27 

there is a long term decline in the amount of steel make in the UK that is used in the UK. 

Inversely the long term trend for increased imports is evident. It is clear to see that there is 

now more imported steel used in the UK than made in the UK. If you refer back though to 

Figure 23 it states that the UK produced 11.9MTPA in 2013. If only 4.2MTPA was used in 

the UK then the remaining 7.7MTPA must have been exported. Thus the UK must be a net 

exporter of steel and partly demonstrates how complex the world steel market is. 

 

Figure 27      Historical UK Steel Demand (EEF 2014) 

In a recent publication by Price Waterhouse Coopers, commissioned by Tata Steel, in 2014 

(Coopers 2014) the demands on the UKs foundation Industries are discussed. The 

publication titled ‘Understanding the economic contribution of the foundation industries’ 
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lays out the benefits and concerns of the foundation industries in the UK and then attempts 

to define the contribution and importance of such industries to various countries around the 

world. This is obviously an example of the UK steel industry reminding the UK 

government of the importance of the foundation industries to the UK economy as a whole, 

particularly outside London and the South East. High energy prices are highlighted as a real 

concern to competitiveness.  
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2.7. The Case Study Steel works [CSSW] 

The case study steel works [CSSW] is Tata Steels Port Talbot Integrated works in South 

Wales. Records show that as early as 1253 the monks of Margam Abbey were granted 

permission to extract iron and ore from land belonging to Walter Lovel, Lord of North 

Cornelly (Parry 2011) 

Large scale Steelmaking started in Port Talbot in 1902 at the ‘Port Talbot Steel Works’.  

‘Margam Steel Works’ then developed alongside in 1918 and then was joined by the 

massive Abbey Steelworks in 1951. All three were rationalized when under the ownership 

of the ‘Iron and Steel Corporation of Great Britain’. Then under the ’ Steel Company of 

Wales’ Port Talbot and Margam steel works closed in 1961 and 1963, respectively, leaving 

Blast furnaces of Margam site and steelmaking and rolling at the Abbey Steel Works. 

Under the British Steel Corporation and then following privatisation in 1988 and the 

formation of British Steel PLC the site became known as ‘Port Talbot Steel 

Works’(Protheroe-Jones 1995). In 1999 British Steel merged with the Dutch Koninklijke 

Hoogovens to form the Corus Group. Then in 2007 the Corus Group was taken over by 

Tata Steel, an Indian based company established in 1907. The site now covers an area of 

over a thousand hectares with 100 km of roads and has a deep-sea harbour.  

The works is what would be defined as a traditional Blast Furnace route Integrated 

Steelworks and its process route is as shown in Figure 28. It contains Blast Furnaces [BF], 

Basic Oxygen Steelmaking [BOS] converters, continuous slab casters, hot and cold rolling 

mills and a continuous annealing line. To provide the process with raw materials the site 

also has a Sinter Plant [SP] and two batteries of Coke Ovens [CO]. 
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Figure 28: CSSW Process Flow (Steel 2011) 

In 2005 the site embarked on an improvement drive, known as ‘The Journey’ to develop a 

‘sustainable steelworks’. One important element of this drive was to analyse, investigate, 

benchmark and promote energy saving technologies and strategies. The key was to develop 

an independent function that was not constrained by both production and existing energy 

functions within the plant. Thus a separate structure was formed (Burggraaf 2011) titled the 

‘Energy Optimisation Team’. Working with the other disciplines at the site, a future 

strategy for increased fuel and electrical efficiency gained momentum. This stimulated 

investment of over £100m worth of energy projects for example BOS Gas Recovery, 

efficient motors, pumps, lighting and variable speed drives. The main focus was on 

reducing the amount of flared indigenous gases, by improving their utilisation and thus 

reducing imported energy. To support this drive for energy efficiency the CSSW sought 

assistance from a local university who had expertise in this sector. The project had several 
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objectives including the study of waste heat recovery [WHR] and the improved utilisation 

of the site’s steam system. This work presented in this thesis forms part of the output from 

the EPSRC project reference EP/G060053/1 (EPSRC 2009). 

2.8. Energy flows in the CSSW  

The CSSW is what is described as a traditional Integrated steel works. It recycles its 

indigenous gases for either steam generation in the power plant or to displace natural gas as 

a heating fuel. To understand the energy flows at the CSSW, a study was undertaken of 

energy data from the works. A spreadsheet was constructed and calculations used to derive 

the typical energy flows.  Figure 29 shows the outcome of the study in the form of a Sankey 

diagram. What stands out of course is the large amount of energy provided by coal and 

coke. The Sankey shows the indigenous gases being used for BF stove heating, Hot Mill 

furnace heating and of course for steam generation in the Power Plant. The Sankey also 

helps define the total losses within the energy cycle. The total losses add up to a significant 

quantity for the year 2012/13. These losses are typically from furnaces stacks, cooling 

towers, radiant losses from hot products cooling down in between different processes.   
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Figure 29 : Sankey Diagram for the CSSW 
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The study then focused on the gas flows as shown in Figure 30.  The developed Sankey 

again shows up the recycling of the indigenous gases but also highlights the amount of gas 

flared. To utilise this flare the CSSW is exploring an extension to its existing power plant. 

This new power plant will utilise the flared gas to increase onsite power generation from an 

average of 75MWe to an average of 130MWe (Steel 2013). 

 

Figure 30: Case Study Sankey of Gas Flows 

What’s clear from the Sankey diagrams is the amount of flared indigenous gas and also the 

amount of losses. The CSSW are exploring a state of the art power plant to use up the 

indigenous gases, so referring back to list of technologies published by the EC in the 

document ‘Prospective Scenarios on Energy Efficiency and CO2 Emissions in the EU Iron 

& Steel Industry’ (EC 2012) and shown in Figure 14, it’s clear that Waste Heat Recovery 

features highly on the list of technologies that need to be explored for the CSSW.   
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During 2010 the plant started to further benchmark itself against its sister plants around the 

world as well as its competitors. The scale of the opportunity that WHR presented was soon 

made clear. Part of this assessment process the company’s R&D facility undertook a plant 

wide exergy study (Patsos and Mullan 2011). This activity highlighted a number of high, 

medium and low grade waste heat sources that could be exploited. This study indicated that 

there was a potential of about 6GJ per tonne of crude steel available from WHR. If you put 

that in perspective with the works calculated stated of 24GJ/Tonne (Steel 2014), it is clear 

that WHR for the CSSW should be explored further. A number of technologies were 

discussed and proposed but due to the complexity of the energy systems of a steel works it 

was difficult for the works to decide what to do with the recovered energy.  

This was typical for UK industry and the barriers associated with the deployment of 

technology are discussed in the publication by the Energy Research Partnership ‘ Industrial 

Energy Efficiency Key Messages’ (ERP 2011). The publication discusses the effect of a 

lack of strategy. Without a strategic plan Industry finds it difficult to justify and invest in 

and adopt new technologies.  

The timing of this project was therefore very auspicious and so its aims and objectives 

developed into what became to research WHR further and then model its implementation. 

A WHR strategic plan could then be developed in an attempt to remove any foreseen 

barriers and increase the chance of project implementation. 

2.9. Summary 

This Chapter describes the Steel Industry and introduces the CSSW. The energy systems 

for CSSW are defined and the opportunity to investigate a WHR strategic plan is presented 
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This Chapter has described the steel making process and how its global production has 

increased as developing countries expand. The Chapter shows how China now accounts for 

both 45% demand and production of worldwide steel. In Europe demand and production 

has declined over the decades with the position in the UK particularly stark with over a 

40% reduction in production and nearly a 50% reduction in demand since 1972.  

The Chapter also introduces the CSSW and its recent journey into energy efficiency. 

Energy flows are determined and presented in Sankey format. Research identifies that the 

CSSW had recently been exploring WHR and had identified a potential recovery of 6GJ/T 

which at a SEC of 24GJ per tonne is a potential reduction in SEC of 25%. However, 

because of identified typical UK barriers to investment in WHR, the CSSW had not yet 

invested in this technology.  

This Chapter has therefore completed aim 1 of the thesis by defining an energy efficiency 

technology that requires further research and modelling to aid potential implementation.  
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3. Industrial Waste Heat Recovery 

3.1. Introduction  

Chapter 2 has described energy use in the steel industry and highlighted Waste Heat 

Recovery [WHR] as a potential opportunity for the CSSW. This Chapter introduces the 

concept of WHR, provides a definition and describes technologies for its utilisation. WHR 

technologies are then defined for Industry in general and specifically for the UK Steel 

Industry. The headings ‘Quantity’, ‘Technology’ and ‘End Use’ are described for WHR in 

general and the steel industry in particular. The chapter then reviews the information from 

the studied literature and relates it to the CSSW.  

3.2.  UK Heat Supply 

The UK Governments Department of Energy and Climate Change [DECC] has recently 

been exploring the subject of Heat supply and published the document  ’The future of 

heating: A strategic framework for low carbon heat ‘(DECC 2012b). Working towards its 

2050 Climate Change Targets, DECC states in its focus on Energy efficiency, ‘the demand 

for Heat is fundamental to human society and always has been’ (DECC 2012b). How best 

to generate that heat energy in every sector, that is, Industry, Commercial buildings, public 

buildings and domestic housing is explored and questioned in the DECC publication 

(DECC 2012b). How to supply that heat most efficiently and with the lowest carbon impact 

is questioned. It states that 80% of the Heat generated in the UK is done so via natural gas. 

With the UK now importing natural gas (DECC 2013a) this obviously has potential 

reliability and cost issues, as well as being Carbon intensive. DECC state that almost half 

[46%] of the final energy consumed in the UK is used to provide heat. The main other uses 
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of energy are split between transport [41%], electricity for lighting and appliances [8%], 

and a variety of other uses including agriculture and waste as shown in Figure 31. 

 

Figure 31 UK Split of Energy Consumers (DECC 2012b) 

Figure 32 graphically demonstrates the relative energy demand between electricity and 

Heat for the UK (DECC 2012b). It can be seen that as expected heat demand is seasonally 

based, whereas, electricity tends to be reasonably independent of weather conditions. As 

can be seen in the figure the mean heat demand over the year is in the order of 130 GW of 

Energy. DECC (DECC 2012b) states that radical and drastic changes to the way that the 

UK functions will be required to Decarbonise the heat supply. DECC (DECC 2012b) 

discusses heat saving technologies for buildings and houses, District Heating networks and 

introduces the theoretical conceptual strategy for linking Heat sources together.  
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Figure 32 :  UK Annual Energy Supply for Heating  (DECC 2012b) 

Figure 33 shows the breakdown of heat demand by sector. Adding up the Industrial heat 

demands gives a total of around 200 TWh. For Industry DECC (DECC 2012b)suggests 

focusing on efficiency, Combined Heat and Power [CHP] and low Carbon options for heat 

generation as well as further exploration of Carbon Capture and Storage [CCS]. For 

industrial energy efficiency improvements DECC (DECC 2012b) discusses WHR and give 

an example for the Steel industry where WHR is used to preheat combustion air to reduce 

Gas consumption for its oven. DECCs publication in 2014 titled ‘The potential for 

recovering and using surplus heat from industry’ (Energy 2014b) provides an overview of 

the opportunity of WHR to UK industry and in fact in its Appendix (Energy 2014a) an 

output from this PhD project is referenced as a case study for the UK Steel Industry. 
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Figure 33 UK Split of Heating Demand (DECC 2012b)  

According to the US Department of Energy (USDoE 2008) the exact quantity of industrial 

waste heat is poorly defined but state that various studies have estimated that as much as 

20-50% of industrial energy consumption is ultimately discharged as waste heat.  

Referring back to Figure 33, and the deduced 200TWh of industrial heat consumed in the 

UK, and applying the USDoE statement, that typically 20-50% of heat is discharged as 

waste heat, it is possible to deduce that somewhere in the region of 40-100TWh is emitted 

as industrial Waste Heat in the UK. Therefore, justifying the requirement for future 

research into the application of WHR for UK industry. 

3.3. Waste Heat Recovery [WHR] 

The US Department of Energy state captured and reused waste heat is an emission free 

substitute for costly purchased fuel or electricity (USDoE 2008). United Nations Energy 

Efficiency Guide for Asia (UNEP 2006) states that if some of the energy lost from the large 

quantities of hot waste gases from boilers, kilns, ovens and furnaces then considerable 
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amounts of primary fuel could be saved. The Carbon Trust also include waste heat from 

buildings in their overview of the subject (Carbon Trust 2014)demonstrating the more 

recent focus on all sources of WHR potential. Gent gives a good overview of the subject 

matter (Gent 2010) that including the various technologies available and provides case 

study examples. Its opportunity for WHR in UK Industry has been recently defined and 

modelled (Energy 2014b), as well as quantifying the potential (McKenna 2009b) and 

provide overviews of waste heat recovery. The theory, possible technologies and barriers 

for implementation are also highlighted.  

As explained by BCS Inc (USDoE 2008), ‘Industrial waste heat refers to energy that is 

generated in industrial processes without being put to practical us. Sources of waste heat 

include hot combustion gases discharged to the atmosphere, heated products exiting 

industrial processes, and heat transfer from hot equipment surfaces’. 

Waste Heat arises from system inefficiencies and/or simply as the result of a defined 

process. For example if a component has to be heated up to 800Deg C, for annealing, then 

during the cooling process all the heat will be lost or wasted. Some heat could be used to 

preheat the combustion air, to improve the efficiency of the ‘heating process’, but 

inevitably some will be wasted to atmosphere. According to the Energy Management 

Handbook (Turner and Doty 2006) “Waste heat is that energy which is rejected from a 

process at a temperature high enough above the ambient temperature to permit the 

economic recovery of some fraction of that energy for useful purposes”. As previously 

stated by the US Department of Energy, the exact quantity of industrial waste heat is poorly 

quantified, but various studies have estimated that as much as 20 to 50% of industrial 

energy consumption is ultimately discharged as waste heat (USDoE 2008). 
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As part of an EPSRC project  ‘Thermal Management of Industrial Processes National 

sources of low grade heat available from the process industry Progress Report 

2011’(Newcastle University 2011), Newcastle University state that in July 2006, the market 

potential for surplus heat from industrial processes in the UK was estimated at 144PJ by the 

Carbon Trust (Carbon Trust 2014) and more recently at 65 PJ by the Government’s Office 

of Climate Change (BERR 2008) and 36-71 PJ by McKenna (McKenna 2009a). These 

numbers differ so much because of the difficulty in obtaining reliable data. The higher 

grade waste heat sources in UK industry have been known about for decades, but data for 

the lower grade heat sources is only recently becoming more available. This is primarily 

due to business and industry’s recent focus on energy efficiency and the recent 

technological advances in ORC and heat pumps. In order to understand their processes 

Industry has therefore had to develop a greater understanding of their operation, control and 

how energy is used within the various cycles. 

Re-using the heat locally is usually the optimum solution rather than having to transport the 

energy elsewhere, with associated losses. Therefore improving combustion efficiency, by 

preheating the combustion products or in the case of a boiler, preheating the feed water can 

save significant quantities of energy. The US Environmental Protection Agency [EPA] 

gives examples of WHR saving up to 50% fuel use by using recouperators with a Kiln 

(USEPA 1998). The EPA also state that some form of industrial waste heat is inevitable, 

however, in today’s climate of increasing energy costs, the challenge is to maximise the 

potential of the waste heat energy availability. Waste heat is traditionally used for 

preheating combustion air, generating steam for electricity generation, absorption cooling 

and space heating. Many of these technologies are well established and proven but newer 

technologies, such as heat pumps and Organic Rankin Cycle units [ORC] are providing a 
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greater challenge for industry. These newer technologies are not well used and offer a 

perceived risk to industry. As there is a choice of technologies for specific industries it is 

therefore imperative that a proper decision making process is followed. All options need 

careful consideration for their suitability and modelling used to ensure the most accurate 

assessment. To assist Industry the US Department of Energy (USDoE 2008) suggest the 

use of three headings to guide investigations and state the fundamental questions in the 

investigation into the use of WHR are:-  

a) what is the ‘quantity’ of heat energy available,  

b) the potential ‘technology’ that can be used to harvest the energy and  

c) the ‘end use’ application.  

This thesis utilises these key strands repeatedly to help explain the investigation process. 

Therefore, ‘Quantity’, ‘Technology’ and ‘End Use’ of WHR is further explored. 

3.4 Quantity 

As defined by United Nation Environmental Program [UNEP] (UNEP 2006), to calculate 

the quantity of energy available from the waste stream the equation can be used;  

Q= V x ρ x Cp x dt              Equation 1 

Where: 

Q= the heat content in J/hr 

V = the flow rate of the substance in m
3
/hr 

ρ = in the density of the flue gas in kg/m
3
 

Cp = is the specific heat of the substance in J/kgK 
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dt = is the temperature difference in K 

The main factor that affects the quality of the waste heat available is temperature. Generally 

speaking the higher the temperature the more’ valuable’ the waste heat source. With higher 

temperatures it is possible for example to generate high pressure superheated steam that can 

be used for electrical generation. This is not possible with lower temperature waste heat 

sources directly but with newer developing technologies this may soon be the case. 

Historically it has not been possible to recover energy from low temperatures sources but 

with developments in heat pumps, for example, it is becoming more viable. There are no 

fixed definitions of the quality of waste heat. It tends to be classed as High, medium or low, 

for example the US Department of Energy uses (USDoE 2008):- 

High Grade Waste Heat is 650ºC and higher  

Medium Grade Waste Heat is 230ºC to 650ºC  

Low Grade Waste Heat is 230ºC and lower.   

It is of course possible to utilise Exergy values to help assess and categorise waste heat 

sources (Wall 1986). The Exergy value can be calculated to help assess the ‘value’ of the 

waste heat stream. The exergy concept defines the ‘quality of an amount of energy in 

relation to its surroundings that is expressing the part that can be converted into work’. It is 

based on the fact that the entropy of an isolated system never decreases [ie the second law 

of thermodynamics] (Wall 1986). 

E = dH – To x dS  Equation 2 

Where  E = Exergy, 

 dH and dS are the changes in enthalpy and entropy from the reference state 

[the surroundings] and  
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To = the absolute temperature at the reference state [Kelvin]. 

 When considering quantity one must also consider the available energy profile of the waste 

heat source. For example is the process that produces the waste heat continuous or batch? 

Does it vary in terms of temperature and flow rate? These questions need to be understood 

when assessing the options and therefore it’s critical that accurate data analysis is 

conducted to ensure an accurate ‘value’ of the waste heat source is determined. 

To link the quality aspect and the end use, it would be best practice to conduct what is 

known as a Pinch Analysis for the process (Kemp 2007). The ‘Pinch Analyses’ process 

thermodynamically studies heating and cooling cycles looking for a thermally optimised 

solution with limited numbers of energy exchangers thus saving energy (Kemp 2007). This 

would help identify the local heating and cooling processes and ultimately lead to the 

optimum end use for any waste heat application. Larson conducts a Pinch analyses for a 

steel works as a whole, concluding with some good potential theoretical energy savings 

however Larsson also concludes that the gap between theoretical possibilities and practical 

application will require further work (Larsson 2004) and more recently Isaksson provides a 

more up to date example (Isaksson et al. 2011). Due to the fact that there are relatively few 

streams, Isaksson concludes that, although the pinch analyses technique is of use for some 

of the sub sections, it is not suitable when studying a steel works. It is therefore concluded 

that this type of analysis would not add value to the current study.  

3.5  Technology 

 The Waste Heat Energy Efficiency Guide for Industry in Asia (UNEP 2006), provides 

details of the most commonly available technologies for capturing this form of energy. The 

Carbon Trust publication ‘Waste Heat’ (Carbon Trust 2014) also provides examples of 
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differing technologies employed for WHR. This section briefly summarises these 

technologies which can be further explored through the quoted references 

(UNEP2006,Carbon Trust 2014). They are in effect ‘heat exchangers’ and can be 

categorized under the following headings: 

3.5.1 Recuperator  

A recuperator usually uses a counter-flow energy recovery heat exchanger. As the waste 

gases pass one way through the exchanger, the medium to be heated, passes in the other. 

That way heat is simply transferred from the hotter waste gas to the cooler medium flow.  

3.5.2 Metallic radiation Recuperator 

The radiation recuperator uses parallel flow and usually used when there is a requirement to 

cool the waste gas ducting to extend its service life. These are not as efficient as counter 

flow systems, but serve the cooling purpose and provide energy recovery. They are the 

simplest type of recuperator and because it utilizes radiant heat transfer, from the hot gas to 

the surface of the inner tubes. Convective heat transfer takes place though between the 

tubes and the cold air flow.  

3.5.3 Tube or Convective Recuperator 

Perhaps the most popular type, the tube recuperator, utilises a counter-flow design, passing 

the cooler medium over tubes which contain the hotter medium. Baffles guide the cooler 

medium around the tubes in a number of passes. The number of baffles defines the number 

of passes. For example a three pass recuperator would have two baffles. The higher the 

number of passes the more effective the heat exchange 
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3.5.4 Hybrid recuperator 

Combining Radiant and convective techniques together improves the effectiveness of heat 

transfer.  Radiation exchange takes placed followed by the convective system. 

3.5.5 Ceramic recuperator 

To extend the operating limits of the recuperators above 1100 °C ceramics are sometimes 

used instead of a metal matrix. The principal limitation on the heat recovery of metal 

recuperators is the reduced life of the liner at inlet temperatures  

3.5.6 Regenerators  

Used extensively in the steel and glass industry regenerators are designed for significant 

gas flows. Blast Furnace Stoves being a relevant example as shown in Figure 34. The 

stoves are shown preheating the hot blast on its way to the Furnace. The stoves are 

refractory lined domes which are preheated by combusting a gas. The combustion is then 

stopped and the Blast is then blown through the stoves taking heat out of the refractory. 

When cool the stove is then reheated. It is usual to have a number of stoves all in different 

thermal cycle stages. The number, size, refractory type, thermal input and changeover time 

therefore depict the amount heat transfer.  
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Figure 34: Schematic of Blast Furnace regenerative stoves (AISI 2014) 

3.5.7 Heat Wheels 

The heat wheel is used mainly in building air conditioning systems. The wheel is a thermal 

disc that spins slowly with one side in the hot stream and the other in the cold stream. The 

wheel gets heated up on the hot side and then cooled down on the cold side, thus 

transferring heat across streams. It’s used for applications with small temperature 

differences but relatively high volumetric flow rates.  

3.5.8 Heat Pipes 

A heat pipe is made up of a sealed container with an integrally fabricated wick structure 

and a working fluid. As one end of the heat pipe is subject to thermal energy so the working 

fluid at that end boils, using the latent heat of evaporation to form a vapour. As the vapour 

travels to the opposite end, the thermal energy is removed causing the vapour to condense 

into liquid, thereby giving up the latent heat, so this end of the heat pipe works as the 

condenser region. A heat pipe can transfer up to 100 times more thermal energy than 
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copper. In other words, a heat pipe is a thermal energy absorbing and transferring system.  

Almost like the Heat Wheel concept, heat Pipes are used to transfer heat from one stream to 

another, for example Space Heating.  The heat pipe transfers the thermal energy from the 

exhaust for building and preheats the incoming air. Another application is where heat pipes 

can be used for preheating combustion air using the exhaust stream from a furnace with one 

end of the heat pipe in the exhaust stream and the other in the combustion air stream. 

3.5.9 Economizers 

To improve the efficiency of a boiler it is common to use waste heat, through an 

economizer, to preheat the feed water thus saving fuel. 

3.5.10 Shell and Tube Heat Exchangers 

The shell and tube heat exchanger is used when the medium containing waste heat is a 

liquid or a vapour which heats another liquid. Both paths must be sealed to contain the 

pressures of their respective fluids. The shell contains the tube bundle and internal baffles 

to direct the fluid over the tubes in multiple passes. 

3.5.11 Plate Heat Exchangers  

The plate type heat exchanger consists of a series of separate parallel plates forming a 

multiple layered sandwich. Each of the plates is separated by a seal. The hot stream runs 

though alternate rows of the plates and the cold stream through the other plates this forming 

a sandwich of flows. 

3.5.12 Run Around Coil Exchangers 

 A “run around coil exchanger” is in effect two heat exchangers connected together with a 

transfer fluid system. One heat exchanger is in the waste heat stream and the other in the 

stream that needs to be heated. This technology is effective when the waste heat source and 
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cold source are some distance away from each other. The transfer fluid can be selected and 

well insulated to limit temperature loss. 

3.5.13 Heat Pumps 

Due to technological improvements and increased COPs [Coefficient of Performances] 

these systems are becoming economically viable for industry, with the capability of using 

heat pumps to take industrial cooling tower water up in temperature from 35
O
C to the 85

O
C 

required for building heating systems. With Tax incentives such as the UK Governments 

Enhanced Capital Allowance [ECA] (GOV.UK 2015), heat pumps are becoming more 

financially attractive to industry. 

3.5.14 Waste Heat Recovery Boilers 

Waste heat boilers are the traditional water tube boilers. Hot exhaust gases pass over a 

number of parallel tubes containing water. The water is vapourised in the tubes and 

collected in a steam drum from which it is drawn out for use as heating or processing 

steam.  As shown in Figure 35 as the flue gases are exhausted they pass over water tubes, 

boiling the water that is then evaporated to form steam from the steam drum. This is 

sometimes referred to as evaporative cooling. 

 

Figure 35 Section Through a WHR Boiler (USDoE 2008) 
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3.5.15 Developing technologies 

Particularly for lower grade waste heat recovery, newer technologies are developing and 

becoming more commercially viable. These include heat pumps, Organic Rankin Cycles, 

Kalina Cycles and Manchester Universities paper (Manchester University, 2010a) includes 

thermoelectric technologies which convert heat energy directly into electrical energy using 

a series of semiconductor thermocouples . 

3.6  ‘End Use’ 

The ‘End Use’ really means ‘what is going to be done with the recovered energy?’ For 

example one could calculate the heat quantity and quality from a waste heat stream, then 

find a technology to capture that waste heat and generate steam for example. For a 

successful project one needs to ensure that an ‘End Use’ is readily available or one needs to 

be provided. Selecting the optimum end use can be complex and requires knowledge of the 

process in question and potentially adjacent processes, thus utilising the energy close to 

source is optimum. Having to transfer the energy away to another process can be inefficient 

and expensive. The profile of the end use heat demand is also important. For example 

building heating is only used during the day and during the winter months. This needs to be 

understood thoroughly when the options and project costing are calculated.  

3.7 Barriers to WHR 

Holman (Holman 2011)summarises barriers for the implementation of WHR in United 

States [US] industry and  discusses the risks of the technological change to industrial 

processes, over running capital costs and variability of electricity market price as the main 

industrial barriers. Holman defines how government incentives, technological 

improvements and new business models can potentially improve the situation going 
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forward. Companies are becoming more able to arrange finance agreements, instead of 

having to find capital for the required investment, thus reducing risk through partnership 

with a potential electricity ‘buy back’ deal. This reduces the financial risk on industry from, 

over running capital and variability in electricity prices, but will still leave the technological 

risk of the WHR process negatively affecting the industrial process to be managed.  The 

BCS document (USDoE 2008) lists barriers in the US to the uptake of WHR projects 

highlighting resource, cost, risk, long payback, available technologies, inaccessibility, 

temperature and chemical constraints. 

 The International Finance Corporation [IFC] and the Institute for Productivity [IIP] (IFC 

and IIP 2014) explain the regulatory drivers introduced in China to promote the adoption of 

WHR in the Cement Industry. China’s ‘Energy Conservation Law of the Peoples Republic 

of China’, items 31 and 78, enforce energy efficiency and the Ministry of Industry and 

Information [MIIT] have introduced legislation that all new production lines will have to be 

equipped with low temperature waste heat to power technologies. Within Europe Forni et al 

(Forni et al. 2012) gives an overview of Italian industrial WHR opportunities. Italy is one 

of the only countries in Europe to incentivise the adoption of WHR technologies. Forni et 

al (Forni et al. 2012) discussed the cement, glass, oil&gas and steelmaking industries in 

particular the growing application of ORC for low grade WHR due to the governmental 

incentive. 

In the UK Norman (Norman 2013) identifies lack of information as well as the focus on 

Production, lack of staff time and short payback times as additional barriers. UK drivers are 

primarily to save money, reduce CO2 and reduce electricity dependence due to the UKs 
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potential future security of supply as described in Chapter 1. There are no government 

incentives in the UK despite extensive lobbying by industry. 

DECC (DECC 2013b) break down the barriers into Commercial, Delivery and Technical. 

DECC also list the UK regulatory measures to assist, as discussed in chapter 1, that is, the 

European Union Emissions Trading Scheme [EUETS],the Climate Change Levy 

[CCL],Climate Change Agreements [CCA],CRC and state the potential for the Renewable 

Heat Incentive [RHI] to incorporate industrial waste heat. 

Manchester University publication ‘Addressing the barriers to utilisation of low grade heat 

from the thermal process industries’ (Manchester University 2010a) describes the outcome 

of a project and workshop to understand the perceived barriers that business and industry 

see when trying to adopt WHR projects. The paper states that participants at the workshop 

prioritised the key barriers as lack of infrastructure, capital cost and location. 

Communication, awareness, the suitability of end users and technology were recurring 

themes. Figure 36 shows the outcome of the project, that is, a map grouping and showing 

the perceived barriers. This is done in an attempt to help develop a future work program to 

assess these barriers and help promote the uptake of WHR projects in Business and 

Industry. 
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Figure 36: Mapping of Barrier Linkages (Manchester University 2010b) 

 

3.7 Heat Recovery in the steel industry 

Waste Heat Recovery in the Steel Industry is not new. The book ‘The effect of the various 

steelmaking processes on the energy balances of integrated iron- and steelworks ‘ (Group 

1961)published back in 1961 includes sankey diagrams of the steel making processes. 

Waste heat is clearly identified and technologies for its recovery are discussed.  As 

discussed in Chapter 1 section 6, in publications such as ‘Energy use in the steel industry’ 

(IISI 1998)and ‘Future technologies for energy efficient iron and steel making’(deBeer  et 

al. 1998), WHR is highlighted as key to any energy reduction plan for a modern steelworks. 

As previously shown in figure 1.14 five of the top fourteen energy reduction technologies 

are WHR. Mckenna (McKenna 2009a) calculated the potential for WHR within differing 
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industrial sectors of the UK and as shown in Figure 37, the Steel Industry has the largest 

potential in the UK. The steel industry was identified as the largest user of heat with a heat 

load of approximately 213 PJ, but also has the highest potential for WHR. Clearly 

identifying the opportunity for the industry to potentially reduce its energy import and 

explore.  

 

Figure 37: Energy use for heat [heat load] and estimated recovery potentials for 

industrial sectors (McKenna 2009a) 

As discussed by DECC, there are many potential sources of waste heat for UK industry to 

exploit (Energy 2014b, a). Figure 38 shows how the Element Energy changes the graph of 

potential WHR for differing industries. Considering a factor for economic payback 

significantly changes the output and is a reminder that theoretical potential is only part of 

the picture. This also implies that WHR projects for the steel industry have longer paybacks 

and thus more difficult to build a business case.   
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Figure 38: Economic Potential of UK WHR potential (Energy 2014a) 

Newcastle University (Newcastle University) has developed energy diagrams for the 

steelmaking process. Figure  39 shows an example diagram for the BOS process with the 

waste heat streams identified and quantified. The energy [MW] available from the various 

sources is shown. It should be said though that the energy available from the BOS exhaust 

gas is too low for any viable recovery. As defined by Kasalo (Kasalo 2010) in BOS gas 

WHR, the energy available from the hot waste exhaust is around the 100MW, however 

there are differences in how this value was there are differences in how this value derived. 

If a BOS plant off [exhaust] gas system is currently cooled by water via a cooling tower. 

The analysis of the heat energy contained by either considering the 35 
°
C rise in cooling 

water temperature or by taking a step back and analyse the heat energy contained in the 

1700 
°
C off-gas stream.  This temperature difference obviously presents a contrasting 

picture for the exergy value of the waste heat stream, but it also affects the available 

technology and the choice of the optimum ‘end-use’. That’s why it’s imperative that the 

full process is understood in detail to ensure that the full potential gain is identified.   The 

key factors of ‘Quantity’, ‘Technology’ and ‘End Use’ for the steel industry will be 

identified.  
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Figure  39 Steel Industry Waste Heat Schematic (Newcastle University)  

 

3.8 Quantity 

As shown in Figure 40 the steel industry has relatively large potential for WHR.  Zhang et 

al (Zhang et al. 2013b) graphically present the higher grade waste heat sources as 

highlighted in Figure 40 and shows that the majority of waste heat is emitted from the 

product itself. This will be from the molten iron as it is transported to the BOS plant, the 

liquid steel as it is transported to the Continuous casting plant [concast], the hot slab as it is 

transported to the hot mill and the hot rolled coil as its waiting for cold rolling. The other 

large possibilities are waste heat from the slags discharged from the Blast Furnace and BOS 
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plant operations. These are significant quantities of waste heat, but there are no examples of 

its full scale industrialised WHR. The waste gas segment, representing 10% in Figure 40, is 

where most of the current WHR technology is aimed. Figure 40 is for high grade waste heat 

and does not included low grade waste heat which is covered later in this chapter.  

 

Figure 40 High Grade Waste Heat Availability (Zhang et al. 2013b) 

Table 1 shows examples of the WHR potential in the steel industry (Energy 2014b). As can 

been seen WHR from slag, steel and waste gases is listed and its potential calculated in 

terms of kwh/Tonne and temperature.  It should be noted that the Sinter Plant was omitted 

from the analysis by the authors (Energy 2014).As will be defined later in the chapter the 

Sinter plant is a major WHR source. The table suggests that up to 8.46GJ/T of WHR can be 

achieved. Allwood and Cullen (Allwood and Cullen 2012) quantify the amount of waste 

heat globally emitted from the steel industry as shown in Figure 41, as shown typically 4EJ 

of recoverable exergy has been identified. The figure shows a 40 EJ input to the process 

and the division of Exergy to produce the end product. What is clear is that 7 EJ is retained 

in the product itself, with 4 EJ able to be recovered and 29 EJ lost. That is 10% of the input 

Exergy can be regarded as recoverable. Thus for a global steel make of 1,572MTPA (WSA 

2014) this equates to a potential specific energy reduction of 2.5GJ/T. The figure 
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demonstrates the large amount of recoverable energy from Coke Making, Steel Making and 

Hot Rolling and as highlighted in Table 1, only identifies the higher temperature waste heat 

sources. 

 

Table 1: Example Steel Industry WHR Potentials (Energy 2014a) 

Heat Heat supply Temp

Source Kwh/T Degrees C

Coke Ovens Sensible Heat in the Coke Ovens Gas 82 980

Coke Ovens Exhaust gas from combustion of CO gas Gas 58 200

Coke Ovens Heat Recovery from solid radiant coke Solid 62 800

Blast Furnaces Sensible heat in the blast furnace Gas 28 100

Blast Furnaces Exhaust gas from blast stoves Gas 82 250

Blast Furnaces heat recovery from slag Solid 100 1300

BOS Heat recovery from BOS gas Gas 141 1700

BOS Heat recovery from BOS slag Solid 6 1500

EAF Electric Arc Furnace Gas 44 1200

Casters Heat Recovery from hot slab Solid 352 1600

Hot Rolling Heat recovery from coil Solid 1395 400

Total 2,350 KWh/Tonne

8.46 GJ/Tonne
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Figure 41:  Global Exergy flow for Steel  (Allwood and Cullen 2012) 

Table 2 shows the lower grade waste heat potentials, as calculated by Newcastle University 

(Newcastle University). The table tabulates the sources by location, type, quantity and 

energy value. Totalising the energy values for both gas and water streams gives 31.59 MW 

or about 1 PJ/Year. For example, a steel works producing 4.5 Million Tonnes Per Annum 
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[MTPA] year of steel, the low grade waste heat potential equates to approximately 

0.22GJ/T. 

Table 2: Low Grade WHR Potentials (Newcastle University) 

Location Type 
Tout  
°C 

Quantity 
Kg/s 

Energy 
MW 

Cold Mill Leveller Streatch leveller extration fume 30 12 0.002 

Cold Mill and Pickle line Extraction Gas 40 22 0.014 

BOS Primary Hot metal pouring fume 50 60 0.088 

BOS Secondary fume 50 86 0.125 

BOS Primary BOS gas 70 32 0.125 

BOS Primary Hot metal pouring fume 40 191 0.126 

BF a flare BF gas 200 3 0.148 

BOS Primary Desulphurisation gas 150 10 0.229 

Cast House N fume 50 185 0.27 

Cast House S fume 50 185 0.27 

Sinter Dedust sinter gas 50 245 0.36 

BF b flare BF gas 200 10 0.443 

End of Sinter Strand sinter gas 180 36 0.734 

Ammonia incinerator NH3 combustion gas 210 10.75 0.827 

Coke Oven Gas underfiring mixture of BF and CO gas 220 100 5.128 

Main stack sinter gas 130 388 6.666 

Power Plant Bleed off water vapour       

Sinter breaker bar Cooling Water 50 9 0.016 

BF gas wash Cooling Water 41 257 0.311 

Hot Mill Reheat B Cooling Water 38 233 0.337 

Hot Mill Reheat A Cooling Water 38 218 0.353 

BF a gas wash Cooling Water 35 307 0.466 

Caster 3 Cooling Water 40 200 0.535 

Hot Mill run out table Cooling/quench water 35 444 0.599 

Caster 3 Cooling Water 33 542 0.62 

BF a open cooling Cooling Water 35 665 0.651 

copperwork BFb Cooling Water 40 1405 0.701 

Tuyere (bfb) Cooling Water 37 417 0.81 

BOS Primary Cooling Water 35 565 0.824 

open cooling BF b Cooling Water 36 511 0.882 

Caster 1 Cooling Water 42 316 1.019 

Caster 2 Cooling Water 40 486 1.296 

Caster 1 Cooling Water 40 495 1.32 

Caster 2 Cooling Water 40 497 1.32 

Coke Oven Main recirculating cooling water 40 556 1.518 

Hot Mill dirty water return 35 1827 2.457 

   
Total =  31.59 

     Patsos in his paper (Patsos 2012), states that a single typical UK based integrated steel plant 

releases approximately 30-35PJ/y of waste heat to the environment in either gaseous, liquid 

or product form [excluding losses from structures or buildings]. As shown in Table 3 

(Patsos and Mullan 2011) a total of 8.68GJ/tonne in available energy and 1.69GJ/T of 
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Exergy. This difference in relative magnitude is partially explained by the relatively large 

quantity of low grade waste heat available from the steel works. The study (Patsos 2012) 

showed that heat losses from cooling water around an integrated steelworks can exceed 4.5 

GJ/T, whereas waste heat from combustion stacks can exceed 1.5 GJ/T. This highlights 

areas of high-grade waste heat which include coke heat losses at 1.4 GJ/t coke and Blast 

Furnace and BOS plant slag where heat losses account for 1.4 GJ/t and 2.0 GJ/t of slag 

respectively. 

Table 3: Energy and Exergy Potentials (Patsos and Mullan 2011) 

 

Due to the variability of steel works configurations globally it is understandable that there 

are considerable variation in the quantities of WHR potential available. However Patsos 

and Mullan’s work (Patsos 2012) was based on a case study of a UK steel works and thus 

most representative. However, for the BOS plant, the study has identified the cooling water 

rather than waste off-gas for the BOS plant available exergy value. The off gas is circa 

1500
O
C and therefore would in fact have a significantly higher Exergy value thus 

demonstrating the importance of understanding the whole waste heat energy stream and not 

just focussing on the end product of the waste heat stream which is predominately the 

cooling tower. It is important to track the waste heat stream back to its source and asses if 

the exergy can be extracted at a higher temperature.   
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3.9 Technology 

For available technologies to capture the waste heat highlighted in Table 1 and Table 2 then 

one needs to refer to the standard sources for the industry called the Best Available 

Techniques [BAT] Reference Document for Iron and Steel Production, known as the BREF 

document,  (EC 2013b) and the (EPA 2012) as well as that indicated in Chapter 1, 

section1.6,  Figure 14 (EC 2012). These sources discuss and suggest WHR technologies for 

the iron and steel industry. Examples are provided for actual installations and the expected 

energy benefits stated. 

Analysing some of the main steel industry equipment suppliers it is possible to see what 

‘off the shelf’ technologies are available. For example, Figure 42 shows a presentation slide 

by Siemens VAI Metals Technologies GmbH (GmbH 2014) clearly showing their 

technologies available for WHR. The figure highlights technologies available for various 

parts of an example Integrated steel works. Oschatz GmbH, another supplier, highlights an 

example for a BOS plant (Oschatz 2012) and Kasalo in his paper (Kasalo 2010) describes 

BOS plant gas cooling options. The economics of selecting the WHR option called an 

Evaporative Cooling system is discussed by Kasalo (Kasalo 2010) who introduces the 

technology and states that it utilises the thermal energy present in the off-gas to create 

volumes of steam for export . Other suppliers also make bespoke WHR equipment 

specifically for the iron and steel making process. Other technologies can be employed, as 

summarised in section 3.3.b, that are not bespoke but can be engineering to recover waste 

heat from various streams for example existing waste gas stacks. 
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Figure 42 Example WHR Installations (GmbH 2014) 

Referring back to Figure 40, which shows that there is potential for WHR from both the 

product and the by-product slag, WHR is not commonly practiced due to the inherent 

difficulty. WHR from Blast Furnace and BOS Slag does not yet have a fully commercially 

available technology. As discussed by Zhang  (Zhang et al. 2013b) heat recovery from slag 

has been attempted since the early 1970’s. Several options and technologies exist but have 

not been successfully implemented due to slag consistency and high energy running costs. 

Due to the inability to successfully install a slag WHR unit, laboratory experiments have 

been undertaken to produce hydrogen utilising the heat from the hot slag (Purwanto 2006). 

WHR from the product is also an area not commonly applied. The focus has been on 

limiting heat loss from the product ensuring it retains its heat for the next process. For 
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example the use of lids for the transport of molten iron to the BOS plant. Another example 

is the so called ‘hot connect’ and storing the slabs in ‘hot boxes’ is then practiced between 

the continuous casters and the hot mill, however scheduling restraints severely limit 

effectiveness of this practice. Again there are no commercially available options for 

utilising waste heat from the cast slabs, although there are some developments underway 

with manufacturers but as yet no commercially available (Siemens GmbH 2014). It is then 

common practice for steel works to quench coils prior to cold rolling. All the energy from 

the hot rolled coil is then transferred into the cooling water which is vented to atmosphere 

via a cooling tower. This process downgrades energy from hot coil at 200 
°
C to low grade 

waste heat within the cooling water.   

WHR from gas streams is where the majority of the technology exists. As shown in Figure 

42 technologies are available for waste gas streams from the Coke Ovens, Sinter Cooler, 

BOS Gas and the Hot Mill reheat furnace. 

3.10  ‘End Use’ 

The optimum end use for the recovered energy differs for each steelworks depending on 

where they are in their waste heat recovery maturity. Some will have spare capacity in there 

steam system or not have preheated combustion air and therefore an easy ‘end use’ can be 

identified. For others the end use will need to be explored and developed. Technical 

assessments and an options analyses will need to be conducted. 

 The BREF (EC 2013b)  identifies that using waste heat for steam generation, combustion 

air preheating and district heating. Figure 43 shows how a steel works steam system is used 

to collect steam from WHR units at the Coke Ovens, the BOS plant, the HSM and the 

annealing line for example. The steam is then utilised at various points from around the 
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works and is supplemented with steam from the Power Plant. Figure 43 also shows that 

technologies are available for capturing the waste heat and an ‘end use’ is shown for the 

steam generated. 

 

 

Figure 43 Example Steam System Sankey Diagram (EC 2013b) 

 

The optimum ‘end use’ for the steel industry is very dependent on the particular steel works 

in question. Referring to Figure 43, it is clear to see example ‘end uses’ for any steam 

generated by WHR.  As an example, the European Communities BREF notes for ferrous 

processing describes  a WHR boiler on a Hot Strip Mill reheat furnace (EC 2001). Exhaust 

furnace gases are first used to preheat combustion air and then for steam generation. This is 

only suitable if the steel works has a use for the steam. Medium Grade Waste heat can then 
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be used to generate hot water that can then be used for process heating that will displace 

steam. The surplus steam can then be used to generate electricity.  

Lower grade waste heat can then be used for on-site or off-site district heating networks as 

described by DECC (DECC 2013b) the heat network in Dunkirk, France, was built in 1985 

and delivers nearly 140,000 MWh a year to customers through a 40km distribution network 

that covers a large portion of the Dunkirk urban community. The network is supplied 

primarily by recovered heat from a local steel works. The newer technologies listed in 

section 3.3.b will transform industries attitudes the low grade waste heat. Over time the 

viability of technologies such as heat pumps and ORC units will become more attractive 

and will alter the optimum ‘end use’ of low grade waste heat.  

3.11 Waste Heat Recovery Opportunities at the Case Study Steel works [CSSW] 

As stated in Chapter 1, it is reasonable to deduce that the UK failed to invest in WHR over 

many decades due to decreasing energy prices. Other countries, where energy was not 

historically so cheap, continued to invest in all forms of energy efficiency, including WHR. 

Historically, the UK steel industry has not therefore had to develop a WHR strategy or 

policy and its application is all but non-existent. 

There were no WHR technologies employed at the case study works it was imperative that 

a strategy was developed and the opportunity for recovery maximised. Each waste heat 

source therefore needs to be investigated and options explored for its optimum ‘end use’. 

Thus the UK steel industry has a potential advantage over its competitors. Due to the fact 

that WHR has not been employed, the industry has a completely clean sheet for the 

application of new modern technology. By mapping out the waste heat sources it is possible 

to develop an action plan and thus a WHR strategy can be developed.  
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As discussed in Chapter 2 the case study works is an integrated steel works using the BF 

and BOS route for steel production. As discussed in section 3.3.1, Patsos and Mullan 

(Patsos and Mullan 2011) mapped the CSSW as part of the before mentioned Energy 

Optimisation drive. The study highlighted a potential reduction of around 6GJ/Tonne of 

product. This section reviews the various areas of the case study works and using the 

referenced document suggests a) suitable technology, b) possible amount of expenditure 

and c) states the potential energy gain.  Table 4, (McKenna 2009a),  highlights the 

production figures for the case study works. Potential WHR for the case study site can be 

identified as follows. 

Table 4 : Case Study Works Production Capabilities (McKenna 2009a) 

 

3.12.1 Coke Ovens  

The Coke Ovens [CO] for the case study site employs wet coke quenching. This can be 

replaced by a nitrogen based system called Dry Coke Quenching [DCQ] (Hasanbeigi 2013) 

Nitrogen is blast over the hot coke to remove the thermal energy. The hot nitrogen then 

passes through a bank of heat exchangers to generate steam in a waste heat boiler. 

According to the EPA (EPA 2012) the recovery rate is 0.55 GJ/tonne coke, however the 

projects are very capital intensive [typically over £100M] and the payback time estimated 

at 36 years. For the CSSW coke production is 0.97 Million Tonnes per annum so the 

projected energy savings is 533,500GJ @4.9MTPA of steel make i.e. 0.11 GJ per tonne of 

liquid steel which equates to a net benefit of £7M per year. Figure 44 shows a typical 
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overview of a DCQ system. The coke is lifted up and then dropped down through a 

chamber with counter flowing cooling gases [typically Nitrogen]. The hot gases then pass 

through a boiler arrangement where the heat is exchanged to generate steam. The cooled 

gases then pass through the hot coke again to restart the heating cycle. Due to an 

installation cost of approximately £100m and a benefit of only £7m the payback is too long 

for consideration at the case study works. There are a few examples of operating plants 

around the world including the case study works sister plant in Jamshedpur.  

 

Figure 44: Example Dry Coke Quenching (Centre 2015) 

The Coke Ovens process contains other areas of waste heat that could be exploited, for 

example the hot Coke Oven Gas is cooled prior to treatment in a bi-products plant and thus 

the potential for WHR technically exists but because of the corrosive nature of the gas this 

is not utilised. The case study works is exploring modifications to the Coke Oven by-

products plant which will potentially change the steam balance. At the time of writing this 

thesis the available technologies were being researched by CSSW and no early indications 

were available. Table 5 highlights the potential benefits referenced from the BREF (EC 

2013b) document. 

 



 

 

82 

 

Table 5: Potential Benefits of DCQ 

  

Estimated 

Cost / £M 

Steam Make 

/ tph 

Electrical 

benefit / MWe 

Electrical 

benefit / 

£M 

GJ/TCS 

benefit 

Tonnes CO2 

benefit 

100 70 12.6 7 0.11 51200 

 

3.12.2 Sinter Plant  

As described in the BREF notes (EC 2013b) heat recovered from the sinter plant can be 

used to preheat the combustion air for the burners and to produce high-pressure steam. The 

EPA (EPA 2012) also state that steam generation with sinter cooler gases using a waste 

heat boiler is common in Japan and was reported to recover 0.25 GJ/tonne sinter. For the 

CSSW sinter production is 4.75MTPA, thus the projected energy savings is 1,175,000GJ 

[@4.9MTPA of steel make] i.e. 0.24 GJ/T of steel manufactured. Figure 45shows a 

diagrammatic view of the sintering process. As can be seen the final part of the process is 

sinter cooling. The sinter is cooled from around 600
o
C to 100

o
C before it is transported to 

the Blast Furnace stock area via conveyor belt. The process a simple air blast cooling with 

all the resultant hot air simply being emitted to atmosphere. Typical air flows are 

400,000Nm3/h at a temperature of 380
o
C. 
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Figure 45: Sinter Bed and Cooler WHR (Liu et al. 2014) 

The sinter plant of the CSSW sister plant in the Netherlands has a WHR boiler 

arrangement. A canopy and ductwork arrangement is fitted on top of the sinter cooler and 

the hot air is ducted to the boiler arrangement shown in Figure 46. The photograph shows 

the scale of the equipment installed downstream of the sinter cooler itself. The boiler 

arrangement uses Blast Furnace gas to supplement the energy from the waste heat to 

produce 44barg steam for which is then exported into the works high pressure steam 

distribution system. The case study works only has an 11barg distribution circuit so this is 

not a viable option. 
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Figure 46 Ijmuiden Sinter Plant WHR unit (Oschatz 2012) 

As discussed in the BREF document, and as shown in Figure 47, there are 3 main options 

for the sinter cooler:-  

a) No WHR 

b) WHR boiler above the sinter cooler 

c) WHR from the sinter bed exhaust gases plus the sinter cooler and the heat is used to 

preheat the combustion air for the burner and the sinter bed. This saves natural gas 

and coke consumption and enables steam generation. There are examples around the 

world such as SVAI in Linz. A site visit, arranged by Siemens, demonstrated the 

size and complexities of this type of system. A representative from the CSSW 

concluded that the system was physically too large for the Sinter plant at the case 

study works. Significant structural modifications would be required to facilitate the 

additional ducting required for this technique. 

As option a) had no WHR unit and c) was rejected by the CSSW the author therefore 

explored option b) further.  
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Figure 47 Example WHR potential for Sinter Plants (EC 2013) 

 

3.12.3 Blast Furnace Stoves 

As defined by the EPA (EPA 2012)The hot-blast stove flue gases can be used to preheat the 

combustion air of the blast furnace. Preheating can lead to an energy saving of 

approximately 0.35 GJ/tonne of steel. For the CSSW, iron production is 4.37million tonnes 

per annum, so the projected energy savings is 1,529,500 GJ or 0.3 GJ/T of steel. 

The technology uses heat pipes inserted into the hot waste gas stream that transfers the 

energy to the cold gas and combustion air streams. Figure 48 shows an example installation 

demonstrating the size of the heat exchangers required to cope with such an energy 

exchange. 
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Figure 48 Example Stoves Waste Heat Recovery Unit. (Paul Wurth 2015)  

The 0.35GJ/Tonne for both Blast Furnace stoves will equate to potential gas savings of 

around £5m per annum. This option gives a return of investment of around 3 years 

providing the CSSW has a use for the gas that is saved. If the saved gas is just flared then 

the financial benefits will be zero. The case study works currently enriches the Blast 

Furnaces gas with Natural gas but in order to reduce the cost of imported Natural Gas the 

works is exploring replacing the Natural Gas with BOS gas. Therefore any gas savings 

brought about by WHR would be flared reducing the financial benefits significantly. The 

case study works is exploring an extension to the existing power plant (Tata 2013) in order 

to generate electricity from the gas that is currently flared. This would then provide the 

financial benefit that would be required for the project to be authorised. Table 6 

summarises the option assuming the case study works has a consumer for the saved gas.  
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Table 6 Projected Benefits of BF Stove WHR 

Estimated 

Cost / £M 

Steam Make 

/ tph 

Electrical 

benefit / MWe 

Gas 

Benefit / 

£M 

GJ/TCS 

benefit 

Tonnes CO2 

benefit 

14 - - 5 0.35 78,365 

 

 

3.12.4 Blast Furnace and BOS Slag Heat Recovery 

As defined by the EPA (EPA 2012) and discussed by  Zhang et al (Zhang et al. 2013a) a 

modern blast furnace produces around 0.23 to 0.27 tonnes of liquid slag, at a temperature of 

approximately 1,450 °C, per tonne of iron. None of the current slag heat recovery systems 

have been applied commercially because of the technical difficulties in developing a safe, 

reliable, and energy efficient system.  The estimated savings would be approximately 0.35 

GJ/tonne of  iron. For the CSSW the projected energy savings is 1,529,500 GJ 

[@4.9MTPA of steel make] i.e. 0.3 GJ/Tonne. 

3.12.5 BOS Plant 

As discussed by Kasalo (Kasalo 2010) it is possible to recover the heat energy from the 

BOS plant’s off- gas and BOS Gas, before the gas is collected in a gas holder. The CSSW 

has what Kasalo describes as an ‘open’ cooling circuit and is in need of essential 

replacement because of excessive corrosion problems. The off-gas system was replaced in 

1997 and in 2011 was well beyond its expected life cycle. The plant experiences 

considerable engineering delays due to excessive corrosion of the internal pipe work. The 

case study works had been exploring the replacement of the open circuit with what Kasalo 

(Kasalo 2010) refers to as a ‘closed cooling system’. This system enables a much tighter 

water chemistry control and thus considerably reduces the corrosion of the pipe work 
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system. The case study works was not, at that time, 2011, exploring the third option which 

Kasalo (Kasalo 2010) refers to as the ‘Evaporative Cooling System’. The case study works 

did not have a WHR strategy and therefore the option was not being explored.   

The EPA (EPA 2012) state that the Energy savings range from 0.53 to 0.92 GJ/tonne and 

the payback period is estimated to be 12 years. This long payback period would not 

therefore be attractive to Industry.  

There is another option for the BOS plant utilising newer technology. A Japanese 

(Engineering 2014) steel works used the Kalina cycle to generate steam from the cooling 

water from a ‘closed cooling circuit’. This is calculated as being more efficient but the 

capital cost is significantly higher and the payback is much longer.(USDoE 2008). 

3.12.6 Continuous Casters  

Research has failed to identify a technological solution to waste heat recovery from the 

casters. Spirax Sarco give an example of an energy project for a  Caster (Sarco 2001) in 

which energy is used for preheating boiler feed water. The energy flows are identified by 

Newcastle University but it should be noted that they have omitted to quantify the steam 

waste stream (Newcastle University 2011). The university summates the waste heat 

available as around 60-90MW per caster i.e. 0.92 GJ/Tonne. Figure 49 shows the cross 

sectional view of a Continuous Casting machine [Concast]. As the liquid steel flows out of 

the ladles, into the tundish it starts to cool and form into a slab as it flows from the mold 

and into the cooling zones. Between the mold and the cooling zones water is sprayed onto 

the forming slab to cool its surface and thus accelerate solidification. Large quantities of the 

water is vaporised and emitted to atmosphere as water vapour and steam. It has not been 

possible to find any references for recovering the heat from this water vapour. The concast 
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machine itself is water cooled and the thermal energy is removed and emitted to 

atmosphere via a traditional cooling tower. It is potentially possible to use low grade waste 

heat technologies to utilise this waste heat for example heat pumps. The slabs as they roll 

out of the cooling section are still at around 800
o
C. Research has identified a couple of 

developing options namely Photovoltaics (Zafer Utlu 2013) for direct electrical generation 

and steam generation from a ‘slab cooler’ (Hemmling 2012). 

 

Figure 49: Caster Process Flow (EC 2013b) 

 

Figure 50 shows the SMS development of a ‘slab cooler’. Literally a large heat exchanger 

is placed above the exit of the concast machine. As the slab moves along the table the water 

is heated and vaporised in a steam drum. Although this technology looks to have promise it 

is still experimental and conflicts with other initiatives. The case study works practices 

what is known as ‘hot connect’ where it attempts to maintain the temperature of the slab to 
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limit reheating costs at the start of the hot mill. Only around 30% of slabs are successfully 

hot connected so the potential is available for WHR when the technology is developed. 

 

Figure 50 Conceptual Hot Slab WHR Unit SMS (Hemmling 2012) 

 

3.12.7 Hot Mill 

WHR from the reheat furnace waste gases at the CSSW is utilised for preheating the 

combustion air for the burners. There is further opportunity for heat recovery from the stack 

gases which are stated as being 25MWth [280,000Nm3/h at 250 
°
C] (Patsos 2011 ). The 

other sources of waste heat are primarily cooling water. An option practiced at other steel 

works, and is in fact employed at the case studies sister plant, is Evaporative Cooling of the 

furnace skids. This would entail the complete replacement of the skid system so will be 

capital intensive, require weeks of outage and thus only likely to be done as part of an 

essential replacement project. The case study works had been exploring the installation of 
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an additional furnace and so incorporation of an evaporative skid cooling system would be 

worth considering. This section therefore explores the possible steam generation from an 

evaporative skid cooling system should one of the furnaces need essential replacement or 

an additional furnace is to be installed. 

The EPA (EPA 2012) state that waste heat can be recovered from the Hot Strip Mill 

cooling water to produce low-pressure steam. The BREF document (EC 2001) provides an 

example where 0.17GJ/T is recovered. For the CSSW the hot rolled coil manufacture is 

3MTPA so the projected energy savings is 510,000GJ per year.  

With the advances in ORC technology, Tosçelik (DURMAZ 2012) installed an ORC unit 

instead of an Evaporative system to reduce the water requirement of the steam system. The 

plant must not have an ‘end use’ for all the steam produced therefore it was venting steam 

and therefore required considerable amounts of water to top up the system. The case study 

works, utilising the 11bar system and the new TA would have an end use for the steam so 

the additional expense of an ORC unit would have minimal financial benefit.  

Reining Heisskühlung overviews cooling systems including Evaporative cooling systems 

for Hot Strip Mills (Reining 2015).A traditional evaporative system is described in the 

BREF (EC 2013) document as shown in Figure 51. 
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Figure 51 HSM WHR Example  

The stated BREF (EC 2013) example lists EKO Stahl that produces 10-41 tph of steam at 

23 bar. The case study plants sister works also has an Evaporative cooling system on its 

Hot strip mill producing steam for export to the steam distribution circuit. 

As discussed the conversion from a water cooling system to an Evaporative cooling system 

is simply too disruptive for consideration. However, when the works decides it needs to 

overhaul a furnace or needs to add an additional furnace then this modelling work proves 

that the 11bar system can act as an end use for the energy recovered. 

 

Table 7: Potential Benefits of HSM WHR 

Estimated 

Cost / £M 

Steam Make 

/ tph 

Electrical 

benefit / MWe 

Electrical 

benefit / 

£M 

GJ/Tonne 

benefit 

Tonnes CO2 

benefit 

8 15 2.7 £1.4 0.17 94,000 
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3.12.8 Continuous Annealing Process Line [CAPL] 

The EPA (EPA 2012) stated that heat recovery can be accomplished by generating steam 

from recovered waste heat or by installing recuperative or regenerative burners in the 

annealing furnace. Information was obtained from CMI (CMI 2012) for the case study 

works which equated 0.02 GJ/Tonne of potential steam generation from the exhaust stack. 

The Continuous Annealing Process Line [CAPL] incorporates a radiant tube heating 

furnace to heat the steel strip temperature up from ambient to its annealing temperature of 

approximately 800 
°
C. This radiant tube furnace is Natural Gas fired and exhausts to 

atmosphere. The average flow rate of the hot waste gas is 50,000Nm3/h at 700 
°
C gives an 

available energy content of around 11MW thermal. The gas is diluted with ambient air to 

reduce the temperature down to 350
°
C to protect the induction fan.  

Data analysis of the exhaust temperature indicated that the temperature variability negated 

the possibility of generating 11bar steam. There would be considerable periods of time 

where the temperature was too low for 11barg superheated steam to be generated. It was 

identified that the local consumers of 11bar steam were actually being supplied by 3.5 bar 

steam through pressure reduction stations. These local consumers are processes within the 

CAPL line itself and the Cold Mill area of the plant as shown in Figure 52. The individual 

consumers are not metered and so this breakdown was calculated from heat and mass 

balances and also manual temperature readings. The two main supplies to CAPL and the 

Cold Mill area are metered so the sum of the consumption is known and is shown to be as 

high as 16tph in the winter but this drops to 8tph in the summer period when the bay and 

office heating units are turned off.  
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Figure 52 Mass Balance of the Cold Mill and CAPL steam consumers 

 

The consumers are all fed with 3.5 bar steam. It can therefore be derived that a WHR boiler 

could supply this 3.5bar steam instead of the steam being supplied directly off the 11bar 

circuit. This concept would therefore enable more 11bar steam to be used for electrical 

generation via the new TA thus providing a payback for the WHR boiler project. The 

installation of a WHR boiler would necessitate the removal of the dilution air system and 

would enable a heat exchange of around 4.8MW thermal generating a predicted average of 

5 tph of steam (CMI 2012l). Utilising data for plant flow rates and temperatures it is 

possible to predict the possible spread of steam make as shown in Figure 53. As can be 

seen the spread is very wide and so any ‘end use’ for the steam must have the necessary 

capability to cope. 
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Figure 53 Predicted steam make from the CAPL WHR Boiler 

Figure 54 shows the overall plant configuration indicating that the CAPL and Cold Mill 

areas both have local 3.5bar steam circuits both supplied by steam from the 11bar 

distribution circuit. The figure also shows how the WHR boiler would plug into the CAPL 

and Cold Mill circuits thus reducing the dependence on the 11bar circuit. 

 

Figure 54 Steam System layout for the CAPL and Cold Mill areas  
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3.12.9  Synopsis 

The above overview of WHR opportunities in the case study works is summarised 

in Table 8. The table shows blanks where technology is not yet readily available or used 

throughout Europe. This significantly reduces the achievable WHR projects for the case 

study works. The annual energy is stated as being 7.3PJ which equates to 1.49 GJ/T of high 

grade waste heat. This is considerably less than that suggested in Table 1,Table 2 andTable 

3, but as highlighted there is no technology available to exploit all the sources of waste 

heat. The table does not included low grade waste heat opportunities. 

Table 8: Case Study Works WHR potential 

    Heat Temp   MTPA PJ 

    Source 
Degrees 

°C GJ/T 
 

        PA 
Coke 
Ovens Sensible Heat in the Coke Ovens Gas 980 - - - 
Coke 
Ovens 

Exhaust gas from combustion of 
CO gas Gas 200 - - - 

Coke 
Ovens 

Heat Recovery from solid radiant 
coke Solid 800 - - - 

Blast 
Furnaces Exhaust gas from blast stoves Gas 250 0.300 4.4 1.311 

Blast 
Furnaces heat recovery from slag Solid 1300 - - - 

BOS Heat recovery from BOS gas Gas 1700 0.920 4.9 4.508 

BOS Heat recovery from BOS slag Solid 1500 - - - 

EAF Electric Arc Furnace Gas 1200 - - - 

Casters Heat Recovery from hot slab Solid 1600 - - - 
Hot 
Rolling Heat recovery from coil Solid 400 0.1 3.0 0.300 

CAPL Heat recovery from exhaust gas Gas 700 0.02 3.0 0.060 

Sinter 
Plant Heat Recovery from cooler Gas 400 0.240 4.8 1.140 
          Total PJ 7.319 

          
Total 
GJ/T 1.49 
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The potential for steam generation for using WHR boilers for the various works areas have 

been considered. The blast furnace stoves were not included in this study as the best use of 

the waste heat is preheating the combustion air for the stove burners.  

Analysing the possible use of steam generators, the predicted steam generation is shown as 

a bar chart highlighted in Figure 55. Referenced information for the following works areas 

provides information on predicted steam production from the high grade waste heat 

sources. All areas would utilise waste heat recovery boilers. For the sinter Plant, Siemens 

(Siemens 2014) identified typical values of 40TPH steam generation from a waste heat 

recovery boiler fitted above the sinter cooler system. For the BOS plant, Kasalo (Kasalo 

2010) describes the replacement of the BOS gas cooling system with a waste heat recovery 

boiler system. It was stated that a typical steam production for the CSSW was about 

40TPH. Similarly, for the hot strip mill [HSM] and the CAPL (CMI 2012) predicted steam 

generation of 15TPH for the HSM and 7TPH for the CAPL was identified. The cumulative 

impact is highlighted in Figure 55 and shows that around 102TPH could be generated from 

the high grade waste heat sources.  

 

Figure 55: Predicted Steam Make from the Case Study High Grade Waste Heat 

Sources 
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If this 102 TPH of steam was used for electrical generation, 0.18MWe per TPH of steam 

flow would generate 18.36MWe. An electricity supply price of £66/MWe would equate to 

an annual financial benefit of around £10 million. This is obviously of significant potential 

benefit to the case study works but of course the technology employed and ‘end use’ needs 

to be analysed before a full business case can be developed. 

Table 8 identified the low grade waste heat sources. As explained these heat sources can be 

used to create hot water that could then be used as a heating medium, replacing valuable 

steam. Low grade waste heat can also be used externally for a district heating system 

(Newcastle University 2011). This is discussed later in thesis, for now the focus is on 

finding the optimum ‘end use’ for the high grade waste heat sources. 

In a steel works with an existing steam distribution circuit where the steam is used for 

building and bay heating the ‘high grade’ waste heat boilers can then be classed as ‘steam 

generators’ and ‘lower grade’ waste heat sources can be classed as ‘steam savers’. This way 

lower grade waste heat projects can be employed to save steam and higher grade waste heat 

projects used to generate more valuable steam. It is therefore imperative that the steam 

system for the case study works is understood in detail. As potential high grade steam 

projects come on line the system would act as a carrier to bring additional supplies to 

electricity generation sites. Thus the system behaviour is crucial to ensure optimum 

conditions can be achieved. It is also important to understand the consumers of steam 

within the case study works to properly assess if the steam supplied to these consumers can 

be displaced with hot water from lower grade waste heat sources. Thus maximising steam 
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production for electricity generation, limiting load imports and thus adding to the goal of 

the CSSW being self-sufficient and reducing the impact of future security of supply issues. 

3.13 Summary 

The Chapter looks at WHR for the steel industry and in particular it examines the 

opportunity in each area of the CSSW thus fulfilling aim 2. The Chapter identifies over £10 

million per year in increased electrical generation from steam generated by high grade 

WHR boilers. The typical barriers that prevent industry investing in WHR are also 

highlighted defining that the many technical options presented when industry explores the 

optimum ‘Technology’ and ‘end-use’ for any such project.    

The CSSW has the advantage of the fact that, because WHR has not been employed, the 

works has in effect a ‘clean sheet’ for the application of new technologies. By mapping out 

the waste heat sources it is possible to develop a plan and a strategy. However, to define the 

optimum ‘end use’ it is clear that the steam distribution system for the CSSW needs to be 

understood in detail. The next chapter describes the steam distribution circuit for the case 

study works and explores the use of the system for a potential WHR project. 

 

 

  



 

 

100 

 

4 Steam distribution 

4.1 Introduction 

This Chapter overviews steam distribution systems, describes and analyses the distribution 

system at the CSSW. The potential steam generation from the installation of Waste Heat 

Recovery [WHR] boiler at the Basic Oxygen Steelmaking [BOS] plant is explored and 

modelled. An analysis of the case study plant highlights an extremely complex steam 

distribution and that a fluid flow model is required for circuit to ensure that it is in fact 

capable of accepting steam from the potential WHR boilers. The chapter also highlights 

how this study is used to develop a potential WHR strategy for the case study works. 

4.2 Steam and Steam Distribution 

In 1947 Lyle (Lyle 1947) published “The Efficient use of Steam”, this then became known 

as the ‘bible’ for Engineers. He started his introduction by stating that “steam is industry’s 

most wonderful, flexible, adaptable tool”. Then in 2009  the European Commission’s Best 

Available Technique Reference document [BREF] on Energy Efficiency (EC 2013b) states 

that steam, due to is low toxicity, is an energy source that is a safe, transportable, highly 

efficient, with high heat capacity and relatively low cost. Steam holds a significant amount 

of energy per unit mass that can be extracted as mechanical work though a turbine or as 

heat energy for process use. Since most of the heat content of steam is stored as latent heat, 

large quantities can be transferred efficiently at a constant temperature which is a useful 

attribute in many process heating applications. Modern techniques for utilising and 

optimising steam have been developed  and has many applications in both industry and 

service sector such as hospitals.  More heat energy is contained within high temperature 

steam so its potential to do work is greater. The increasing use of combined heat and power 
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[CHP] systems demonstrates the high regard for steam in today’s environmental and 

energy-conscious industries.  

As defined by the BREF for the Iron and Steel sectors (EC 2013b), steam is an ideal energy 

transporter for this industry. The industry generates significant quantities of indigenous 

waste gases that can be efficiently combusted in traditional boilers to generate high 

pressure steam. Furthermore, the sector also requires vast amounts of electricity to drive its 

processes. Using these gases to generate steam and electricity was therefore an obvious 

evolutionary step. Many processes also require local mechanical work, vacuum generation, 

as well as a heat source, thus using this source provided an opportunity for sites to service 

some of the important process needs. 

As highlighted by Spirax Sarco  ‘The steam and condensate loop’, steam has come a long 

way since the Industrial Revolution. Steam is an essential part of modern life and around 

70% of electricity is generated using steam and  is also essential for food processing, 

textile, chemical, medical, power, heating and transport industries. Steam provides a means 

of transporting controllable amounts of energy from a central automated boiler house. It can 

be efficiently and economically generated and efficiently transported to the end point of 

use.  

Figure 56 shows a typical steel works steam system (EC 2013b), the BREF notes (EC 

2013) also explains that a steam distribution system is very common in steel works around 

the world. The figure shows how the steam system flows all around the works and connects 

steam generators and steam consumers together.  Steam from WHR units at the BOS plant, 

the hot rolling mill, the Coke Ovens and the Annealing line are shown as well as an export 

from the Power Plant. It also highlights the complex nature of use verses generation. In 



 

 

102 

 

reality the distribution system is generally more complex than that shown in Figure 56due 

to the historical development of the steel plants in the world. 
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Figure 56:  Example Steam Distribution System (EC 2013b) 
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4.3 Steam distribution circuit at the CSSW 

The steam distribution system at the CSSW is exported from the Power Plant and the 

Service boilers at 11barg and is superheated to 280-320
o
C. The steam throughout the 

distribution circuit is classed as ‘superheated steam’. Temperature transducers at the 

extremity of the circuit show that the steam is still within the superheated region. Super 

heated steam is defined in Figure 57 which shows a typical Temperature/Enthalpy 

relationship for steam. As shown by the figure superheated steam on the furthest right hand 

side of the diagram and is dry and can therefore be treated as a gas (Sarco 2015). 

 

Figure 57: Steam Temperature Enthalpy Diagram (Sarco 2015) 

The distribution circuit reaches all parts of the steel works apart from the Sinter Plant. Thus 

the CSSW has a typical layout as described in the BREF, as shown in Figure 4.1, i.e. steam 

is generated by burning indigenous gases in traditional boilers. As a typical combined heat 

and power plant this steam is primarily used for electrical generation and also to drive large 
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air blowers for the Blast Furnace operation. As a point of interest, the CSSW was defined 

by Melo  (De Melo 1992) as the UK’s largest CHP system back in 1992. In fact reviewing 

the publication little has changed for the steam system at the case study works since the 

publication. As shown in Figure 58, some of this source is exported from the power plant at 

11barg super-heated steam at about 300°C and distributed to other works areas for use as 

motive power or thermal energy. Due to the sheer scale of the steelworks [approx. 4km by 

1.5km] this site also requires additional boilers known as the “Service Boilers”. The main 

objective for these boilers is to ensure the pressure and temperature of the steam is 

maintained at the extremities of the distribution system. These boilers again use indigenous 

generated fuels. The works is therefore using indigenous fuels for generating 11barg steam 

for the works areas. As shown in Figure 56,  a steelworks steam circuit being supplied by 

waste heat boilers as well as by an export from the Power Plant. This infers that waste heat 

can be utilised to generate the works steam rather than the indigenous gases. Using waste 

heat to generate the steam required by the site would thus release the indigenous fuels for 

other purposes i.e. further electrical generation or displacement of imported natural gas. 

For the case study works, the 11barg steam system was seen by the CSSW as an ‘old 

fashioned’ element of the works and had limited investment over many years in terms of 

both maintenance and /or process improvement. What made matters worse was the fact that 

electricity was generated from the pressure reduction down to 11 barg. So the more steam 

that was pressure reduced, the more electricity was generated. Thus the more leaks and 

inefficiencies there were in the steam system the more steam was pressure reduced and 

more electricity was generated. Hence, unfortunately, the less efficient this system was, the 

more electricity was generated. There were no financial drivers for an efficient steam 

system. The lack of investment was evident by the number of leaks and areas of missing 
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insulation. Questions were being asked about the future of the steam system and 

decentralisation seemed the way forward. The steam system was surveyed and studied and 

calculated losses of at least 6 tonnes per hour were recorded (Sarco 2012). It was 

recognised that this was wasting energy but again there was not the financial incentive for 

rectification or improvement. The steam mains cover virtually the whole area of the case 

study site and totalled over 20km in length. Even though the pipe work looked tired it was 

sound and was regularly inspected in accordance with the relevant pressure regulations. 

Large diameter steam distribution circuits are expensive to install and can cost well over a 

£1,000 per metre. The steam mains were, therefore a valuable asset to the works, but was 

underutilised, needed some investment but even more importantly was already in place 

ready to be used if required.  

 

Figure 58 Case Study Steel Works 11barg Steam Distribution System 
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There are many tools and techniques for improving the efficiency of steam distribution 

systems. The US Department of Energy (USDoE 2014) have developed a whole suite of 

tools for engineers to calculate and study efficiency improvements in their steam system. 

These tools namely the Steam System Modeller Tool, Steam System Scoping Tool and the 

Steam System Assessment Tool enable engineers to study a system and develop an energy 

improvement plan. In Europe the BREF notes for Energy Efficiency (EC 2009) includes 

steam system efficiency techniques. Another well respected tool in the best practice guide 

by Swagelok (Swagelok 2014) and most readily available is the Spirax Sarco publication 

on ‘Steam and the Condensate loop’. All of these publications make recommendations to 

ensure efficient steam generation, steam distribution and steam consumption by 

recommending steps to improve boiler efficiency, insulation techniques, steam condensate 

management and flash steam recycling.  

To understand the condition of the distribution circuit a thermal imaging survey of the 

whole circuit was undertaken. The study concluded that the insulation was in a relatively 

good working order. With steam temperatures of up to 320°C and an outer cladding 

temperature of less than 40°C, it was concluded that the insulation although scruffy, was 

doing its job. Figure 59 shows the locations used for the study. The bulleted numbers 

highlights the location of the thermal images that were taken. An example section of the 

steam mains is shown with some of the thermal images shown in Figure 60 and Figure 61. 

The ‘hot spots’ [i.e. the sections of missing insulation] can be clearly identified as the 

bright colour areas on the two figures. 
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Figure 59 : Section B Steam System Inspection Points  

 

Figure 60: Thermal Image taken at point 12 

 

                                        Figure 61: Thermal image from Point 16 
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Spirax Sarco were also invited to undertake an independent survey (Sarco 2012) the steam 

mains. Using ultrasonics and visual techniques the survey of the whole distribution circuit 

calculated that the system was losing 2 tph through leaks, 2 tph through failed steam traps 

and 1.5 tph from missing insulation. Figure 62 shows examples of the typical leaks 

identified in the surveys. Although the steam distribution mains were in reasonable 

condition there were several efficiency gains to be made in order to bring it up to what 

would be described as a good standard, for example a few failed steam traps and missing 

insulation. 

 

Figure 62 Examples of steam leaks from the distribution circuit 

 

4.4 Mass Balance analyses for the case study works 

A schematic of the metered and unmetered consumers are shown in Figure 63 which 

demonstrates the limited number of consumers that are metered. Many of the consumers are 

variable or even batch so it’s difficult to understand the total demand at any one time.  
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Figure 63 CSSW Steam Metering Schematic 

Historical data was obtained for the case study works and Figure 64 and Figure 65 were 

produced to show the total consumption. These figures show a maximum demand for the 

‘plant based’ consumers of around 160tph and the demand in the power plant is about 

65tph.  This suggests a maximum consumption was about 220tph.This was based on 

information built up historically on the consumers estimated consumption. Superheated 

steam is expensive to meter so the works has only invested in meters where it can be 

justified. In order to assist with this study the works installed two new meters that would 

help determine the North and South consumptions.  Figure 63 shows were the meters were 

installed [marked as ‘proposed meters’]. These meters confirmed the mass balance for the 

South end of the works and thus helped configure Figure 64 and Figure 65. The bars in 

‘green’ are metered, all others are not metered.  
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Figure 64 Distributed Steam Consumption for the case study works 

  

Figure 65 Power Plant 11bar steam consumption 
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In order to confirm this total consumption figure it was decided to plot 11bar generation 

and consumption at a higher level as shown schematically in Figure 66 . These higher level 

meters are known to be calibrated and more accurate, the figure shows 11bar steam from 

the ‘Service Boilers’, the ‘44/11 TA’ and the ‘High Lift Pump’ [HLP] as the inputs and the 

metered ‘major Power plant consumer’ and all other ‘consumers’ as outputs.  

 

Figure 66:  High level consumption calculation for 11bar steam 

Using this technique, Figure 4.11 was produced which shows a plot of 6 months of plant 

data. It was evident that the total consumption of 11bar steam ranges from 130 to 220tph 

and the most frequent value being around the 170tph level. It should be noted that the 

maximum correlates with that totalled by the analysis of the historical data as shown in 

Figure 64 and Figure 65. Thus the ‘bottom up’ analyses of consumers and the ‘top down’ 

analyses by ‘meter’ concurs and is in agreement providing some confidence in the analyses. 

The variability and the batch process of some of the consumers explains the range and due 

to the summer / winter effect when office and bay heating is turned on/off. 
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Consumers Major Consumer
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Figure 67 Histogram of high level 11bar metered consumption 

It is therefore clear from this analyses that the case study works consumes on average 170 

tph of steam and therefore, has the capacity to act as an effective ‘end use’ for any steam 

generated by waste heat recovery boilers. To further understand what the steam is used for 

at the case study works, Figure 68 shows a pie chart of the end consumers. This is a pie 

chart of the distributed steam only and not of the steam used within the power plant. As 

shown by the figure over 30% of the steam is used for process heating. Further analyses of 

this heating demand shows that these processes only require 90 
°
C maximum. The works is 

therefore using 11barg superheated steam at 300 
°
C for process heating up to 90 

°
C. This is 

not good practice as defined by Spirax Sarco . These processes would be better off being 

heating by hot water or a lower pressure/temperate steam supply. 
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Figure 68 Pie Chart of 11bar steam consumers by type of use 

To understand the whole steam system for the case study works Figure 69 was produced 

which shows a Sankey diagram of the whole steam system needs more words. It can be 

seen that the boilers are generating 127barg steam and 44bar steam. This steam is used 

internally and exported to the 11barg network. The figure also shows the service boilers 

‘topping up’ the 11bar steam to match demand and ensure sufficient pressure and 

temperature for the coke ovens as shown in Figure 69. The figure shows how complex the 

steam system is. The power plant at the case study works generates around 70MWe which 

is around 50% of its demand. The ability to increase on site generation not only introduces 

the possibility of monitory savings from reduced electrical imports but also the reduced 

risks of the possible industrial blackouts as previously described.     
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Figure 69 Case Study Works Steam System Schematic 

 

4.5 Possible WHR boilers at the case study works 

In chapter 3 the possibility of WHR for the case study works was discussed and identified. 

Referring to Figure 55, which shows the possible high grade WHR projects that could 

generate steam for the network and with the calculated total consumption of 11bar steam as 

shown in Figure 67, it’s possible to construct Figure 70. This Figure plots the total 

consumption of the case study site as the green bar on the left hand side and the amounts of 

steam generated by possible WHR boilers as red bars. It is therefore possible to deduce that 
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the works has a possible ‘end use’ for the steam generated. The steam generated by the 

WHR boilers could be enough to supply the works steam system and in fact supply more 

steam than the works consumes as shown by Figure 70. This extra steam could feasibly be 

fed back into the Power Plant for increased electrical generation. 

 

Figure 70 Potential Waste Heat Recovery Bridging Graph 

 

4.6 Loss of electrical generation 

The investigation then explored one of the biggest issues with the balance of the steam 

distribution circuit at the CSSW. The historical development of the case study plant has 

resulted in an excess of indigenous fuels, which is in some cases are continuously flared. 

Little investment had been made in the power plant resulting in a lack of capacity and an 

excess of low calorific blast furnace gas. As shown in Figure 71, 11barg steam is exported 

from the power plant via a pass-out turbine, thus the higher the demand from the works, the 

higher the electrical generation of the power plant. If waste heat was therefore used to 

generate steam for the site, then the power plant would export less steam and reduce its 

electrical generation. Waste heat projects would therefore have a negative payback. 
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Defining the optimum ‘end use’ would therefore necessitate a rethink of the case study 

steam system and power generating philosophy.

 

Figure 71 Case Study Works Steam Control Philosophy 

As mentioned in chapter 3 the case study works was starting to investigate a new off-gas 

cooling system for the BOS plant gas.  

4.7 BOS Plant WHR investigations 

The BOS plant area suffered from continued manufacturing delays from failures of the 

water-cooled off gas system. Figure 72 shows the ladle poring 280tonnes of molten iron 

into the BOS vessel. During the subsequent 20minute process, Oxygen is forced down a 

lance and into the vessel reacting with the iron and forming steel. This exothermic reaction 

generates 1500Nm3/h of carbon monoxide gas at 1700
o
C. This BOS gas then needs to be 

cooled before it can be cleaned and collected for further combustion in the Power Plant 

boilers.   
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Figure 72 Case Study Works BOS Plant Photo  

 

Figure 73 shows the BOS plant and off-gas cooling system and indicated that the 45MWth 

is cooled via a cooling tower. This off-gas system had been replaced in 1997 but was well 

beyond its designed lifecycle and thus needed to be replaced.  As discussed in Chapter 3 

there has been WHR technology available for the BOS plant for decades and therefore it 

can only be assumed that due to cheap energy prices and the lack of an obvious ‘end use’ 

the decision was made to opt for the least cost option of a simple ‘open cooling’ water 

system and not consider the option with heat recovery. Unfortunately, since 1997 the heat 

extracted from the cooling system was simply vented to atmosphere through a conventional 

cooling tower. 
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Figure 73 BOS Plant Off-Gas Ducting Cooling 

Research has identified the three options available for off-gas ductwork (Kasalo 2010). In 

principle these options are: 

1. Open cooling system. The off-gas ductwork is simply cooled with recirculated 

water directly from cooling towers. This option results in difficult water chemistry 

control and resultant corrosion issues. 

2. Closed cooling system. The cooling tower is separated from the ductwork with 

heat exchangers thus improving water chemistry control and reducing the risk of 

corrosion. 

3. Evaporative Cooling. Is essentially using the waste heat to generate steam from 

the cooling water in a boiler/steam drum assembly. This is the most expensive 

option but generates considerable quantities of steam.  
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For the case study works a ‘closed cooling’ [option 2] was being considered rather than an 

open cooling [option 1] for the replacement the off-gas system. This would improve the 

long term water chemistry control and thus extend the life cycle of the off-gas ductwork 

The third option of evaporative cooling was seen as technically challenging in terms of 

installation and as there was not an obvious ‘end use’ for the steam and so the financial 

benefits were undetermined. As stated earlier, any steam put into the steam distribution 

circuit would reduce the electrical generation of the power plant and thus have a negative 

impact financially 

As discussed by Kasalo (Kasalo 2010) with typical gas flows of 150,000Nm3/min and at 

temperatures of over 1500 °C for the case study plant it was possible to calculate that at 

least 23 tonnes of steam is generated per heat at 20-40 barg [depending on the hot metal 

quantity, oxygen blowing rate and combustion control]. Then depending on the number of 

heats per hour, steam accumulators can be employed to provide a steady steam export flow. 

For the CSSW this would average at 1.8 heats per hour so an expected steam export of an 

estimated 40 tonnes per hour. Also an ‘externally fired’ Superheater would also be 

required, since the steam distribution circuit requires superheated steam. The steam export 

from the waste heat boiler would be saturated. More importantly, as previously described, 

any additional steam fed into the steam mains would reduce the amount of steam supplied 

to the site by the power plant and thus reduce the amount of electricity generated. 

Therefore, exporting steam from the BOS plant into the existing steam distribution circuit, 

as per the BREF document would not make financial sense. Two options were therefore 

considered: 
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1. Fitting a saturated steam turbine alternator [TA] package directly off the BOS 

steam export line. This would generate a maximum of 5MWe 

2. Fitting a superheated steam turbine alternator [TA] by utilising some of the flared 

BF gas to superheat the steam from the WHR boiler. This would generate a 

maximum of 7.6MWe and in effect an extra 2.6MWe would be generated with 

18GJ [5MWTH] of free fuel. 

Both above generation options assume a steady state steam export from the BOS plant. To 

understand the actual steam export rate a model was developed based on minute-by-minute 

data from the previous year’s operation. The modelled year suffered a weak order book, but 

was never-the-less seen as what would typically be expected in further weak trading and 

should therefore be assessed as a worst case scenario. The model included a calculation of 

steam export based on BOS production rates, with an allowance for steam accumulation 

and a basic control philosophy was assumed. It then became clear that there would have 

been a considerable amount of the year with zero steam export and thus no electrical 

generation. Controlled steam ramp down and up would also have to be considered. The 

model predicted that BOS would not export steam up to several times a day, in fact in total 

of about 150,000 minutes or 100days a year could be lost due to intermittent steam export. 

Figure 74 shows the output of the modelled data and it can be seen that for the majority of 

the time the generation would be around 3.5MWe. The real concern was the time of zero 

generation. 
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Figure 74 Modelled electrical generation from BOS WHR boiler. 

Figure 75 shows the modelled steam generation from the BOS WHR system. The batch 

profile is clear to see and visually displays the need for steam accumulators. With a low 

production volume per week at the steel plant the number of steam batches generated per 

hour would be reduced so the time with zero export would increase.    

  

Figure 75 Modelled steam generation from the BOS WHR boiler 

Research identified that typical BOS steam export characteristics have been analysed and 

modelled by Gopalakrishnan et al (Gopalakrishnan et al.2007).  They defined the 

development of a model to improve the capture of steam from a United States BOS plant 

waste heat recovery boiler. This was defined based on typical steam make per blow and its 

interaction with the works steam system. It was stated that steam accumulators would be an 
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essential addition for recovery from the batch BOS plant operation. Atkins (Atkins 2011) 

explored and calculated the type and size of steam accumulator required for the case study 

works. The model was then built with an assumed ‘buffer’ from the steam accumulators to 

simulate a smoothed export. Even with the addition of steam accumulators the model 

showed there would be regular periods of zero steam export as shown in Figure 76. The 

figure shows the modelled Oxygen flow to the BOS plant with the resultant steam 

generation trend. The red line then shows the modelled steam export with accumulators 

fitted. Even with accumulators it can be seen that regular periods of zero steam export 

would be experienced. 

 

Figure 76 Modelled steam export from the BOS WHR boiler with accumulators 

Discussions with potential steam turbine suppliers raised real concerns over the lack of 

continuity of the supply of steam. Due to thermal stress issues turbines are not capable of 

coping with frequent periods of no steam. The only practical way of running a turbine 

would be to supplement the steam from the BOS plant with steam from another source. 

That way the turbine would always be supplied with a minimum amount of steam and 

would not be required to stop frequently. Hence, in theory the generation of electricity 

directly from the BOS steam was possible but in practice, due to the periods of no steam, 

TPH 
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was not plausible. The CSSW discounted this option because of concerns over variability 

and possible manning consequences of having to closely monitor a turbine at the BOS 

plant. This resulted in the necessity for the consideration of Option 3: Utilising steam from 

the local steam distribution circuit to supplement the BOS steam make. The project was 

then developed for a turbine mounted off the steam distribution circuit. The steam from the 

BOS plant would be pressure reduced and superheated before feeding into the turbine. 

Should the BOS plant stop making steam then steam would be drawn from the distribution 

circuit. The amount of electrical generation would drop to 7.2MWe but, due to the 

additional steam supply from this circuit and generation would be more consistent over the 

year. So the electrical generation would reduce from 7.6MWe to 7.2MWe, but the turbine 

would run more consistently and would not have stopped for the modelled 100days per 

year. This equates to an annual increase of 8000 MWh electricity. So a 0.4MWe loss of 

potential generation [or 3500MWh over a year] is justified when one considers an 

additional generation of 8,000MWh is gained by a more consistent operation. To put this 

into a financial context, for a 50 week year, at £68/MWh the 7.2MWe would be worth 

£4,100,000 per year. Even though this option does not technically maximise the use of the 

available energy it does maximise the annual output from the turbine. As the proposal 

developed it then became clear that the new turbine could also make use of spare steam 

capacities in the service boilers. The works also has excess gas and flares significant 

quantities during the year. The service boilers are run at a minimum output to ensure 

pressures are maintained to the South end of the works, but also maximise the supply from 

the power plant to ensure maximum electrical generation. By putting a new turbine off the 

steam distribution circuit this spare capacity could also be utilised to increase the steam 

make and maximise the financial benefit of the new turbine. 
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The service boilers had a spare capacity of over 20 tph. The model was then developed 

further to include an additional 20tph for the boilers that would in effect feed directly into 

the new turbine. This would increase generation to 10MWe, which with an average works 

generation of 70MWe, would provide a 14% increase in generation capacity of the power 

plant. This would require more Blast Furnace Gas [BFG] for the service boilers but for the 

case study works this is only a proportion of the gas flared and so is available for ‘free’. 

In principle the turbine would be kept running using a base load of steam from the 

distribution circuit and then topped up by steam from the BOS plant waste heat boiler. 

Figure 77 shows the modelled output of the BOS steam system with the addition of the 

excess steam from the service boilers. As can be seen the times of zero export have now 

dropped to zero, thus providing a much more suitable steam source for a steam turbine. 

 

Figure 77 Modelled electrical generation form BOS WHR boiler 

The ability then to generate steam from WHR boilers and discharge it into the steam 

distribution circuit and install a steam turbine off the steam mains starts to introduce other 

possible benefits: 
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 The steam export from the power plant could be increased – increasing generation 

 Flared gas could be used to further utilise the spare capacity in the Service Boilers 

 Distributed steam then becomes valuable and investments in its improvement can be 

financially justified. For example the 5.5tph of steam identified by Spirax Sarco, 

during their leaks and losses survey, as defined in section 4.2 would now be worth 

around £500,000 per year. 

 As discussed in Chapter 1 security of electrical supply is a potential issue for UK 

industry. Using WHR for electrical generation therefore reducing electrical import 

and thus reducing the risk of ‘black outs’ 

The author thus developed the steam control philosophy from what was shown in Figure 71 

to what is shown in Figure 78. The figure schematically demonstrates the potential new 

control philosophy of the steam distribution circuit. As can be seen Blast Furnace Gas 

[BFG] is diverted from the flare to take up spare capacity in the Service Boilers and also as 

a supplementary fuel for super heating the steam generated by the potential WHR boiler. 

The new TA is shown off the distribution circuit which is supplied with steam from the 
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Power Plant, the service boilers and the new WHR boilers. 

 

 

Figure 78 Proposed Steam Control Philosophy 

An additional potential benefit that then also becomes evident is the fact that, as shown in 

Figure 68, 30% of the distributed steam is used for bay, office and process heating. Low 

grade waste heat could be used to raise hot water and that can be used for Process, Bay and 

building heating instead, thus displacing the 11bar steam leaving it available for further 

electrical generation. This strategy will therefore provide a payback for low grade waste 

heat utilisation. With around 26tph of steam used for process and bay heating the potential 

savings from increased electrical generation would equate to 4.6MWe generation worth at 

least £1,000,000 per year. 

The new TA with a steam flow to electrical generation ratio of 0.18MWe per tph steam 

flow then allows one to review Figure 70 and convert the generated steam into potential 
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electrical generation. Then adding the potential 26tph as 4.6MWe, from the low grade 

waste heat, it is possible to create Figure 79. As shown it would be possible to generate in 

the order of 19MWe from WHR boilers and a further 4.6MWe from low grade WHR. The 

potential 23MWe would equate to a relatively large step change to the case studies on-site 

electrical generation. 

 

Figure 79 Potential Steam Generation from WHR Projects 

Figure 80 shows the relative gain for the case study works in terms of achieving its goal of 

electrical self-sufficiency. WHR projects are shown as helping to bridge the gap between 

where the works is now and where it needs to be for self-sufficiency. The works has 

calculated that through energy efficiency improvements it can potentially reduce its 

consumption by 30MWe and with a larger Power Plant increase its generation by 60MWe. 

The figure shows consumption of 200MWe which is the consumption of the case study 

works and its sister plant at Llanwern. WHR could therefore be key to the sustainability of 

the UK based steelworks and its sister plant.  
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Figure 80 Case Study Works Bridge to Electrical Self sufficiency 

4.8 The proposed WHR Strategy 

The strategy of installing a TA off the 11bar steam system and utilising WHR boiler to 

generate steam for electrical generation and low grade waste heat for process and bay 

heating could transform the energy balance of the works as simplified in Figure 81 and 

Figure 82. All the indigenous gases could therefore be used to displace Natural Gas imports 

for furnace heating and increase electrical generation in the power plant. Instead of the 

waste heat being emitted to the atmosphere it can then be utilised for bay and process 

heating and also be used for further electrical generation.  
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Figure 81: The AS-IS 

 

Figure 82 The Proposed Strategy for WHR Utilisation 

With a potential 23MWe of generation worth around £13mpa and reducing indirect Carbon 

emissions by 90,000 tonnes per year the proposed strategy definitely warranted further 

investigation. The proposed TA installation, off the 11bar steam system, not only provides 

a payback for high and medium grade WHR projects, but also starts to open up possible 

business cases for low grade WHR projects.  
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It should also be noted that at the time of writing this thesis the case study works has 

received planning permission for an extension to the existing power plant to nearly double 

its capability by increasing the average generation to 130MWe (Planning 2014).  

With the new strategy the 11bar steam distribution system starts to transform from what 

was seen as an old fashioned part of the works to now an essential tool for the sustainability 

of the steelworks. To ensure that this strategy is viable it would be prudent to model the 

system and simulate the addition of the WHR boilers. 

In order to model the system the pipe work, insulation, boilers and consumers for the whole 

of the steam distribution circuit would need to be surveyed and programmed into a fluid 

modelling software package. 

4.9 Summary 

This Chapter has described steam distribution at the CSSW and starts to satisfy Aim 3 of 

the thesis by making an initial understanding the impact of WHR projects on the CSSW. 

The system at the CSSW has been surveyed by  the author and by Spirax Sarco and 

although the system was found to be in a good condition several areas of improvement 

were identified and actioned for repair. A mass balance exercise for the CSSW resulted in 

the production of a Sankey Diagram and Pie Chart of main consumer types. The chapter 

explains how the steam system could provide an ‘end use’ for high, medium and low grade 

WHR projects. With potential benefits identified as being 23MWe, worth £13mpa and a 

carbon emissions reduction of 90,000tpa. It is concluded that to further understand and 

assess whether the steam circuit can be used to facilitate the addition of WHR boilers it is 

necessary to model the whole system. The application of a BOS Plant WHR boiler is 

modelled from a mass balance perspective and leads to the conclusion that the system 
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requires a full Thermodynamic and Fluid Mechanic model to understand the full pressure 

and temperature effect of the potential addition of WHR boilers on the steam system. The 

next chapter therefore describes the modelling of the steam distribution system. 
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5 Modelling the Steam Distribution Circuit 
 

 

5.1 Introduction 

This chapter describes the fluid model, developed as part of this research, of the steam 

distribution circuit for the case study works. Figure 83 maps out the process used to first 

assess the software, then develop and verify the model. The chapter includes the results 

from a comparison between manual calculations and predicted results of pressure drop and 

temperature loss. This is covered by steps A to C in Figure 83. The building of the model is 

explained in step D along with the models verification against actual plant data for the case 

study works. To understand possible errors and inaccuracies, a sensitivity analyses was 

conducted and is described in Step E. The model was then considered to be verified and 

Chapter 6 then goes on to demonstrate how the model has been applied to assess various 

Waste Heat Recovery [WHR] case studies. 

The first section of this chapter overviews the theory of fluid modelling in terms of pressure 

and temperature and also includes a comparison between the results calculated by the 

software package - ‘Fluidflow3’(NI  2014), and traditional theory. Initially the theory, with 

relevant calculation methods, are described and related to actual steam conditions 

experienced at the steel works. Comparative data was then input into the Fluidflow3 

software package and the results compared to the theory. This is, therefore, a simple 

verification and assurance of the Fluidflow3 calculation techniques. 
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Figure 83: Model development procedural flow chart 

5.2  The Software 

When analysing steam system modelling, the majority of research refers to mass balance 

models rather than modelling pressure drop and thermal loss. Even within the US 

Department Of Energy Guide book, ‘Improving Steam System Performance’(USDoE 

2012), many differing techniques are defined for improving steam system performance, but 

surprisingly modelling of the pipe work is not discussed. Further research identified a 

limited number of studies that describe modelling of steam distribution systems. Wood 

defines the ability of the software package ‘Pipe2000’ to model a pipe work system 

carrying steam around a college campus district heating system (Wood 2010). The system 

was modelled with both saturated and superheated steam and the model is used to calculate 
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the benefits of both options. Schultz (Schultz 2014) describes modelling of the Seattle City 

steam distribution circuit using the package ‘ReCap5-3D’. The software was used to assess 

the efficiency of the steam system and also simulate extensions to the distribution system. 

Case et al (Case et al. 1996) describe the development of a spreadsheet based model of an 

American Air Force Base. The study describes the required iterative nature of the 

calculations essential for steam modelling. More recently the Fluidflow3 software contains 

examples of a steam distribution circuit (NI 2014). In fact, on the 1/3/14, the website 

contains a case study of a superheated steam distribution circuit at 10.4 bar and 300 
°
C 

distributed over 14km therefore similar to the system modelled in the current study. With a 

wider context, two publications are the ‘Pipeflow1 and Pipeflow2’ publications by Bratland 

(Bratland 2009, 2010). Both these publications define the advantages and disadvantages of 

system modelling and describe the various techniques and software used. They are written 

for engineers as practical guides to modelling pipe work systems.  

A number of steam projects based on the CSSW, dating back to the early 1990’s, have been 

undertaken. For example Brown conducted an energy audit of the steam distribution mains 

(Brown, 1991). The study examines leaks and losses and also considers improvements to 

the end use consumers of the steam. Although dated, the report provides a good overview 

of the steam system and makes several recommendations for efficiency improvements. Not 

many of the recommendations were followed up and it’s believed that this was due to cost 

but also the fact that, as described in Chapter 4, steam savings do not save money for the 

case study works. In 1992 De Melo (De Melo, 1992, Modelling of an inductrial steam 

distribution system;De Melo, 1992, Modelling of an inductrial steam distribution 

system)(De Melo 1992) modelled the steam system in ‘Lotus 123’. The project was to 

understand what could be done to the distribution system to reduce the pressure drop 
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between the Power Plant and the Coke Ovens. The report recommended increasing the pipe 

work size by 2cm to reduce the pressure drop but, due to the potential large capital outlay 

and the fact that steam savings did not save money, the proposal was not adopted. More 

recently Chisholm, (Chisholm 2010) produced an overview of the energy losses of the 

steam distribution system. The report recommends several pipe work modification, improve 

steam trapping, condensate recovery and decentralisation of the steam system. As the 

outcome of this report overlapped with the initiation of the current research study none of 

the recommended work had been undertaken.  

Within the steelworks a software package called Fluidflow3 (NI 2014) was already 

in use. It had been used for indigenous gas flow modelling from the Coke Ovens. Various 

pipe work modifications had been modelled and also a model had been created for 

comparison to plant data for monitoring pressure drop due to contamination build up within 

the pipe. The software was therefore well respected but had not been used, at the case study 

works, for steam pipe work modelling. 

Fluidflow3 software developed by Flite (NI 2014) is described by Accutech (ACCUTECH 

2014b) as being ‘state-of-the-art software for fluid and process pipe-flow simulation with 

capabilities including compressible and incompressible flow, heat transfer, multiple and 

combining fluids within the pipe system, non-Newtonian/slurry flow and 2-phase gas/liquid 

flow. FluidFlow3 allows you to easily and graphically 'build' a model of a pipe network and 

simulate the performance of almost any type of line equipment - pumps, fans, compressors, 

control valves etc. Flows and pressures can be calculated around the network and optionally 

include heat change calculations for any pipe or component. Different fluids can enter the 

network at different boundary locations and the software will determine the physical 
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properties of the mixture where the streams combine. Accutech also publish design notes 

(Accutech 2014a), a training manual (Accutech 2013b) and a fluid mechanics refresher 

(Accutech 2013a). These documents provide an overview of the software and its operation. 

The calculation techniques are defined and recommendations are made on how best to use 

the package.   

Before using Fluidflow3 to model the steam system of the case study works, it was decided 

that the software should go through a basic validation exercise. The model should be 

compared against theoretical manual calculations. This would ensure an understanding of 

how the software operated but also give a defined measure of the accuracy of calculation. 

To ensure that this exercise was relevant the verification exercise was conducted at the 

same steam conditions as those experienced in practice. To this end it was necessary to 

conduct an analysis to fully understand the properties of the steam as it travels around the 

steam distribution circuit described in Chapter 4.   

5.3 Methodology 

5.3.1 Pressure Drop 

In order to calculate the pressure drop, it was first necessary to calculate the Reynolds 

number, then use the Colebrook equation and then the Darcy Weisbach Equation  

(Accutech 2013a).  

The Reynolds number [Re] is a dimensionless quantity that gives a measure of the ratio of 

inertial forces to viscous forces and consequently quantifies the relative importance of these 

two types of forces for given flow conditions. 

   
    

 
        [Equation 5.3) 
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For flow in a pipe this can be written as:- 

   

 
 = 

  

 
 = 

  

  
    [Equation 5.4) 

 Where ρ represents density [kg/m
3
], μ dynamic viscosity [kg/m.s],   Kinematic 

viscosity [which is μ/ρ [m
2
/s]], D Diameter [m], Qv Volumetric flow rate [m

3
/s] and A 

represents cross sectional Area [m
2
]. 

Data from pressure and temperature gauges around the steelworks was analysed and 

therefore it was possible to fingerprint the steam system to a level never understood before. 

With the work completed in Chapter 3, the steam system mass balance was more clearly 

defined, it was then possible to calculate mass flow rates and thus velocities of the steam 

flow through the worn pipe work. The temperature and pressure trends enabled a more 

accurate understanding of typical steam density and viscosity values. With steam pressures 

ranging from 10 to 12bar gauge and temperatures ranging from 280-320 
°
C it was possible 

to calculate the range of steam density and dynamic viscosities experienced in the CSSW. 

From this analysis it was possible to conclude that the steam remains at the superheated 

state throughout the distribution circuit and therefore, when conducting calculations, it was 

assumed that the steam can be treated as a compressible gas. 

The data analysis showed that the density ranges from 4.31 kg/m3 and 4.691kg/m3 and the 

viscosity ranged from 3.41 and 5.08 kg/m.s. Thus the 16” worn steam pipe, with a nominal 

cross sectional area of 0.11m2 and the largest mass flow rate of 23tph, flowing to the Coke 

Ovens, gives a velocity of up to 20.9m/s. For the smallest consumer, the CAPL at 2.6tph 

through an 8” steam pipe, gives a velocity of 4.9m/s. With the velocity varying from 4.9m/s 

to 20.9m/s it is then possible to calculate the range in Reynolds numbers experienced at the 

various pressures, temperatures, pipe sizes and flow rates within the circuit. The 
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calculations showed that for the configuration of pipe work and mass flow rates the 

Reynolds numbers are quickly elevated from laminar to Turbulent flows. A flow as low as 

0.1tph sufficient to define the flow as turbulent. Predominantly all flows to consumers can 

be considered as turbulent and laminar below 0.07tph for the 16” pipe.  

Surface roughness was obviously critical in calculating pressure drop (Accutech 2013a). 

The steam pipe work is decades old and at the time of writing the true value of surface 

roughness would be virtually impossible to determine. Various sections of pipe suffer 

differing duties and therefore subjected to differing rates of erosion. It was not possible to 

gain access to measure the pipe work parameters and so the software developers, Flite, 

were approached. Their recommendation (Flite 2012) was to use a surface roughness value 

of 0.05 for superheated pipe work. The Darcy Friction factor, ϯ,  was then obtained from the 

Moody diagram (Moody 1944) or using the Colebrook equations [Equations 5.4 to 5.7]. 

The Colebrook equations were used to calculate the friction factor for the steam and pipe 

work at the case study works and are graphically presented in figure 84. 

Laminar Flow [ Re <2300] :     ϯ   =    
  

  
   [Equation 5.5] 

Smooth Pipe Turbulent Flow [Re>4000]: ϯ = 
     

     
   [Equation 5.6] 

Completely Turbulent Flow [Re>4000]:  

ϯ = [1.14 +2 log10[
 

 
   -2    

[Equation 5.7]
 

Transitional Region [Re 2300 – 4000]:   

ϯ = { -2 log10[ 
 
 

 
 

   
 + 

    

   
  

 
 
 ]} -2 

 
[Equation 5.8] 

Figure 84 shows the results of the calculations and portrays the relationship between the 

Friction factor and the Reynolds number for the CSSW. 
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Figure 84 Friction Factors for actual Re for 16” pipe at 320°C 

It was then possible to use the Darcy –Weisbach equation to calculate the head loss for the 

pipe work in the CSSW. 

Head Loss:  ɦ = ϯ. 
 

 
 . 

  

  
       [Equation 5.9] 

Where Ϯ represents the Darcy Friction factor, L/D the ratio of the length to diameter of the 

pipe [m], V the mean velocity of the flow [m/s] and g represents Gravity [m/s
2
].  It was 

then possible to demonstrate the effect of the worn pipe work on the pressure drop. Figure 

85 shows the two calculated pressure drops for worn and ‘as new’ pipe work. It is clear to 

see that for lower flows the pressure drop difference was relatively small, but as the flows 

increase then so does the differential as would be expected. 
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Figure 85: 16” New pipe vs Old Pipe comparison 200m 16” NB pipework 

For pipe fittings, joints and connections Fluidflow3 allows the user to select the calculation 

method. The more common way is that defined by Crane (Crane 1982). Crane though does 

not enable calculations for unequal tees, t junctions other than 90 degrees and it does not 

account for all of the pressure variations witnessed within a t junction. More complex 

methodologies developed by Miller (Miller 1978) and Idlechik (idlechik 1960) more 

accurately calculate head loss across tees, bends and fittings. The software developers in 

fact have recommended, in the training manual (Accutech 2013b), that for steam systems 

that the Miller methodology be used for bends and valves and that Idlechik methodology be 

used for Tees. The software package contains a database of manufacturers declared 

characteristics of the pipe fittings, valves and pumps. It is therefore possible to access the 

information directly from the software. 

0 

5 

10 

15 

20 

25 

0 5 10 15 20 25 

P
re

ss
u

re
 D

ro
p

 /
 m

ill
i b

ar
 

Tonnes per Hour Steam Flow / tph 

New Pipe 

Worn Pipe 



 

 

142 

 

Accutech in their design notes (Accutech 2014a) recommend that head losses across 

junctions are often referred to as “minor losses”, implying that they are small compared to 

other losses in the system. However, compared to pipe friction, equipment items and static 

head this is not always the case. The relative importance of the various losses in the system 

should be kept in mind when designing a system. As the intention is to model the 26km of 

pipes of the case study works the relevant importance of pipe friction to junction losses will 

be unknown. Due to the age of the distribution system the exact characteristics of the 

bends, junctions and tees are unknown and so is the internal surface finish of the pipes. 

Therefore when building the model the parameters recommended in the softwareare a 

suitable starting point for comparison between the modelled results and actual plant data. 

5.3.2 Results of the Software vs Theoretical comparison 

The next phase was to compare the manual calculations for pressure drop to those predicted 

by the software Fluidflow3. Lengths of pipe work with differing steam conditions were 

analysed. The software runs the necessary calculations and presents the results on the 

screen or via export to Excel. Manual calculations were also conducted for pressure drop. 

Various pressures and temperatures of steam were used and are tabulated in Table 9. The 

results of both the software and manual calculations are shown and compared as the 

percentage difference. 
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Table 9: Comparison between actual and Modelled Data 

 
Model Calculated     

 
Head Head     

 
Loss Loss Error Error 

 
mbar mbar mbar % 

11bar 320
o
C 1tph new pipe 0.08 0.08 0.0 0.00 

11bar 320
o
C 10tph new pipe 5.57 5.58 0.0 0.05 

11bar 320
o
C 20tph new pipe 21.38 21.31 0.1 0.19 

10.5bar 320
o
C 1tph new pipe 0.08 0.08 0.0 0.00 

10.5bar 320
o
C 10tph new pipe 5.82 5.82 0.0 0.06 

10.5bar 320
o
C 20tph new pipe 22.33 22.26 0.1 0.21 

          

11bar 320
o
C 1tph worn pipe 0.07 0.07 0.0 0.00 

11bar 320
o
C 10tph worn pipe 5.08 5.09 0.0 0.05 

11bar 320
o
C 20tph worn pipe 19.48 19.42 0.1 0.18 

10.5bar 320
o
C 1tph worn pipe 0.07 0.07 0.0 0.00 

10.5bar 320
o
C 10tph worn pipe 5.31 5.31 0.0 0.05 

10.5bar 320
o
C 20tph worn pipe 20.35 20.28 0.1 0.19 

 

Figure 86 shows the percentage difference between the manually calculated values and the 

predicted. As can be seen the maximum was 0.22% difference.  

 

Figure 86 Software to manual calculation error 

Thus at an 11barg operating pressure the predicted value would vary to manual calculation 

by approximately 0.025barg which was within the accuracy of a typical pressure transducer 
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of 0.5% as defined by Dwyer Instruments (Dwyer Inst 2014). Hence to put this into 

perspective, the difference between the manually and the predicted calculated pressure 

would equate to only 13mbar over 26km of pipe work for the case study works. 

5.3.3 Methodology : Heat Loss Calculations 

As for the pressure loss calculation there was a need to understand how the software 

determined heat loss calculations and hence undertake another comparative exercise. This 

comparison was conducted and the findings based on insulated and un-insulated pipes were 

reported (Houghton 2012). The report specifically utilises steam conditions at the case 

study site. The site has a mix of older Asbestos and the newer Mineral Wool insulation 

which perform very differently. Thickness and types of insulation were discussed and it 

was recognised that there were some records showing which sections of the main are 

asbestos and which are mineral wool, but generally the percentage split was unknown. As 

mentioned earlier in the chapter Chisholm (Chisholm 2010) produced a report detailing the 

energy losses in the CSSW steam distribution system. Chisholm details the insulation types 

and calculates energy losses and states an assumption of a 80% mineral wool and 20% 

asbestos split. Both Houghton et al and Chisholm calculate convective, radiative and 

conductive heat loss using differing pipe diameters, insulation types and insulation 

thicknesses. 

The core equations used are based on Fouriers law, Newtons law of cooling and Stefans 

law (Bratland 2009) :- 

  
                

 
           

      
      Equation 5.10 
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Where U = 
 

        
 

   
  

  
  

     
 

   
  

  
  

           
 

   
  

  
  

     
 

 

      
  Equation 5.11 

 

Q relates to Heat Energy, r1-4 radius, k Coefficient of thermal conductivity, T temperature, ε 

emissivity, σ Stefan-Boltzmann constant and L represents length.        is calculated from 

the use of Rayleigh, Nusselt, Reynolds and Prandl numbers (Bratland 2009) 

The software package Fluidflow3 (Accutech 2014a) uses the technique detailed below:- 

 

 
                           Equation 5.12 

Where:- 

Ri is the inside film resistance and              where Hi is the inside film coefficient 

of heat transfer, Rw is the wall resistance and             ] where Ww is the pipe 

wall thickness, Kw is the thermal conductivity of the pipe wall and Dw the log mean 

diameter of the pipe wall 

RLAG is the lagging/insulation resistance and                 where XL is the insulation 

thickness, KL is the thermal conductivity of the insulation material and DL is the log mean 

diameter of the insulation. Ro is the outside film resistance and              where Ho 

is the outside film coefficient of heat transfer. Fluidflow3 calculates the individual 

convection and radiation coefficients which are then summed to give a combined 

outside/surface film coefficient ie               

The outside film radiation heat transfer coefficient is calculated from the equation 

             
 
                            Equation 5.13 

 



 

 

146 

 

Where hrad is the radiation heat transfer coefficient [W/m
2
K], σ is the Stefan-Boltzman 

constant [5.67 x 10
-8

 W/m
2
K

4]
,   is the surface emissivity, Tfluid is the temperature of the 

flowing fluid [K] and Tambiant is the local ambient air temperature [K]. 

The outside film convection heat transfer coefficient for ‘above ground’ pipelines is 

calculated from equations based on ASTM standard C680 (ASTM, 2014) 

    
 

  
 
   

  
 

    
 
     

          
                             

Equation 5.14 

Where hconv is the convective heat transfer coefficient [W/m
2
/K], C is the constant 

depending of shape and heat flow direction [1.016 for horizontal pipes and 1.235 for 

vertical pipes], do is the outer diameter [including insulation if present], Tavg is the average 

air film temperature, average of outside and ambient temperatures [
°
C], Ts is the outside 

surface temperature [
°
C], TAmb is the ambient Temperature [

°
C] and Wind is the wind speed 

[mph]. 

Hence comparing equation 5.10 and 5.11 with equations 5.12, 5.13 & 5.14 it becomes clear 

that the Fluidflow3 calculation is significantly more extensive than manual calculations. 

Combined with the processing ability of  the software, Fluidflow3 is therefore more likely 

to provide a more accurate result as it reiterates the calculation as the steam properties 

change around the distribution system. 
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5.3.4 Results of the Heat Loss Software vs Manual Calculation Comparison 

Houghton (Houghton 2012) compares manual theoretical calculations with Fluidflow3 

derived results. Houghton reports a good correlation between theory, model and the manual 

calculations and estimates a maximum error of 6% between the calculation methods using a 

100mm insulation thickness as the reference point. Houghton does not identify the 

difference in calculation techniques in the conclusions. It was believed that this error was 

partially due to the ability of Fluidflow3 to constantly reiterate its calculation around the 

steam conditions, whereas the manual calculation assumes fixed steam properties along a 

pipe length.  

A fact of major note was that, due to the condition of the insulation, identified by both the 

Giles et al (Giles 2011) study and Spirax Sarco (Sarco 2012), there are several sections of 

insulation missing and in combination with the unknown split between asbestos and 

mineral wool, when it comes to modelling, some ‘corrections’ are to be expected. When 

developing the model it will be initially assumed that the system was insulated with 100mm 

of mineral wool. Subsequently, following the reported studies, the insulation data was 

corrected in the model. 

5.3.5 Conclusions of Software vs Manual Calculation 

Good correlation was shown between the software, Fluidflow3, and manual calculations, 

thus giving confidence in the results that the model produces.  

Some learning points of this part of the study were:- 

a) The pipe work internal diameter varies due to age and wear rates 
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b) The surface roughness is unknown but the software developer recommends 0.05 

for super heated steam flow 

c) Component pressure drops are unknown 

d) The quality of the insulation varies significantly due to the age and material 

type. 

To overcome these issues it was therefore a requirement that certain assumptions were 

made at the beginning of the modelling process. It was therefore necessary to develop the 

model and compare it against actual plant data. The model therefore needed to go through a 

verification process to ensure the assumptions are both accurate and appropriate. 

5.4 Construction of the Fluid Model 

This section describes how the model was created in Fluidflow3 and how it was then 

verified by comparing it to actual plant data for various different scenarios. There are only a 

few drawings in existence of the steam system and some areas of pipe work are complex 

and very difficult to access. Furthermore, these were neither dimensioned or to scale. 

Starting from ‘Phase 1’ of the model, modifications had to be made as investigations 

improved the accuracy of the model compared to plant data. 

5.4.1 Methodology  

Utilising a laser distance gauge, callipers and a tape measure the steam distribution pipe 

work was manually surveyed. Google Earth was also used to help track the steam mains 

around the steel works. Manual sketches were prepared and used as initial input data. It was 

identified that several of the pre-existing drawings were incorrect so the whole works had 

to be surveyed. Some areas were difficult to access and so were initially estimated and then 

improved as more data became available.  
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5.4.2 Model Build 

After many months of surveying ‘phase 1’ of the model was built within Fluidflow3. Figure 

87 shows a Google Maps screen print with a simplified overlay of the 11bar steam 

distribution circuit.  

 

Figure 87  Schematic of Case Study Steel Works Steam System 

Each section of pipe had its dimensions and physical characteristics entered into the 

software model. Figure 88 shows an example of the data entry palette for a section of pipe 

work. The figure shows the relevant input parameters that the software requires to calculate 

pressure and thermal losses. 
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Figure 88 : Fluidflow3 Pipe Data Pallet 

 

The pipe work dimensions were measured using a laser distance gauge. However in some 

areas, the layers of insulation and cladding on the pipe work made this process difficult but 

reasonably accurate dimensional measurement was achieved [typically +/- 10mm]. The 

total length of pipe exceeded 26km and so this took several months to complete. As far as 

diameters are considered the main sections of the steam circuit have imperial units and 

therefore were identified as being 16”, 12” and 8” Schedule 40 pipe as shown in Table 10. 
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Table 10: Schedule 40 pipe dimensions 

 (|Source: (Sarco 2014)) 

 

 To comply with pressure regulations and record levels of pipe wear  periodical pipe 

thicknesses measurements are undertaken. These thickness measurements show a typical 

reduction in wall thickness, for example for 16” pipe work with an original 12.7mm 

thickness [0.500” as shown in Table 10], down to 9.2mm. This results in a maximum 

internal pipe diameter increase from 381mm to 388mm. Regarding surface finish, for 

‘phase 1’, a surface finish of 0.05 was selected. This decision was made on the advice of 

Flite (Flite 2012) who stated that in their experience for superheated steam the internals of 

the pipe remain smooth as the flakes of rust are removed by the erosion of the steam flow.  

For ‘phase 1’ the pipe was entered as fully insulated with 100mm of mineral wool 

Insulation. Areas of poor or missing insulation were omitted from phase 1 and added at 

further phases of the model development.  

The model was then created by using the relevant parameters. Figure 89 shows the 

completed model. The Figure also identifies the location of the key data points. These are 

the points highlighted in red text that data is gathered and used for the model validation. 
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The black text boxes are the additional points used for further comparisons. These points 

are also used for manual validation by thermal imaging to confirm steam temperature for 

the various scenarios. Figure 89 also shows the new meters that were installed and 

discussed in Chapter 4. Data from these meters was essential in deriving the correct mass 

balance of the circuit for the various scenarios listed in Table 11. In very initial trial runs of 

the model it was identified that the spread of mass flow was incorrect between the North 

and South ends of the works and created large pressure errors. It was found that the system 

acted like a ‘balance weight’. More mass flow at one end of the works tipped the balance 

and altered the pressure. The new meters acted as a quantifiable check of North to South 

mass flow.   
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Figure 89 Screen Print of the Fluidflow3 Model
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Figure 90 shows the power plant area of the works indicating just how complex the system 

is. The blues squares are the ‘boundaries’ of the system, that is, the inputs and outputs. The 

boundaries in the power plant are the Turbine Alternators [TA] and boiler ancillaries [ie 

pumps and fans, De-aerator supplies etc). Referring back to chapter 4, section 4, and the 

Sankey diagram shown in Figure 69 it is possible to see the number of steam consumers in 

the power plant alone. The option of replacing all the power plant consumers with one 

simulated consumer named ‘Power Plant Total Consumption’ was considered, but it was 

found that this was not possible. The pressure drops around the intricate pipe work for the 

differing boilers and consumers had a major effect on the balance of the whole model in 

terms of pressure drop and flow direction. It was therefore deemed necessary to survey and 

draw the pipe work. 

 

Figure 90 Power Plant area of the 11bar steam system 
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5.5  Validation of the Model with Plant Data  

In order to determine the methodology for the verification of the model a series of scenarios 

that would represent the whole operating range of the 11bar steam system consumers was 

considered. The scenarios selected are presented in Table 11, the Table lists the 11bar 

steam consumers and generators against the selected scenarios. The scenarios represent the 

differing configurations for the steam system. The consumption for the various consumers 

was varied and a summer/winter effect stipulated. Plant data was then gathered for the 

selected scenarios and also a software model was created for each scenario. The ten 

scenarios were then saved and the results recorded.  
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Table 11 : The Scenarios (all units in TPH) 

 
  Summer Winter Winter Summer Summer Summer Summer Winter Winter Summer 

 
Degasser OFF ON OFF OFF ON ON OFF ON ON OFF 

 
  2*BF 1*BF 2*BF 2*BF 2*BF 2*BF 2*BF 2*BF 2*BF 2*BF 

 
Boiler off NO NO NO NO YES NO NO NO NO NO 

 
Scenarios 

 
Scenarios 1 2 3 4 5 6 7 8 9 10 

 
Service Boiler 4 20 50 40 40 50 30 40 45 35 25 

 
Service Boiler 5 20 50 40 40 50 30 40 45 35 25 

 
BOS Plant Export 0 0 0 0 0 0 0 0 0 0 

 
CAPL WHB Export 0 0 0 0 0 0 0 0 0 0 

 
Total 40 100 80 80 100 60 80 90 70 50 

 
                      

 
                      

 
TA8 71 88 90 80 0 98 78 108 94 74 

 
BF4 HLP 10 20 20 20 20 0 0 0 0 0 

 
BF5 HLP 20 20 20 20 20 20 20 20 20 20 

 
RV 0 0 0 0 20 0 0 0 0 0 

 
Total 101 128 130 120 60 118 98 128 114 94 

 
                      

 
Coke Ovens 25 25 25 25 25 25 25 25 25 25 

 
CRP 12 15 15 18 12 15 15 15 15 12 

 
HSM 6 6 6 6 6 6 6 6 6 6 

 
Briquetting 6 6 6 6 6 0 0 0 6 6 

 
Degasers 0 20 0 0 20 20 0 20 20 0 

 
BF 12 6 6 6 6 12 12 12 12 12 

 
Losses 6 10 10 6 8 6 6 6 3 6 

 
Heating 0 20 20 0 0 0 0 20 20 0 

 
Total 67 108 88 67 83 84 64 104 107 67 

 
                      

 
Boiler 6 aux 19 19 20 23 0 23 23 23 22 22 

 
Boiler 7 aux 19 22 23 22 23 22 22 22 19 19 

 
Boiler 3 aux 8 11 14 0 14 14 14 14 8 8 

 
Boiler 5 aux 3 5 5 5 5 5 5 5 3 3 

 
Mitchell aux 6 10 10 8 10 10 10 10 6 6 

 
0bar main 19 13 50 75 25 20 40 40 19 19 

 
New TA 0 0 0 0 0 0 0 0 0 0 

 
Total 74 80 122 133 77 94 114 114 77 77 

 
                      

 
Total Produced 141 228 210 200 160 178 178 218 184 144 

 
Total consumed 141 188 210 200 160 178 178 218 184 144 

 

All Units in tonnes per hour ( TPH) 
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The plant data was gathered from the works Plant Information [PI] system. This system 

enables the collection of data from virtually any instrument in the works. The data was 

exported into excel when required. The data does require interpretation and checking to 

make sure that it does represent the reality. For example if a meter fails then the last 

recorded value will be archived as a continuous reading thus making it important to 

scrutinise the data before further analysis. The process shown in Figure 91 was initiated to 

aid data collection. The instruments providing the data are regularly calibrated. The 

calibration techniques and frequencies are managed through a maintenance management 

system. The calibration frequencies vary around the works areas, depending on duty and 

environment, but all use United Kingdom Accreditation Service [UKAS] accredited 

calibration equipment. 

A full years worth of data from 2011 was downloaded from the works PI system into an 

excel spreadsheet and analysed in monthly batches. The data for each month was filtered by 

the mass balance scenarios listed in table 11. The data was also filtered for obvious meter 

malfunctions, gross errors, and mean values were transposed into a model validation 

spreadsheet.    
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Figure 91: Data Analysis Flow Chart 

Bell curves were plotted for the data to assist in validating the data. As an example Figure 

92shows the spread of Pressure data at the Coke Ovens for Scenario 1. With a mean value 

of 10.63 bar, a range of 0.05bar and a SD of 0.01 it can be concluded that the pressures 

experienced on the steam distribution system, as it changes through the scenarios, is 

repeatable and predictable. 

 

Figure 92 Bell curve for actual Power Plant pressures for Scenario 1 
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The maximum standard deviation for all ten scenarios are plotted in Figure 93. As can be 

seen scenarios 1,6,8 and 10 have the largest deviation but at a maximum of 0.07 this is 

considered acceptable when analysing a system of such size.  

 

Figure 93 Maximum Standard Deviation per scenario 

An alternative way to present the variability of data is shown in  Figure 94. As can be seen 

the plant data varies by up to 1.8% around the mean at the Power Plant area of the works. 

Due to the large number of unmetered consumers within this area it is therefore 

hypothesised that variability in Power plant consumers effects the variability of pressures 

experienced at the Power Plant. 
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Figure 94 Variability of Plant Data 

  Relationships between flows and pressures were then determined which would help assess 

any data extracted from the PI archive. For example Figure 95 shows a direct relationship 

between export steam temperature and flow rate for the Service Boilers. If however, a data 

point outside the relation was identified then checks needed to be undertaken to understand 

why. 
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Figure 95: Example of data analysis for steam system 

5.5.1 Improving the model 

The model was then run, step by step, through 12 development phases as shown in Figure 

96. The figure shows that each phase of the model was taken through the ten scenarios 

listed in Table 11. Between each phase of the model inputs were changed and the 

alterations are listed in Table 12. 
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Figure 96 Development Sequence of the model 

For example, when ‘Phase 1’ of the model was run and compared to plant data, as shown in 

Table 12, the model had a pressure error of 13.8% and a temperature error of 14.2%. The 

accuracy percentages listed in Table 12 are the maximum percentages over the ten 

scenarios for that phase. The percentage accuracy is defined as the difference between the 

modelled result and the actual plant data. Phase 2 was then developed by altering the pipe 

work configuration around the Service Boilers. The percentage accuracy then improved to 

11.86% for pressure but remains at 14.26% for temperature. 

As mentioned earlier some areas were difficult to dimension because of access difficulties. 

These were the main areas for further investigation during this developmental stage of the 

model. Table 12 summarises the various phases and also details of the various changes 

made to the physical inputs to the model. As can be seen the majority of the error was down 
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to the dimensional inaccuracies in hidden areas of plant, or simply errors in understanding 

pipe work layout. 

Table 12 : Development Phases of the Model 

 

Figure 97 then shows how the pressure errors for each area of the works developed during 

the  phases 1-12 of the model. The figure demonstrates the step changes as a result of the 

pipe work improvements detailed in Table 12. In general the changes associated with each 

phase improved the models accuracy but as shown in Figure 97 the latter phase, phase 12, 

decreased the accuracy for Margam B, the Power plant and the Coke Ovens. Table 12 

shows that phase 12 of the model entailed alterations to insulation data. The hypothesises 

was that the insulation data changes resulted in changes to the physical properties of the 

steam thus effecting the pressure calculations.   

  

Pressure Temperature

Model Accuracy Model Accuracy

% %

1 Drawn as per drawings and sketches available 13.85 14.26

2 Surveyed the pipework and modified model pipework around the Service boilers 11.86 14.26

3 Surveyed the pipework around the BOS plant area and modified the model 6.16 14.26

4 Insulation survey - model adjusted to suit 6.16 10.05

5 Pipework around Grange Cross resurveyed and corrected 6.32 10.05

6 Surveyed more areas of plant and corrected model around the power plant 6.32 10.05

7 Surveyed more areas of plant and corrected the model around the hot mill area 4.05 10.05

8 Modified model around hot mill/cold mill connections 4.05 10.05

9 Modified model around the Power Plant area 3.89 10.05

10 Insulation survey - model adjusted to suit 3.89 13.61

11 Insulation survey - model adjusted to suit 3.89 14.65

12 Further insulation surveys - model adjusted to suit 2.77 4.10

Description of change to the modelPhase
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Figure 97 Pressure Errors by model Phase  

Figure 98 shows a similar plot for the steam temperature error between the modelled results 

and the actual plant data. The figure shows that as the model was developed through its 

phases so the temperature error improved or worsened by the changes detailed in Table 12. 

It was clear to see that the initial focus was on the pipe work configuration and pressure 

accuracy then the insulation and temperature error was improved. The worsening error for 

Phases 10 and 11 relate to insulation data changes made in various sections of the works 

that has increased the average temperature error over the ten scenarios for each phase. The 

final insulation data changes, as part of phase 12, have reduced the maximum temperature 

error to just 10 
°
C over the ten scenarios.      
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Figure 98: Temperature errors by Model Phase 

Figure 99 plots both pressure and temperature error on the same graph and represented as 

% error. With a pressure percentage error improved from 13.85% down to 2.77% and a 

temperature percentage error reduced from 14.25% down to 4.1%. 
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 Figure 99 Development Phases of the Fluidflow Model 

Figure 100 shows the extent of the maximum errors for the final phase of the model over 

the ten different scenarios. The figure shows that Scenario 1 has the least error and Scenario 

7 has the highest error. Further analysis into the data reveals that the highest percentage 

error occurs in the Power Plant and Margam B areas of the works. Both these areas have 

multiple unmetered consumers and very complex pipe work arrangements resulting in this 

level of uncertainty in local flow level and pipe work configuration, hence a higher error. It 

was therefore recommended that when the model was to be used, it must be run through the 

ten scenarios in order to fully predict what the percentage error in the output would be and 

thus ensure as accurate a result as possible.    
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Figure 100: Percentage Error by Scenario 

5.5.2 Sensitivity Analysis 

To further understand the effects of any errors in physical dimensions to the overall 

accuracy of the model, when compared to plant data, the physical attributes shown within 

Table 13were altered and the model was recalculated. Surface finish, internal diameters and 

bend radii were varied.   

Table 13 : Parameters altered for Sensitivity analyses 

 

Figure 101 shows the cumulative errors for the works area for the parameter changes shown 

in Table 13. The worst case, with a bend radius ratio of only 2, gives an error of 0.74%.  
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Figure 101 : Sensitivity Analysis 

As previously discussed the plant data varies by up to 1.8% around the average. Therefore, 

with plant data varying by 1.8% about the average, and the model producing results within 

2.77%, of the average, it is therefore possible to conclude that the model was sufficiently 

robust to use for simulation purposes. The Model has therefore been built and developed 

through twelve phases, each being compared against data from ten scenarios of differing 

plant configuration. The model was then subjected to a sensitivity analyses to further 

understand how prone the model was to dimensional errors or inaccuracies in terms of 

pressure and temperature. This process produced a model that is within 2.77% error for 

pressure measurement and 4.1% error for temperature. Dimensional inaccuracies could then 

enable a 0.73 % error in pressure. This analysis was based on plant data that typically 

varied by 1.8% for each differing scenario of plant configuration. It is therefore concluded 

that the model is of reasonable accuracy, when compared to plant data, and suitable for use 

in simulating the 11barg steam distribution system. The model can be defined as an 

essential tool for determining the optimum end use for further WHR studies and be used to 

simulate the various WHR boilers previously identified in Chapter 3 section. 
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5.6 Summary 

A validated Model of the CSSW has been developed in Fluidflow3. In order to gain 

confidence, the software was first evaluated and compared against manual calculations. The 

model was then built and compared against actual plant data for ten scenarios of differing 

plant configuration. A sensitivity analyses was conducted of various parameters to aid the 

understanding of any possible deviation and error from dimensional inaccuracies. The study 

has therefore developed a model of the 11bar steam distribution circuit that replicates the 

real system to a reasonable degree of accuracy. This model can therefore be used to develop 

and improve the steam system and also to simulate the addition of WHR boilers at the 

CSSW.  

The work presented in Chapter 5 describes the building of the model that is necessary to 

completes Aim 4 (ie a model to understand the impact of WHR on the CSSW). The 

Chapter describes the building and verification of a fluid model to predict the effects on 

Pressure and temperature of the CSSW steam systems.  The chosen software package 

‘Fuidflow3’ is described and an exercise is defined to gain confidence in its results by 

comparing the software calculated results to those calculated manually. This exercise is 

deemed successful and so a model is created of the 26km of pipe work that make up the 

CSSW steam distribution system. The model is then verified through a series of 

development phases as it is compared and verified against actual plant data for a number of 

defined operating scenarios. The final phase of the model produces results within 5 % of 

actual plant data and therefore considered accurate enough to replicate the actual steam 

distribution system. A sensitivity exercise is also described and conducted on the verified 

model to help ascertain its susceptibility to dimensional errors. The next Chapter describes 
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the use of the verified model to simulate the addition of WHR boilers to the CSSW steam 

distribution system. 
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6 Results and Discussion 
 

6.1 Introduction 

Chapter 3 defined the main UK industrial drivers for investments in WHR as the reduced 

reliance on electrical imports from the national grid, therefore isolating the case study 

works from the potential of industrial ‘blackouts’, as a result of the shortage of UK 

electrical generation. Chapter 4 described the steam system for the CSSW and the 

modelling of the steam system is described in Chapter 5. Thus, with a validated model of 

the CSSW 11bar steam distribution circuit, this chapter discusses the use of the model to 

simulate the addition of various Waste Heat Recovery [WHR] boilers to the steam system. 

The model provides the ability to simulate an ‘end use’ for the recovered waste heat using 

11 bar steam to generate electricity from a new Turbo-Alternator [TA].  Thus this chapter 

concerns the effects of adding the potential WHR options, identified in Chapter 3, to the 

model developed in Chapter 5.  

Figure 102 shows the steelmaking process flow diagram and the commercially available 

WHR opportunitites are highlighted in red. As defined in Chapter 3, the other areas do not 

yet have commercially viable options for high grade WHR for the CSSW. The priority in 

terms of potential impact to the business is :-  

1) Basic Oxygen Steelmaking [BOS] plant,  

2) Continuous Annealing Processing Line [CAPL] 

3) The  Sinter plant 

4)  The Hot Strip Mill [HSM].  
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Figure 102: Steelmaking Process and WHR potential works areas 

Figure 103 shows a schematic of the steam system and identifies the relevant areas of the 

case study works. The two red arrows represent the inputs of steam from a) the Service 

Boilers [in the South end of the works] and b) the Power Plant [in the North end of the 

works]. The results of the modelling of the addition of the WHR boilers is presented and 

discussed in this Chapter. It was also decided to explore the removal of the Service Boilers, 

as identified in Figure 103, from the steam system to clearly understand the relationship 

between the Service Boiler output and the addition of the WHR boilers. The results of this 

study are discussed in section 6.5. 
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Figure 103: 11bar steam distribution system 

  

6.2 Basic Oxygen Steelmaking [BOS] Plant 

As discussed in Chapters 3 & 4 the CSSW had been exploring the essential replacement of 

the off-gas cooling system for the Basic Oxygen Steelmaking [BOS] plant. Figure 104 

shows the Oschatz Evaporative cooling system that uses the heat in the off-gas to heat up 

and vaporise the water in steam drums. The hot waste gas from the converter [BOS Gas] is 

ducted through the off-gas system to cool the gas down before it is cleaned and made ready 

for storing in a gas holder.  
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Figure 104: BOS Plant Evaporative Cooling system. Source(Kasalo 2010) 

A typical energy content of 60MWTH at 1700 
°
C makes the waste gas stream very suitable 

for steam generation. The operation is a batch process and so steam accumulators are 

utilised to smooth out the steam export flow rate before it enters the steam distribution 

circuit. In Chapter 3 it was proposed that a Turbine Alternator [TA] should be installed to 

use the 11bar steam distribution circuit for electrical generation. Figure 105 schematically 

presents the export of steam from the BOS plant WHR boiler and the location of the new 

TA within the boundary of the existing power plant. 

The BOS plant WHR steam boiler and the proposed TA were added to the model 

developed in Chapter 5 as new boundaries. Figure 105 shows the physical schematic of the 

model indicating the BOS steam import and the position of the TA. The location of the TA 

was a point of considerable deliberation by the case study works. Theoretically the turbine 

could have been located anywhere around the 11bar steam main so to ensure the turbine 

could be easily monitored and attended, it was decided to locate it behind the existing 

Power Plant thus ensuring maximum availability. 
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Figure 105: Schematic of the 11barg steam distribution circuit 

The requirement to add an interconnecting section of pipe work as shown in Figure 106 

was identified. This interconnector would allow steam to pass from the North to the South 

end of the works even when sections of pipe are isolated for periodic maintenance. The 

works operates 24/7 365 days per year so continuity of supply is essential. Various sections 

of the steam mains are isolated throughout the year for essential maintenance. The steam 

system configuration enables whole year supply during these isolation periods. The new 

interconnector will enable steam to always travel from the BOS plant to the new TA thus 

ensuring maximum generation over the whole year.  

Figure 106: shows the model and highlights the works areas and the interconnector. The 

figure also identifies two key consumers that have critical key steam requirements:- 

a) The Coke Ovens [min 9.4 barg @ 240
o
C] 

b) Margam B [minimum 11 barg @ 280
o
C] 
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The objective of the modelling was therefore to ensure that as WHR boilers are added these 

key parameters are maintained. 

 

 

 

 

Figure 106: Fluidflow3 model of the 11barg steam distribution circuit 
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As described in Chapter 5, when using the model it is important that the ten mass balance 

scenarios were used to take the model through the mix of conditions experienced by the 

case study works Table 14 shows the scenarios with the addition of the steam export from 

the new BOS WHR boiler. The output of the WHR boiler is varied through the scenarios as 

recommended by the Energy Department of the CSSW. 

Table 14: Scenarios utilised for modelling (all units in TPH) 

 

All Units in tonnes per hour (tph) 

Scenarios 1 2 3 4 5 6 7 8 9 10 
Service Boilers 40 100 80 80 100 60 80 90 70 50 

BOS Plant Export 40 40 40 30 30 40 0 20 20 30 

Total Works Production 80 140 120 110 130 100 80 110 90 80 

                      

                      

Total Power Plant Production 101 128 130 120 60 118 98 128 114 94 

                      

Coke Ovens 25 25 25 25 25 25 25 25 25 25 

CRP 12 15 15 18 12 15 15 15 15 12 

HSM 6 6 6 6 6 6 6 6 6 6 

Briquetting 6 6 6 6 6 0 0 0 6 6 

Degasers 0 20 0 0 20 20 0 20 20 0 

BF 12 6 6 6 6 12 12 12 12 12 

Losses 6 10 10 6 8 6 6 6 3 6 

Heating 0 20 20 0 0 0 0 20 20 0 

Total works Consumption 67 108 88 67 83 84 64 104 107 67 

                      

Total Power Plant Consumption 74 80 122 133 77 94 114 114 77 77 

                      

Total Produced 181 228 250 230 190 218 178 238 204 174 

Total consumed 141 188 210 200 160 178 178 218 184 144 
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The model was configured and run through these scenarios and the results graphically 

presented in Figure 107. The pressure regulations documentation for the sites steam system 

stipulates a maximum system pressure as 13.5 barg. One of the main functions of the model 

was therefore to check that with the addition of any of the WHR options the system 

pressure will not exceed 13.5barg.  As shown in Figure 107, Scenario 2 indicated a possible 

concern with pressures approaching the maximum of 13.5barg. The other scenarios were all 

shown to be sufficiently below 13.5barg and were not therefore considered to be of 

concern. Scenarios 5, 6 &10 have relatively low maximum pressures but still maintain a 

pressure at the Coke Ovens greater than the minimum specified as 9.4barg. 

 

Figure 107: Predicted Maximum System Pressures 

Figure 108 shows the calculated pressures for all the elemental components of the model 

when configured for Scenario 2. The node numbers, on the x axis, relate to the various 

elements of the model for example pipes, elbows and tees. The nodes approaching 13.5bar 

all relate to pipe work sections close to the service boilers. Scenario 2 is configured as 

maximum outputs for both the Service Boilers and WHR boiler, but a reduced level of local 

steam consumption, thus increasing the localised pressures around the boiler connections. 
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The Service Boilers are under a flow control philosophy and will therefore inject steam at 

whatever pressure is required to achieve the required flow. A possible option for the future 

would thus be pressure control for the service boilers. This would maximise steam injection 

rate but automatically ensure the pressure does not get above 13.5bar. As the figure shows 

the pressures for Scenario 2 range from 10.6 barg up to the maximum 13.5barg. The node 

numbers on the x-axis relate to positions around the model. By cross referencing node 

numbers with the model it is possible to deduce that the nodes at pressures as low as 

10.6bar are some of the extremities of the pipe work system and not of concern. Whereas 

the areas approaching 13.5barg are in the proximity of the Service Boilers.  

 

Figure 108: Predicted Pressures for individual model nodes 

To show the effect of adding the BOS WHR boiler to the original model Figure 109 was 

plotted and it shows the pressure gain by adding the BOS plant WHR boiler and the new 

TA. The figure shows that the pressure has increased by up to 1.55 bar at the Coke Ovens, 

1.5 bar at the BOS plant area and 1.39 bar at the Service Boilers. This is logical as more 

steam is being fed into the south end of the works and so it would be expected that the 

pressure increased. The pressure is pushing the steam from the south end of the works to 



 

 

180 

 

the north end where it then exits the system through the new TA which is in pressure 

control and hence is controlled around 11.2bar. 

 

Figure 109: Predicted Pressure Gain by Works Area 

The temperature gain plot, Figure 110 shows a slightly different picture. By adding the 

BOS WHR boiler and the new TA the temperature has increased slightly for the BOS area 

as would be expected, due to local high temperature steam injection, but has decreased at 

the Coke Ovens and ‘Margam B ’. Any significant decrease in temperature is of concern if 

the steam is utilised as superheated steam for turbines for example. As shown in Figure 110 

the temperature drops are of only 15OC and therefore are not considered significant 

although it is considered pertinent to critique the results further for the two areas shown ie 

a) Margam B and b) the Coke Ovens. 

0 

0.5 

1 

1.5 

2 

Coke 
Ovens 

BOS Plant Service 
Boilers 

Margam B Power 
Plant 

P
re

ss
u

re
 G

ai
n

 /
 B

ar
 

Works Area 



 

 

181 

 

 

Figure 110 Predicted Temperature Gain by Works Area 

These two areas are therefore investigated further:- 

a) Margam B 

After studying the results for the individual scenarios it was identified that Scenario 9 was 

the potential issue and produced the lowest predicted temperature at Margam B. Further 

analysis of the scenarios themselves shows the importance of the North to South mass flow 

balance. As stated in Chapter 5 the balance of the steam flow, from South to North, or 

North to South, is dependant on the mass balance at the South end of the works. A negative 

mass balance at the South results in steam export to the North End. The South End mass 

balances modelled result in the South End steam export rates as shown if Figure 111. As 

can be seen the scenarios represent a split of export and import of steam to the south end. 

For example scenario 2 shows an import of 40tph to the South end.  
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Figure 111 Steam Export from the South End of the works 

Figure 112 shows the effect of adding the steam from the BOS WHR boiler and for the 

majority of scenarios the South End exports steam. Scenario 9, due to low boiler outputs, 

shows the South End reverts back to importing steam. 

 

Figure 112 Steam Export from the South End of the Works including BOS WHR 
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Scenario 9, with a small export from south to north, present a third condition as shown by 

analysis of the predicted results and portrayed in Figure 113. If the South End of the works 

has an equal mass balance i.e. steam consumption equals the steam supplied by the service 

boilers and BOS Plant, then a condition exists where there is no flow, or virtually no flow, 

from one end to the other. Figure 113 portrays the balance as a weighing scale to pictorially 

explain the ‘balance’ that can occur in the system. The model shows that under this 

condition a slug of steam if formed around a mid-point along the pipe work and is alarmed 

as a ‘low flow’ condition by the model. The position of this mid-point depends on the 

relative pressures of the South and North Ends. The mid-point can feasibly move from 

North to South as consumers and generators are varied slightly.  

 

Figure 113 Representation of the balance of the steam system 

This slug of steam would slowly cool and condense out through the steam traps. Data from 

the recently installed steam meters, as shown in Figure 114, concurred with this modelled 

phenomenon.  It was possible to plot mass flow and temperature showing that under certain 

conditions it is possible to have zero flow at the midpoint. The data showed that the zero 
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flow can last for a number of days and result in the temperature of the steam slug drops to 

just above the saturated temperatures of 188
o
C. This results in possible cold spots and the 

potential for steam to condense in the pipeline as small pockets of water. These pockets can 

then be picked up and accelerated, by the steam, and can damage the pipeline. This effect is 

called ‘water hammer’ and should be avoided. Stopping the steam from condensing or 

fitting more steam traps to remove the water would illuminate the possibility of pipe 

failures so careful management will be essential.  

 

Figure 114 Schematic showing zero flow condition 

The mid-point zero flow, as shown in Figure 114 would be a concern to the case study 

works because of the risk of water hammer and thus the Service boiler outputs would have 

to be altered to ensure that there is a total mass flow from South to North or North to South 

dependent on the plants configuration. This is done manually at the case study work’s 

Energy Control Centre. Comparing Figure 111 and Figure 112 it’s possible to see that by 
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adding the BOS steam to the SE results in a greater average flow from S to N. Thus 

reducing the risk of ‘no flow’ conditions and any possible complications associated with 

water hammer etc. 

The model therefore shows that the low temperature of the steam to Margam B is due to the 

small export from the South End that then travels over 1.25km before reaching Margam B 

thus dropping 12 
°
C in temperature.  

b) Coke Ovens 

Figure 115 shows that the low temperature at the Coke Ovens occurs during scenario 10. 

As shown the temperatures are typically greater than 270
O
C but for scenario 10 the 

temperature drops to 245
O
C.  

 

Figure 115 Steam Temperature per Scenario 

Referring back to Figure 112 Scenario 10 is very similar to scenario 1, in terms of the fact 

that the south end is exporting 28tph of steam, but the predicted temperatures shown in 

Figure 115 are very different. To understand this, the model itself had to be studied and it 
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shows that the low temperature at the Coke Ovens was due to local flow directions around 

the South West corner of the steam system. Figure 116 shows that with the Degasser on, 

the BOS Plant export on a relatively low flow, results in the majority of the higher 

temperature steam from the BOS plant to  be used in the degasser thus causing the Coke 

Ovens to be fed with steam from the Service Boilers. The service boilers are on a relatively 

low output and therefore the steam temperature is reduced as stated in Chapter 5.  

 

 

Figure 116 Modelling of the South West Corner of the steam system 
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This investigation has therefore demonstrated that the lower temperature calculated at the 

Coke Ovens for scenario 10 was due to the local flow directions in the South West Corner 

of the works. As defined, the Coke Ovens has a minimum temperature requirement of 

232
o
C so a temperature of 245

o
C is potentially of concern. It is already understood that 

Service Boiler Temperatures are proportional to Service Boiler output so this low 

temperature can be overcome by increasing the Service Boiler outputs as shown in Figure 

117. The figure demonstrates that as the Service Boiler outputs are increased so does the 

Coke Ovens steam temperature. The relationship is not quite linear and it’s thought that this 

is due to the relative pressure increases and resultant directions of flow in the North West 

corner of the distribution circuit. This proves that by increasing Service Boiler outputs it is 

possible to maintain the steam temperatures required at the Coke Ovens.  

 

Figure 117 Scenario 10 Service Boiler export flow vs Coke Ovens steam temperature 

 

Modelling has therefore confirmed that the steam distribution system is capable of 

accepting steam from the proposed BOS WHR boiler.  The ten scenarios can be achieved 
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and successfully supply steam to the consumers without going into an over pressure 

condition or with too much of a temperature drop. Although the investigations have raised 

concerns raised about:- 

1) Scenario 2 – the pressure approaches the maximum 13.5 bar so care must be taken 

when running the Service Boilers and the BOS WHR at maximum outputs 

2) Scenario 9 – this scenario potentially produces a condition where no flow exits 

between the South and North Ends. This condition results in a slug cold steam sat in 

the midpoint of the distribution pipe work runs raising concerns over water hammer. 

Continuous monitoring of the flow meters and altering of the Service Boiler outputs 

to ensure that there is always flow from South to North becomes a necessity. 

3) Scenario 10 – this scenario raised the issue of possible low temperatures at Coke 

Ovens. This can be overcome by increasing the output of the Service Boilers 

 

Concluding that the steam system can accept the steam from the BOS WHR boiler, a 

business case was developed for the essential replacement of the Off-Gas system 

incorporating an upgrade to Evaporative Cooling totalling £53m. The procurement 

processes for the various installations was instigated in 2012 for a planned completion for 

early 2013. 

The scale of the proposed developments are shown in Figure 118 to Figure 120. Figure 118 

and Figure 118 show the top bend of the off-gas system indicating the scale of the project. 

The off-gas ductwork is over 4m in diameter and 30m high. Figure 119 shows the three 

accumulators which hold 7 tonnes of steam each and the super heater required to superheat 

the steam before export into the steam main. Figure 119 shows the new 19MWe TA 
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installed behind the existing power plant which includes 9 MWe of spare capacity for 

future WHR projects. Figure 120shows an aerial schematic of the proposed layout showing 

the geographical setting of the boiler, accumulators and steam main tie ins. Figure 120 

shows an Operators Screen, developed as part of this project, to monitor system pressures 

and record steam and electricity production. The scheme was completed in January 2013 

and in the 23 months to December 2014, has saved over £8m in electrical import and has 

saved over 59,000 tonnes of CO2. 

 

 

Figure 118 Top Bend of the off-gas system. 

 

Figure 119: Steam Accumulators, superheater and the new TA in Powerplant
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Figure 120: Positioning of new BOS Plant equipment and new mimic screen   

    

Since the installation is not been possible to fully compare the results predicted in this 

modelling exercise because a number of the flow, pressure and temperature meters have 

malfunctioned. Ideally a whole re-verification process would be undertaken but due to 

inoperable meters it has not been possible to compare predicted and actual results.  

However, it is possible to conclude that the model has successfully predicted the effect of 

the addition of the BOS WHR boiler to the steam system. By monitoring Service Boiler 

pressures and flows with various BOS WHR boiler outputs it was possible to see that for all 

scenarios the pressure has not exceeded 13.5 barg and the temperature at the consumers has 

been acceptable for satisfactory operation.   

The meters are planned to be repaired and recalibrated in 2015 which is beyond the 

deadline for this project. It will therefore be a recommendation that the verification process 

is conducted once the meters are operable again.  

 

6.3. Continuous Annealing Process Line [CAPL] 

The model was modified to incorporate the layout shown in Figure 121. This enabled the 

assessment of installing a WHR boiler and piping the steam to both the CAPL and Cold 
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Mill. The model was run through the 10 mass balance scenarios shown in Table 11 with the 

addition of the 7tph from the proposed CAPL WHR boiler.  

The WHR Boiler was added with an output to the existing CAPL steam system and an 

extra 500m length of pipe work was added to connect the existing CAPL and Cold Mill 

steam systems together as portrayed by Figure 121. Both the CAPL and Cold Mill steam 

systems are at 3.5barg and are supplied by pressure reducing 11barg steam. The CAPL 

WHR boiler will generate 3.5 bar steam and connect directly into the CAPL and Cold Mill 

steam systems via the new 500m length of pipe work. The CAPL process itself consumes 

3tph, so with a WHR boiler output of 7tph, there would be an expected 4tph export from 

CAPL to the Cold Mill steam systems as shown in the figure. The Cold mill consumes 

between 9 and 15tph of steam. The model therefore simulates 7tph steam production, by the 

CAPL WHR boiler, with 3 tph being consumed locally and 4tph exported to the cold mill. 

From a mass balance perspective this concept reduced the 11barg steam demand of CAPL 

and Cold Mill. 
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Figure 121: Fluidflow3 Model adaptations 

 

With an output of only 7tph only a marginal effect on pressure was witnessed as shown in 

Figure 122. Interestingly the maximum pressure gain is seen for scenario 8 and not for 

scenario 2, which has the maximum Service Boiler and BOS WHR boiler outputs.   

 

 

Figure 122 Pressure Gain from adding the CAPL WHR Boiler 

As shown in Figure 123, for scenario 8 the maximum pressure gain is seen at the works 

areas at the south end of the works. Installing the CAPL WHR boiler could therefore 
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increase the South End pressures by 0.3bar but as shown in figure 6.7 the pressure is 12.2 

barg is well below the limit of 13.5 barg.  

 

Figure 123 Pressure gain by works area by adding the CAPL WHR Boiler 

Scenario 2 though does see a slight increase in pressure and as shown in Figure 124 taking 

the pressure closer to the 13.5bar maximum limit. 

 

 

Figure 124 Modelled maximum system pressures by adding the CAPL WHR boiler 
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As far as the temperature effect is concerned, as shown in Figure 125, increased steam 

temperatures are seen at the Coke Ovens and a decreased temperature is seen at the BOS 

plant. The predicted steam flow directions were studied to understand this condition. 

Further analyses of the model data revealed that the pressure at the South East corner of the 

works, where the CAPL is located, is increased and this pushes mass flow of steam up the 

eastern pipe work resulting in the Coke Ovens being supplied with more steam from the 

BOS plant rather than the Service Boilers. 

 

Figure 125 Predicted temperature effect of adding the CAPL WHR boiler 

These temperature differences are only small and therefore have little impact on the 

consumers. 

It is predicted that the addition of the CAPL WHR boiler to the steam system that already 

incorporates the BOS WHR boiler, would have little impact on pressures and temperatures. 

It should be noted though that if the Service Boilers and BOS WHR boilers were on 

maximum outputs, i.e. scenario 2, then adding the CAPL WHR boiler will push the system 

pressures closer to the maximum of 13.5 bar. 
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From a local mass balance perspective, Figure 126 shows how the CAPL WHR boiler 

would in effect reduce the 11bar steam demand from the 11barg steam system by the CAPL 

and Cold Mill. The maximum demand is shown to drop from 15tph to 10tph in the winter 

period.  

 

Figure 126 Local effect on the Mass balance by adding the CAPL WHR boiler 

With an ‘end use’ of between 8 and 15tph and a potential generation of up to 10tph, as 

shown in Figure 126, the project is to incorporate a vent to surplus any excess steam to 

atmosphere. During the winter months the vent will be zero but during the summer the vent 

could be 2tph at times. Further work should be conducted once the boiler is installed to 

look to utilise this waste energy for bay or office heating to further reduce natural gas and 

electrical consumption. This concept therefore makes 7 tph of 11 bar steam available for 

the new TA with a resultant electrical generation of 0.9MW or £500,000 per year savings 

by reducing electrical import. A business case was then developed and the funding 

approved in 2011 for installation in 2013. Unfortunately due to limited availability of the 

CAPL line and contractual issues with the chosen supplier the WHRB had not yet been 

fully commissioned.  
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6.4. Sinter Plant 

As defined in Chapter 3 section 6, the installation of a WHR boiler on the Sinter Plant 

cooler has the potential to generate 30tph of steam. To predict the effect of this additional 

steam input to the North End of the steam distribution circuit the model was again 

modified. 

As shown in Figure 127, the required additions were made to the main 11 bar steam model 

to incorporate a steam run from the area of the Sinter Cooler to the nearest connection point 

behind the Blast Furnaces. The Model was run through the series of scenarios, identified in 

Table 11, simulating various works and WHR boiler outputs 

.  

 

Figure 127: Zoom in on the North East Corner of the Model 
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The predicted results are presented in Figure 128, as can be seen scenario 2 causes the 

system pressures to exceed the 13.5barg maximum.  All other scenarios produce pressures 

below the maximum but Scenario 2 which is maximum volume of Service Boiler and BOS 

plant results in a system pressure of up to 13.76 barg 

 

Figure 128: Predicted Maximum Pressure per Scenario 

 Figure 129 shows that the predicted pressure gain is across all areas and therefore of 

particular concern. This would not be acceptable and so if WHR was to be employed to all 

three areas further steps would have to be taken to reduce system pressures 

 

Figure 129 Pressure Gain by Works Area 
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Figure 130 shows the effect on the distribution system pressure by reducing the Service 

Boiler outputs for Scenario 2. It has been predicted that the Service Boiler outputs would 

need to be dropped from 100tph to 80tph to bring the system pressure down to around 

13bar which, with no safety margin, could still be considered too high and it is more likely 

that the Service Boiler outputs should be limited to around 50tph to reduce the system 

pressure to 12 Barg. 

 

Figure 130: The relationship between distribution system pressures and Service Boiler 

outputs for Scenario 2   

The analysis has shown that it is not possible for the steam distribution system to accept 

WHR boilers from the BOS plant, the CAPL and the Sinter Plant. The results show though 

that the Service Boiler Outputs would have to be limited to 50tph to reduce the system 

pressure.  

Figure 130 also shows that the Service Boilers could be turned off completely if all three 

WHR boilers were running. The study shows that without the Service Boilers the steam 

temperature and pressure would be sufficient for effective operation for all consumers. The 
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Service Boilers would have to remain as an essential standby for when the WHR boilers are 

down for maintenance. 

With the Service Boilers off-line, the works steam is supplied from Waste Heat rather than 

from indigenous gas boilers. This gas could then be released for further electrical 

generation in the new power plant that the case study works is exploring (Tata, 2013). 

 

Figure 131 Steam Generation from WHR Boilers 

 

With the Service Boilers out of service the South End then changes back to an importer of 

steam as shown in Figure 132. 
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Figure 132: Steam Import to South End when Service Boilers Off 

When scenario 9 is considered, with all three WHR boilers in operation but the Service 

Boilers off-line it is predicted that sufficient pressure and temperature for the Coke Ovens 

to operate are available. As soon as the BOS WHR boiler is turned off though the pressure 

and temperature is insufficient. Leading to the conclusion that the South End of the works 

can be supplied purely by WHR boilers as long as there is a hot standby Service Boiler 

arrangement, that automatically starts, when the system pressure drops below say 11.5barg.  

 

6.5. Hot Strip Mill [HSM] 

As discussed in Chapter 3 section 6. A WHR option practiced at other steel works and 

referenced within the BREF notes (EC 2001) is Evaporative Cooling of the furnace skids. 

This would entail the complete replacement of the existing cooling system and hence 

capital intensive, require weeks of furnace outage and thus only likely to be done as part of 
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an essential replacement project. The case study works has been exploring the installation 

of an additional furnace and so incorporation of an evaporative skid cooling system would 

be worth considering. This section therefore explores the possible steam generation from an 

evaporative skid cooling system should one of the furnaces need essential replacement. The 

case study works advised that a furnace would produce approximately 15tph of steam. The 

main 11 barg model was modified to accept the steam output from the proposed 

evaporative cooling system. The 10 scenarios were then studied but with the Service 

Boilers output reduced to 40 tph as highlighted in section 6.3.   

Figure 133 shows the predicted results of the scenarios. The figure shows that the pressures 

are consistently below 12barg and are therefore considered acceptable. 

 

Figure 133: Predicted Pressures per Scenario 

The predicted temperature response, as shown in Figure 134, highlights important issues at 

the extremities of the distribution circuit, namely the Coke Ovens. Resulting in saturated 
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steam and not the superheated steam required at the Coke Ovens to satisfactorily operate 

the turbine drives.   

 

Figure 134: Steam temperature per scenario 

Figure 135 shows that scenarios 8 and 9 are those that result in the south end importing 

steam. As scenario 10 exports steam but results in low steam temperatures at the Coke 

Ovens it can be concluded that the low predicted steam temperatures at the Coke Ovens 

issue does not correlate with input/output mass balances. 
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Figure 135: South End Import / Export 

The model itself was examined further and it was found that it was again due to a local 

south west issue similar to that shown in section 6.2, Figure 116. As per section 6.2 

increasing the output of the service boilers for this scenario improves the steam temperature 

at the Coke Ovens as shown in Figure 136. As shown in Figure 136 increasing the service 

boilers output from 40 to 43tph is sufficient to raise the steam temperature to 250 
°
C which 

is above the minimum 240°C as stated in section 6.2.a. 



 

 

204 

 

 

Figure 136 Scenario 10 Coke Ovens Temperature vs Service Boiler output 

 

Figure 137 shows that the predicted pressure increase is marginal for scenario 10 as the 

Service Boiler outputs are increased.  

 

Figure 137 Scenario 10 Maximum system pressure vs Service Boiler Output 
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As discussed in Chapter 3, the conversion from a water cooling system to an evaporative 

cooling system is simply too disruptive for consideration. However, when the works 

decides it needs to overhaul a furnace or needs to add an additional furnace then this 

analyses has shown that the 11bar system can act as an end use for the energy recovered. 

The analysis also demonstrates the importance of continuous monitoring of the distribution 

systems pressures and temperatures with the Coke Ovens being of particular importance. 

This will then allow the ability to control the output of the service boilers and thus ensure 

that the steam delivered to the works areas is of sufficient temperature and pressures.  

6.6. Taking the Service Boilers off-line 

The next part of the study was to answer the question “with all the WHR boilers installed 

can the service boilers be removed?” By referring to Figure 138 the answer has to be “no”, 

as the system temperature falls below the minimum operating values for the Coke Ovens. 

The model was run through the ten scenarios but with the Service Boilers turned off. As 

can be seen in the figure the pressures are acceptable at the Coke Ovens but the temperature 

loss is excessive and as previously stated the temperature drops below the minimum. For 

Scenario 7, Figure 138 highlights that the temperature at the Coke Ovens drops, below 

188
o
C and therefore the steam is at a saturated state which is too low for use in the local 

steam turbines.  

With the current setup of the case study works, the service boilers will always be required 

to operate in some form or another to ensure adequate supply of steam to the South end of 

the works. With consumers flexing their consumption and the WHR boilers flexing their 

outputs the study shows that there are scenarios that will require the assistance of the 

Service Boilers. As discussed earlier it would perhaps be better if the Service Boilers were 
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in pressure control but as shown in Figure 138 there also needs to be the ability to increase 

the output to maintain the correct steam temperatures at the Coke Ovens.  

 

Figure 138 Steam temperatures and Pressures per scenario 

 

Figure 139 shows the predicted net pressure effect of the WHR boilers as they are added to 

the distribution system. As shown the maximum predicted pressure increases in steps as the 

WHR boilers are added. As the BOS and CAPL WHR boilers are added the maximum 

system pressure approaches the maximum allowed of 13.5barg. The addition of the 

proposed Sinter Plant WHR boiler then potentially takes the pressure above the maximum 

threshold and so the service boiler outputs need to be decreased. 
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Figure 139: System Pressure with the addition of WHR boilers 

As stated the BOS plant WHR boiler investment with the new TA within the 11barg steam 

system, with increased Service Boiler output has saved £8m and 54,000t of CO2 by 

December 2014. The project has been Referenced in Imperial colleges (Element 2014) 

report for the DECC document Heat Strategy. As a result of this the project the Steam 

distribution system is now seen as an essential asset for the case study works. This has 

released the future potential benefits from steam savers. The case study works can now 

review steam consumers and determine if they can be replaced by utilising medium or low 

grade waste heat recovery techniques. Any saving of 11 barg steam now increases the 

quantity of steam available for electrical generation through the new TA and thus create a 

financial benefit and payback for any investment. The works is also looking at ways of 

maximising the efficiency of the 11barg steam system to reduce steam losses through 

improved insulation, reduced leaks and improved trapping. 
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6.7 Summary 
 

This chapter describes the completion of Aim 4 through the modelling the impact of 

potential WHR boilers on the CSSW steam distribution Circuit. Chapter 5 described the 

building and verification of the model against plant data, this chapter describes the use of 

the model for simulating the addition of WHR boilers.  The model is used to simulate the 

addition of WHR boilers to the BOS plant, CAPL, Sinter Plant and HSM. Pressure and 

temperature predictions are plotted and recommendations are made to ensure the system 

does not exceed its maximum pressure limit. The results show that the steam system can 

accommodate the WHR boilers but the Service Boilers output would have to be reduced to 

ensure that the distribution system did not exceed the maximum  rated pressure of 13.5 barg 

for certain configurations. The modelling also predicts that the Service Boilers output must 

be maximised for other scenarios to ensure an adequate steam temperature at the Coke 

Ovens. It can therefore be stated that the ability to vary the Service Boiler output is critical 

to the successful use of the steam distribution system as an end use for the steam from 

future WHR boilers. 

As stated the BOS plant WHR boiler investment with the new TA within the 11barg steam 

system, with increased Service Boiler output has saved £8m and 54,000t of CO2 by 

December 2014. The project has been Referenced in Imperial colleges (Element 2014) 

report for the DECC document Heat Strategy. As a result of this the project the Steam 

distribution system is now seen as an essential asset for the case study works. This has 

released the future potential benefits from steam savers. The case study works can now 

review steam consumers and determine if they can be replaced by utilising medium or low 

grade waste heat recovery techniques. Any saving of 11 barg steam now increases the 
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quantity of steam available for electrical generation through the new TA and thus create a 

financial benefit and payback for any investment. The works is also looking at ways of 

maximising the efficiency of the 11barg steam system to reduce steam losses through 

improved insulation, reduced leaks and improved trapping. 
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7. Overall Heat Strategy 
 

7.1 Introduction 

Modelling the 11barg steam distribution has provided the ability to simulate an ‘end-use’ 

for Waste Heat Recovery [WHR] projects for the case study works. The concept of using 

the 11barg steam main to connect the projects together and provide an ‘end-use’ via the 

new Turbine Alternator [TA] became known within the CSSW as the ‘Centralised Heat 

Recovery Investment Strategy’ or abbreviated to ‘CHRIS’. WHR boilers can now be 

simply plugged into the existing steam main and use the electrical generation from the TA 

for the benefits case. This concept eliminates the need for future projects to install 

expensive steam mains and individual TA’s. The Fluidflow3 model enables the simulation 

of the boilers modelling pressure and temperature thus ensuring the optimum end-use for 

each project is obtained. The strategy has also realised some relatively low cost benefits by 

transforming the 11barg steam distribution main from what was seen as an old, tired and 

inefficient system into a valuable asset that is essential to the future sustainability of the 

works. Figure 140 shows the concept of the strategy in that WHR projects can be plugged 

into the steam mains but as shown by the modelling work the phasing of the projects is 

critical for pressure and temperature control of the steam system. The modelling work has 

demonstrated that each project needs to be modelled individually before it can be sure that 

the correct option is chosen and the business case benefits can be realised. The installation 

programme order is unknown at this point in time so it is essential that the model is 

continually updated and modified as the projects are installed. The timings of the projects 

can have huge effect on the validity of the business case. Too much pressure in the south 

end will result in the service boilers reducing output and therefore the gas being flared. 
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Figure 140 Schematic of the WHR projects  

As defined in Chapter 3 many of the projects have long paybacks and therefore as retrofit 

projects would not be financially viable. As demonstrated by the BOS plant project, by 

building WHR into an ‘essential replacement’ type project the business is more likely to 

invest. Therefore another benefit of this strategy is that the case study works already has an 

end-use for WHR projects therefore simplifying the options analysis. Therefore whenever 

the works is considering the essential replacement of a piece of equipment then this strategy 

can be referred to and the model utilised to assess its full benefits. Even as part of an 

essential replacement some projects will still suffer long paybacks, therefore external 

benefits will help the business make the investment decision. Potential Government 

incentives could assist in the near future and are being explored by the Department of 

Energy and Climate Change [DECC]. The ‘Future of Heating’ (DECC 2012b) looks at the 

potential benefit of industrial waste heat to the UK in general and therefore DECC are 

starting to see industry as part of the UKs energy solution not as just part of the problem. 

Figure 141 shows an extract from this DECC document showing how the BOS WHR 
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project has been discussed as a case study. The supporting research supported by Imperial 

College London (Energy 2014b) also references this project as a case study example of 

Industrial WHR.  

 

Figure 141 Extract from DECC ‘The Future of Heating’  

Figure 142 shows a diagrammatic Sankey diagram of how the 11bar steam system can now 

be used to integrate ‘Heat’ for the CSSW. The 11barg steam system can link ‘heat 

consumers’ and ‘waste heat recovery opportunities’. The new TA then provides the ability 

to generate electricity with any surplus heat.  

The figure demonstrates that:- 
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a) The indigenous gases are used for electrical generation in the Power Plant.  

b) High grade WHR is used to supply the steam consumers and further electrical 

generation.  

c) Low and Medium WHR technologies are used to supply the necessary heat to an 

internal district heating network and an external district heating networks  

d) The New TA off the 11Barg system now gives an energy and financial benefit to 

any inefficiencies present in the steam system for example leaks and insulation 

losses. 

 

Figure 142: Diagrammatic Steam and Heat Recovery Sankey Diagram 

 

7.2 LOW Grade WHR opportunities 

Several low grade WHR opportunities were explored. The site has invested in air source 

heat pumps which were being used for building heating instead of steam. The air source 

heat pump installations proved to be successful trials for the case study works. Other 

schemes were explored, for example the main office blocks, all of which are currently 
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steam heated off the 11bar steam main. Conversion to air source heat pump and also heat 

pumps, utilising a local warm water source from a cooling tower, were explored. The 

paybacks for both though were greater than 5 years and thus the CSSW deemed this long 

payback as excessive and financially unviable under current business conditions. An 

example Organic Rankin Cycle [ORC] was investigated utilising some of the low pressure 

steam off the CAPL WHB. The principle of this investigation was to generate electricity 

directly off the low pressure steam. Again though, the return on investment was not good 

enough for the case study works. One of the main issues with the low grade heat options is 

the simple scale of the works. Heat sources and heat consumers are rarely adjacent to each 

other. The necessary services are also some distance away so when the concept starts to be 

priced up into a project the costs start to increase rapidly.  

 Part way through the investigation it was identified that the CAPL Hot Gas Jet Cool was in 

fact a high grade water heat source being cooled by a plate heat exchanger. The plate heat 

exchanger is cooling the gases down from 600
o
C to 400

o
C via cooling water and a cooling 

tower. CMI (CMI 2012) are developing a different arrangement of heat exchangers to 

export up to 18MWthermal of water at 120
o
C that can either be used for district heating or 

connected to an ORC. Again this is not yet at the commercial scale but the opportunity is 

being explored. This water at 120
o
C at the South end of the Steam works would be ideal for 

an internal district heating scheme that would be used for Process, Office and Bay heating 

and thus displace the 11bar steam enabling it to be used for electrical generation instead. 

The issues with the uptake of low grade waste heat recovery projects are in essence the 

same as those discussed by the Tyndel Centre (Manchester 2010a). In essence the same 

headings can be applied for low grade WHR as those discussed in Chapter 3 i.e. Quantity, 
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Technology, and end-use. Low Grade waste heat is now being ‘Quantified’ more readily, 

there are more lower cost ‘Technologies’ becoming commercially but the often the issue 

can be the availability of, or the cost of, the ‘end-use’.   

7.3 District Heating Internal 

A described in Chapter 4, Figure 143, shows a PIE chart of the 11barg consumers in the 

case study works. As can be seen over half of the steam consumption is for process, 

building and office heating. All of which could be supplied with hot water rather than 

steam. This hot water could potentially be heated from lower grade waste heat sources. 

 

Figure 143: Steam Consumers 

An internal district heating scheme could therefore be created that utilised a few low grade 

waste heat sources. This would reduce 11barg demand by 40 tph and the number of small 

diameter pipe runs would reduce significantly thus improving system efficiencies. A project 

team was formed at the CSSW to assess the installation cost of such an internal district 

heating scheme. Unfortunately due to resource constraints the project was put on hold but a 

rough early stage budget cost of £7 million was estimated. The Cold Mill and CAPL 

systems would primarily be supplied with low pressure steam from the CAPL WHR boiler 
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and so the average winter 11bar steam saving would be in the order of 33 tph which when 

supplied to the new TA would produce a benefit of £1.7 million for the winter period. 

7.4 District Heating External 

According to DECC (DECC 2014) there are approximately 2,000 heat networks in the UK 

currently, supplying heat to more than 200,000 dwellings and more than 1,500 commercial 

and public buildings. A further 150 schemes are estimated to be under development by 

local authorities across the UK. Estimates show that approximately 15% of UK heat 

demand could be met by heat networks by 2030 and around 50% by 2050, making a cost 

effective contribution to the UK’s decarbonisation targets. 

Regarding district heating examples, utilising steelworks as the heat source, an award 

winning case study is that of Dunkirk (Awards 2009). In operation since 1985 the Dunkirk 

example could very well be replicated in the area surrounding the CSSW. As shown in 

Figure 144, WHR [28MW] from the sinter plant cooler at the local steel works is used as 

the main heat source. Around 70% of the heat supplied is from the WHR on the sinter 

plants. 
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Figure 144: District Heating Example 

Figure 145 shows an overview of the WHR unit above the sinter cooler and the district 

heating interface. The figure demonstrates the issue of the dust collection system that would 

need to be built into the WHR unit.  

 

Figure 145: Example Heat Recovery from Sinter Cooler 
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In the UK, Newcastle University (Newcastle University 2011) discuss District Heating in 

Port Talbot as a potentially viable case study and state that the heat map produced by the 

Department of Environment, Food and Rural Affairs [DEFRA] is used to determine the 

heat potential from the demand side. Most of the heat demand is located more than 9 km 

away from the heat sources identified in the steelworks. Within a radius of 25 km, the 

potential heat demand is approximately 155 MW and most of the heat demand comes from 

households. Figure 146 shows the potential network being explored by Neath Port Talbot 

County Borough Council [NPTCBC] in their ‘Local Development Plan 2011 to 2026’ 

(NPTCBC 2013). As shown the heat network could potentially have a few heat sources, the 

CSSW being one of them. 

Figure 146 District Heating Proposition (NPTCBC 2013) 
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To understand local opinion Manchester University conducted a survey with the local 

community. Of the three thousand forms sent out they had around 311 replies of which 

Figure 147 shows a graph from one of the questions asked ‘District Heating Sounds a good 

idea in Principle’. The majority of answers to all the questions were positive as long as 

there was a financial benefit for the house holder and there wasn’t a long term contractual 

obligation.  

 

Figure 147 District Heating Questionnaire (Manchester 2010) 

Industrial low grade heat can therefore be integrated into a new district heating scheme to 

heat the community. Linking the CSSW to a District Heating scheme does therefore look 

an attractive option and a win-win situation. Using the sinter cooler to first generate steam 

for electrical generation and then use the lower temperature segment for the district heating 

supply should form an attractive business case for the case study works and NPTCBC. 

Very difficult to calculate the benefit to the case study works as it will depend on the 

contractual agreements reached. If the energy value was priced at the same level as Natural 

Gas [i.e. £7 per GJ]. Then the financial value would be calculated as, the amount of heat 

available is 10MWTH, over the winter period, would equal a total of 43,680 MWh or 



 

 

220 

 

157,248G J, at£7 per GJ, therefore approximately £1.1m per year. There would be a heat 

requirement all year for the hospitals, schools and swimming pools but therefore would be 

a reduction in benefit from efficiency losses. All this would be built into the financial 

model agreed with the District Heating Organisation.  

7.5 Steam System Optimisation 

As discussed in Chapter 4 Cardiff University and Spirax Sarco surveyed the steam 

distribution circuit and efficiency improvements were identified. These insulation and 

trapping improvements, as well as the mass loss from the steam leaks, were then modelled 

and the new result assessed. Insulation improvements were simulated on the model as well 

as reduced mass loss due to improve steam trapping and leaks. The new TA installed as 

part of the BOS plant WHR boiler project now provides a payback for steam system energy 

efficiency improvements. In order to maximise the potential benefits the works embarked 

on a Steam System improvement program that incorporated repairs but also education. 

With the co-operation of the Carbon Trust a Welsh Steam users workshop was held at the 

case study works titled “Making Sense of Steam” (Carbon Trust 2012).  

7.6 De-centralisation of the steam system 

Full decentralisation, for the purposes of this work, is defined as the steam consumers in 

each works area being supplied by local WHR boilers and local Turbine Alternators. So full 

decentralisation would alleviate the need for the steam distribution circuit and therefore 

significantly reduce distribution losses. However, full decentralisation cannot be deemed a 

viable option because of the requirement to maintain a guaranteed continuity of supply to 

the steam consumers. This requirement would necessitate the installation of standby steam 

boilers to enable a continuous steam supply when the WHR boilers are taken off-line for 
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maintenance, or steelmaking production delays. Thus each works area would require the 

large capital investment of additional local boilers that would only be used for standby 

steam supplies. Therefore the cost of the boilers, on top of the local TAs, would 

significantly increase the capital cost and thus extend the payback period beyond what 

would be considered beneficial for the CSSW. 

However, in order to explore the concept of a reduction in the size of the steam system, a 

partial de-centralisation model was configured as shown in Figure 148. The model was 

broken into two discrete sections by eliminating the two long steam mains that connect the 

North and South Ends of the works. For the South End, with up to 100tph generation from 

the WHR boilers plus the potential of steam from the service boilers, the ‘end use’ for the 

steam is critical. To balance the mass flows for the South End a new TA had to be built into 

the model adjacent to the service boilers. This TA was programmed to be in pressure 

control and thus would respond to the variability in consumption and generation of the 

South End. The TA would be required to have an input range of 25-100tph to balance the 

steam generation from the WHR boilers and the remaining steam consumers.  

The model was run through a new series of scenarios to simulate the various mass flows 

from the WHR boilers and the Steam consumers. Figure 149 shows the outcome of the 

modelling for the scenario with the highest system pressures (ie maximum steam make 

from the boilers and minimum steam consumption from the works areas) indicating that 

both systems remain within the pressure limit of 13.5barg. This is expected as the TA is in 

Pressure Control but it clearly shows that the remainder of the distribution system is 

capable of withstanding the increased generation from the new WHR boilers. 
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Figure 148: Partial De-Centralisation 

 

Figure 149: Partial De-centralisation Modelling results 

The main advantage of this proposal is the efficiency gain from the losses associated with 

the two long steam mains, that is, the steam from the South end would no longer be 

exported all the way to the North End. The model predicts a gain of an equivalent to 6tph of 

steam, which through the new TA, equates to 1MWe or £600k per year. The TA installation 
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would cost around £4M (based on the costs of TA5 for the BOS project) and therefore, with 

a 7 year payback, it is very unlikely that the CSSW would invest in this proposal. As 

financial constraints change and government incentives potentially arise this option could 

present the optimum solution for the CSSW. By illuminating the need for individual 

standby boilers, plus TAs for each works area, the solution minimises potential investment 

in comparison to the complete decentralisation option. Partial decentralisation, therefore, 

may well prove to be the optimum solution. As new projects are considered for the CSSW 

it is therefore important that partial de-centralisation is modelled and considered. 
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8. Conclusions 

 

8.1 Review of Thesis Aims 

Chapter 1 defined the five aims of the thesis as being:- 

1. “Study UK based CSSW, Study its energy flows, compare against BAT and identify a 

technology not yet employed to improve Energy Efficiency.”.  

This aim was completed in Chapter 2. The energy flows of the CSSW have been analysed 

and compared to BAT. It has therefore been identified that WHR is a potential technology 

not yet fully utilised by the CSSW  

2. “Research that technology”.  

This aim was completed in Chapter 3. WHR has been researched and reported both as a 

general subject but also applied directly to the steel industry and for the CSSW on 

particular.   

3. “Investigate the potential impact on the CSSW”.  

This aim was completed in Chapter 4. The application of high grade WHR technologies is 

explored through a detailed understanding and analysis of the existing CSSW steam 

distribution circuit. 

4. “Model the technologies implementation”.  

This aim was completed in Chapters 5 & 6. A model has been developed of the 26km 

CSSW steam distribution circuit. Through comparison with theoretical calculation and 

actual plant data for defined operational scenarios, the model has been fully verified. The 
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CSSW in 2013 subsequently made the investment in the first WHR boiler at the BOS plant 

and the new Turbine Alternator. This new TA has generated over £18 million of electricity 

up to December 2015.   

5. “Scope a strategic outlook for the CSSW”. 

 This aim was complete in Chapter 7. A strategy is presented that utilises low grade WHR 

to displace steam consumption and high grade WHR to generate steam for electrical 

generation. The model is also used to explore the further option of partial de-centralisation 

of the steam distribution circuit. The model is split into two distinct circuits for the North 

and South ends of the CSSW. The model incorporates all high grade WHR options for 

electrical generation and low grade WHR is used to displace steam consumers and export 

heat for local community district heating.  

8.2 Conclusions  

1. The modelling has proved that the 11barg steam system can be utilised as an ‘end use’ 

for high grade waste heat recovery projects for the case study works. The modelling 

demonstrated that:- 

 The system can potentially be over pressurised and therefore continuous 

monitoring is essential for safe operation. This necessitates a new focus, for the 

case study works, to ensure reliable metering and thus ensure protection of the 

steam system. Improved monitoring is also required to protect the consumers 

from low steam temperatures. 

 With the current configuration of plant, the Service Boilers are essential to 

ensure the steam temperatures remain sufficient at the Coke Ovens.  
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 The ability to flex the Service Boilers output to protect the system from over 

pressurisation is demonstrated by the modelling work.  

 

2. Two WHR projects have been supported by this project helping the works invest over 

£55m and save over £7m per year in energy thus reducing carbon dioxide emissions by 

50,000tonnes of Carbon Dioxide per year. 

 

3. The new TA has transformed the value of the steam system to the case study works. 

Steam savings now equal monetary savings thus ensuring there is a driver for 

efficiency. 

 

4. The research and modelling has provided the case study works with a strategic 

overview to ensure that WHR projects are more easily considered in the future. As 

various pieces of equipment require essential replacement this strategy will ensure that 

WHR is considered as part of the options analysis.  
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9. Recommendations and Further Work 
 

 To ensure the models validity, continue to develop the model by comparison to 

plant data. As insulation deteriorates or is replaced through planned maintenance the 

characteristics of the system will change. Also, as soon as the steam meters are 

made operational conduct a new validation exercise and reassess the accuracy of the 

model. 

 Develop low grade waste heat projects as ‘steam savers’ to increase electrical 

generation and also help towards some decentralization. Many of the steam 

consumers are at extremities of the steam system. Often the calculated distribution 

losses are greater than consumer itself. 

 Explore the high grade WHR option for Sinter Plant and combine with the District 

Heating investigation being conducted by the local council. The model can be used 

to help assess the options. 

 Use the model to help assess the case study works with options for the new power 

plant being investigated by the CSSW. The model will enable simulation of the new 

inputs and outputs for the new Power plant and its associated modifications 

 Re-assess the partial de-centralisation of the steam system on an ongoing basis as 

WHR projects are considered. 
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