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Standard textbook general equilibrium term structure models such as that developed by Cox, 

Ingersoll and Ross (1985b), do not accommodate negative real interest rates.  Given this, the 

Cox, Ingersoll and Ross (1985b) “technological uncertainty variable” is formulated in terms 

of the Pearson Type IV probability density.  The Pearson Type IV encompasses mean 

reverting sample paths, time varying volatility and also allows for negative real interest rates.  

The Fokker-Planck (that is, the Chapman-Kolmogorov) equation is then used to determine 

the conditional moments of the instantaneous real rate of interest.  These enable one to 

determine the mean and variance of the accumulated (that is, integrated) real rate of interest 

on a bank (or loan) account when interest accumulates at the instantaneous real rate of 

interest defined by the Pearson Type IV probability density.  A pricing formula for pure 

discount bonds is also developed.  Our empirical analysis of short dated Treasury bills shows 

that real interest rates in the U.K. and the U.S. are strongly compatible with a general 

equilibrium term structure model based on the Pearson Type IV probability density.   
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1.  Introduction 

 

The Cox, Ingersoll and Ross (1985b) model of the term structure of interest rates has been 

described as “... the premier textbook example of a continuous-time general equilibrium asset 

pricing model ...” and as “... one of the key breakthroughs of [its] decade ....” (Duffie, 2001, 

xiv).  Here it will be recalled that Cox, Ingersoll and Ross (1985b) formulate a quasi-supply 

side model of the economy based on the weak aggregation criteria of Rubinstein (1974) and 

where the optimising behaviour of a representative economic agent centres on a 

“technological uncertainty” variable that evolves in terms of a continuous time branching 

process.2  Bernoulli preferences are then invoked to determine the instantaneous prices of the 

Arrow securities for the economy and these in turn are used to form a portfolio of securities 

with an instantaneously certain real consumption pay-off.  Adding the prices of the Arrow 

securities comprising this portfolio then allows one to determine the instantaneous real risk 

free rate of interest for the economy.  This shows that the real risk free rate of interest 

develops in terms of the well known Cox, Ingersoll and Ross (1985b, 391) “square root” (or 

branching) process and that because of this, the real risk free rate of interest can never be 

negative.  Whilst early empirical assessments of the Cox, Ingersoll Ross (1985b) term 

structure model were largely supportive, they were conducted before the onset of the Global 

Financial Crisis when the incidence of negative real interest rates was rare (Gibbons and 

Ramaswamy, 1993; Brown and Schaefer, 1994).  This contrasts with the period following the 

Global Financial Crisis which has been characterised by a much greater incidence of negative 

real interest rates.  The World Bank (2014), for example, reports that real interest rates were 

continuously negative in the United Kingdom over the period from 2009 until 2013.  Other 

countries that have experienced negative real interest rates over all or part of this period 

                                                 
2  Otherwise known as a Feller (1951a, 1951b) Diffusion. 
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include Algeria, Argentina, Bahrain, Belarus, China, Kuwait, Libya, Oman, Pakistan, Qatar, 

Russia and Venezuela to name but a few.  Hence, given the increasing incidence of negative 

real interest rates since the onset of the Global Financial Crisis and the difficulties the Cox, 

Ingersoll and Ross (1985b) term structure model has in accommodating them, our purpose 

here is to propose a general stochastic process for the real rate of interest based on the 

Pearson Type IV probability density (Kendall and Stuart, 1977, 163-165).  The Pearson Type 

IV is the limiting form of a skewed Student “t” probability density with mean reverting 

sample paths and time varying volatility and encompasses both the well known Uhlenbeck 

and Ornstein (1930) process and the scaled “t” process of Praetz (1972, 1978) and Blattberg 

and Gonedes (1974) as particular cases.  More important, however, is the fact that the 

Pearson Type IV density can accommodate negative real interest rates. 

 

We begin our analysis in section 2 by following Cox, Ingersoll and Ross (1985b, 390-391) in 

considering an economy in which variations in real output hinge on a state variable which 

summarises the level of “technological uncertainty” in the economy.  The state variable is 

then used to develop a set of Arrow securities that lead to a real interest rate process whose 

steady state (that is, unconditional) statistical properties are compatible with the Pearson 

Type IV probability density function.  Section 3 then invokes the Fokker-Planck (that is, the 

Chapman-Kolmogorov) equation in conjunction with the stochastic differential equation 

implied by the Pearson Type IV probability density to determine the conditional moments of 

the instantaneous real risk free rate of interest.  In section 4 we employ the steady state 

interpretation of the Fokker-Planck equation in conjunction with real yields to maturity on 

short dated U.K. and U.S. Treasury bills to show that the Pearson Type IV probability density 

is strongly compatible with the way real interest rates evolve in practice.  We then move on in 

section 5 to determine the mean and variance of the accumulated (that is, integrated) real rate 

of interest on a bank (or loan) account when interest accumulates at the instantaneous real 
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rates of interest characterised by the Pearson Type IV probability density.  In section 6 we 

determine the price of a pure discount bond when the real rate of interest evolves in terms of 

the stochastic differential equation which defines the Pearson Type IV probability density.  

Section 7 concludes the paper and identifies areas in which our analysis might be further 

developed.    

 

2.  The Stochastic Process 

 

We begin our analysis by following Cox, Ingersoll and Ross (1985b, 390) in considering an 

economy in which variations in real output hinge on a state variable, Y(t), which summarises 

the level of “technological uncertainty” in the economy.3  The development of the 

technological uncertainty variable is described by the stochastic differential equation:4 

 

                             )(.))(())(()( 22
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             (1) 

 

where 0a , 1m , 2m  and 0b  are parameters, w captures the skewness in the probability 

density for Y(t) and dz(t) is a white noise process with a unit variance parameter (Hoel, Port 

and Stone 1987, 142).  This means that increments in technological uncertainty gravitate 

towards a long run mean of 
b

a
  with a variance that grows in magnitude the farther Y(t) 

                                                 
3  A formal mathematical statement of the role played by the technological uncertainty variable in the 

determination of the real rate of interest is to be found in Cox, Ingersoll and Ross (1985a, 364-368; 1985b,  390-

391).  Beyond this formal statement, however, Cox, Ingersoll and Ross (1985a, 1985b) have relatively little to 

say about the empirical meaning of the technological uncertainty variable.  The context in which the 

technological uncertainty variable is introduced in the Cox, Ingersoll and Ross (1985a, 1985b) term structure 

model would suggest that it encapsulates factors such as the economy’s natural endowments, the enterprise, 

ingenuity and industry of its people, the quality and effectiveness of its political institutions, the levels of and 

the neutrality (or otherwise) of its tax system, the political independence of its monetary authorities and so on. 

 
4   The specification of the state variable given here encompasses both positive and negative values.  It therefore 

differs from the state variable employed for the technological uncertainty variable in the Cox, Ingersoll and Ross 

(1985b, 390) term structure model, which is based on a continuous time branching process.  There are various 

interpretations of the branching process (Feller 1951a, 1951b) but all of them constrain the state variable to be 

non-negative and thus, they all differ from the state variable based on the Pearson Type IV probability density 

which can assume both positive and negative values. 
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departs from its skewness adjusted long run mean of )(
b

wa 
  (Cox, Ingersoll and Ross 

1985b, 390; Black 1995, 1371-72).  Moreover, real output in the economy, e(t), is perfectly 

correlated with technological uncertainty (Cox, Ingersoll and Ross, 1985b, 390-391) in the 

sense that proportionate variations in real output evolve in terms of the stochastic differential 

equation: 
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where h is a constant of proportionality and  is an intensity parameter defined on the white 

noise process dz(t).5  Standard optimising behaviour by a representative economic agent will 

then mean that the real risk free rate of interest, r(t), over the instantaneous period from time t 

until time )( dtt   can be determined from the identity (Rubinstein 1974, 232-233; Cox, 

Ingersoll and Ross 1985a, 367; Duffie 1988, 291-292):  
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where (.) represents the utility function over real consumption for the representative 

economic agent and E(.) is the expectation operator.  Simple Taylor series expansions applied 

                                                 
5  In the Cox, Ingersoll and Ross (1985b, 387) term structure model, changes in the magnitude of the 

technological uncertainty variable have exactly the same impact on the instantaneous mean and the 

instantaneous variance of the growth rate in the economy’s real output (Rhys and Tippett 2001, 384-387).  Thus, 

if the technological uncertainty variable declines in magnitude then the instantaneous mean growth rate and the 

instantaneous variance of the growth rate in the economy’s real output will both decline by the same magnitude 

as the technological uncertainty variable (Cox, Ingersoll and Ross 1985b, 390).  This contrasts with our 

modelling procedures where the initial impact of variations in the technological uncertainty variable is on the 

instantaneous mean proportionate growth rate in real output alone.  Here the reader will be able to show by 

direct application of Itô’s formula, that real output in the economy at time t will amount to: 

 

t

tztdssYhete
0

2

2
1 )(.)(exp{).0()(   

where z(t) possesses a normal density function with a mean of zero and a variance of t.  In subsequent sections 

we demonstrate how this result implies that changes in the magnitude of the technological uncertainty variable 

will also have secondary effects on the conditional instantaneous variance of the future instantaneous growth 

rate in real output. 
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to both sides of the above identity will then show that the real risk free rate of interest has the 

alternative representation: 
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        (4) 

 

Moreover, one can follow Cox, Ingersoll and Ross (1985b, 390) in assuming that the 

representative economic agent possesses Bernoulli utility, in which case we have 

))(log())(( tete  .  One can then substitute the relevant derivatives of the utility function into 

the above expression and then let 0dt  in which case it follows: 

 

                                                                2)()(  thYtr                                        (5) 

  

will be the instantaneous real risk free rate of interest at time t in terms of the parameters 

which characterise the mean and variance of the instantaneous increment in aggregate output.  

It also follows from this that instantaneous changes in the real rate of interest will be 

governed by the differential equation )()( thdYtdr  , or upon substituting equation (1) for the 

technological uncertainty variable: 
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 .This result shows that 

the expected instantaneous increment in the real rate of interest is given by: 
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This in turn will mean that the real rate of interest gravitates towards a long run mean of  

with an expected restoring force which is proportional to the difference between  and the 
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current instantaneous real rate of interest, r(t).  The constant of proportionality or “speed of 

adjustment coefficient” is defined by the parameter 0 .  Moreover, the variance of 

instantaneous increments in the real rate of interest is given by: 

 

                                           dttrkktdrVar }))(({)]([ 22

2
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1                                (8) 

 

This shows that the volatility of instantaneous changes in the real rate of interest grows in 

magnitude the farther the real rate of interest departs from its “skewness adjusted” long run 

mean of )(    (Cox, Ingersoll and Ross 1985b, 390; Black 1995, 1371-72).  Note also that 

setting 02

2 k  leads to the Uhlenbeck and Ornstein (1930) process which is one of the most 

widely cited and applied stochastic processes in the financial economics literature (Gibson 

and Schwartz 1990, Barndorff-Nielsen and Shephard 2001, Hong and Satchell 2012).  

Moreover, setting 0  leads to the scaled “t” density function of Praetz (1972, 1978) and 

Blattberg and Gonedes (1974) which provides an early example of what has become another 

commonly applied stochastic process in the financial economics literature (Bollerslev 1987, 

Fernandez and Steel 1998, Aas and Ha 2006).  

 

3.  The Conditional Moments 

 

Now, one can define the conditional expected centred instantaneous real rate of interest at 

time t as follows: 

 

                                      




 drtrgrrEtM ),()()()(                                    (9) 

 

where g(r,t) is the conditional probability density for the instantaneous real rate of interest.  

Moreover, one can differentiate through the above expression in which case it follows (Cox 

and Miller 1965, 217): 
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Here, however, the Fokker-Planck (that is, the Chapman-Kolmogorov) equation shows that 

the conditional probability density bears the following relationship to the mean and variance 

of instantaneous changes in the real rate of interest (Cox and Miller 1965, 213-215):  
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This in turn will mean that the derivative of the conditional expected centred instantaneous 

real rate of interest has the following representation:   
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One can then use equation (7) to substitute the expected instantaneous increment in the real 

rate of interest into the second term on the right hand side of the above expression in which 

case we have:  
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Moreover, under appropriate high order contact conditions one can apply integration by parts 

to the right hand side of the above expression and thereby show (Ashton and Tippett 2006, 

1590-1591): 
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One can also use equation (8) in conjunction with a similar application of integration by parts  

in order to evaluate the first term on the right hand side of equation (12); namely:   
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Bringing these latter two results together shows that the conditional expected centred 

instantaneous real rate of interest will satisfy the following differential equation: 

 

                                                        )()(' tMtM                                                 (15) 

 

Solving the above differential equation under the initial condition ))0(()0( rM    shows 

that the conditional expected centred instantaneous real rate of interest at time t amounts to 

(Boyce and DiPrima 2005, 32-33): 

 

                                             tertrEtM   ))0(())(()(                              (16a)                            

 

This in turn implies that the conditional expected instantaneous real rate of interest at time t is 

given by: 

 

                                                     tertrE   ))0(()]([                                   (16b) 

 

Moreover, one can let t  in which case it follows that the expected instantaneous real 

rate of interest in the “steady state” - that is, the unconditional expected instantaneous real 

rate of interest - will amount to )]([rE .   

 

Similar procedures show that the conditional second moment of the centred instantaneous 

real rate of interest may be defined as follows: 
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 drtrgrrEtV ),()(])[()( 22                              (17) 

 

Differentiating through the above expression and substituting the Fokker-Planck equation 

will then show: 
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Moreover, under appropriate high order contact conditions one can again apply integration by 

parts to both terms on the right hand side of the above equation and thereby show that the 

expression for the conditional second moment of the centred instantaneous real rate of 

interest will satisfy the following differential equation: 

 

                            terkkktVktV   ))0((2)()()2()(' 2

2

22

2

2

1

2

2                (19) 

 

Standard methods will then show that the general solution of the above differential equation 

takes the form (Boyce and DiPrima 2005, 32-33): 
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where c is a constant of integration.  One can use this result in conjunction with equation (16) 

to show that the conditional variance of the centred instantaneous real rate of interest will 

take the general form:6 

 

 222 )}({])[()( rErEt   

                                                 
6  The variance of the instantaneous centred real rate of interest can be re-expressed as: 

 

]))([()}()[{()}({])[()( 22222 rErErErErErEt    

 

Thus, the variance of the centred instantaneous real rate of interest is equivalent to the variance of the 

instantaneous real rate of interest itself. 
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Now at 0t  the conditional probability density for the instantaneous real rate of interest, 

g(r,0), will take the form of a Dirac delta function with a probability density which is 

completely concentrated at r(0) (Sneddon 1961, 51-53; Cox and Miller 1965, 209).  This in 

turn will mean that the variance of the centred instantaneous real rate of interest must satisfy 

the initial condition 0)0(2  .  Using this initial condition in conjunction with equation (21) 

enables one to show that:  
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Substituting this latter result into equation (21) will then show that the conditional variance of 

the centred instantaneous real rate of interest is given by:7 
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Note that setting 02

2 k  in the above expression leads to the conditional variance associated 

with the Uhlenbeck and Ornstein (1930, 828) process; namely:  
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7  One can state this result on a per unit time basis and then apply L’Hôpital’s Rule on a term by term basis in 

order to determine the variance of the centred instantaneous real rate of interest; namely:  
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This shows that the expression for the conditional variance of the centred instantaneous real rate of interest as 

given by equation (22) is compatible with the expression for the variance of instantaneous changes in the real 

rate of interest as given by equation (8). 



 12 

 

Moreover, setting 0  leads to the conditional variance associated with the scaled “t” 

density function: 
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Finally, one can let t  in which case the steady state (that is, unconditional) variance of 

the centred instantaneous real rate of interest will be: 
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k


  , a result previously developed by Ashton and Tippett (2006, 

1591).  One can also use the Fokker-Planck equation and similar procedures to those 

employed in this section to determine the third and higher conditional moments of the 

instantaneous real rate of interest.  However, it facilitates the empirical application of our 

model if we now demonstrate how one determines the unconditional probability density 

function for the instantaneous real rate of interest. 

 

4.   Unconditional Probability Density for the Instantaneous Real Rate of Interest 

 

We begin with the assumption that the instantaneous real rate of interest, r(t), possesses a 

steady-state (that is, unconditional) probability density which is independent of its initial 

condition, r(0).  It then follows that one can substitute the requirement (Merton 1975, 389-

390; Karlin and Taylor 1981, 220): 
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into the Fokker-Planck equation (11) in which case the unconditional probability (that is, 

steady state) density function for the instantaneous real rate of interest, g(r), will satisfy the 

ordinary differential equation: 
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Solving this differential equation subject to the normalising condition 




1)( drrg  leads to 

the Pearson Type IV probability density:  
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where, as previously, )( rx    is the centred instantaneous real rate of interest and 

(Jeffreys 1961, 75; Yan 2005, 6):   
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is the normalising constant.  Moreover, 1i  is the pure imaginary number, (.)  is the 

gamma function, and   .   is the modulus of a complex number. 
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Now, a cursory inspection of equation (25) shows that 
2
1

2   is a necessary condition for the 

variance of the Pearson Type IV probability density to be a convergent statistic.8  The 

violation of this condition will mean that neither the variance nor any of the higher moments 

will be well defined and in these circumstances techniques like the Generalised Method of 

Moments (GMM) will constitute an inefficient means of parameter estimation.  Moreover, 

Yan (2005, 6) and Kendall and Stuart (1977, 163) note how the transcendental nature of the 

normalising constant, c, and the slow rate at which its various series representations converge 

will be a significant “obstacle” in the application of maximum likelihood parameter 

estimation procedures.  Given this, parameter estimation for the Pearson Type IV was 

conducted using the “χ2 minimum method” (Avni 1976, Berkson 1980) based on the Cramér-

von Mises goodness-of-fit statistic as summarised by Cramér (1946, 426-427).  

 

Our data are comprised of the yields to maturity on U.K. (Datastream code TRUK1MT) and 

U.S. (Datastream code TRUS1MT) Treasury bills issued over the period from 1 August, 2001 

until 1 May, 2015.  Our sample is based on the maximum period for which data is available 

on U.S. Treasury Bill yields at the time of writing.  Moreover, given the instantaneous nature 

of our modelling procedures our focus is with the yield to maturity on Treasury bills with the 

shortest maturity period of one month.  This in turn means our data is comprised of the 

continuously compounded yields to maturity on one month Treasury bills issued at the 

beginning of each month over the period from 1 August, 2001 until 1 May, 2015.  The real 

yield to maturity is calculated by subtracting the continuously compounded rate of inflation 

as measured by the Consumer Price Index (CPI) for the given month and country from the 

                                                 
8 More generally, a necessary condition for the nth moment of the Pearson Type IV probability density to be a 

convergent statistic is that 
2

1
2

 n .  (Ashton and Tippett 2006, 1591). 
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continuously compounded yield to maturity for Treasury bills issued at the beginning of that 

month and which have one month to maturity.9   

 

Table 1 summarises basic distributional properties across the N = 166 real yields to maturity 

on U.K. and U.S. one month Treasury bills over the period from 1 August, 2001 until 1 May, 

2015.  Note how the average real yield to maturity for U.K. treasury bills is slightly positive 

at 0.38% (per annum) with a standard deviation of 4.65%.  In contrast, the average real yield 

to maturity for U.S. treasury bills is negative at -0.81% (per annum) with a standard deviation 

of 5.10%.  The median real yield to maturity for U.K. Treasury bills is slightly negative at 

________________________________________________ 

 

INSERT TABLE ONE ABOUT HERE 

________________________________________________ 

 

-0.09% (per annum) but much more negative for U.S. Treasury bills at -1.18% (per annum).  

Moreover, the standardised skewness and standardised excess kurtosis measures for U.K. 

Treasury bills are not significantly different from zero at all conventional levels.  In contrast, 

whilst the standardised skewness measure for U.S. Treasury bills is not significantly different 

from zero, the standardised excess kurtosis measure for U.S. real yields is significantly 

different from zero at all conventional levels.    

 

Table 2 summarises the results from implementing the χ2 minimum method to estimate the 

parameters of the Pearson Type IV probability density using our sample of real yields on 

U.K. and U.S. Treasury bills with one month to maturity. 10   Thus, the estimate of the long  

                                                 
9  As an example, the one month Treasury bill issued by the U.K. Debt Management Office on 1 May, 2002 had 

an average yield to maturity of 3.908% (per annum).  This is equivalent to a continuously compounded yield to 

 maturity of %834.3)
100

908.3
1log(100   (per annum).  On 30 April, 2002 the U.K. Consumer Price Index (CPI) 

stood at 95.3.  By 31 May, 2002 the CPI had risen to 95.5.  This means the continuously compounded rate of 

inflation over the month of May, 2002 amounted to %515.2)
3.95

5.95
log(1200   (per annum).  Hence, the 

continuously compounded real yield to maturity on Treasury bills with one month to maturity as issued on 1 

May, 2002 amounts to 3.834 - 2.515 = 1.319% (per annum). 
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________________________________________________ 

 

INSERT TABLE TWO ABOUT HERE 

________________________________________________ 

 

run expected real yield to maturity for one month U.K. Treasury bills is  = 0.21% (per 

annum) with the remaining parameter estimates being  = 0.3717, 1 = 0.1126 and 2 = 

73.6103.  This contrasts with a negative estimated long run expected real yield to maturity of 

 = -0.81% (per annum) for one month U.S. Treasury bills with the remaining parameter 

estimates being  = 0.1611, 1 = 0.0353 and 2 = 13.7863.  Figure 1 provides a graphical 

representation of the estimated distribution function for the real annual yield to maturity on 

U.K. Treasury bills over the period from 1 August, 2001 until 1 May, 2015.  Thus, the first 

panel of this figure summarises the difference between the actual distribution function and 

___________________________________________________ 

 

INSERT FIGURE ONE AND FIGURE TWO ABOUT HERE 

___________________________________________________ 

 

the empirically estimated distribution function of the real yield on U.K. Treasury bills with 

parameter values of  = 0.21% (per annum),  = 0.3717, 1 = 0.1126 and 2 = 73.6103.  The 

second panel in Figure 1 is a graph of the Pearson Type IV probability density with the above 

parameter values.  Similarly, the first panel of Figure 2 summarises the difference between 

the actual distribution function and the empirically estimated distribution function of the real 

yield on U.S. Treasury bills with parameter values of  = -0.81% (per annum),  = 0.1611, 1 

= 0.0353 and 2 = 13.7863.  The second panel in Figure 2 is a graph of the Pearson Type IV 

probability density with the above parameter values. 

 

Here it is important to note how Anderson and Darling (1952, 203) show that if the real 

yields on which our empirical analysis is based are drawn from the hypothesised Pearson 

                                                                                                                                                        
10  See Guo et al. (2015) for a more detailed exposition of how the χ2 minimum method is implemented 

empirically. 
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Type IV probability density there is only a 5% chance of the Cramér-von Mises T3 statistic 

exceeding 0.4614.  Given this, the minimised test statistics summarised in Table 2 of T3 = 

0.0312 for U.K. real yields and T3 = 0.0300 for U.S. real yields would appear to confirm that 

the Pearson Type IV probability density with the given parameter values provides a very 

good description of the way real yields on one month U.K. and U.S. Treasury bills evolve 

over time.  It needs to be emphasised, however, that Anderson and Darling (1952) determine 

the distributional properties of the T3 statistic on the assumption that none of the parameters 

of the hypothesised Pearson Type IV probability density have had to be estimated.  When, as 

in the present instance, the parameters of the Pearson Type IV have had to be estimated, 

Anderson (2010, 6) notes that the significance scores for the T3 statistic will be both 

distribution specific and “much smaller than those … for the case where [the] parameters are 

known.”  Hence, one cannot use the Cramér-von Mises T3 statistics as we have calculated 

them to make a formal assessment about the adequacy or otherwise of the fitted Type IV 

probability densities.  Fortunately, Cramér (1946, 506) has shown that when the parameters 

of the hypothesised Type IV probability density are estimated by minimising the T3 statistic, 

one can still assess the adequacy or otherwise of the fitted probability density by applying the 

χ2 goodness of fit test but with the loss of one degree of freedom for each parameter that has 

had to be estimated.   

 

We thus ordered the N = 166 real one month Treasury bill yields comprising our sample from 

the lowest real yield up to the highest real yield and then divided the ordered real yields into 

eleven groups of approximately equal size.  The χ2 goodness of fit test was then applied using 

the estimates summarised in Table 2 for the parameters , , 1, and 2 obtained by 

minimising the Cramér-von Mises goodness-of-fit statistic, T3.  The final column of Table 2 

summarises the calculated χ2 goodness of fit test statistics which are both distributed with 11 

- 4 = 7 degrees of freedom.  Both the χ2 = 4.6886 score for the U.K. and the χ2 = 3.0376 
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score for the U.S. are not significant at conventional levels thereby indicating that real yields 

to maturity for one month U.K. and U.S. Treasury bills are strongly compatible with the 

Pearson Type IV probability density with the parameter values summarised in Table 2.   

 

5.  Accumulated Interest 

 

The focus of our analysis to date is with determining the properties of the instantaneous real 

rate of interest.  We now develop the properties of the accumulated (that is, integrated) real 

rate of interest by using the conditional moments developed in section 3 to determine the 

conditional mean and variance of the accumulated real rate of interest on a bank (or loan) 

account when interest accumulates at the instantaneous real rates of interest defined by the 

Pearson Type IV probability density.  We begin by integrating through the expression for the 

conditional expected instantaneous real rate of interest as given by equation (16b) in which 

case it follows that the expected conditional accumulated real rate of interest over the period 

from time zero until time t will be: 

 

                                           




t ter
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                            (29) 

 

Note how this result shows that the speed of adjustment parameter, , plays a crucial role in 

determining the magnitude of the expected accumulated real rate of interest to be earned on 

the bank (or loan) account.  This is particularly so if the initial condition (that is, the opening 

instantaneous real rate of interest), r(0), differs significantly from its long run mean, , and 

the speed of adjustment coefficient, , is relatively small. 

 

Of course expectations are seldom realised and so, the conventional practice is to summarise 

the uncertainty associated with the interest paid on the bank (or loan) account in terms of the  



variance of the accumulated real rate of interest.  Hence, in the Appendix we demonstrate how one can use the Law of Iterated (or Double) 

Expectations to show that the covariance function associated with the instantaneous real rates of interest, r(s) and r(t), that evolve in terms of the 

stochastic differential equation (6) will be of the form (Freeman, 1963, 54-57): 

 

                                                                                               )(2 )()](),([ stessrtrCov                                                                                     (30) 

 

                                                      

for t  s  0 and where 2(s) is defined by equation (22).  Here, one can integrate through equation (30) and thereby show that the conditional 

variance of the accumulated real rate of interest over the period from time zero until time t will be given by (Cox and Miller 1965, 227-228): 
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Hence, substituting equation (22) into the above expression and evaluating the indicated integral shows that the conditional variance of the 

accumulated real rate of interest is given by: 
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Now, setting 02

2 k  in the above expression allows one to determine the conditional variance of the accumulated real rate of interest on the bank 

(or loan) account when the instantaneous real rate of interest evolves in terms of an Uhlenbeck and Ornstein (1930, 832) process:   
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                                                                                 (33) 

 

Similarly, setting  = 0 in equation (32) shows that when the instantaneous real rate of interest evolves in terms of the scaled “t” probability 

density then the conditional variance of the accumulated real rate of interest will be:  
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Finally, note how for the general case involving 0,2

2 k , the conditional variance of the accumulated real rate of interest is comprised of three 

elements - the first of which hinges purely on the investment horizon, t, whilst the second and third depend on a combination of the investment 

horizon and the difference between the long run mean instantaneous real rate of interest and the current instantaneous real rate of interest, or 

))0(( r . 



6.  Pure Discount Bonds 

 

We now determine the price of a pure discount bond, B(r,t), that pays one unit of real output 

at some future point in time, T > t (Cox, Ingersoll and Ross 1985b, 392).  We begin by noting 

that equation (6) taken in conjunction with Itô’s formula shows that the instantaneous real 

return on the bond will evolve in accordance with the following stochastic differential 

equation: 
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Now, suppose one follows Cox, Ingersoll and Ross (1985a, 366-367) in forming a self 

financing portfolio comprised of an investment of W1 units of real output in the pure discount 

bond, W2 in a security which costs one unit of real output at time t and returns 
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 units of real output at time )( dtt   and )( 213 WWW   in 

instantaneous borrowing or lending at the real risk free rate of interest.  It then follows that 

the instantaneous increment in the real value of this portfolio will be:  
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                                                                                                                                  (36) 

Substituting equation (35) and equation (2) into the above expression will then show that the 

instantaneous increment in the real value of the portfolio will have a deterministic component 

which amounts to: 
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as well as a stochastic component given by: 
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Hence, if one fixes the proportionate investments in the pure discount bond and real output 

security so that: 
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                          (38) 

 

then the stochastic component of the instantaneous increment in the real value of the portfolio 

will be zero.  Ruling out potential arbitrage profits will then require that the deterministic 

component of the portfolio must also be zero, or: 
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Substituting equation (5) and equation (38) into the above expression will then show that the 

price of the pure discount bond will have to satisfy the following partial differential equation: 
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with the boundary condition being 1),( TrB  and where time T is the date of the bond’s 

maturity.11  An important canonical interpretation of the above partial differential equation 

sets 02

2 k  in which case the instantaneous real rate of interest evolves in terms of an 

Uhlenbeck and Ornstein (1930) process.  One may then use the method of separation of 

variables (Sneddon, 1961, 48) to show that the unique solution of the above boundary value 

problem and hence, the price of the pure discount bond will be: 
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Note that the first term in the argument for H(t) is proportional to the variance of the 

accumulated real rate of interest as summarised by equation (33) and therefore, will be non-

negative.  The second term is proportional to the variance of the accumulated real rate of 

interest when r is in statistical equilibrium12 and will be positive or negative according to 

whether 1k  exceeds or is less than .  It thus follows that whilst H(t) will be strictly 

                                                 
11  Taking expectations through equation (35) and substituting the result into equation (39) shows that the 

instantaneous expected return on the bond is given by: 

 

r

B
rkkr

dt

dB

B
E




 22

2

2

1 )()
1

(   

 

where the second term on the right hand side of the above expression is the covariance between the 

instantaneous real rate of interest and instantaneous proportionate changes in aggregate output.  Since 0




r

B  it 

follows that this covariance term will have a negative (positive) impact on the bond’s expected return when the 

real rate of interest increases (decreases) in magnitude - although the impact will be asymmetric according to 

whether the real rate of interest is positive or negative. 

 
12  That is, when (T – t)   (Cox and Miller 1965, 228).  It then follows from equation (23) that the variance of 

the instantaneous real rate of interest in statistical equilibrium is given by 



2
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12 k
 . 



 24 

positive, it will assume values which exceed or fall below unity according to whether  the 

second term is negative and exceeds the first term in absolute magnitude.  Moreover, 

differentiating through equation (40) will also show that the bond’s price is a decreasing 

convex function of the real rate of interest, r, and the long run mean real rate of interest, .  In 

contrast, the bond’s price is an increasing concave function of the variance parameters 2

1k  

and 2 .  The intuition behind this latter result is that larger values of 2

1k  and 2  signify more 

uncertainty about future productive opportunities in the economy in which case a risk-averse 

investor will value the certain income claims afforded by bonds more highly (Cox, Ingersoll 

and Ross 1985b, 394).  Finally, variations in the speed of adjustment coefficient, , can have 

either a positive or negative impact on the bond’s price depending on the time remaining until 

the bond’s maturity and the relative magnitude of the instantaneous real rate of interest, r.   

 

The principal advantage of simple canonical solutions like the one developed here is that they 

enable clear assessments to be made within the model about the impact which variations in 

technological uncertainty will have on real interest rates, expected changes in real output and 

the uncertainty associated with future productive opportunities.  There are, however, 

significant limitations associated with simple canonical models of the interest rate process 

based on the Uhlenbeck and Ornstein (1930) process - whether they be developed within a 

general equilibrium framework (Hull and White 1990) or as is more commonly the case, 

through the application of standard no-arbitrage pricing conditions (Vasicek 1977).  The first 

of these arises from the requirement 02

2 k  or that the variance of instantaneous increments 

in the real rate of interest is independent of the current level of the instantaneous real rate of 

interest.  We have previously noted how this requirement violates the commonly held belief 

that the uncertainty associated with changes in most economic time series becomes larger as 

the affected variable itself, grows in magnitude (Cox, Ingersoll and Ross 1985b, Black 1995).  
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Moreover, the requirement that 02

2 k  will also mean that the conditional probability density 

of the bond price at any given time must be lognormal - something which is of doubtful 

empirical validity (Hull and White 1990, 579). 

 

More general solutions of the partial differential equation (39) will, unfortunately, have to be 

determined numerically.13  A particularly important case, given the empirical evidence 

summarised in section 4, relates to the scaled “t” interpretation of the Pearson Type IV 

probability density which is defined by equation (28) with  = 0.  We thus consider the 

following trial solution for the differential equation (39): 
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 where H(t) and G(t) are continuously differentiable functions of time.  Substitution will then 

show that the above expression satisfies equation (39) when: 

 

  )()]([sinh)(')]}([tanh{sinh)()(
1

21

1

212

22
1 rr

k

k
tGr

k

k
tGk   

0
)(

)('
)()]([ 2

22

22
1  

tH

tH
tGktGk  

                                                                                                                                  (42) 

 

Here one can apply a first order Taylor series approximation to the hyperbolic functions 

appearing in the above expression and thereby show: 
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13  See Carnahan, Luther and Wilkes (1969) and Crank (1975) for a more detailed exposition of the numerical 

solution procedures which may be applied in such circumstances. 

 



Moreover, if one lets: 
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and ignores terms of ])[( 3rO  , it then follows: 
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or, equivalently: 
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Solving the above differential equation under the boundary condition H(T) = 1 will then show: 
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One can also take logarithms across equation (41) and thereby show that the yield to maturity when the bond has (T - t) years remaining to 

maturity will be:   
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Now, if one ignores terms of ])[( 3rO   and takes expectations across the above expression at time zero, then by substituting equation (16) it 

follows that the conditional expected yield to maturity when the bond has (T - t) years remaining until maturity will be: 
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Similar calculations taken in conjunction with equation (24) will also show that the conditional variance of the yield to maturity is be given by: 
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Finally, one can let (T - t)   in equation (48) (the instantaneous real interest rate, r, is in 

statistical equilibrium) and thereby show that the yield to maturity on the bond has a limiting 

value of: 
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 which is independent of the current instantaneous real rate of interest, r. 

 

7.  Summary Conclusions 

 

In the period following the onset of the Global Financial Crisis a significant number of 

countries have experienced negative real rates of interest.  Unfortunately, the Cox, Ingersoll 

and Ross (1985b) square root process - one of the most commonly applied stochastic 

processes for modelling term structure phenomena - cannot accommodate negative real rates 

of interest.  Given this, we modify the Cox, Ingersoll and Ross (1985b) term structure model 

by proposing a general stochastic process for the real rate of interest based on the Pearson 

Type IV probability density.  The Pearson Type IV is the limiting form of skewed Student “t” 

probability density with mean reverting sample paths and time varying volatility that 

encompasses both the Uhlenbeck and Ornstein (1930) and scaled “t” processes as particular 

cases.  More important, however, is the fact that the Pearson Type IV probability density can 

accommodate negative real interest rates.  We also use the Fokker-Planck (that is, the 

Chapman-Kolmogorov) equation in conjunction with the stochastic differential equation 

implied by the Pearson Type IV probability density to determine the conditional moments of 

the instantaneous real rate of interest.  The conditional moments are then used to determine 

the mean and variance of the accumulated real rate of interest on a bank (or loan) account 

when interest accumulates at the instantaneous real rates of interest defined by the Pearson 
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Type IV probability density.  We conclude the paper by determining the price of a pure 

discount bond when the real rate of interest evolves in terms of the stochastic differential 

equation that characterises the Pearson Type IV probability density.  Our empirical analysis 

of short dated Treasury Bills shows that real interest rates in the U.K. and the U.S. are 

strongly compatible with a general equilibrium term structure model based on the Pearson 

Type IV probability density.   
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Appendix Covariance Function for Instantaneous Real Rate of Interest 

 

One can generalise equation (16b) and thereby show that the conditional expected 

instantaneous real rate of interest can be stated as: 

 

)1()())(()]( )([ )()()( ststst eesresrsrtrE                

                                                                                                                                 (A1) 

 

for t > s > 0.  Now, by the Law of Iterated (or Double) Expectations we have (Freeman, 

1963, 54-57): 
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Moreover, one can substitute equation (A1) into the above expression in which case we have: 
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or equivalently: 
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Here one can use the fact that variance of the instantaneous real rate of interest at time s is 

given by 222 )]([)]([)(  srEsrEs  to re-state the above expression as: 
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Simple algebraic manipulation will then show that the above result may be re-stated as: 
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However, taking expectations across (A1) shows that this latter result may be re-stated as: 
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This may be equivalently stated as: 
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which is the covariance between the instantaneous real rate of interest at time s, and the 

instantaneous real rate of interest at time t. 
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Table 1. Distributional properties of the real yield to maturity on one month U.K. and U.S. 

Treasury bills covering the period from 1 August, 2001 until 1 May, 2015. 

 

 

 

 U.K. U.S. 

 N = 166 N = 166 

   

Average (per annum) 0.38% -0.81% 

   

Standard Deviation 4.65% 5.10% 

   

Standardised Skewness 0.39 0.99 

   

Standardised Kurtosis 0.60 3.02 

   

Median -0.09% -1.18% 

   

Maximum 14.23% 23.84% 

   

Minimum -11.83% -11.50% 

 

 

Notes: The above table is based on the N = 166 real yields to maturity for one month U.K 

and U.S. Treasury bills issued over the period from 1 August, 2001 until 1 May, 2015.  The 

real yield to maturity is calculated by subtracting the continuously compounded rate of 

inflation as measured by the Consumer Price Index (CPI) for the given month from the 

continuously compounded yield to maturity for Treasury bills with one month to maturity and 

which were issued at the beginning of that month.  
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Table 2. Estimated parameters using χ2 minimum method for the real yield to maturity on one 

month U.K. and U.S. Treasury bills covering the period from 1 August, 2001 until 1 May, 

2015. 

 

 















 

 

 

 



 

 

 

 

 

Cramér-

von Mises 

Statistic 

T3

 

χ2 

 Goodness 

of fit 

Statistic 

       

U.K. 0.21 0.3717 0.1126 73.6103 0.0312 4.6886 

       

U.S. -0.81% 0.1611 0.0353 13.7863 0.0300 3.0376 

       

 

 

Notes: The χ2 minimum method for estimating the parameters of the Pearson Type IV 

probability density was implemented by minimising the Cramér-von Mises goodness-of-fit 

statistic (Conover 1980, 306) across the N = 166 real yields to maturity and then determining 

the adequacy of the fitting procedure by calculating the Chi-square goodness of fit statistic 

(Conover 1980, 186).  The Chi-square goodness of fit statistic summarised in the above Table 

possesses 7 degrees of freedom. 
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Figure 1. (a) Difference between actual distribution function and empirically estimated 

distribution function for the N = 166 real yields to maturity on one month U.K. Treasury 

bills. (b) Estimated Pearson Type IV probability density for real yields to maturity on one 

month U.K. Treasury bills. 
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The above graphs are based on the probability density: 
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i

c  

is the normalising constant, )( rx    is the centred instantaneous real rate of interest, 

1i  is the pure imaginary number,   .   is the modulus of a complex number, (.)  is the 

gamma function,  = 0.21% (per annum),  = 0.3717, 1 = 0.1126 and 2 = 73.6103.  
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Figure 2. (a) Difference between actual distribution function and empirically estimated 

distribution function for the N = 166 real yields to maturity on one month U.S. Treasury bills. 

(b) Estimated Pearson Type IV probability density for real yields to maturity on one month 

U.S. Treasury bills. 
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The above graphs are based on the probability density: 
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i

c  

is the normalising constant, )( rx    is the centred instantaneous real rate of interest, 

1i  is the pure imaginary number,   .   is the modulus of a complex number, (.)  is the 

gamma function,  = -0.81% (per annum),  = 0.1611, 1 = 0.0353 and 2 = 13.7863. 
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