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Distressed Sales in OTC Markets

Cemil Selcuk
Cardi¤ Business School, Cardi¤ University

Colum Drive, Cardi¤, UK
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Abstract: We present a stylized model of the over-the-counter markets in the tradition of

Du¢ e, Gârleanu, and Pedersen [14] with two distinctive features: (i) buyers have heteroge-

nous preferences and their willingness to pay is private information and (ii) sellers become

�nancially distressed if they cannot sell for too long. A unique steady-state equilibrium ex-

ists and it is characterized by predatory buying. Speci�cally, during periods where sellers are

more likely to become distressed (e.g. during economic crises, �nancial turmoils etc.) buyers

become more selective and hold o¤ purchasing despite the abundance of distressed sales and

low prices. This reluctance triggers the number of distressed sellers to grow even further and

forces them for additional price cuts.

Keywords: OTC markets, predation, liquidation sales

JEL: D8, G1

1 Introduction

Over-the-counter (OTC) markets, unlike exchanges, operate via search and matching. An investor

who wants to sell or buy an asset must �rst search for a counterparty. Transactions are typically

bilateral and private, and prices are determined strategically taking into account the outside option

of each participant. In a seminal paper Du¢ e et al. [14] construct a search model of the OTC

markets addressing these frictions.

Even though the model in [14] is based on search, it still portrays a rather standardized and

transparent trading environment. In their model products are homogenous, investors are homoge-

nous, and as the setup is based on complete information, every meeting automatically results in

trade. OTC, however, is a blanket term covering a vast array of products with signi�cantly dif-

ferent characteristics. Some products are indeed standardized and transparent and therefore �t

to the portrayal above e.g. centrally cleared products such as interest rate derivatives traded on

the inter-dealer clearing house SwapClear or equities traded over DCTCC. However, there exists a
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range of other products that are not nearly as standardized and transparent, and therefore require

a di¤erent modelling approach, e.g. mortgage-backed securities, emerging-market debt, equity

derivatives, exotic derivatives including non-vanilla interest and currency derivatives. These prod-

ucts are highly di¤erentiated and non-standard and they are traded by a diverse investor base with

wide-ranging needs and objectives.

Consider, for instance, the over-the-counter equity derivatives (OTCED). With a total notional

amount exceeding $7 trillion, the OTCED market serves a wide variety of investors including large

corporations, banks, insurance companies, hedge funds, public sector funds, sovereign wealth funds

and so on. The �exibility in terms of product design and its private outlook helped the OTCED

market �ourish over the years. The market o¤ers a signi�cant number of products that are not

available on exchanges or clearing houses with strict rules, where products are too standard to

accommodate the particular requirements of an ever-expanding and diverse investor base.

Furthermore OTCED transactions are executed through bilateral meetings and, due to the

private nature of these transactions, the market is characterized by a lack of pre-trade transparency.

A recent report by the Financial Services Authority & HM Treasury states: �OTC derivative

markets are not subject to formal pre and post trade transparency requirements. As a result some

market participants have better access to better information.�1 Indeed, characterizations such

as "opaque", "murky" or "anonymous" appear frequently in the �nancial press describing such

products. The opaqueness of the OTCED market implies that for most products only a limited

amount of pre-trade public data is available, and therefore, investors can �nd out detailed product

features only after getting in contact with sellers.

The discussion thus far gives credit to construct a model where investors with heterogenous

preferences operate in a non-transparent market that o¤ers a wide range of heterogenous products.

To capture the notion of preference and product heterogeneity, we assume that the dividend of

an asset consists of two components: a market-wide deterministic and aggregate component x,

plus an idiosyncratic component v, which is a random draw from a known cdf.2 The realization

of v determines how good a �t the asset is for a buyer�s tastes and preferences. Furthermore, to

capture the idea that the market is opaque and characterized by a lack of pre-trade transparency,

we assume that the buyer realizes the quality of the �t v only after linking up with the seller. The

realization of v is the buyer�s private information and it cannot be observed by anyone else.

With these assumptions the probability of trade is endogenous; so, meetings are no longer

guaranteed to result in trade. The search process, from buyers�perspective, amounts to �nding a

good �t and in doing so, they follow a threshold rule: if the quality of �t in a match is su¢ ciently

high then the deal goes through, otherwise buyers walk away.

1"Reforming OTC Derivative Markets: A UK perspective." Available at www.fsa.gov.uk
2This is a standard technique to accommodate product heterogeneity in the market and preference heterogeneity

among buyers; see for instance Jovanovic [20] or Wolinsky [36].
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There are two types of frictions in the model: the �rst is meeting a counterparty and the second

is whether or not the transaction materializes. The literature, spurred by Du¢ e et al. [14] captures

the former friction, but not the second. Those models are based on complete information, and

therefore all meetings, by default, result in trade.3 In reality, however, it is not uncommon at all

for parties to walk away without trading; disagreement, in fact, is the more likely outcome. In

addition, with the advancing communication technology, getting in contact with potential traders

is easier than ever; hence the key friction is the latter� that is, whether the buyer wants to purchase

or not. This, in turn, depends on whether the asset is indeed what the buyer is looking for.

The endogeneity of the probability of trade implies that buyers can control, and in fact manip-

ulate, the duration of sale, which brings us to the second component of the model; namely the fact

that sellers can become �nancially distressed if they cannot sell for too long.4 Sellers in �nancial

markets can become distressed for a variety of reasons including nearing margin calls, pressing

debt obligations, hedging motives, being caught in a short squeeze and so on. To incorporate

this notion, we assume that there is an adverse shock that pushes regular sellers into a state of

permanent distress. It is sensible to think that such a shock is more likely to arrive during episodes

of economic crises, recessions and �nancial turmoils. We show that during such periods customers

become more selective and hold o¤ purchasing despite the abundance of distressed sales and lower

prices. By doing so they strategically slow down the speed of trade causing the percentage of

distressed sellers to grow further. This, in turn, exerts more pressure on sellers forcing them for

further price cuts. At the end, distressed sellers not only are forced to cut their already low prices,

but also they �nd it more di¢ cult to sell and exit thanks to buyers�reluctance to trade. This

cycle, which we label as predatory buying, dries up liquidity and increases the cost of liquidation

sales for distressed sellers. Indeed, from their point of view liquidity disappears when it is mostly

needed.

Though it lacks an agreed upon de�nition in the literature, predation is a prevalent feature of

�nancial markets. A recent body of theoretical work explores various mechanisms through which

predatory trading takes place e.g. Attari et al. [3], Brunnermeier and Pedersen [6], Carlin et al.

[9]. In Section 4.2 we discuss these papers in more detail; but at this point we want to point

out that the aforementioned papers are not based on search and matching. To the best of our

knowledge, this is the �rst paper exploring predation in a search model of the OTC markets and

3See Du¢ e et al. [14], Lagos and Rocheteau [24], Rocheteau and Weill [30], Vayanos and Wang [34] among
others.

4Albrecht et al. [2] and Selcuk [33] provide models on the housing market that have related notions of distressed
sellers. The model in [2] produces various equilibrium matching patterns including �opportunistic matching�where
regular searchers wait to meet with desperate searchers only. The setup in [33] is open loop in that trading agents
leave the market and are replaced by clones, whereas ours, similar to the aforementioned papers in the OTC
literature, has a closed loop setting where sellers become buyers, buyers become owners and owners become sellers
again.
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bridging the gap between the two strands of literature.

2 Model

We consider a continuous-time economy with a �xed supply a > 0 of indivisible assets that yield a

�ow of dividends q. Investors are risk neutral and divided into four categories; buyers, non-trading

owners, regular sellers and distressed sellers. Similar to Du¢ e et al. [14] we have a �closed loop�

setting where no agent leaves the market and there is no entry from outside. The total measure

of agents � is �xed and exceeds a: Each buyer wants to purchase one unit of the asset to consume

its dividends. After trading, buyers become owners and remain so until they are hit by a liquidity

shock that turns them into regular sellers. The shock arrives with a Poisson rate � and reduces

the �ow value of dividends from q to zero, which is why sellers wish to trade and liquidate their

holdings.5 Once the asset has been sold, the seller comes back to the market as a buyer (see the

�owchart).

If regular sellers cannot trade for too long then they may become distressed. We model this

notion by another idiosyncratic adverse shock, which, too, arrives at an exogenous Poisson rate �:

The shock is similar in nature to the liquidity shock above and may be associated with factors such

as pressing debt obligations, margin calls from other positions and so on. Such di¢ culties are more

likely to arise during �nancial crises or recessions, so it is sensible to think that � rises during such

periods. Buyers and regular sellers discount future utility at rate e�� whereas distressed sellers are

more impatient with � > �: A larger value of � implies a more severe shock.

As discussed in the Introduction, investors possess heterogenous preferences. To implement

this idea we assume that the dividend q of an asset consists of an aggregate component x plus an

idiosyncratic component v, that is

q = x+ v:

The aggregate component x is same across all assets, whereas the idiosyncratic component v 2 [0; 1]
is a random draw from the unit interval via the cdf F: Buyers di¤er in terms of their tastes and

preferences, so the realization of v determines how good a �t the asset is for a buyer�s preference.

A high value of v indicates a good �t and a low value indicates a poor �t. We assume that v is

independent across buyers, so the same asset may be liked by one buyer and disliked by another.

From a buyer�s perspective the search process amounts to �nding a high enough v: The value of

v does not change over time; once an asset is purchased the buyer enjoys the same v forever. We

impose the following assumption on F:

5The liquidity shock in the literature is typically associated with hedging needs arising from a position in another
market; see, for instance, [14], [24] or [34].
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Assumption 1. The survival function � = 1� F is log-concave, i.e.

f 2 (v) + f 0 (v) � (v) > 0; 8v:

The market is opaque and characterized by a lack of pre-trade transparency; hence we assume

that the buyer realizes the value of v only after linking up with the seller and that this realization

is private information. The seller cannot observe v (he only knows the cdf F that generates it), so

he is unable to tailor the price individually, and therefore, he must quote the same price p for each

customer. The probability of trade �j is endogenous and depends on the seller�s type, regular or

distressed, denoted by j = r; d.

The market operates via search and matching and agents meet each according to a Poisson

process. Speci�cally, a buyer meets a distressed seller at rate �md where � > 0 denotes the search

intensity and md denotes the steady state measure of distressed sellers. Similarly, the buyer meets

a regular seller at rate �mr, where mr is the measure of regular sellers. Finally, a seller meets a

buyer at rate �mb; where mb is the measure of buyers.6

Before proceeding to the analysis, a remark is in order to explain why the trading mechanism

in our setup is price-posting and not bargaining. Indeed, existing papers in the literature consider

Nash or Rubinstein bargaining procedures and it would be interesting to explore the implications

of our model under these pricing mechanisms. However, modelling bargaining with private infor-

mation is a non-trivial task as multiple or a continuum of equilibria are common in such models

(see [21] for an extensive discussion.) With price posting however, equilibrium is unique and can be

characterized analytically. In this paper our goal is to understand how the presence of distressed

sellers a¤ects prices, liquidity and buyers�search behavior and to that end the uniqueness of the

equilibrium and the fact that equilibrium objects (prices, probabilities, measures of agents etc.)

can be characterized analytically is indispensable. A second point in defense of using price posting

is the result by Samuelson [31], who shows that in bargaining between informed and uninformed

agents, where parties may bargain by any procedure they deem appropriate, the optimal mecha-

nism is for the uninformed agent to make a take-it-or-leave o¤er. This result indicates that the

optimal pricing mechanism in our model is indeed price posting where the seller (the uninformed

party) advertises a take-it-or-leave-it price.

2.1 Discussion on Modelling Assumptions

The model operates via search-and-matching, and more signi�cantly it exhibits product and pref-

erence heterogeneity. So, for the model to be relevant, the market in question ought to exhibit

these traits, that is:-

6Du¢ e and Sun [16] present a formal proof of this argument. See also Vayanos and Wang [34].
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� Investors should be somewhat in the dark about potential trading opportunities and it should
take time to �nd and meet a suitable partner for a trade.

� Second, and more importantly, products ought to be heterogeneous and non-standard, mak-
ing it di¢ cult for an investor to assess whether or not a product is indeed suitable for his

speci�c needs before meeting the seller and scrutinizing the underlying structure of the prod-

uct.

Examples for such markets include markets for mortgage-backed securities, equity derivatives,

collateralized debt obligations and other structured credit products, which are indeed heteroge-

neous and non-standard and usually exhibit complex contractual features. Investors often �nd out

the speci�c details only after linking up with the seller and analysing the underlying structure of

the asset. In [18]�s terminology, products in these markets are indeed inspection goods: buyers can-

not resolve the pre-trade uncertainty pertaining the good before inspecting it (i.e. examining its

contractual aspects). Furthermore, a wide variety of investors operate in these markets� insurance

companies, hedge funds, public sector funds, sovereign wealth funds� all of which have vastly dif-

ferent priorities, constraints and requirements; thus an asset that is a good �t for a particular

investor may well turn out to be improper �t for another.7

An OTC trade negotiation for such products is typically initiated when an investor �nds and

contacts a seller and asks for terms of trade. This process refers to the search and matching friction

above and it is addressed in the paper by the random matching process. Communication could be

by phone, by email, by electronic query systems or, in some markets, through a broker, though we

ignore the role of brokers in this paper. At this step the investor obtains the necessary information

pertaining the product, and after analysing its underlying structure and the terms of trade o¤ered

by the seller, he decides whether to carry on with the transaction or to walk away. This step refers

to the second point mentioned above and this is where the parameter v comes into play.

We assume that the dividend of a product consists of two components: a market-wide aggregate

component x, plus an idiosyncratic component v, which is a random draw from a known cumulative

density function. The value of vis uncertain until the buyer meets the seller and the realization of

v can be interpreted as the inspection process mentioned above. Upon realizing the value of v the

buyer understands how good a �t the asset is for his tastes and preferences. This is a standard

7Admittedly, there are other OTC markets, where products are rather standard, transactions are transparent,
the volume of trade is high and the overall trading experience does not �t the description above, e.g. recently issued
US government bonds and certain liquid OTC derivatives such as simple interest rate and currency swaps. These
products are indeed natural candidates for exchange-based trade but they are somehow traded over the counter.
From an academic point of view there is a lack convincing theories explaining why such simple products are traded
over the counter and not on exchanges. In this regard, OTC markets where search and matching plays almost no
role and where there is little scope for opaqueness and price and product uncertainty are beyond the consideration
of this paper.
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technique to accommodate the notion of product and preference heterogeneity in that no two assets

are identical and an asset that turns out to be a good �t for one buyer may turn out to be a poor �t

for another. An advantage of the technique above is the fact the by �xing the boundaries and the

density function of v and varying x one can explore how equilibrium objects� prices, probabilities

of trade� respond to the degree of product standardization in the market (see the discussion in

Section 4).

3 Analysis

3.1 Steady State Measures

The asset is in �xed supply a, so the measures of agents in possession of the asset (owners +

regular sellers + distressed sellers) add up to a; that is

mo +mr +md = a: (1)

The total measure of agents � is also �xed and exceeds a: It follows that the steady state measure

of buyers, too, is �xed and equals to

mb = � � a > 0:

Without loss in generality �x mb = 1 so that � equals to 1 + a: Remaining measures mo; mr and

md are endogenous and are determined by the fact that in steady state the in�ow into a group

of investors equals to the out�ow from it. Similar to Du¢ e et al. [14], we have a �closed loop�

setup in the sense that no agent leaves the market and there is no in�ow from outside (see Fig

1 below).Consider distressed sellers. The in�ow �mr consists of regular sellers hit by the adverse

shock. The out�ow �md�d comprises of sellers who trade and become buyers. Setting in�ow equal

to out�ow yields

�md�d = �mr: (2)

Now consider regular sellers. The in�ow �mo consists of owners hit by the liquidity shock. The

out�ow has two components: �mr�r which are regular sellers who trade and become buyers plus

�mr which are regular sellers who become distressed. Therefore

�mo = �mr�r + �mr: (3)

Proposition 1 Equations (1), (2) and (3) pin down the steady state measures mo; md and mr as
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Figure 1: Flowchart

follows:
md = af���df1 +

�
�
�rg+ �

�
�d + 1g�1;

mo = md � �
�
�df1 + �

�
�rg;

mr = md � �
�
�d:

(4)

The measures depend on exogenous parameters �; a; � and � as well as the probabilities of

trade �r and �d which are endogenous and controlled by buyers.8 The fraction of distressed sellers

in the market is given by

� � md

md +mr

=
1

1 + �
�
�d
: (5)

Note that � increases as �d falls: Indeed if buyers squeeze �d then distressed sellers cannot trade

fast enough and their prolonged presence in the market causes � to grow. The growing �, in turn,
8The following table summarizes the signs of the partial derivatives of the measures with respect to the parameters

of interest (the algebra is skipped):

� � �d �r
md + + - -
mr + - + -
mo - + + +

A rise in the arrival rate of the liquidity shock � turns more owners into sellers, so md and mr rise while mo falls:
Similarly a rise in the arrival rate of the adverse shock � causes more relaxed sellers to become distressed; hence
mr falls while md goes up. The e¤ect of � on the measure of owners mo is more subtle. The rising � increases
the fraction of distressed sellers, and distressed sellers trade faster than regular sellers; so, at the end, more buyers
become owners, hence mo goes up. Using similar arguments, and the �owchart, one can explain the signs wrt �j :
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intensi�es competition among distressed sellers and forces them for further price cuts. This is the

basic mechanism behind the predation result.

3.2 Value Functions of Owners, Buyers and Sellers

Letting � denote the value function of an owner, we have

�� = v + x+ �f�r � �g:

An owner keeps enjoying the idiosyncratic dividend v plus the aggregate dividend x until he is hit

by the liquidity shock �, which turns him into a regular seller, whose value function is denoted by

�r. Rearranging yields

� =
v + x+ ��r
� + �

: (6)

Now turn to buyers. Letting 
 denote their value function we have

�
 = �mrIr + �mdId;

where

Ij =

Z 1

0

max f� (v)� pj � 
; 0g dF (v) for j = r; d:

The expression Ij is the expected surplus to a buyer contingent on having met a type j seller: As

long as the surplus � (v) � pj exceeds the opportunity cost 
 the buyer purchases, otherwise he
walks away. For any given price pj we conjecture an associated threshold (or �reservation value�)

vj leaving the buyer indi¤erent between buying and searching i.e. satisfying

pj + 
 = � (vj) :

After substituting for �; the indi¤erence condition becomes

pj + 
 =
vj + x+ ��r

� + �
: (7)

Buyers�decision is simple: purchase if v � vj and keep searching otherwise. Clearly the probability
of trade �j is endogenous and equals to

�j = Pr (v � vj) = � (vj) ;

where � = 1 � F is the survival function. As mentioned earlier, not all meetings result in trade;
for trade to occur the asset has to be a good match for the buyer. Substitute � from (6) into the
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expression for Ij and use the indi¤erence condition (7) to obtain

Ij =

Z 1

vj

v � vj
� + �

dF (v) =

Z 1

vj

� (v) dv

� + �
:

The second step follows from integration by parts. Substituting Ij we get a cleaner expression for

buyers�value function:


 = �mr

Z 1

vr

� (v) dv

� (� + �)
+ �md

Z 1

vd

� (v) dv

� (� + �)
: (8)

Finally we turn to sellers. Desperate and regular sellers�value functions are given by

��d = Xd and ��r = Xr + � (�d � �r) ; (9)

where

Xj = �� (vj) (pj + 
� �j) :

Expression Xj is the expected net trade surplus to a type j seller. A seller encounters a buyer at

rate � and the buyer purchases with probability � (vj). If trade occurs the seller obtains price pj
plus 
 (he becomes a buyer now) minus �j (he is no longer a seller): With this information it is

easy to interpret �d and �r: Note that a regular seller keeps track of the possibility of becoming

distressed as well, whereas a distressed seller will remain distressed until he sells.

Note that

(� + �)�r = Xr +
�

�
Xd:

A type j seller solves

max
pj2R+

�j s.t. vj = (� + �) (pj + 
)� x� ��r

taking 
 as given.9 The function �j is a weighted average of Xjs; so, the optimal price pj must,

by the Bellman principle, maximize the net surplus Xj. The FOC, thus, is given by

pj + 
� �j =
�(vj)

(� + �) f (vj)
: (10)

Expression (10) is the net trade surplus for a seller and the fact that it is positive implies that,

conditional on having met a buyer and that the buyer is willing to transact, the seller is willing

to transact as well (instead of walking away). To see why, note that if the seller transacts then he

9Sellers are atomless and they fail to realize the e¤ect of an individual price change on buyers�value of search;
see [8] for a discussion.
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obtains price pj plus the value of becoming a buyer 
, whereas if he waits then he continues to

obtain �j: Since pj + 
 > �j; the former option outweighs the latter.10

It is easy to verify the second order condition; thus the solution above corresponds a maxi-

mum.11 Inserting the FOC into Xj yields

Xj =
��2 (vj)

(� + �) f (vj)
:

Substituting this into (9) produces the closed form expressions for sellers�value functions:

�d (vr; vd) =
��2 (vd)

� (� + �) f (vd)
and (11)

�r (vr; vd) =
��2 (vr)

(� + �) (� + �) f (vr)
+

���2 (vd)

� (� + �) (� + �) f (vd)
: (12)

Now we can de�ne the equilibrium.

De�nition 2 A steady-state symmetric equilibrium is characterized by value functions �; 
; �d;

�r given by (6), (8), (9) and the pair v� = (v�r ; v
�
d) 2 [0; 1]

2 and p� = (p�r; p
�
d) 2 R2+ satisfying

indi¤erence (7) and pro�t maximization (10). The steady state measures m�
d;m

�
r and m

�
o; also

implicitly part of the equilibrium, can be recovered from (4).

10Recall that our setup is a closed loop setting with no entry or exit. Provided that the outside option associated
with exiting the market is normalized to zero, the no-exit condition is non-binding. Indeed the fact that both �r and
�d, given by (11) and (12), are positive implies that along the equilibrium path, all sellers, regular or distressed,
would prefer to remain in the market even if they were allowed to exit. In the literature, the outside option is
interpreted as the rate of return of a risk-free asset and it is typically normalized to zero e.g. Brunnermeier and
Pedersen [6]. From a broader perspective, theoretical models studying OTC markets, including this one, are partial
equilibrium settings: the focus is the OTC market and other alternatives that investors might turn to (e.g. the
"risk-free" market) are treated exogenously. To meaningfully discuss exit and entry decisions one needs a general
equilibrium setup where the rate of return in the alternative market, too, is endogenous and investors are free to
self select themselves into whichever market they want. This, however, is beyond the scope of the current paper.
11We have

X
00

j = �� (� + �)� ff 0 (vj) (� + �) fpj +
��jg+ 2f (vj)g :

Substitute the FOC (and omit the argument vj) to obtain

X
00

j = �� (� + �)�
�
f 0�+ 2f2

	
=f:

The expression is negative because of log concavity (Assumption 1).
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4 Results

4.1 Existence of Equilibrium and Liquidation Sales

Combine indi¤erence conditions in (7) with FOCs in (10) to obtain the following system of equa-

tions that pin down the equilibrium values of v�r and v
�
d :

�r (vr; vd) = � (vr) =f (vr) + ��r � x� vr = 0 and (13)

�d (vr; vd) = � (vd) =f (vd) + (� + �)�d � ��r � x� vd = 0: (14)

Proposition 3 The equilibrium exists and it is unique. In equilibrium distressed sellers pursue

�liquidation sales�as they accept to trade at lower prices and consequently sell faster, i.e. p�d < p
�
r

and ��d > �
�
r:

In the proof we show that the locus of �r = 0 is downward sloping wrt vr whereas the locus of

�d = 0 is upward sloping; so, they intersect once in the vr�vd space, which implies that there exists
a unique v� satisfying (13) and (14) (the proof is in the appendix). Furthermore, the equilibrium

is characterized by liquidation sales. After being hit by the adverse shock, a distressed seller grows

impatient and quotes a lower price in an e¤ort to quickly exit from his position. (In section 4.3 we

provide numerical simulations exploring the cost of such sales.) The price-cut produces the desired

outcome: the inequality ��d > ��r implies that distressed trades materialize faster than regular

trades.

Before moving on, we brie�y comment on the link between the aggregate yield x and the

probability of trade. As seen above, from a buyer�s point of view the search process amounts to

�nding a high enough v since all assets yield the same deterministic x. So, it may appear that the

aggregate yield x plays no role in determining the probability of trade; however this is not true.

As it turns out, buyers pay little or no attention to v if x is large enough.

Remark 4 Both ��r and �
�
d rise in the deterministic component x of a product. Speci�cally

��r < �
�
d < 1 if 0 < x < x+

��r < �
�
d = 1 if x+ � x < x++

��r = �
�
d = 1 if x++ � x;

where x+ and x++ are thresholds given by (29) and (34).

If x shrinks, then the idiosyncratic goodness of �t v becomes too important for buyers, and

therefore no meeting is guaranteed to result in trade. Indeed if x < x+, then even distressed sellers,

who charge lower prices, face some uncertainty about whether or not they can sell. However, if x
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starts to grow, then buyers start paying less attention to v, and therefore ��d and �
�
r start to grow

as well. For an illustration see Fig 2a.
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With some abuse in labelling, one can re-interpret this simulation by thinking of x as a proxy of

product standardization in the market. To see why, note that E[v] and StDev [v] are �xed in the

simulation whereas x ranges from 0 to 3. If a product has a high value of x, then the random �t v

is relatively unimportant in that the product possesses little chance of not being compatible with

buyers�preferences; hence it can be labelled as "fairly standard" (e.g. vanilla products traded via

clearing houses). The opposite is true if x is small (e.g. exotic products traded through bilateral

meetings). With this interpretation, panel 2a suggests that the probability of trade (and therefore

the speed of trade) increases with product standardization: the more uniform the products the

faster the trade. In addition, the probability of trade can be 1 if products are "standard enough"

i.e. one does not need perfectly uniform products as in Du¢ e et al. [14] to ensure that all meetings

result in trade.

4.2 Predation

Proposition 5 If the adverse shock arrives more often, i.e. if � rises, then the equilibrium price

p�d falls, yet the probability of trade �
�
d decreases, i.e. buyers deliberately delay purchasing from

distressed sellers despite the falling prices.
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It is sensible to think that the adverse shock � is more likely to arrive during periods of

turmoils and economic crises. The proposition says that during such times distressed sellers lower

their prices, yet buyers become more reluctant to purchase. This behavior (labelled as �predation�)

further increases the percentage of distressed sellers in the market and forces them for further price

cuts.

The mechanism behind the result is this. An increase in � causes sellers�and buyers�value

functions to move in opposite directions making sellers worse o¤and buyers better o¤. Speci�cally,

the fraction of distressed sellers � rises with � and intensi�es the competition for distressed sellers.

Realizing that many other sellers are in the same dire situation, distressed sellers are forced to cut

their already low prices. The question is whether price cuts generate the desired outcome and the

answer is no; indeed their probability of trade ��d falls instead of rising. To understand why note

that distressed sales come with greater consumer surplus, which means that the rising � boosts

buyers�value of search. Realizing that there are plenty of good deals in the market, buyers hold o¤

purchasing and search longer, i.e. they lower ��d: This response has the following feedback e¤ect.

By lowering ��d buyers strategically slow down the speed of trade and cause � to grow further. The

growing �, in turn, puts additional downward pressure on prices and so on. For an illustration of

these arguments see Figure 2b and 2c. The solid lines in panels 2b and 2c are the true values of

� and p�d, whereas the dashed lines are what they would have been had the probabilities of trade

remained intact. The di¤erence between the two lines, therefore, is due to predation mechanism

described above.12

Predation is a prevalent feature of �nancial markets, especially during �nancial crises where

the adverse shock � is indeed more likely to arrive. A recent body of theoretical work explores

mechanisms through which di¤erent forms of predation may take place. For instance in Attari et

al. [3] predators lend to �nancially fragile players in an e¤ort to obtain higher pro�ts by trading

against them for a prolonged time. Carlin et al. [9] construct an equilibrium where cooperation

among traders occasionally breaks down leading to predatory trading and episodic illiquidity. In

Brunnermeier and Pedersen [6], which is arguably the most in�uential paper in this literature, if

a distressed trader is forced to liquidate, other strategic traders initially sell in the same direction

driving down the price even faster and then buy back at the low price.

The aforementioned models are not based on search and matching. They take either the aggre-

gate demand function or market price equations parametrically without deriving them explicitly

from the mechanics and frictions of a decentralized market (as in the literature spurred by Du¢ e

et al [14]). To our knowledge this is the �rst paper studying predation in a search model of the

OTC markets and bridging the gap between these two strands of literature.

12The dashed lines are obtained by �xing ��d = 0:89 and ��r = 0:59 which are the equilibrium values when
� = 0:05: This is why in both pictures the solid and dashed lines intersect at � = 0:05:
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In addition, the papers above are all based on settings with heterogenous investors in terms of

their size and their ability to take multiple positions and these assumptions are vital in producing

predatory mechanisms in those settings. For instance, in Brunnermeier and Pedersen [6] it is the

presence of large strategic traders and their ability to impact market prices single-handedly that

triggers prices to fall to arti�cially low levels. Without such large players the predation mechanism

in their paper (described above) cannot function. On the contrary, in our setting players are

atomless and can only have a single position.13 Our mechanism relies on the endogeneity of the

probability of trade, which enables buyers to manipulate the speed of trade to their advantage. Such

a mechanism does not require large investors; preference heterogeneity and private information are

su¢ cient.

Finally, note that in Brunnermeier and Pedersen [6] during episodes of predation prices fall,

but on the other hand, trade speeds up. In other words, distressed sellers are forced to sell at lower

prices, but at least they are able sell and exit quicker than before. This is not the case in our

model: during episodes of predation prices fall, yet distressed sellers �nd it more di¢ cult to sell due

to buyer�s reluctance to trade. Anecdotal evidence suggests that our model�s prediction is more in

line with what happens in decentralized markets (�nancial or otherwise) during times of distress

and turbulence. Indeed, during the last crisis the �nancial press was rife with news of buyers

holding out despite the falling prices, slowness of trade and investors�apparent reluctance to make

a move. Though such behavior may be attributed to uncertainty resolution or risk aversion, there

is no doubt that some of that reluctance was indeed a strategic and deliberate e¤ort to obtain

better deals in the future.

4.3 A Numerical Example

In what follows we provide some sensitivity analysis via numerical simulations. We set the search

intensity � = 125 so that an agent expects to meet 125 other agents a year, which is equivalent

to one counterparty per two business days. Following the calibration in Du¢ e et al. [15] the

fraction of investors holding a position (sellers + owners) is assumed to be 0.8. To match this we

set the supply of the asset a = 4:14 Recall that � = a+ 1; so � = 5: The deterministic dividend is

normalized to x = 0; whereas the idiosyncratic dividend v is assumed to be uniformly distributed in

the unit interval. We set � = 0:05, which means that all agents, except distressed sellers, discount

future utility at the annual rate (1 + �)�1 � 95%: Again, following Du¢ e et al. [15], the arrival

rate of the liquidity shock � equals to 0.5 meaning that an owner remains so for an average of 2

13This assumption precludes regular sellers from preying on distressed sellers (as opposed to [6]).
14Recall that the measures of agents holding an asset (sellers and owners) must add up to a and that the measure

of buyers is �xed at mb = 1: It follows that the fraction of agents with a position is a=(a+ 1); which equals to 0.8
when a = 4.
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years. The arrival rate of the adverse shock is set � = 6 i.e. on average a seller can last 12=� = 2

months without trading before becoming distressed. Finally � = 9; which means that distressed

sellers discount future utility at the annual rate
�
1 + �

��1
= 10%. The table below summarizes

the baseline parameters.

v � U (0; 1) x = 0 � = 125 a = 4 � = 5

� = 0:5 � = 6 � = 0:05 � = 9

Table 1

Under the benchmark parameter values the model yields equilibrium prices p�d = 0:98; p
�
r = 1:75;

probabilities of trade ��d = 0:63; ��r = 0:21 and measures of agents m�
o = 3:93, m�

r = 0:065;

m�
d = 0:005 (recall that m

�
b = 1). These numbers imply an annual turnover rate of

� (m�
r�

�
r +m

�
d�

�
d)

m�
r +m

�
d +m

�
o

= 49:2%;

which is very close to the median annual turnover of 51.7% estimated by Edwards et al. [17].

Similarly about 78:5% of agents are owners, 1.5% are sellers and 20% are buyers. Again, these

estimates are very close to their counterparts in the calibration exercise in Du¢ e et al. [15] (see

Table 2 therein).

Before we get into simulations, note the analysis so far was based on a steady state setup.

Therefore, the simulations below depict snapshots of the economy at various steady states; however

they are silent about the transition process between those states. For the dynamic version of the

model, where we explore this transition, see section 5.2.
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Figure 3 depicts prices, probabilities and measures of agents against the arrival rate of the

adverse shock �: An increase in � has three consequences. First, more sellers become distressed

and attempt liquidation sales; see the rising � in panel 3c. Second, all sellers, regular and dis-

tressed, trade at lower prices (panel 3a). Third, customers become more reluctant to purchase

from distressed sellers; the probability of trade for those sellers keeps falling (panel 3b). We have

already discussed the mechanism behind this result, but there is a point to add here.

Regular sellers, too, are worse o¤ because of the rising �. Facing an increasing prospect of

becoming distressed in the future, they signi�cantly reduce their prices in an e¤ort to quickly sell

before being hit by the adverse shock (see the falling regular price in 3a). This reaction can be

described as the spillover of distressed sales onto the regular sales and it can be indeed signi�cant.

To quantify this negative e¤ect we start from a benchmark where � = 2 (the rest of the parameters

are as in Table 1) and then we plot the percentage drop in the regular price against the increasing

�. When � = 2 a seller can go on for 12=� = 6 months, on average, before becoming distressed

and at that point the equilibrium value for the regular price p�r is about 7.42. In Figure 4a we plot

the percentage drop p�r (�) =7:42�1 against � and it is clear that the price drop can be substantial
if � increases signi�cantly. For instance if � rises from 2 to 6 then the regular price falls by about

75%.
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4.4 Cost of Liquidation Sales

Distressed sellers accept substantially lower prices when they try to liquidate. For instance, under

the benchmark parameters of Table 1 the equilibrium price in a distressed sale p�d = 0:98 is about

40% less than the price in a regular sale p�r = 1:75. The price cut produces the desired outcome:

conditional on meeting a buyer, a distressed seller has a ��d = 63% chance of trading as opposed

to ��r = 21% for a regular seller. Clearly, attempting a liquidation sale is costly. Had the seller

not become distressed, he would have traded at p�r but the shock forces him to trade at the lower

price p�d: We use the percentage-wise pro�t loss

� = p�d=p
�
r � 1

as a proxy for liquidity. The lower the value of �, the more costly the sale, the lower the liquidity.

In panel 4b we plot � against the frequency of the adverse shock � and it is clear that � falls

exponentially in �: Indeed when the shock is rather infrequent (� � 3), i.e. if a seller can go on for
12=� = 4 months or more without being distressed, then the pro�t loss is less than 10%. However

the loss grows rapidly as � grows beyond 3.

The cost of liquidation is also related to the degree of product standardization; speci�cally the

more standardized products a seller holds the less costly the liquidation sale. To establish this
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relationship, start with the coe¢ cient of variation

s � StDev [v]

x

to measure how standard (or homogenous) the products are: the lower the value of s the more

standardized the products (e.g. vanilla interest rate derivatives traded over clearing houses) and

the higher the value of s the opposite (e.g. exotic swaps traded bilaterally). The simulation in

4c plots the pro�t loss � against s and it is clear that attempting a liquidation sale when holding

standard (vanilla) products is signi�cantly less costly than doing so when holding non-standard

(exotic) products.15

These insights are in line with the empirical literature on forced asset sales, which provides

several examples and anecdotes where transaction prices deviate from fundamental values due to

forced sales. Pulvino [29] studies commercial aircraft transactions initiated by constrained versus

unconstrained airlines and �nds that commercial airplanes sold by distressed airlines bring 10 to

20 percent lower prices when compared to planes sold by regular airlines. Campbell et al. [7]

consider forced selling in the real estate market due to events such as foreclosures and �nd large

foreclosure discounts, about 27 percent on average. Coval and Sta¤ord [11] examine institutional

price pressure in equity markets and �nd that widespread selling by �nancially distressed mutual

funds leads to transaction prices that are signi�cantly below the fundamental value.

5 Extensions

5.1 Distressed Buyers

In this section we extend the benchmark model by considering the fact that buyers, too, may

become distressed if they are unable to transact. Similar to sellers, buyers may have pressing rea-

sons for acquiring a particular product due to, for instance, speculation, diversi�cation or hedging

purposes including spreading and shifting risk associated with a portfolio position. Consequently,

they may become more eager to purchase if they cannot trade for too long.

Unlike the benchmark there are �ve groups of players now: owners (mo), regular sellers (ms;r),

distressed sellers (ms;d), regular buyers (mb;r) and distressed buyers (mb;d). The �owchart illustrates

15The random variable v is uniformly distributed over [0; 1] hence StDev [v] is �xed and equals to 0.5. We let
x 2 [0; 5] in the simulation hence s ranges from 0.1 to 10, where 0.1 refers to a rather standard market with little
product heterogeneity and 10 refers to a market with a high degree of product heterogeneity.
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how players move across these groups.

Figure 5 - Flowchart

A regular seller becomes distressed at rate �s: Given that there are ms;r such sellers in the market,

the out�ow is equal to �sms;r: Similarly, a regular buyer becomes distressed at rate �b, hence the

out�ow is equal to �bmb;r: Owners become sellers at rate �; thus the out�ow is �mo: Remaining

�ows are given by

Flow1: ms;r [�mb;r� (vr;r) + �mb;d� (vd;r)] Flow2: ms;d [�mb;r� (vr;d) + �mb;d� (vd;d)]

Flow 3: mb;r [�ms;r� (vr;r) + �ms;d� (vr;d)] Flow 4: mb;d [�ms;r� (vd;r) + �ms;d� (vd;d)]

Flow 1 represents the number of regular sellers who trade and become buyers. A regular seller

meets a regular buyer at rate �mb;r; and the buyer accepts to purchase with probability � (vr;r).

Similarly the seller meets a distressed buyer at rate �mb;d; and the buyer accepts to purchase with

probability � (vd;r) : Since there are ms;r regular sellers in the market, the total number of such

sellers who manage to sell and become buyers is given byms;r [�mb;r� (vr;r) + �mb;d� (vd;r)] : Flows

2, 3 and 4 can be interpreted similarly. In the steady state the in�ow into a pool must be equal to

the out�ow from it; so we have

�mo = �sms;r + �mb;rms;r� (vr;r) + �mb;dms;r� (vd;r) (15)

�sms;r = �mb;rms;d� (vr;d) + �mb;dms;d� (vd;d) (16)

�bmb;r = �mb;dms;r� (vd;r) + �mb;dms;d� (vd;d) (17)

20



The �rst line focuses on the pool of regular sellers. The in�ow �mo consists of owners who are hit

by the liquidity shock. The out�ow has two components. The �rst one is Flow 1, which is discussed

above. The second one is �sms;r which is the number of regular sellers who become distressed.

The second line deals with the pool of distressed sellers. The in�ow consists of regular sellers

who become distressed (�sms;r); whereas the out�ow consists of distressed sellers who trade and

become buyers (Flow 2). Finally the third line deals with the pool of distressed buyers. The in�ow

consists of regular buyers who become distressed (�sms;r); and the out�ow consists of distressed

buyers who trade and become owners (Flow 4).16 The asset is in �xed supply, so we have

mo +ms;r +ms;d = a: (18)

The total measure of agents � is also �xed and exceeds a: It follows that the steady state measure

of buyers, too, is �xed and equals to

mb;r +mb;d = � � a > 0: (19)

Next we turn to the value functions. Unlike the benchmark, there are now two value functions

for buyers: one for distressed buyers, denoted by 
d, and the other for regular buyers, denoted by


r. We have

��
d = �ms;rId;r + �ms;dId;d and

�
r = �ms;rIr;r + �ms;dIr;d + �b (
d � 
s)

where

Ii;j =

Z 1

0

max f� (v)� 
i � pj; 0g dF (v) , i; j = r; d:

The expression Ii;j is the conditional expected utility of a type i buyer who meets a type j seller.

As long as the net surplus of becoming an owner, given by � (v)�pj; exceeds the opportunity cost
of remaining as a buyer, given by 
i, the buyer purchases; otherwise he walks away. Note that,

unlike the benchmark model, the value function of a regular buyer now has a component, given

by �b (
d � 
s) ; that deals with the possibility of the buyer becoming distressed. For a given pair

i and pj there is an associated threshold (or �reservation value�) vi;j leaving the buyer indi¤erent

between buying and searching i.e.

� (vi;j) = 
i + pj ,
vi;j + x+ ��r

� + �
= 
i + pj; where i; j = r; d: (20)

16One can consider the in�ows and out�ows from the pools of owners and regular buyers as well; however, it is
easy to verify that those equations are already implied by the system (15), (16) and (17).
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Note that there are four di¤erent thresholds valuations: vr;r; vr;d; vd;r and vd;d (recall that in the

benchmark there were only two, vr and vd): So, the probability that a meeting between a type

i buyer and type j seller results in trade is equal to � (vi;j) : Going through the algebra steps in

Section 3.2 one can show that value functions 
d and 
r can be re-written as follows


d = �ms;r

Z 1

vd;r

� (v)
�� (� + �)

dv + �ms;d

Z 1

vd;d

� (v)
�� (� + �)

dv and


r = �ms;r

Z 1

vr;r

� (v)

(� + �) (� + �b)
dv + �ms;d

Z 1

vr;d

� (v)

(� + �) (� + �b)
dv +

�b
� + �b


d:

Now turn to sellers. The value functions for distressed and regular sellers are given by

���d = [�mb;r� (vr;d) + �mb;d� (vd;d)] (pd + 
r � �d) and

��r = [�mb;r� (vr;r) + �mb;d� (vd;r)] (pr + 
r � �r) + �s (�d � �r)

Consider the �rst line. A distressed seller encounters a regular buyer at rate �mb;r and a distressed

buyer at rate �mb;d: In the �rst scenario the buyer purchases with probability � (vr;d) and in the

second scenario with � (vd;d). If trade occurs the seller obtains price pd plus 
r (he becomes a

regular buyer now) minus �d (he is no longer a seller): The second line is the same, except for the

part �s (�d � �r) ; which addresses the possibility of the regular seller becoming distressed in the
future. The �rst order condition for a type j = r; d seller is given by

pj + 
r � �j =
mb;r� (vr;j) +mb;d� (vd;j)

(� + �) [mb;rf (vr;j) +mb;df (vd;j)]
: (21)

Substituting the FOC into the value functions yields

�d =
� [mb;r� (vr;d) +mb;d� (vd;d)]

2

�� (� + �) [mb;rf (vr;d) +mb;df (vd;d)]
and

�r =
� [mb;r� (vr;r) +mb;d� (vd;r)]

2

(� + �s) (� + �) [mb;rf (vr;r) +mb;df (vd;r)]
+

�s
� + �s

�d:

Observe that 
r; 
d; �r and �d are all functions of thresholds vr;r; vr;d; vd;r and vdd: One can pin

down vi;j via the indi¤erence equations in (20) and then calculate the prices pr and pd via (21)

and the measures of players mo; ms;r; ms;d; mb;r; mb;d via (15)-(19). However, even though the

methodology is straightforward the algebra does not lend itself for an analytical solution, so we

proceed via numerical simulations. The parameters of interest are �s and �b; which are the arrival

rates of the adverse shocks that push sellers and buyers into the state of distress. It is sensible

to think that �s and �b rise and fall together, so we have �b = c�s for some positive c: Below we
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simulate the equilibrium objects (prices and probabilities of trade) for c = 1 i.e. �b = �s = �

(simulations with di¤erent values of c produce similar results). Remaining parameters are as in

Table 1.

6a 6b

Figure 6a and 6b depict, respectively, the prices and the probabilities of trade against the arrival

rate of the adverse shock �: Distressed sellers are impatient to transact, so they post lower prices

in order to sell quickly (6a). Distressed buyers are also impatient, so they become less selective and

start paying little attention to the idiosyncratic component of the asset, which means that they

are more likely to buy when compared to a regular buyer under the same circumstances. Indeed,

note that � (vd;r) > � (vr;r) and � (vd;d) > � (vr;d) in 6b. It follows that the meeting that is most

likely to result in trade is the one where a distressed seller meets a distressed buyer as both parties

are most eager to trade. Similarly, the meeting that is least likely to result in trade is the opposite

case where a regular seller meets a regular buyer as neither party is in a hurry. The other two

scenarios, where a regular seller meets a distressed buyer and a distressed seller meets a regular

buyer, lie between these two extremes.17

The simulation in 6a further reveals that prices are hump-shaped in �. To understand why

note that from a seller�s perspective a rise in � has two contrasting e¤ects. On the positive side

it increases the number of distressed buyers, who are ready to pay more, which induces sellers

17Note that when � � 0 a distressed seller is highly likely to make a sale: if he meets a distressed buyer the
probability of trade is almost 1, and if he meets a regular buyer the probability of trade is close to 40%, which
is signi�cantly higher than a regular seller�s chance of making a sale under the same circumstances (less 10%).
The reason is that when � is so small there are very few distressed players in the market. A buyer who meets
a distressed seller knows that he is very unlikely to encounter another seller with such a low price, so the buyer
becomes signi�cantly less selective about how good a �t the asset is.
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to raise their prices. On the negative side the rising � causes more sellers to become distressed,

which in turn induces them to lower their prices. The simulations suggest that the positive e¤ect

is dominant if � is small and the negative e¤ect is dominant if � is large: if � � 0 (if shocks are
highly unlikely) then sellers increase their prices in order to take advantage of the few distressed

buyers present in the market; however as � grows large the second e¤ect starts to kick in, bringing

down the prices.

Notice that even though prices may eventually fall; the drop is not as sharp as it was in the

benchmark model. For instance, if � rises from 2 to 6 then in the benchmark model prices fall by

about 75% (see 3a), whereas in here they fall by about 15% (both simulations are based on the

parameter values in Table 1, so they are comparable). The reason is that in the benchmark model

� did not a¤ect buyers whereas in here it does, which, from a seller�s perspective, is a welcome

outcome. Indeed the rising � pushes more buyers into a state of distress, making them willing

to transact at higher prices. This e¤ect prevents prices from falling as sharply as they did in the

benchmark.

A �nal observation is this. The trajectories of the probabilities in 6b have generally the opposite

pattern of the trajectories of prices in 6a: if prices rise then the probabilities fall and if prices fall

then the probabilities rise. The exception is distressed sellers: even though they decrease their

prices, their probabilities of trade � (vr;d) and � (vd;d) still keep falling. This is the predation

result discussed in the benchmark, and the simulation suggests that it is present in this version

of the model as well. Notice, however, the extent of predation is signi�cantly less pronounced in

here than it was in the benchmark. Indeed, a comparison between Figure 3 and Figure 6 reveals

that the percentage-wise drops in prices as well as in probabilities are larger in the benchmark

than they are in here.18 This is not surprising, because, as mentioned above, in addition to its

impact on sellers, � now has an adverse impact on buyers as well, so if � rises then everyone in the

market, not just sellers, face a higher likelihood of becoming distressed. This consideration �lters

into sellers�and buyers�value functions and thereby prevents prices and the probabilities of trade

from decreasing as sharply as they did before.

From a risk management point of view, these observations suggest that in periods of high

volatility (e.g. when � rises) �rms must not rush into lowering prices. Instead they ought to assess

whether and to what extent potential customers may become distressed and they should make

their pricing decisions accordingly.

18Note that in 6b the initial drops in � (vr;d) and � (vd;d) are due to the rising prices. Predation can be identi�ed
only after prices start to fall.
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5.2 Dynamics

We now construct a dynamic version of the benchmark model. This extension will allow us to

explore the transition process through which the economy responds to an exogenous shock and

how it approaches to the new steady state. Speci�cally we are interested in the shock�s immediate

e¤ect on equilibrium objects and the time-pattern of the recovery. To start, note that the measures

of agents evolve according to

_md = ��md�d + �mr

_mr = ��mr�r � �mr + �mo

_mo = �mr�r + �md�d � �mo:

These expressions are similar to their counterparts in the benchmark except now we have the time

di¤erentials _md; _mr and _mo: Buyers�value function is given by

�
 = �mr

Z 1

vr

� (v) dv

� + �
+ �md

Z 1

vd

� (v) dv

� + �
+ _
;

where at each point in time thresholds vd (t) and vr (t) satisfy the indi¤erence condition

pj + 
 =
vj + x+ ��r

� + �
for j = r; d:

Sellers�value functions are given by

��d = �� (vd) (pd + 
� �d) + _�d and

��r = �� (vr) (pr + 
� �r) + � (�d � �r) + _�r:

A type j seller solves

max
pj2R+

�j s.t. pj + 
 =
vj + x+ ��r

� + �
:

Recall that 
0 = 0 i.e. an individual seller fails to realize how his pricing decision a¤ects buyers�

value function 
: Here we further assume that _�0r = _�0d = 0 i.e. sellers fails to internalize the

e¤ects of their pricing decisions on time di¤erentials _�r and _�d:With this simpli�cation, the FOC

of a type j seller is given by

pj + 
� �j =
�(vj)

(� + �) f (vj)
;

and therefore

�d = �
ss
d +

_�d

�
and �r = �

ss
r +

� _�d

(� + �) �
+

_�r
� + �

;
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where �ssd and �ssr are the steady state value functions in the benchmark, which were given by

(11) and (12). Combining the indi¤erence conditions with the FOCs yields

0 =
� (vr)

f (vr)
+ ��r � vr � x and (22)

0 =
� (vd)

f (vd)
+ (� + �)�d � ��r � vd � x: (23)

These expressions are identical to their counterparts in the benchmark (compare with 13 and 14),

except of course �d and �r have dynamic components _�d and _�r: In what follows we express these

components in terms of _vd and _vr: To do so, �rst substitute the FOC into the indi¤erence condition

to obtain

�j +
�(vj)

(� + �) f (vj)
=
vj + x+ ��r

� + �
:

Totally di¤erentiating this equation wrt to time yields (recall that _�0r = _�0d = 0)

(� + �)

�
@�j
@vr

_vr +
@�j
@vd

_vd + _�j

�
�
�
1 +

f 0 (vj) � (vj)

f 2 (vj)

�
_vj = _vj + �

�
@�r
@vr

_vr +
@�r
@vd

_vd + _�r

�
;

where @�j=@vr and @�j=@vd are given by (25) and (26) in the appendix. These relationships pin

down _�r and _�d, and therefore �r and �d, as functions of _vr and _vd: Substituting the resulting

expressions into (22) and (23) yields the system of ODE that pin down the equilibrium values of

vr and vd at any given time t. Speci�cally,"
�1;1 �1;2

�2;1 �2;2

# �
_vr
_vd

�
=

"
� (vr) =f (vr) + ��

ss
r � vr � x

� (vd) =f (vd) + (� + �)�
ss
d � ��ssr � vd � x

#
;

where

�1;1 =
n

1
�+�

+ ��

(�+�)(�+�)�

on
2 + f 0(vr)�(vr)

f2(vr)

o
� �

�+�
@�r
@vr

�1;2 =
��

�(�+�)(�+�)

n
2 + f 0(vd)�(vd)

f2(vd)
� (� + �) @�d

@vd
� �(�+�)

�
@�r
@vd

o
�2;1 =

�(�+�+�)

�(�+�)(�+�)
� �

(�+�)�

n
2 + f 0(vr)�(vr)

f2(vr)

o
+ �

�+�
@�r
@vr

�2;2 =
�(�+�+�)

�(�+�)

n
2

(�+�)
+ f 0(vd)�(vd)

(�+�)f2(vd)
� @�d

@vd

o
+ �

�+�
@�r
@vd

:

Observe that substituting _vr = _vd = 0 yields the steady state equilibrium conditions in the

benchmark. However, analytically characterizing the solution of this system is a non-trivial task.

To proceed we simulate the system using the parameters in Table 1 and the initial conditions vr (0)

and vd (0) : We assume that at time t = 0 the economy is at steady state; hence vr (0) and vd (0)
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correspond to the equilibrium values of v�r and v
�
d in the benchmark. Given vr (0) and vd (0) one

can, then, pin down the starting values of measures of agents and the steady state value functions

�ssd and �
ss
r :

In what follows we simulate how the economy responds to a sudden and permanent rise in �:

We set the initial value of � to 1 indicating that regular seller, on average, lasts 12/� = 12 months

without becoming distressed. At date t = 0 the value of � suddenly jumps to 6. Figures 7a and 7b

depict trajectories of prices as well as the measure of distressed sellers in response to this shock.
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The sudden rise in the arrival rate of the adverse shock triggers an immediate and sharp drop in

prices, which is then followed by an extended reversal phase. Note that prices initially over-react

to the shock and fall below their new steady state level, only to recover afterwards. The recovery

phase occurs within the �rst month whereas the convergence to the new steady state appears

to take about six months. Du¢ e [13], in his presidential address to the AFA, explores various

mechanisms causing similar overreactions in price dynamics. These include the relatively small

subset of risk-bearing capacity that is immediately available to absorb a shock on short notice,

institutional impediments to capital movement and investors�occasional lack of attention to trade.

In our case the underlying reason behind the overreaction is the temporary glut of distressed

sellers in the market. Indeed, the simulation in panel 7b reveals that within a few weeks after

the sudden rise in � there are four times as many distressed sellers in the market as they were

before. Consequently, prices overreact to this glut and fall below their steady state level. As the

glut resolves prices recover and converge to the new steady state.
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Notice that the pattern of the prices in response to the shock and the prolonged amount

of recovery time lends support to the search model in the context of OTC markets. There is

signi�cant empirical evidence that supply and demand shocks in asset markets, in addition to

triggering an instant price reaction, lead to corrections that take a relatively prolonged amount

of time. For instance, after major downgrades or defaults in OTC corporate bond markets one

typically observes large price drops which are followed by delayed recovery phases e.g. see [19] and

[10]. A similar scenario is reported in [25], who found that after large capital redemptions in 2005,

convertible bond prices dropped immediately and rebounded only after several months.

In these examples the time pattern of the prices after the external shock reveals that the

friction at work is not a transaction cost for trade. Indeed, if this were the case then investors

would instantaneously modify their portfolios and the new price would be established very soon

after the shock and it would remain there until the arrival of the next shock. In these examples,

however, the price initially over-reacts to the shock and the correction takes a prolonged amount of

time. The speed of adjustment, at least in part, is a re�ection of search frictions in the market� i.e.

the fact that it takes considerable time and e¤ort (especially during times of volatility e.g. after

an external shock) to �nd new investors and to negotiate the new terms with them.

What is remarkable, our simulations show that, just as observed empirically, prices initially

overreact to the shock and it takes a signi�cant amount of time until they recover and approach

to their new steady state levels. This is indeed in line with the empirical papers referenced above,

and therefore it gives further credit to the search-and-matching model to be used in the context

of OTC markets.

5.3 Risk Management

The arrival rate of the adverse shock is exogenous. As a result there is not much a regular seller

can do for not being hit by the shock except for trying to sell as quick as possible. The exogeneity

of the adverse shock, admittedly, hinders our model�s ability to talk about strategies on how to

prevent the shock or perhaps how to delay it; but, nevertheless, our results still o¤er some valuable

insights into risk management.

First, the under shooting of the price is indeed signi�cant. The simulation in panel 7a suggests

that both the regular price and the distressed price initially fall about 25% below the new steady

state level and the recovery phase takes about a month. These observations indicate that risk

management should take into account the time frame in which assets are marked-to-market, espe-

cially if the position is secured via collateralized �nancing. Risk management should be mindful of

the fact that during times of �nancial distress (e.g. when � suddenly goes up) it takes signi�cantly

longer to sell (because of predation) and that the market price undershoots signi�cantly before it

recovers. These details ought to be built into the contract when obtaining the loan to secure the

28



position. Otherwise the loan provider, e.g. the broker, might mark-to-market too aggressively in

an e¤ort to trigger a margin call and liquidate the collateral.19

Furthermore, in the light of the spill-over result discussed earlier, one should take into account

the inter-dependant nature of �nancial markets and the indirect e¤ects and repercussions of a

potential shock hitting trading partners or related investors. Said di¤erently, a prudent risk man-

agement strategy should depend on �nancial standing of related traders and should have scenarios

drawn against the possibility that they may fall into distress. An example for such a measure is

JP Morgan�s dealer exit stress test, which assesses the risk that a rival is forced to withdraw from

the market.20

6 Conclusion

This paper contributes to a recent literature spurred by Du¢ e et al. [14] studying the OTC

markets via search and matching and complements this literature by assuming that (i) buyers�

preferences are heterogenous and their willingness to pay is private information and that (ii)

sellers are heterogeneous in terms of their urgency to sell. A search equilibrium exists and it

is unique. In equilibrium distressed sellers pursue liquidation sales� that is, they signi�cantly

undercut their competitors in an e¤ort to quickly trade and exit from their positions. Liquidation

sales are associated with considerable pro�t losses, but more importantly they open the door

for predation. Indeed we demonstrate that during periods where an increasing number of sellers

become distressed, buyers deliberately hold o¤ purchasing from such sellers, which in turn exerts

more pressure on them and forces them for further price cuts� an outcome which we call predatory

buying.

19Brunnermeier and Pedersen [6] provide an anecdote for such an outcome involving Granite Partners (Askin
Capital Management), who held very illiquid �xed income securities: "[Granite�s] main brokers� Merrill Lynch,
DLJ, and others� gave the fund less than 24 hours to meet a margin call. Merrill Lynch and DLJ then allegedly
sold o¤ collateral assets at below market prices at an insider-only auction in which bids were solicited from a
restricted number of other brokers excluding retail institutional investors."
20David Remstein, JP Morgan�s Global Head of Investment Performance, in his Investment Analytics & Con-

sulting newsletter (Second Quarter 2012) states that "Another popular approach to building an extreme event is to
consider the interrelationship of �nancial markets and the e¤ect a liquidity shock may have on it. [...] An example
of this technique might be an event causing a sharp increase in market risk and dealers exiting positions to avoid
breaching trading limits. This contributes to further volatility and triggers action to be taken by other market
participants [...]. The behaviour spreads to other markets through the deterioration in liquidity and the inability
to implement hedging strategies, thus causing further increases in volatility."
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Appendix

Proof of Proposition 3. The proof involves three steps.
Step 0. Preliminaries. We have

�d =
��2(vd)

�(�+�)f(vd)
and �r =

�
(�+�)(�+�)

h
�2(vr)
f(vr)

+ ��2(vd)

�f(vd)

i
: (24)

The following partial derivatives will be useful

@�d
@vd

= ���(vd)

�(�+�)
� 2f2(vd)+f

0(vd)�(vd)
f2(vd)

and @�r
@vd

= �
�+�

� @�d
@vd
; (25)

@�r
@vr

= � ��(vr)
(�+�)(�+�)

� 2f2(vr)+f 0(vr)�(vr)
f2(vr)

and @�d
@vr

= 0: (26)

All partial derivatives (except for @�d
@vr
) are negative because Assumption 1 (log concavity).

Step 1. Existence-. We will show that the locus of �r = 0 and that of �d = 0 intersect once

in vr � vd space, where �r and �d are given by (13) and (14). To start, let

�r (vr)
:
= fvd 2 [0; 1] j �r (vr; vd) = 0g

be the locus of �r (vr; vd) : Similarly let �d (vr) be the locus of �d: We will establish that �r is

downward sloping whereas �d is upward sloping wrt vr: Di¤erentiating (13) and (14) wrt vr and

vd we have:

@�r
@vr

= �f2(vr)+f 0(vr)�(vr)
f2(vr)

+ � @�r
@vr

� 1 < 0 @�r
@vd

= � @�r
@vd

< 0

@�d
@vd

= �f2(vd)+f
0(vd)�(vd)

f2(vd)
+ (� + �) @�d

@vd
� � @�r

@vd
� 1 < 0 @�d

@vr
= �� @�r

@vr
> 0

(27)

Focus on @�r
@vr
: The �rst term and @�r

@vr
are both negative because of log concavity; hence @�r

@vr
< 0:

Similarly @�r
@vd

< 0 since @�r
@vd

is negative. Therefore �r (vr; vd) = 0 de�nes vd = �r (vr) as an implicit

function of vr (Implicit Function Theorem) with

d�r
dvr

= �@�r=@vr
@�r=@vd

< 0;

i.e. the locus of �r = 0 is downward sloping wrt vr: Similarly one can verify that
@�d
@vd

< 0 and
@�d
@vr

> 0; therefore
d�d
dvr

= �@�d=@vr
@�d=@vd

> 0;

which means that the locus of �d = 0 is upward sloping.

Now we prove that �r (0) > �d (0) and �r (1) < �d (1) : Start by substituting (vr; vd) = (0; 0) into
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�r and �d and observe that �r (0; 0) > �d (0; 0) because � > �: In addition note that
@�d
@vd

< @�r
@vd

<

0 (this follows from log-concavity and that @�d
@vd

< @�r
@vd
). It follows that �r (0; vd) > �d (0; vd) for

all vd > 0: This, in turn, implies that �r (0) > �d (0). Similarly (vr; vd) = (0; 0) into �r and �d and

observe that �r (0; 0) = �d (0; 0) = � (1 + x) : Since @�d@vd
< @�r

@vd
< 0 we have �r (1; vd) < �d (1; vd)

for all vd < 1: This inequality implies that �r (1) < �d (1).

Since (i) d�r
dvr

< 0 and d�d
dvr

> 0; (ii) �r (0) > �d (0) and (iii) �r (1) < �d (1) ;the Intermediate

Value Theorem guarantees existence of a unique v�r 2 (0; 1) such that �r (v�r) = �d (v�r) = v�d.

Step 2. Liquidation Sales-. First we will show that v�d < v�r ; which, in turn, implies that

� (v�d) > � (v
�
r) : Recall that

@�r
@vr

< 0 and @�d
@vr

> 0; hence the di¤erence �r ��d decreases in vr:

Now, by contradiction suppose that v�r = v
�
d = v and notice that

�r (v; v)��d (v; v) = �r (v; v)� �d (v; v) =
��2(v)(���)
f(v)�(�+�)

> 0:

The expression is positive because � > �: The fact that �r (v; v) > �d (v; v) implies that v�r 6= v�d
because in equilibrium we must have �r (v

�
r ; v

�
d) = �d (v

�
r ; v

�
d) : The inequality gets worse if v

�
d > v

�
r

because �r ��d decreases in vr: The equilibrium condition can be satis�ed only if v�d < v
�
r :

The inequality p�r > p
�
d is follows from the indi¤erence conditions (7) implying

p�r � p�d = (v�r � v�d) = (� + �) > 0;

which is positive because v�d < v
�
r : �

Proof of Remark 4. The �rst part of the remark deals with the signs of � (v�r) and � (v
�
d)

wrt x: Recall that

sign
�
dv�j=du

�
= sign (detBj (u)) for j = r; d

where det (Br (u)) and det (Bd (u)) are given by (35). Below we show that detBr (x) and detBd (x)

are both negative. Note that
@�d
@x
= @�r

@x
= � 1

�+�
:

It follows that

detBr (x) =
1
�+�

h
@�d
@vd

� @�r
@vd

i
< 0

detBd (x) =
1
�+�

h
@�r
@vr

� @�d
@vr

i
< 0

In the �rst line, the expression in square brackets is negative because @�d
@vd

< @�r
@vd

< 0; see the proof

of Proposition 3. The expression in the second line is negative because @�r
@vr

< 0 and @�d
@vr

> 0: The

signs of the determinants imply that both v�r and v
�
d fall and therefore � (v

�
r) and � (v

�
d) rise in x:
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Characterization of Corner Solutions. Let v+r be the speci�c value of vr satisfying

��2(v+r )
(�+�)f(v+r )

+
�(v+r )
f(v+r )

� v+r � 1
f(0)

h
1 + ��

�(�+�)

i
= 0: (28)

Basic algebra reveals that if x = x+, where

x+
:
=

�(1+�=�)
(�+�)f(0)

� �
�+�

�
v+r �

�(v+r )
f(v+r )

�
; (29)

then �r (v
+
r ; 0) = �d (v

+
r ; 0) = 0; hence the the pair v

� = (v+r ; 0) correspond to an equilibrium.

Recall that v�r and v
�
d both fall in x: So, if x > x+ then v�d falls below 0; implying that the

probability of trade � (v�d) exceeds 1, which, of course, is impossible. In this parameter region,

distressed sellers�FOC no longer holds with equality. The concavity of sellers�objective function

implies that distressed sellers pick the price pd satisfying vd = 0 (not the FOC) and the indi¤erence

condition (7). More speci�cally, pd satis�es

x+��r
�+�

= pd + 
; (30)

where the equation is obtained by substituting vd = 0 into (7). Substitute (30) and vd = 0 into

distressed sellers value function �d to obtain

�d =
�(x+��r)

(�+�)(�+�)
:

Relaxed sellers�problem is still the same. We conjecture that (to be veri�ed below) their FOC

pr + 
� �r = �(vr)
(�+�)f(vr)

(31)

holds with equality. Substitute (31) along with �d from above and vd = 0 into �r to obtain

�r = c3
��2(vr)(�+�)

f(vr)
+ c3��x (32)

where

c3 =
�
(� + �)

�
�+ �

�
(� + �)� ���

��1 2 (0; 1) :
Relaxed sellers face the indi¤erence condition

vr+x+��r
�+�

= pr + 
: (33)
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Combine the indi¤erence condition with their FOC (31) above to obtain

�r (vr) =
�(vr)
f(vr)

+ ��r � vr � x = 0:

This function looks similar to the equilibrium condition in (13), but unlike the former, this one

does not depend on vd anymore (now �r is a function of vr only). Substitute �r from (32) into

�r to obtain

�r (vr) =
�(vr)
f(vr)

+ c3
���2(vr)(�+�)

f(vr)
� vr � c3x (� + �)

�
�
�
�+ �

�
+ ��

�
= 0:

It is easy to verify that �r falls in vr (assuming log-concavity). In addition �r (1) < 0: So if

�r (0) > 0 then there exits an interior v�r 2 (0; 1) satisfying �r (vr) = 0: Note that

�r (0) > 0, x < x++;

where

x++
:
=
(�+�)f(�+�)(�+�)+��g����
f(0)(�+�)f�(�+�)+��g : (34)

Therefore if x < x++ relaxed sellers�FOC holds with equality and the optimal v�r is interior; hence

� (v�r) < 1: If, however, x � x++ then, relaxed sellers, too, set pr satisfying vr = 0 and their

indi¤erence condition (33). In this parameter region both � (v�d) and � (v
�
r) are equal to 1. The

value functions and other equilibrium objects can be obtained using the steps above. �

Proof of Proposition 5. Recall that v�r and v
�
d simultaneously satisfy

�r (v
�
r ; v

�
d) = 0 and �d (v

�
r ; v

�
d) = 0:

Omit the superscript � when understood and note that (General Implicit Function Theorem)

dvj
du
=

detBj(u)

detA
; for u = �; x; �; � and j = r; d;

where

Br (u) =

"
�@�r

@u
@�r
@vd

�@�d
@u

@�d
@vd

#
; Bd (u) =

"
@�r
@vr

�@�r
@u

@�d
@vr

�@�d
@u

#
; A =

"
@�r
@vr

@�r
@vd

@�d
@vr

@�d
@vd

#
:

Note that
detA = @�r

@vr
(�)

@�d
@vd
(�)

� @�d
@vr
(+)

@�r
@vd
(�)

> 0:
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The signs of the partial derivatives follow from (27). It follows that

sign (dvj=du) = sign (detBj (u)) ;

where

detBr (u) =
@�r
@vd

@�d
@u
� @�d

@vd

@�r
@u

and detBd (u) =
@�d
@vr

@�r
@u
� @�r

@vr

@�d
@u
: (35)

The setup is general and it can be used to analyze the signs of the partial derivatives of v�r and

v�d wrt any one of the parameters �; x; �; �; but this proposition is about the sign of v
�
d wrt �; so

below we focus on detBd (�). To start, note that

@�d
@�
= �� @�r

@�
and @�r

@�
= � @�r

@�
;

where
@�r
@�
= � �

(�+�)(�+�)2

�
�2(v�r )
f(v�r )

� �
�

�2(v�d)
f(v�d)

�
(+)

:

Note that @�r
@�
is negative, because the expression in the square brackets (call it T1) is positive.21

Now, substitute @�d
@vr

and @�d
@vd
, which are given in (27), into detBd (�) to obtain

detBd (�) = � �
�+�

� @�r
@�
(�)

� 2f2(vr)+f 0(vr)�(vr)
f2(vr)

(+)

> 0:

The last expression is positive because of log concavity. We have already established that @�r=@�

is negative; hence detBd (�) is positive, which implies that dv�d=d� is positive, which in turn implies

that the equilibrium probability of sale � (v�d) falls in �:

Now we will show that p�d; too, falls in �: Use the FOC (10) and the expression for �d; given

by (24), to obtain

p�d + 
 =
�(v�d)

(�+�)f(v�d)

h
1 + �

�
� (v�d)

i
:

Call the expression on the right hand side T2 and notice that

dp�d
d�
= @T2

v�d
(�)

dv�d
d�
(+)

� d

d�
(+)

:

21To see why combine the FOCs, given by (10), with the value functions �d and �r, given by (24), to obtain

p�r � p�d =
�(v�r )

f(v�r )(�+�)
� �(v�d)

f(v�d)(�+�)
+ �

(�+�)(�+�) � T1 > 0:

This expression is positive since we have established that in equilibrium p�r > p
�
d: Now focus on the �rst two terms

on the right hand side. The expression � (v) =f (v) falls in v because of log concavity. Since v�r > v
�
d in equilibrium,

it follows that the summation of the �rst two terms is negative. This means that, for p�r > p
�
d to hold T1 must be

positive. Hence @�r=@� is negative.
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It is easy to verify that @T2
v�d
is negative because of log-concavity; dv

�
d

d�
is positive from above. In

addition d

d�
> 0. Hence dp�d

d�
is negative. �
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