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Abstract 

 

Name of University: Cardiff University 

Candidate’s Name: Jonathan Mark Stevens 

Degree Title:  Doctor of Philosophy 

Thesis Title: HVDC Transmission and AC Hubs for Offshore 

Generation 

Date:   September 2015 

The offshore AC hub was identified as a feasible network topology for an 

offshore node applied in a future pan-European Supergrid. A model of an 

offshore AC hub was developed in SimPowerSystems
TM

 using the round three 

offshore wind development zone Dogger Bank, as a case study. 

Two control philosophies, master-slave and droop control, are shown to 

successfully manage the voltage, current and complex power flow in the offshore 

AC hub following planned changes in operating conditions. 

The impacts of three different fault scenarios on the offshore AC hub are 

investigated. It is shown that each fault severely impedes normal operation of 

equipment in the offshore AC hub, as equipment ratings are exceeded. In 

addition, the loss of infeed to the onshore UK power network is extensive. Based 

on these outcomes, it is identified that additional fault management systems are 

required. 

A novel centralised fault management system is then developed based on an 

online OPF algorithm. The performance is compared to de-centralised fault 

management system, and advantages and disadvantages of the two methods are 

discussed. The centralised fault management system is implemented on a real-

time platform as hardware-in-the-loop, with the offshore AC hub implemented on 

a Real Time Digital Simulator. The simulation and experimental results are then 

compared to confirm the validity of the simulation results. 
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1 Chapter 1 – Introduction 

1.1 Background 

Significant change is on the horizon for the way in which electricity is generated, 

transmitted and consumed in the UK, Europe and indeed the rest of the world. An 

ever increasing world population demands increasing amounts of electricity 

generation. Currently, the majority of electricity generation is met through the 

burning of fossil fuels, which are of course a finite resource. Furthermore, the 

burning of these fossil fuels contributes a significant portion of the greenhouse 

gases which are being released into the atmosphere. Therefore it is widely 

recognised that if significant climate change is to be avoided, a change in the mix 

of electricity generation is required.  

As energy production currently accounts for the largest share of UK greenhouse 

gas emissions, the UK government has recognised the importance of low-carbon 

and renewable forms of energy production in avoiding significant climate change. 

In 2008, The Climate Change Act came into force, which legally requires the UK 

to reduce greenhouse gas emissions to at least 80% below 1990 levels by 2050 

[1]. On a European level, the EU Climate and Energy Package has committed the 

EU to achieving a 20% reduction in greenhouse gas emissions, a 20% 

improvement in energy efficiency and for 20% of energy to come from renewable 

resources by 2020. Under this agreement, the UK has a target to deliver 15% of 

its energy from renewable energy resources by 2020 [2]. 

1.2 Offshore Wind Farms 

The UK is fortunate to have a vast amount of renewable energy resources both on 

and offshore. In fact, the UK has the largest potential wind energy resource in 

Europe with the North Sea alone able to provide hundreds of Gigawatts of wind 

power [3]. Offshore wind is more technologically challenging and expensive than 

onshore wind, however it has a larger potential energy yield due to a more 

consistent wind resource out at sea [2]. 
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To allow access to this vast offshore wind energy resource within UK territorial 

limits, the Crown Estate has held a number of leasing rounds, allocating defined 

areas of the seabed to potential wind farm developers. In 2000, the first Round 

(Round 1), permitted developers to install small wind farms, consisting of a 

maximum of 30 wind turbines, in water depths of less than 20m and no further 

than 12km offshore. Round 2 followed in 2003, with 15 projects having a 

combined capacity of 7.2GW and located no further than 40km offshore. In 2010, 

Round 3 development zones were defined which allocated enough seabed area for 

generation capacity of around 35GW and located at distances of up to 290km 

offshore. Figure 1.1 shows the offshore wind development zones as defined by 

the Crown Estate [4]. 
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Figure 1.1 – Offshore Wind development zones as described by the Crown Estate [4] 

1.3 HVDC Transmission and the Supergrid 

The challenge lies in how this wind power can be harvested efficiently, in terms 

of both cost and performance. The extent of the challenge is largely dependent on 

the scale of the project considered and the distance it is to be located offshore. In 

fact, many of the largest wind farms are located a considerable distance from 
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shore. This causes problems for the transmission of energy using conventional 

High Voltage Alternating Current (HVAC) transmission cables, because the 

capacitance of the cable causes excessive charging currents leaving less capacity 

for useful current flow. High Voltage Direct Current (HVDC) transmission, by its 

very nature does not have oscillatory charging currents and therefore has been 

thoroughly explored as a solution to this problem [5]–[8]. 

Additionally, reinforcement of the onshore grid infrastructure is required to 

facilitate the connection of the offshore wind generation and transport the energy 

to load centres accordingly. This is another important factor influencing the final 

connection distance from an offshore wind farm to the onshore connection point, 

because the closest point to shore may not be acceptable for receiving a 

connection for technical and or environmental reasons [4]. 

Parallel to the requirements for increased power generation from renewable 

energy sources, there exists the necessity to maintain and/or improve security of 

supply. A major driving force behind the movement to increase offshore wind 

generation in the UK is to reduce its dependency on gas and oil from unstable 

regions. Of course, renewable energy is an intermittent resource. Including 

various sources of renewable energy (i.e. wind, solar and hydro), located in 

different locations, can overcome the intermittency of any single resource. One 

method of achieving this is to increase interconnection between other countries. 

This would allow any abundance of renewable energy to be exported and any 

shortfall made up from imported, renewable energy resources. Realistically, there 

will need to be some form of back-up capacity provided from flexible fossil-fuel 

power stations, however it is environmentally advantageous to keep this to a 

minimum [2]. 

In light of the aforementioned challenges associated with the integration of 

renewable energy resources, there has been widespread support from various 

parties for the formation of a pan-European transmission network or as it is 

widely known, a European Supergrid. The term “Supergrid” is not new to 

electricity infrastructure; it was first used to describe the 275/400kV British 

national electricity system developed in the 1950’s. In the 21
st
 century, the term 

“Supergrid” describes a system performing two main functions. One being to 
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provide interconnection between the different electricity transmission networks 

located within Europe and the second being to aggregate renewable energy 

resources using the same infrastructure [9]. 

The implementation of a Supergrid is by no means straightforward. Many 

technical and economic challenges exist if such a scheme is to be realised. While 

there is considerable experience in the use of HVDC transmission technology for 

point-to-point connections, there is very little experience of using HVDC within a 

grid topology. The topology, components, control and protection arrangements of 

such a Supergrid are still the subject of on-going research, attracting a large 

amount of interest from both Industry and Academia. 

1.4 Research Objectives 

The objective of this thesis is to investigate the viability of using Voltage Source 

Converter (VSC) HVDC links to both interconnect onshore HVAC transmission 

systems and provide for the connection of offshore wind farms in remote 

locations. Particular contributions of this thesis include: 

 To design a suitable control system for operating an offshore AC hub 

under planned changes in operating conditions. This is achieved 

through the implementation of both master-slave and droop control 

schemes. 

 To identify the implications of various faults in an offshore AC hub, in 

particular, the loss of infeed to the main interconnected transmission 

system. 

 To design a suitable control system to manage the impacts of faults in 

an offshore AC hub. The performance of the novel centralised fault 

management system presented in this thesis is compared with a de-

centralised method adapted from literature. 

 To design and build an experiment using hardware in the loop to 

demonstrate and validate the novel control system for managing the 

impact of faults in an offshore AC hub. A Real Time Digital Simulator 

(RTDS) was used along with a dSPACE real time control platform. 
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2 Chapter 2 – Literature Review 

2.1 The Supergrid 

From a European perspective, it is widely considered that offshore infrastructure 

development will result in the development of a pan-European transmission network, 

dubbed the “Supergrid”, as shown in Figure 2.1. 

 

Figure 2.1 – Overview of a pan-European Supergrid in 2050 (adapted from [10]) 

Upon investigation of the driving factors behind the requirement for such a Supergrid, 

the following points are most prominent [11]–[13], 

• All European member states have agreed to legally binding targets to cut 

greenhouse gas emissions. 

• Offshore Wind has the potential to generate 500TWh per year by 2030, with 

hundreds of Gigawatts available in the North Sea alone. 

• A reliable, modernised and efficient grid is required, both onshore and offshore 

in order to integrate renewable energy sources. 

Onshore node 

Offshore node 

Lines/branches 
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• The challenge offshore is to connect harvested energy from the sea, while 

building a system, which can actively contribute to stability and security of 

supply and increase trade links. 

Of course, individual member states could act to meet their own obligations towards the 

integration of renewable energy resources, through the development of isolated offshore 

infrastructure systems, however, it is identified that the Supergrid concept would 

provide a number of benefits as listed in the following points [10], [12], [13], 

• A Supergrid will facilitate the integration of large offshore renewable energy 

projects, often located in remote locations. 

• It will enable spatial smoothing through aggregation of resources, thus the 

variability of the renewable energy sources is reduced (e.g. Interconnection with 

Scandinavia will provide access to hydro energy storage facilities). 

• Overcomes many of the issues associated with installing new overhead lines or 

underground cables within onshore networks, effectively a bypass is provided 

thus reducing congestion of power flows from energy source to load centre. 

• It will increase the security of supply through reduced dependency on gas and 

oil from unstable regions. 

• It will improve trade and competition in energy markets through provision of 

more interconnections between countries, resulting in increased possibilities for 

arbitrage and limitation of price spikes. 

For any development to take place there must be the relevant impetus from key parties 

with an inherent association or stake in such a scheme. Many of those key parties are 

described below,  

• The European Commission has published “Guidelines for trans-European 

energy infrastructure”, which has identified 12 priority corridors concerning 

various mediums for the transportation of energy (electricity, gas, oil and carbon 

dioxide) throughout Europe. One energy corridor highlighted which is of 

particular interest to this work is the Northern Seas Offshore Grid (NSOG) [14]. 

• ENTSO-E which represents the European TSOs has established a working group 

called the “2050 Electricity highways working group”. The task of the working 

group is to develop a method to support the planning of a future pan-European 
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transmission network between 2020 and 2050 [15]. To achieve the renewable 

targets up to 2020, another working group called the North Seas Countries’ 

Offshore Grid Initiative (NSCOGI) was formed. The task of NSCOGI is to 

evaluate and facilitate the co-ordinated development of an offshore grid in the 

North sea [16]. 

• The OffshoreGrid project consortium has provided an in-depth analysis of how 

to build a cost-efficient offshore grid in the north and Baltic seas. The project is 

supported by the EC’s Intelligent Energy Europe program. The project partners 

consist of a number of renewable energy consultancies and agencies. (3E, 

ForWind, EWEA, Senergy Econnect etc) [11]. 

• The Friends of the Supergrid (FOSG) is a group of companies that have a 

mutual interest in promoting and influencing the policy and regulatory 

framework required to enable large-scale interconnection in Europe [10]. 

Finally, the basic elements of such a Supergrid were investigated and are as follows, 

• Lines/branches: These include HVAC or HVDC links that provide the route by 

which the power can flow between onshore and offshore nodes. 

• Offshore Nodes or Hubs: These provide a common connection point for a 

number of offshore wind farms and serve as intersections between network 

branches to provide interconnection between European member states. 

• Onshore Nodes or Connection points: These provide the connection point 

between the offshore transmission system and onshore transmission system.  

2.2 Offshore Transmission 

Considering the development of offshore wind generation in the UK, two main factors 

are apparent which influence the choice of transmission medium. One factor is the rated 

generation output of the offshore wind farm and therefore the number of cables required 

to transmit the rated output. The other factor is the distance between the offshore wind 

farm and the onshore connection point and therefore the required cable route length. 

The three main transmission mediums used to date include Medium Voltage AC 

(MVAC, typically 33kV), High Voltage AC (HVAC, typically 132kV) and High 

Voltage DC (HVDC). 
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MVAC is typically only used for small wind farms with a capacity no greater than 

100MW and which are located less than 30km offshore [17]. When considering a 

Supergrid, it is unlikely that such a small wind farm would be connected within the 

Supergrid as it will be cheaper to make a connection directly back to the onshore 

system, rather than trying to connect to a point offshore. In addition, the low 

transmission capacity would limit any further function to transmit power within a 

Supergrid. MVAC will mostly be utilised for the inter-array cabling of an offshore wind 

farm. 

While it is expected that both HVAC and HVDC will be necessary transmission 

mediums for branches within a Supergrid, the majority of branches will be HVDC. This 

is due to a number of factors as is discussed in section 2.2.1 & 2.2.2. 

2.2.1 HVAC Transmission 

Current XLPE cable technology permits voltages of up to 420kV AC for single core 

cables and 275kV AC for three core cables. Although single-core cables typically 

provide higher rating, three separate conductors must be laid which increases 

installation costs. A typical three-core XLPE HVAC cable with 800mm2 copper 

conductors at a voltage of 220kV has a rated transmission capacity of approximately 

330MVA [18]. 

An inherent limiting factor of HVAC cables is their high shunt capacitance [19]. The 

effect of this increased capacitance is to generate a large amount of reactive power 

along the cable’s length. The generation of reactive power replaces what would be 

useful active power flow through the cable for a given MVA rating. In addition, reactive 

power compensation must be installed, usually at both ends of the cable to absorb the 

reactive power [4], [20] and prevent undesirable voltage rises at low load. 

The reactive power, 𝑄𝐶, generated in a cable due to the capacitance is given by the 

following equation: 

 𝑄𝐶 = 2𝜋𝑓𝑙𝐶𝑉2 (2.1) 

Where f is the frequency (Hz), V is the rated voltage (kV), l is the length of the cable 

(km) and C is the capacitance of the cable per unit length (F/km) [17]. 

It can be seen that the generated reactive power increases proportionally with the length 

of the cable. In addition, it increases with the square of the voltage. Hence longer, 
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higher voltage cables require significantly more compensation. HVAC cables offer 

feasible transmission of power for distances of up to approximately 90km [17]. 

2.2.2 HVDC Transmission 

HVDC transmission has been in operation commercially for more than 50 years [5]. 

Over this time, the technology used to perform the transition between AC and DC 

(rectification) and vice versa (inversion), known generally as static power conversion, 

has changed dramatically. 

2.2.2.1 Line commutated current source converters (LCC-CSC), 

The majority of HVDC transmission infrastructure installed today is based on the LCC-

CSC configuration, as presented in Figure 2.2. 

 

Figure 2.2 – Single line diagram of an LCC-CSC 

The term ‘line commutated converter’ refers to the commutation source of the switching 

devices within the static power converter, where each switching device is commutated 

by the natural current zeros of the AC line to which it is connected. The term ‘current 

source converter’ refers to the constant quantity on the DC side in which a constant 

direct current is maintained and the DC voltage is controlled according to the switching 

of the devices, thus controlling the amount of power transferred [21]. 

Thyristors are used as the switching devices within LCC-CSC and benefit from being 

able to handle a large amount of current, being reliable in operation and having 

relatively low on-state losses [22]. The standard thyristors or Silicon Controlled 

Rectifier (SCR) as it is otherwise known can be turned on by an external gate input but 

cannot be turned off by the gate input. Thyristors have been developed which can be 

turned off using the gate input such as the Gate Turn Off (GTO) thyristors and Insulated 

Gate Commutated Thyristor (IGCT). However, GTOs and IGCTs require complex gate 
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circuits to turn the device on and off, which adds additional cost and complexity. For 

that reason, SCRs are most commonly used in HVDC applications [21]. 

For the SCR, a firing angle is specified which determines the delay between the voltage 

crossing between two phases and the firing instant. The instant at which the device is 

turned on determines the DC voltage level and hence active power transfer through the 

link. In order to turn off the device, the current must fall below a certain value for a 

certain amount of time, hence the requirement for line commutation [21]. 

The total duration required to turn-off one device and turn on the next is known as the 

commutation time. The commutation time is strongly influenced by the AC system 

reactance, AC voltage and firing angle. A larger AC system reactance will reduce the 

rate of change of current and hence lengthen the commutation time. The consequence of 

an increased commutation time is an increased current lag behind the voltage, hence an 

increase in consumption of reactive power (Q). Some commutation delay is always 

present even without power transfer and hence the LCC-CSC always draws reactive 

power. Figure 2.3 shows the change in reactive power drawn by an LCC-CSC with a 

change in active power (P) transfer [21]. 

 

Figure 2.3 – Change in reactive power consumption against active power transfer [23] 

Active power transfer through a branch of a Supergrid is likely to vary significantly. 

Consequently, the compensation requirements also vary, thus adding additional cost and 
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complexity to the system. When the LCC-CSC is transferring maximum active power, 

the reactive power drawn could be as much as 60% of this value [21]. 

Additionally, the relatively slow switching frequency of the LCC-CSC (each arm 

switches just once per cycle) causes significant harmonics on the voltage waveform. To 

compensate for these harmonics, a significant amount of filter capacity is required again 

contributing to the cost and complexity of the system. Finally, the LCC-CSC is 

susceptible to commutation failures in the presence of voltage instability or faults on the 

AC system. As a consequence, the AC connection point must be electrically strong, 

hence a minimum short circuit ratio (SCR) of 2 is required, where SCR is defined as 

short circuit power to converter power [21], [5]. 

The characteristics of LCC-CSC have dictated the applications in which HVDC 

transmission has been used over the past 50 years or so. Due to the large power 

handling capability of LCC-CSC, the technology lends itself to the transmission of large 

amounts of power over long distances. This has been particularly useful in applications 

for connecting large renewable generation sources which are located in remote 

locations. For example, the Xiangjiaba-Shanghai LCC-CSC link in China, in operation 

since 2010, has a DC voltage of ±800kV and the capacity to transmit up to 7200MW of 

power over 2000km from the Xiangjiaba hydropower plant, located in the southwest of 

China, to Shanghai [24]. 

2.2.2.2 Voltage Source Converters (VSC), 

Over the past few decades, advances in power semiconductor devices have led to the 

commercial availability of self-commutated static power converters. These power 

converters, often referred to as VSCs most commonly use Insulated-Gate-Bipolar 

Transistors (IGBTs) as the switching devices [21]. IGCTs could also be used however 

they commutate more slowly which means the switching frequency is limited [21]. An 

IGBT based static power converter or VSC is presented in Figure 2.4. 



13 

 

 

Figure 2.4 – Single line diagram of a VSC 

The term ‘self-commutated converter’ refers to the commutation source of the switching 

devices within the static power converter, where each switching device is commutated 

by a gate input which is provided by a Pulse Width Modulation (PWM) switching 

algorithm. The term ‘voltage source converter’ refers to the constant quantity of the DC 

side in which a constant direct voltage is maintained and the current is controlled 

according to the switching of the devices, thus controlling power transfer [21]. 

Early generations of VSCs were two level topologies, which refers to the two possible 

output voltages produced by the VSC across the a.c terminals, as shown in Figure 2.5. 

 

Figure 2.5 - Two level VSC and square wave output 

By commutating between the two switch positions, T1 and T2, the output voltage 

changes from one level to another, thus creating a square waveform output. By 

performing this switching action many times in the line period, it is possible to replicate 

an a.c waveform at a given fundamental frequency (with the addition of some 

harmonics). 

The quality of a.c waveform produced by the VSC is improved by increasing the 

switching frequency. This results in lower harmonic content which reduces the filtering 
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requirements however, as the devices are switched on and off more in a given period, 

the losses increase. Typical switching frequencies of two-level VSCs is in the region of 

1 – 2 kHz [21]. 

The latest VSCs are based on what is known as a multi-modular converter (MMC) 

topology as shown in Figure 2.6. 

 

Figure 2.6 – Single line diagram of an MMC 

The MMC topology contains many individual cells or sub-modules, each of which can 

be either a half-bridge or full bridge configuration as shown in Figure 2.7. 
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Figure 2.7 – Left: Half-bridge cell arrangement, Right: Full-bridge cell arrangement 

The half-bridge cell consists of a cell capacitor, and two IGBTs plus anti-parallel 

diodes. The cell output can be either 𝑉𝑐𝑒𝑙𝑙 or 0. By adding two more switch positions, 

the full bridge arrangement or ‘H’ bridge as it is sometimes known, is realised. The full-

bridge cell output can be 𝑉𝑐𝑒𝑙𝑙, −𝑉𝑐𝑒𝑙𝑙 or 0. This is significant as an MMC arrangement 

containing full-bridge cells can block fault current contribution from the AC network in 

the event of a DC fault [25]. 

The main advantage of the MMC VSC over a two-level VSC is the improvement in 

quality of the a.c waveform produced. A typical MMC topology contains hundreds of 

cells, and therefore can be produce multiple voltage levels at its output. This results in 

lower filtering requirements, or in some cases, the output filters can be removed 

altogether [26]. The main disadvantage to MMC technology over two-level is an 

increase in the number of IGBTs required, where a half-bridge MMC requires twice as 

many IGBTs as an equivalent two-level VSC and a full-bridge MMC requires four 

times as many. 

2.2.2.3 Comparison of the LCC-CSC and VSC 

A number of key differences between LCC-CSC and VSC have meant that the latter is 

favoured for various applications including the connection of offshore wind generation. 

These include [21]: 

 As VSCs are self-commutating, a separate (external) voltage source is not 

required for commutation as is the case for LCC-CSCs. 

 VSCs can independently generate or absorb reactive power as required. LCC-

CSC always absorbs reactive power, the amount of which varies according to 

the amount of active power transfer. 
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 LCC-CSCs require a minimum short circuit ratio (SCR) of 2 in order to avoid 

causing voltage instability within the network. VSCs however have no minimum 

SCR requirement. 

 LCC-CSCs require a large filter capacity in order to remove the low order 

harmonics generated by the typically 12-pulse switching cycle. The filter 

capacity is typically between 20 and 30% of the converter rating. The latest VSC 

configurations practically remove the filter requirements altogether [26]. This 

implies a significant space saving, which is particularly useful in offshore 

applications. 

 LCC-CSCs are also more susceptible to onshore AC system faults as this can 

lead to commutation failures and thus disrupt power transfer. VSCs are less 

susceptible as they are self-commutated [27]. 

 During a DC link fault, the LCC-CSCs are able manage any fault current 

contribution from the AC network, using control action [27]. Half-bridge based 

VSCs cannot manage fault current due to the presence of free-wheeling diodes, 

thus greater reliance is exerted upon the AC breakers which cause a larger delay 

when returning to normal operation [25]. Full-bridge based VSCs can block DC 

fault currents however they are more costly due to the increased number of 

IGBTs required and increased losses. 

 The main advantage of LCC-CSCs is that they have a lower power loss than that 

of VSCs [21]. This is due to the high switching losses associated with PWM 

techniques. Recent advances in VSC topologies such as that presented in [26] 

are quickly reducing this advantage as the PWM conversion process becomes 

more efficient. 

An example of a VSC-HVDC link used for connecting offshore wind is the Borwin1 

HVDC Light installation. The Borwin1 HVDC Light installation connects the BARD 

Offshore 1 wind farm, which is located 130km from the coast, to the German main 

interconnected transmission system, with the receiving station located at Diele which is 

75km from the coast. The wind turbine generators feed power into a 36kV AC cable 

system which is transformed to 154kV for the HVDC Light offshore station. The 

HVDC Light system operates with a DC bus voltage of ±150kV. The power is injected 

into the onshore grid at 380kV. The power rating of the HVDC Light system is 400MW 

[28]. 
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The final choice of transmission medium is dependent upon a number of factors which 

vary according to the branch in question. As the Supergrid is likely to interconnect large 

wind farms which are located a considerable distance from shore, HVDC technology 

will likely be the technology of choice. While VSCs do have many advantages over 

LCC-CSCs, LCC-CSCs do have the ability to transfer larger amounts of power from 

one point to another. Additionally, the majority of HVDC installations to date are LCC-

CSC based. It is of the author’s opinion that both VSC and LCC-CSC technologies will 

feature in a future European Supergrid because of these complimentary characteristics. 
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2.3 Offshore Nodes or Hubs 

2.3.1 The Offshore hub 

The offshore hub is an offshore transmission network which facilitates aggregation of 

wind energy resources and provides interconnection between countries. Two prominent 

offshore hub solutions are presented in the literature [10], [29]–[31]: 

 The Offshore AC hub concept (Figure 2.8) – consists of multiple point-to-point 

HVDC links, centred on an AC hub, serving to interconnect different member 

states while integrating a large wind farm. Crucially, all power transfer must 

flow through the AC-hub. 

 The MT-HVDC concept (Figure 2.9) – still requires some form of AC hub 

arrangement, however interconnection is performed on a DC bus and therefore 

not all power transfer must flow through the AC hub arrangement. 

 

Figure 2.8 – The offshore AC hub concept 
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Figure 2.9 – The multi-terminal DC hub concept 

Considering a straightforward hub arrangement consisting of 4 x 1 GW Wind Arrays, 

connected to the UK via 2 x 2GW HVDC links. There are two main differences 

between each concept, one is the point of aggregation, where the offshore AC hub 

aggregates the output of each wind array at the 220kV bus bar and the MT-HVDC 

solution aggregates the output on the DC bus bar. Assuming there is a fault with one of 

the HVDC converters, the MT-HVDC system is less robust as no power can now be 

transferred from the wind array connected to the faulted HVDC converter. To overcome 

this, the MT-HVDC concept would likely include a second point of aggregation at the 

220kV bus bar similar to the offshore AC hub concept. The other main difference is the 

requirement for HVDC circuit breakers for the MT-HVDC system. 
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For many years HVDC circuit breakers (CBs) were a potential technological obstacle to 

the implementation of a MT-DC grid. Now commercial scale designs have been 

presented by the manufacturers but there are none in operation around the world [32]. 

As they are a new, yet unproven technology, the risks and associated costs are higher. In 

addition, the space requirements for a HVDC CB are considerable, which is a problem 

offshore where space is at a premium. 

If an interconnection is made to Norway, another HVDC converter, transformers and 

associated equipment is required for the offshore AC hub concept, obviously putting it 

at a disadvantage over the MT-HVDC system in terms of extra infrastructure 

requirement. However, when the same connection is made to the MT-HVDC system, 

the new interconnection must be entirely compatible with the rest of the system. As 

previously mentioned, the MT-HVDC concept relies upon HVDC CBs, therefore 

additional CBs are required for the extra link and will require the same rating as all 

those throughout the rest of the system; a significant disadvantage if the new link is at a 

significantly lower or higher rating. In addition, the voltage level will need to be the 

same for all links, unless some form of DC-DC transformer is employed. This would be 

difficult and costly, as no DC-DC transformer exists now or in the near future capable 

of handling enough power and operating with high enough efficiency. Finally, 

manufacturers use proprietary control methodologies; these must be fully compatible to 

avoid causing negative effects on the network. 

In addition, the offshore AC hub can be integrated with improvements in HVDC 

technology as they come about (i.e. increased voltage/current levels, better control 

schemes, and introduction of HVDC CBs) and are also potentially compatible with 

classical HVDC schemes such as LCC – HVDC. 

The salient feature of the offshore AC hub concept is its flexibility in design, which 

enables it to adopt a modular approach to building a Supergrid. If one considers the 

400kV AC Supergrid built in the UK in the 50s and 60s, it is evident that it was built in 

a gradual, systematic process over a number of years. With that in mind, the offshore 

AC hub is a topology which allows for the Supergrid to evolve in a similar manner, with 

optimised solutions in terms of cost and performance as and when new infrastructure is 

installed. 
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2.4 Control systems in VSCs and FRC-WTs located in offshore 

transmission networks 

2.4.1 Point-point HVDC transmission systems for offshore wind generation 

The majority of HVDC transmission systems in operation around the world are point-

point HVDC transmission systems. However, only a handful are used for offshore wind 

generation and currently, all of them are owned by TenneT TSO GmbH and are located 

in the North Sea off the North German coast [33]. The infrastructure arrangement in the 

German offshore HVDC transmission systems BorWin2 and HelWin1 follows that 

presented in Figure 2.10 [34]. 

 

Figure 2.10 – Offshore infrastructure arrangement in BorWin2 and Helwin1 [34] 

A MV collection array is used to aggregate the power generated by the individual wind 

turbines. The collection array consists of a number strings, each of which connects up to 

10 WTs to an offshore AC platform. The offshore AC platform includes a MV bus bar 

which provides a point of connection for the WA strings. A transformer(s) is present on 

the AC platform to step up the voltage to HV levels typically to 155 kV [34]. A HV 

cable circuit then connects the offshore AC platform to the offshore HVDC platform. 

The HVDC link de-couples the offshore AC network from the onshore system. 

Therefore, to ensure all WTs and offshore network infrastructure operates satisfactorily; 

the voltage and frequency must be managed. As the VSC has full active/reactive power 
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control, it is most suited to managing the voltage and frequency in response to varying 

wind power generation [35]. 

In its simplest form the VSC is a controllable voltage source and has full control over 

the voltage magnitude, phase and frequency it produces. The VSC is connected to a 

network bus by a reactance, as shown in Figure 2.11. 

 

Figure 2.11 – VSC connection through a reactance 𝑉1 represents the rms voltage magnitude and 𝛿1 the voltage angle produced at the valves 

of the VSC. 𝑉2 represents the rms voltage magnitude and 𝛿2 the voltage angle at the 

point of connection to the offshore AC network. The reactance 𝑋𝑇 which couples the 

two voltage sources represents the equivalent reactance of the VSC arm inductors and 

converter transformer(s). 

The frequency of 𝑉1 is fixed at a nominal value of 50 Hz. As frequency is a common 

quantity across any AC system, the WTs must lock on to the nominal frequency using a 

Phase Locked Loop (PLL). Given a common frequency, the active and reactive power 

transferred through the VSC is manipulated according to the following equations: 

 𝑃 = 𝑉1𝑉2𝑋𝑇 sin(𝛿2 − 𝛿1) (2.2) 

 𝑄 = 𝑉1𝑉2𝑋𝑇 cos(𝛿2 − 𝛿1) − 𝑉22𝑋𝑇  (2.3) 

It can be seen from (2.2) that an increase in the phase difference across the interface 

reactance results in an increase in the active power transfer to the VSC. Therefore, any 

increase in wind generation will result in an increase of 𝛿2 with respect to 𝛿1. Assuming 

the voltage angle at the point of connection should be fixed at zero (𝛿2 = 0), the VSC 

can maintain this by modulating 𝛿1 as necessary. 

It can be seen from (2.3) that an increase in the voltage difference across the interface 

reactance results in an increase in the reactive power transfer to the VSC. As the wind 

generation varies, so too does the amount of reactive power transferred. Assuming the 
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voltage magnitude at the point of connection should be fixed at the nominal voltage 

(𝑉2 = 1 pu); the VSC can maintain this by modulating 𝑉1 as necessary. 

Vector control schemes are usually employed to perform these control functions [36]–

[38]. A vector control scheme is one that manipulates direct and quadrature (dq) 

components instead of three-phase components. In addition, the dq components are DC 

quantities as they are transferred to a synchronous reference frame. Figure 2.12 presents 

the vector control scheme for the purposes of maintaining voltage/frequency in the 

offshore AC network. 

 

Figure 2.12 – Vector control scheme used in VSCs 

2.4.2 Parallel point-point HVDC transmission systems for offshore wind 

generation 

To date, no parallel point-point HVDC transmission systems for offshore wind 

generation are in operation. However, parallel point-point schemes do exist between 

countries such as the Skagerrak projects which link the onshore transmission systems of 

Denmark and Norway. In fact, the latest project Skagerrak 4 is notable as it combined 
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the use of a new VSC monopole link with an existing CSC link in to a bi-pole system 

[39]. 

Presently VSC HVDC links have a rating up to 2 GW [35]. With wind array 

development zones in the UK having feasible capacities of up to 9 GW it is obvious that 

more than one VSC HVDC link is required [4]. Two or more HVDC links could be 

installed to serve a single large WA with offshore platforms located relatively close to 

one another. However, these systems are not said to be operating in parallel until there 

is an AC electrical connection between them. 

Various studies have examined the possibility of paralleling point-point HVDC 

transmission systems for offshore wind generation on the AC side [19], [40]. The 

offshore VSC HVDC platform BorWin 2 has the provision for an AC connection to 

another HVDC platform, as was shown in Figure 2.10 [34]. The main benefit of 

paralleling HVDC transmission links is the increased redundancy it brings. That is, if 

one HVDC transmission link should fail, the other(s) may have spare capacity to avoid 

or minimise the loss of infeed to the onshore transmission system. 

2.4.2.1 Control implications 

The paralleling of two HVDC links has significant implications on the control of 

voltage, frequency and complex power. The AC link between two offshore transmission 

systems effectively joins them in to a single large islanded offshore transmission 

network. This forces them to share the same operating frequency. The active power 

generated by the wind turbines must now be shared between the parallel offshore VSCs, 

as must the reactive power if compensation is provided by the VSCs. Similar topologies 

have been observed in small onshore electrical systems called Microgrids, when 

operating in islanded mode [41]–[44]. 

Various options exist for the control of voltage, frequency and complex power including 

[40]: 

 Droop control: All offshore VSCs operate according to an active 

power/frequency and reactive power/droop characteristic. Given the same droop 

gains then the load should be shared equally among the offshore VSCs. 

 Master-slave control: One offshore VSC is designated as a Master and controls 

the voltage and frequency in the network. The other offshore VSCs act as slaves 

and control the active/reactive power according to dispatch orders. 
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 A combination of the above. 

2.5 Faults in offshore transmission systems 

2.5.1 AC faults 

Faults affecting onshore AC networks are a regular occurrence and are usually handled 

seamlessly without major effect on the integrity of the power system. In an offshore 

transmission network, the AC faults are more likely to be permanent. This is because 

the most common cause of faults in onshore AC systems is lightning strikes affecting 

overhead transmission lines and AIS switchgear. In an offshore system, sub-marine 

cables and GIS switchgear are used; therefore they are not exposed to lightning strikes. 

Faults in offshore transmission systems could be due to mechanical damage or the 

breakdown of insulation in equipment [45]. Both of these faults will result in permanent 

outages, possibly affecting the whole offshore transmission system. 

2.5.2 DC faults 

DC faults are those that affect the DC side of a HVDC link. A large amount of research 

has gone in to analysing DC faults, particularly when applied in a MT-DC grid [45]–

[47]. This is understandable because the effects of a DC fault occurring in a DC grid can 

be far reaching and severe [48]. The extent to which a DC fault impedes the normal 

operation of a HVDC system is dependent upon the type of fault and the topology of the 

system [45]. 

In a HVDC transmission system, a DC fault will either be a line-ground or line-line 

fault. DC faults could occur within the station or somewhere along the transmission 

line. In offshore HVDC systems, underground and sub-marine cables are used. 

Therefore, a fault will most likely be permanent as they are inherently protected from 

lightning strikes and not easily repaired. In addition, the cause of the fault is most likely 

to be from external mechanical damage or insulation breakdown, both of which require 

extensive repairs [45]. 

A DC fault in a HVDC link is generally characterised by the following three stages 

[45], [48]–[52]: 

1. A high initial fault current corresponding to the first wave front. This is due to 

the discharge of the cable capacitance and depending on the topology, the VSC 

capacitance. 
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2.  A transient phase which is due to the dynamics of the system (i.e. DC inductors 

interacting with the capacitance) 

3. A steady-state condition which is due to the in-feed from the AC system as the 

anti-parallel diodes form an uncontrolled diode bridge (half-bridge VSCs only). 

The duration of the excessive fault current is largely dependent upon the time taken to 

arrest the fault current. VSCs using full-bridge cells are able to block DC fault currents 

almost instantaneously. VSCs using half-bridge cells are not able to block DC fault 

currents and are therefore reliant upon external CBs. Unfortunately, the use of full-

bridge VSCs requires twice as many IGBTs as a half-bridge arrangement which 

significantly increases the capital cost of a VSC. Significant research is being carried 

out in to the hybrid topologies, such as the Alternate Arm Converter [53], which offer 

fault blocking without doubling the number of IGBTs [25]. However, these are still 

some way off commercialisation. 

In point-point HVDC links, the fault current in-feed from the AC side is limited by AC 

circuit breakers (CBs). Modern AC CBs can usually operate in the order of two cycles 

of the fundamental frequency [54]. This means that any equipment in the fault current 

path must still be able to deal with excessive fault currents for approximately 60 ms, 
including a 20 ms tripping delay.  

From the AC side, the faulted VSC will appear as a large inductive load. Depending on 

the SCR of the AC system, this may or may not drag down the AC voltage at the 

interface point. Should the AC voltage reduce, any generation connected to the interface 

point will be required to ride through the fault [55]. 

2.6 Managing faults in offshore transmission systems 

The likelihood and severity of a fault will dictate the extent of the efforts to manage a 

fault. Clearly, any offshore transmission network contains valuable assets that must be 

safeguarded against the effects of a fault. To that extent, standard protection equipment 

such as circuit breakers and surge arresters are used. As offshore transmission systems 

have grown in power rating, so too has the importance of managing faults, particularly 

those that affect the onshore transmission network. 

As highlighted in Section 2.5, a fault in an offshore transmission network is likely to be 

permanent. On occurrence of a DC fault in a point-point HVDC link serving a WA, the 

AC breaker would open and remain open for a significant period of time. This will 
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isolate the offshore wind generation and no power will be transferred. This situation is 

acceptable providing the loss of infeed to the MITS remains below stipulated levels and 

local protection ensures no assets are damaged [55]. 

2.6.1 Fault ride through 

A fault occurring at or near the onshore interface point can greatly affect the offshore 

transmission system if not properly managed. This type of fault is usually temporary 

and results in a severe voltage depression at the IP [56]. National Grid define fault ride 

through (FRT) connection limits for onshore VSCs connected to the MITS [55]. 

Assuming the FRT conditions are met at the onshore IP, for faults lasting up to 140 ms 
the onshore VSC must ride through having zero volts at the IP. For faults lasting longer 

than 140 ms, the voltage/fault duration requirements are described in Figure 2.13 [55]. 

 

Figure 2.13 – Voltage reduction duration diagram for onshore IP [55] 

A reduction of voltage at the IP will inhibit the ability of the onshore VSC to transfer 

active power to the MITS. This in turn causes a power imbalance in the HVDC link. 

The result of the power imbalance is damaging over-voltages on the DC link [56]. 

The majority of research on managing faults affecting offshore HVDC transmission 

systems has focused on FRT methods. This is understandable as the aim is to stop a 

temporary fault becoming permanent, which would be unacceptable. Various fault ride 

through techniques are presented in the literature and are summarised as follows [56]–

[61]: 
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 Power dissipation methods using DC chopper circuits 

 Power reduction methods using fast communication to reduce WT power 

generation 

 Power reduction methods using common variables such as frequency to reduce 

WT power generation (no fast communication) 

2.6.1.1 Power dissipation methods using DC chopper circuits 

One solution which has been applied in offshore HVDC transmission systems to date is 

the use of a DC chopper circuit located on the DC link [34]. Given a power imbalance 

due to an onshore fault, the excess energy can be dissipated as heat in the DC chopper 

circuit [29]. 

When applied to the HVDC link, the DC choppers must be rated to the MVA rating of 

the VSC. This requires a large amount of space which means they must be located at the 

onshore VSC as space required offshore is very expensive [35] 

In [57], the DC choppers are applied to the DC links of the FRC-WTs. When the HVDC 

link voltage rises, a power reduction factor is sent to the FRC-WTs to activate the DC 

choppers. This is signalled either through fast communication or manipulation of 

voltage or frequency. 

2.6.1.2 Power reduction methods using fast communication to reduce WT power 

generation 

The active power output from the WTs can be reduced by using a fast communication 

system to send new active power set points. A system using a DC voltage droop to 

reduce the active power generated by the WTs was implemented in [56]. The WT active 

power output is reduced in two different ways and the performance compared.  

One method applied the reduction factor to the torque set-point of the generator side 

converter of the FRC-WT. This results in an increase in speed of the WT rotors as less 

energy being transferred to the FRC DC link. This will cause a reduction in DC link 

voltage to which he grid side controller of the FRC-WT will respond by reducing active 

power output. 

The other method applies the reduction factor from the HVDC link directly to the grid 

side controller of the FRC-WT. The active power set point is reduced which causes the 

FRC-WT DC link voltage to rise. The rise in the FRC-WT DC link voltage triggers 

another controller to reduce the power output from the generator side converter. 
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Both systems are shown to operate satisfactorily however the second method has a more 

immediate effect on the HVDC link voltage as it directly reduces the active power 

output from the WTs. Both systems are however completely dependent upon fast 

communication and it is shown that even a relatively small communication delay can 

result in an overvoltage on the HVDC link. 

2.6.1.3 Power reduction methods using local variables to reduce WT power 

generation (no fast communication) 

WTs installed in onshore transmission networks are designed with the capability to ride 

through voltage sags at their grid connection point [58]. If this capability is also added 

to offshore WTs connected to islanded offshore AC networks then it can be exploited to 

provide FRT following a fault affecting a HVDC link. This is achieved by reducing the 

voltage magnitude of the offshore AC network in response to a rise in the DC voltage of 

the HVDC link [56], [60]. The active power output from the FRC-WTs reduces with the 

reduction in AC voltage magnitude. The main drawback of this approach is that any 

piece of equipment connected to the offshore AC network will be affected by the 

voltage reduction, which depending on the equipment may or may not be an issue. 

The offshore AC network frequency can also be used as a signal to reduce the WT 

generation. In [60], a frequency controller is added to the offshore VSC of a HVDC 

link. When a DC overvoltage is detected the frequency controller raises the frequency of 

the offshore AC network. The increase in frequency is detected by the FRC-WT using 

PLLs. A power reduction controller is applied to the grid side converter of the FRC-WT 

which reduces the active power from the WT in response to the increase in frequency. 

The system is shown to work however the response is slow and consequently DC 

choppers are still required in the HVDC link. The authors also highlight that the 

measuring frequency can be slow which is a potential drawback of the system. 

2.6.2 Offshore transmission systems containing parallel HVDC links 

If an offshore transmission system contains parallel HVDC links the situation is 

different. A permanent fault affecting one HVDC link should not affect the operation of 

another. Likewise, a fault occurring in the offshore AC network should not result in a 

total loss of infeed greater than the allowable limits. It is not clear that local protection 

methods alone can avoid this therefore some form of fault management is required. 

In [40], the effects of a loss of one of the HVDC links are discussed and some control 

actions presented. It is discussed that through a combination of droop control and pre-
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determined post-fault dispatch orders, a new steady state operating condition can be 

achieved. Although the proposition seems feasible it must be noted that no simulations 

were carried out to show this working. The authors do stress that the system has no 

means by which to reduce wind power generation. They suggest only that wind 

generation is curtailed pre-emptively to account for the possibility of a loss of one of the 

HVDC links. This would result in a large amount of lost earning potential which could 

render the project unfeasible. 

In [62], a fault management strategy is developed for an offshore transmission system 

containing two parallel HVDC links. The system is based on the communication-less 

FRT method discussed in Section 2.6.1.3 and uses frequency to signal power reduction. 

The system is shown to cope with both a temporary and a permanent fault at the 

onshore interface point as well as a permanent DC fault on one of the HVDC links. The 

frequency modulation controllers appear to function adequately as no significant DC 

overvoltage is observed. 

2.7 Optimal power flow in electric power systems 

Power flow studies are an essential tool for the everyday planning of the electric power 

system. It provides a means to analyse the state of the power system for a given 

generation/load scenario. The network planner can use the analysis to identify any 

technical constraints on the power system, for example overloaded transmission lines or 

bus over-voltages [63]. 

Optimal power flow (OPF) was developed as an extension to the power flow problem 

by including economic objectives and analysis. Two main economic factors affect the 

operation of the electric power system including economic dispatch of power generation 

and minimum-loss delivery of the power to the loads. Both these factors can be solved 

using a suitable OPF study [63]. Therefore, OPF is an essential tool for the reliable and 

economic operation of the electric power system [64]. 

OPF studies also provide extended technical analysis of the electric power system 

through the management of technical constraints. A standard power flow can identify 

any active constraints in the network for a single generation/load scenario. An OPF can 

actively remove any technical constraints while also finding the optimum technically 

feasible economic solution [65]. 
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2.7.1 OPF applied to the electric power system 

In order to find the optimum technically feasible economic operating condition for a 

given power system, the OPF must execute a number of standard PF studies, each 

representing a different generator dispatch scenario. This is performed iteratively until 

the optimum solution is found. The standard PF requires the repeated inversion of a n 

by n matrix and therefore is relatively computationally expensive [64]. 

Owing to the complexity of the electric power system, OPF is applied to different 

hierarchical models which are valid for different time frames. One optimisation problem 

is applied to a high level model and once solved, the output is used as an input to 

another optimisation problem applied to a low level model [64]. 

High level models operate at discrete intervals of one hour or more and are applicable 

from at least 24 hours in advance. The objective of the OPF applied to the high level 

model is to determine the least expensive economic dispatch of power generators and is 

often referred to as Optimal Unit Commitment (UC) [64]. 

Low level models operate at discrete intervals ranging between 5 minutes and 1 hour. 

The objective of the OPF applied to the low level models is to determine a suitable set 

of control set points for generating and non-generating equipment which ensure the 

power system operates as reliably and economically as possible [64]. 

2.7.2 Solution algorithms for OPF 

The OPF problem is a large highly constrained, non-linear and non-convex optimisation 

problem [66]. Various algorithms have been developed to tackle the OPF problem, 

varying in efficiency and suitability for a given application. OPF solution algorithms 

can be broadly grouped as Conventional Methods and Intelligent Methods [67]. 

Conventional methods are divided into sub-groups which include: 

 Gradient method 

 Newton method 

 Linear programming method 

 Quadratic programming method 

 Interior point method 

Intelligent methods are divided into sub-groups which include: 

 Artificial neural networks 
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 Genetic Algorithms 

 Particle swarm optimisation 

 Ant colony algorithm 

The conventional algorithms have proven to be very effective at solving the OPF 

problem [67]–[71]. However, they are all local optimisation techniques and therefore 

may get stuck at local minima, rather than finding the global optimal solution [67]. The 

suitability of each conventional method for a given OPF problem varies, with certain 

algorithms, such as the gradient method being more suitable for smaller well defined 

problems and other algorithms, such as the interior point method being more suitable 

for larger problems [67]. 

The intelligent algorithms overcome the local convergence problem as they search the 

global variable space [72]. They can also identify multiple optimal solutions and are 

therefore suitable for solving multi-objective OPF problems [67]. A potential drawback 

of the intelligent methods is the increased computational burden of searching the global 

variable space. Conventional methods may outperform intelligent methods provided the 

problem is well defined. 

2.7.3 Novel applications of OPF 

OPF can be used for many applications within the electric power system. Small onshore 

distribution networks called Islanded Microgrids (IMGs) share similar characteristics to 

offshore AC hubs as they are interfaced by VSCs and have little ‘classical’ inertia. OPF 

has been applied in IMGs for various applications. In [73], OPF is used to maximise the 

load applied to droop controlled IMGs while avoiding voltage collapse. An intelligent 

algorithm based on fuzzy logic control is used to identify the optimum operating point. 

This application is particularly interesting as two objective problems are specified 

including maximum load applied in the IMG and minimising the generation cost. 

In [74], an OPF algorithm is applied to operate in a substation computer. A unique 

feature of this application is that it is applied in real-time generator control. The 

objective of the OPF is to minimise the cost of distribution generation in an 11 kV radial 

distribution network. Of specific interest to the work in this thesis is that the 

computation time of the OPF algorithm is shown to be in the region of 30 − 60 ms. 
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2.8 Communication in offshore transmission systems 

Offshore transmission systems rely upon communication for Supervisory Control and 

Data Acquisition (SCADA) and protection purposes. The communication system will 

be used by [75]: 

 The wind turbine operator(s) 

 The collection system operator(s) 

 The offshore transmission system operator (OFTO) 

Performance and functional requirements of the communication infrastructure vary 

according to the process using it. Communication systems are generally defined in 

terms of latency, bandwidth and reliability. The SCADA system requires the 

communication infrastructure to have a high bandwidth but low latency and high 

reliability are not so important. Conversely, the protection system requires low latency, 

high reliability and low bandwidth. 

2.8.1 SCADA systems in offshore transmission systems 

The SCADA system is relied upon to perform many functions, some of which include: 

 Communicating dispatch orders to WTs and VSCs 

 Communicating status updates of circuit breaker positions etc. 

 Facilitating real time monitoring of electrical parameters throughout the network 

 Logging events such as alarms or switching operations 

 Remote monitoring and operation 

The location of the offshore wind farms and transmission assets make access difficult. 

This increases the demand on the SCADA system as the functions it provides are 

essential for the normal operation of the system. The SCADA system must be designed 

for secure operation with high availability compared to a SCADA system applied within 

the onshore network. 

The SCADA system is implemented using a redundant Local Area Network (LAN) 

topology, as shown in Figure 2.14 [75]. Using this topology minimises the risk of losing 

a communication route and maintains high availability. 
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Figure 2.14 - Redundant LAN topology[76] 

An Ethernet network consists of nodes and switches which are connected by point-point 

links. A bridge is a particular type of switch which is concerned with the receiving and 

forwarding of frames of data. The links between nodes and switches and between 

switches are implemented using either of two physical layers, copper and fibre and 

either of two bit rates 100 Mbit/s and 1 Gbit/s [76]. 

There are a range of protocols which can be used for the SCADA system e.g. IEC 

61850, DNP3, Modbus, etc. IEC 61850 is particularly relevant as it provides for both 

SCADA functions and protection functions in the offshore network. 

One LAN could be defined across a single point-point HVDC transmission system 

including the wind power plants. For communication between multiple transmission 

systems, as would be the case for an offshore AC hub, then gateways could be used to 

connect two LANs. 

2.8.2 Communication delay in offshore transmission systems 

For any control and/or protection architecture that relies upon communication 

infrastructure, the delay imposed by the finite speed of propagation through the system 

is of primary concern. In an Ethernet network, the delay is mainly due to the time taken 

for a frame of data to travel through a physical medium and the time taken to pass 

through bridges in the network. 
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2.8.2.1 Latency of physical paths 

Table 2.1 presents the time taken for an IEEE 802.3 frame (single packet of data), as 

used by IEC 61850 to traverse various physical mediums [76]. 

Table 2.1 – Time taken for an IEEE 802.3 frame to traverse various physical mediums 

Medium Time to traverse a link 

CAT-5 and CAT-6 cables 5.5 µs/km 

Fibre optic cables 4.9 µs/km 

Free air (wireless) 3.3 µs/km 

Therefore a fibre optic link 150 km in length (which might be used to connect an 

onshore and offshore VSC platform for example) has a latency of 0.75 ms. 

2.8.2.2 Bridge/Switch Latency 

Bridges within an Ethernet network usually operate in a store and forward mode, which 

means the whole frame is received before it is forwarded. The maximum frame length 

of a packet of data sent using IEC 61850 is 1530 bytes and thus has 12,240 bits. On a 

bridge operating at 100 Mbit/s, this corresponds to a frame delay of 122.4 µs. Adding to 

this a typical bridge latency of 8 µs, the bridge hop latency is approximately 130 µs. To 

this value must be added the queuing latency, which depends upon the network load and 

whether any priority settings are applied. In IEC 61850, critical data can be assigned 

high priority and therefore can jump through the queue of data waiting to be sent on any 

bridge, thus the queuing delay can be minimised [76]. 

Assuming another 1530 byte frame is already present at a bridge with equally high 

priority (very low probability) when a new 1530 frame arrives, it must wait 130 µs 

before being processed. Therefore the maximum latency at single bridge is assumed to 

be 2 x 130 µs = 260 µs. 

Figure 2.15 presents the communication involved following a fault occurring in an 

offshore transmission system. 
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Figure 2.15 – Signal path and propagation delay of a frame of data sent between the VSC platform 

and WTs 

Assuming a DC fault has occurred at IED (point A) on the HVDC platform will register 

an over-current and send a tripping signal to an appropriate breaker. This tripping signal 

is also sent to a processing unit (point B) which will decide what appropriate action to 

take in the rest of the network. Assuming it decides to reduce active power at all WFs, a 

signal must be sent to each individual WT to order it to reduce active power output. The 

longest latency is expected for the frame arriving at WT6 (point C), as it must travel 

along the Fibre optic cable embedded in the WT strings, hopping through the bridges 

while doing so. The total delay is calculated in Table 2.2. 
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Table 2.2 – Latency budget for communication of a single frame between the offshore VSC 

platform and WTs 

Propagation event Time (µs) 

Trip signal from point A - B   

100 Mbit/s Ethernet (copper - 100m) 0.5 

Dispatch orders point B - C   

Ethernet switch (HVDC) 260 

1 Gbit/s Ethernet (Fibre - 10 km) 50 

Ethernet switch (HVAC) 260 

1 Gbit/s Ethernet (Fibre - 5 km) 25 

Ethernet switch (WT1) 260 

1 Gbit/s Ethernet (Fibre - 1 km) 5 

Ethernet switch (WT2) 260 

1 Gbit/s Ethernet (Fibre - 1 km) 5 

Ethernet switch (WT3) 260 

1 Gbit/s Ethernet (Fibre - 1 km) 5 

Ethernet switch (WT4) 260 

1 Gbit/s Ethernet (Fibre - 1 km) 5 

Ethernet switch (WT5) 260 

1 Gbit/s Ethernet (Fibre - 1 km) 5 

Ethernet switch (WT6) 260 

100 Mbit/s Ethernet (copper - 50m) 0.25 

Total latency 2180.75 

This analysis shows that when compared to the processing time required at B, which is 

likely to be in the region of 30-60ms as discussed in 2.7.3, the communication latency is 

relatively small. 
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3 Chapter 3 – Model of an offshore AC hub 

3.1 Introduction 

The offshore AC hub connects multiple HVDC VSCs and large numbers of FRC-WTs. 

Autonomous control of voltage, frequency and complex power is necessary to maintain 

stable operation of the network during changes in wind speed and dispatch orders. In 

addition, faults may lead to unacceptable operating conditions in the offshore AC hub. 

This could result in further outages as transmission and generation assets take protective 

action to avoid damage. This in turn could heavily impact the onshore MITS if left 

unmanaged. Before any suitable method of managing faults can be designed, the impact 

of faults in an offshore AC hub must be investigated and understood. 

In this chapter, a model of the offshore AC hub is developed in SimPowerSystems
TM 1

. 

The model is modified to allow for investigation of the impact of faults in an offshore 

AC hub. 

3.2 Changes in operating condition in an offshore AC hub 

The main functions of an AC hub are to aggregate wind generation and provide 

interconnection between countries. Under normal operating conditions, the power 

generated by the wind turbines will be transferred to the onshore MITS and any 

remaining capacity will be used to transfer power between countries. This yields two 

operational variables: wind speed and electricity market conditions. Any power control 

philosophy implemented in an offshore AC hub must compensate for changes in wind 

power output and dispatch orders. 

To maintain satisfactory operating conditions for power transfer, voltage and frequency 

must be maintained within tolerances. National Grid specifies voltage and frequency 

limits for offshore transmission systems in the System and Security of Supply Standard 

(SQSS) [77]. The relevant operational limits are shown in Table 3.1. 

                                                 
1
 SimPowerSystems

TM
 is a suite of component libraries and analysis tools developed by MathWorks

®
 in 

conjunction with Hydro-Québec of Montreal [105]. It is designed for use with the Simulink
®
 simulation 

environment in MATLAB
®
. 
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Table 3.1 – Operational voltage and frequency limits for offshore transmission systems [77] 

Parameter Minimum Maximum Units 

Nominal Voltage       

Less than 400 kV down to 132 kV inclusive -10 10 % 

Less than 132 kV -10 6 % 

Nominal Frequency 49.5 50.5 Hz 

 

Various faults can occur in an offshore AC hub and HVDC transmission links with a 

range of severity and likelihood of occurrence. The DC pole-pole fault as described in 

Chapter 2 of this thesis is one example. The impact of such a fault in a single point-to-

point transmission system has been thoroughly explored in the literature. The salient 

feature of a DC pole-pole fault is a high fault current, fed by the AC network at either 

end of the transmission link [48]. 

The offshore AC hub has certain features that impose additional constraints on any fault 

management strategy. One feature is the lack of directly connected (i.e. not power 

electronic interfaced) rotating synchronous machines which typically make up a large 

proportion of generation capacity in onshore AC networks. The offshore AC hub is 

interfaced purely by VSCs, be it the FRCs in the WTs or the offshore VSCs of the 

HVDC links. This implies that there is no inertia, at least in the classical sense in which 

inertia is provided by the kinetic energy of a rotating mass. Another feature is the 

relatively low series impedance of the AC cables. A VSC will not provide anywhere 

near as much fault current as a synchronous machine. A single fault is therefore likely to 

severely impact the voltage profile of an offshore AC hub. If the voltage collapses 

throughout then power transmission is impossible. This gives rise to another concern: A 

loss of transmission capacity following a fault will lead to a sudden large, loss of infeed 

to the MITS. The effects of various fault outages must be fully defined before any form 

of fault management can be designed. 

3.3 Modelling an offshore AC hub 

3.3.1 Overview of the AC hub 

The UK Crown Estate Round 3 zone known as Dogger Bank has been identified as a 

possible location of an offshore AC hub. This is because a large amount of wind 

generation is expected to be built there; hence aggregation of wind energy is required. 

Also, assuming an interconnection between Norway and the UK is to be built, it may be 
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more viable to route the interconnection via Dogger Bank, thus utilising previously 

installed assets and avoiding difficulties associated with locating onshore converter 

stations. Near-term development within the Dogger Bank zone is planned to take place 

within Tranche A in the form of three projects. Each project is expected to include up to 1200 MW of wind generation [78]. 

Figure 3.1 provides the assumed infrastructure development within Tranche A and 

Figure 3.2 shows the equivalent single line diagram. Each project uses a single point-to-

point (P2P) VSC-HVDC link with a rating of 1200 MVA. A fourth point-to-point (P2P) 

VSC-HVDC link, also with a rating of 1200 MVA is included to provide 

interconnection between the UK and Norway. Connections between VSC-HVDC 

converter stations are made via AC cables thus forming the offshore AC hub. 

 

Figure 3.1 – Assumed infrastructure development in Dogger Bank Tranche A 
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Figure 3.2 – Single line diagram of the infrastructure development at Dogger Bank 

3.3.2 Wind array layout 

The wind array layout is obtained through detailed analysis of system reliability, 

availability and maintenance of all equipment and optimisation of energy yields for the 

project in question. Obtaining the optimum wind farm layout is out of the scope of this 

thesis. However, it is reasonable to assume that any wind farm will attempt to minimise 

the inter array cable distances whilst maintaining suitable spacing between individual 

wind turbines to avoid the negative impacts of wind shadow. 
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As a general rule of thumb, a spacing of four times the wind turbine rotor diameter 

perpendicular to the prevailing wind direction and seven times the wind turbine rotor 

diameter along the prevailing wind direction is suitable [4]. Considering cable layout, it 

is reasonable to assume a radial cable layout configuration with the maximum number 

of wind turbines connected per string. A collector system voltage of 33 kV is assumed, 

along with a total generation per string of approximately 30 MW. Therefore, using 5 MW WTs, each string can connect up to six WTs. The RE Power 5M WT is one 

example of a commercially available 5 MW WT [79]. The rotor diameter of the 5M is 126 m. Figure 3.3 presents the assumed wind array layout based on the aforementioned 

design parameters including 120 5 MW WTs, and provides a maximum generation 

capacity of 600 MW. 

 

Figure 3.3 – Wind array layout in Dogger Bank tranche A 

3.3.3 Cable sizing 

All cables must be dimensioned for the nominal voltage, power level and the expected 

power factor as well any extra stresses imposed by faults. The relevant standard for 

calculating the maximum current carrying capacity of any AC cable is IEC 60287 which 

considers the losses and thermal resistance of the cable insulation and the surrounding 
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medium [80]. The necessary cable parameters were obtained from ABB’s submarine 

cable systems brochure [18]. 

The conductor cross-sectional area must be specified for each section of the circuit 

according to the required power flow. It is assumed that the cables are all laid at a depth 

of 1 m  and a 12 % de-rating factor is applied allowing for the cable sections located in 

J-tubes. It is assumed that the operating temperature of the conductors is 90 °C at 

nominal current. 

3.3.3.1 Inter-array (MVAC) 

It is assumed that all inter array MVAC cables are three-phase with copper conductors 

and a copper sheath. The maximum nominal voltage of the cables is assumed as 36 kV. 

Table 3.2 shows the assumed operating conditions of the inter array cabling and 

corresponding maximum current carrying capacity for a given cross sectional area. 

Table 3.2 – MVAC submarine cable parameters 

Parameters Cable cross-sectional area (mm²) 

Units 

Symbol Description 185 240 300 400 500 

Rac AC resistance 0.120 0.093 0.075 0.058 0.047 Ω/km 

L Inductance 0.390 0.380 0.360 0.350 0.340 mH/km 

C Capacitance 0.220 0.240 0.260 0.290 0.320 µF/km 

Wd Dielectric Loss 0.151 0.165 0.179 0.196 0.214 kW/km 

λ1 Loss factor for sheath and screen 0.327 0.419 0.515 0.665 0.799 - 

λ2 
Loss factor for Armour, 

Reinforcement and Steel Pipes 
0.142 0.185 0.230 0.303 0.367 - 

T1 
Thermal Resistivity between 

Conductor and Sheath 
0.466 0.424 0.390 0.354 0.323 K.m/W 

T2 
Thermal Resistivity between Sheath 

and Armour 
0.111 0.111 0.111 0.111 0.111 K.m/W 

T3 
Thermal Resistivity of Outer 

Covering 
0.020 0.019 0.018 0.017 0.017 K.m/W 

T4 External  Thermal Resistance 0.396 0.391 0.387 0.382 0.376 K.m/W 

I Maximum current carrying capacity 488 544 595 660 712 A 

In 
Maximum current after 12% de-

rating 
429 479 524 581 626 A 

The maximum apparent power capacity of the cable is given by (3.1), 
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 𝑆𝑐𝑎𝑏𝑙𝑒 = √3𝑉𝐼𝑛 (3.1) 

A 400 mm2 33 kV inter array cable has a maximum apparent power capacity of 33.2 MVA. Assuming a 5 MW WT operates with a minimum power factor of 0.95, the 

apparent power is equal to 5.26 MVA. Therefore, as a first estimate, a 400 mm2 cable 

can connect up to six WTs. 

The actual apparent power capacity of the cable is reduced due to the increased charging 

current with increased cable length. The actual apparent power capacity of each cable is 

given by (3.2), 

 𝑆𝑐𝑎𝑏𝑙𝑒 = √3𝑉𝐼𝑛√1 − (𝜋𝑓𝐶𝑐𝑉𝑙√3𝐼𝑛 )2 (3.2) 

Assuming the cable is installed between the first WT string and the HVAC platform, its 

length will be approximately 5 km. Applying (3.2) yields an actual apparent power 

capacity of 33.2 MVA. Therefore, it is realised that due to the short cable length, the 

maximum allowable current is equal to the cable ampacity. The 400 mm2 conductor is 

considered as a suitable cable size for connecting a single WT string to the HVAC 

platform. 

Further reductions in cable cross-sectional area could be made when progressing 

through the remainder of the wind array string. However, it is assumed that the same 400 mm2 cable size is used for the remaining cable runs in each string. 

3.3.3.2 Inter-platform (HVAC) 

It is assumed that all inter platform HVAC cables are three-phase with copper 

conductors and a lead sheath. The maximum nominal voltage of the cables is assumed 

as 220 kV. Table 3.3 shows the assumed operating conditions of the inter platform 

cabling and corresponding maximum current carrying capacity for a given cross 

sectional area. 
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Table 3.3 – HVAC submarine cable parameters 

Parameters 
Cable cross-sectional area 

(mm²) 
Units 

Symbol Description 630 800 1000 

Rac AC resistance 0.038 0.031 0.026 Ω/km 

L Inductance 0.410 0.400 0.380 mH/km 

C Capacitance 0.160 0.170 0.190 µF/km 

Wd Dielectric Loss 4.858 5.238 5.643 kW/km 

λ1 Loss factor for sheath and screen 0.288 0.362 0.441 - 

λ2 
Loss factor for Armour, Reinforcement and 

Steel Pipes 
0.424 0.496 0.586 - 

T1 
Thermal Resistivity between Conductor and 

Sheath 
0.598 0.554 0.514 K.m/W 

T2 
Thermal Resistivity between Sheath and 

Armour 
0.111 0.111 0.111 K.m/W 

T3 Thermal Resistivity of Outer Covering 0.010 0.010 0.009 K.m/W 

T4 External  Thermal Resistance 0.321 0.316 0.313 K.m/W 

I Maximum current carrying capacity 808 873 924 A 

In Maximum current after 12% de-rating 711 768 813 A 

The distance between each HVAC platform and corresponding HVDC platform is 10 km. For the 1000 mm2 conductors, applying equation (3.2) yields an actual 

apparent power capacity of 309.5 MVA. The rated power of each WA is 600 MVA 

therefore, it is assumed that two 1000 mm2 cables are suitable for interconnection 

between the WA HVAC platform and the HVDC platform. 

To complete the AC-hub architecture, HVAC cables are required between HVDC 

platforms as is shown in Figure 3.2. It is assumed that given the failure of any single 

HVDC converter, sufficient onward transmission capacity is available through the 

connected HVAC cables up to the power rating of the HVDC platform (1200 MVA). As 

the AC-hub is arranged to form a ring, two HVAC circuits are present for each HVDC 

platform. Therefore, each circuit must be rated for at least 600 MVA. 

The maximum distance between adjacent HVDC platforms is 20 km. For the 1000 mm2 conductors, applying equation (3.2) yields an actual apparent power 

capacity of 308.4 MVA. Therefore, it is assumed that two 1000 mm2 cables are suitable 

for each circuit between adjacent HVDC platforms. 
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3.3.3.3 Transmission to shore (HVDC) 

As each HVDC link is of a symmetrical monopole configuration at least two cables are 

required, that is, at least one per pole. Due to the required cable length of 125 km and 

subsequent high cost of each cable, it is preferable that just one cable per pole is 

utilised. There is currently a strong incentive for manufacturers to improve HVDC 

XLPE cable technology as DC voltage levels increase to meet power ratings of one 

gigawatt and more, which, at the time or writing, is a typical rating specified for new 

projects. No cable manufacturers have published detailed cable data for these large 

capacity cables in the public domain (as they have done with lower capacity cables). 

ABB has published basic cable data for submarine XLPE cables, which was used as 

reference in this project [35]. 

A 2000 mm2 copper conductor cable is selected for operation at ±320 kV. This cable 

has an ampacity of 1953 A when close laid at a burial depth of 1 m. The AC resistance 

is 9 mΩ/km. 

3.3.4 HVAC Platforms 

The main functions of the HVAC platform include: 

 To aggregate the power delivered from each of the 20 WT strings. 

 To step up the voltage from 33 kV to 220 kV to allow for more efficient power 

transfer to the HVDC platform. 

 To provide a basis from which to perform switching/isolation of WT strings. 

 To provide an Operational & Maintenance (O&M) base for the wind farm. 

3.3.4.1 HVAC Transformers 

A key component of interest for modelling of the HVAC platform is the transformers. 

Various transformer arrangements may be adopted depending on redundancy, physical 

size/weight and mean time to repair requirements. In this study, it is assumed that two 

three phase YNyn0 transformers are installed in parallel, each with a nameplate rating 

of 400 MVA. Usually transformers can be temporarily overloaded; therefore N-1 

redundancy can be achieved assuming a temporary rating of 150 % of the nominal 

rating of the transformer (100 % of the WA nominal power output) [34]. 

The leakage reactance of the transformers is of particular interest for modelling 

purposes. An increase in leakage reactance of the transformer is useful in limiting fault 
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currents but negatively impacts voltage regulation. A typical forced air-cooled 

transformer has a reactance of between 7 and 16 % at 𝑉𝑏𝑎𝑠𝑒 = 230 kV [81]. 

The fault current provided by FRC-WTs is low compared to other forms of power 

generation as the current output is limited to 1.1 pu by the FRC during a fault. This 

would imply that a low leakage reactance would be sufficient and thus benefit voltage 

regulation. However, to achieve a lower leakage reactance a larger core is required 

which increases the weight of the transformer [82]. Increased weight is very costly in 

the design of an offshore platform. Therefore, there is strong incentive to reduce weight 

wherever possible. In addition, increased leakage reactance leads to increased reactive 

power consumption by the transformer under load, which can compensate for some of 

the reactive power generated by the MVAC and HVAC cables. As such, a higher value 

for the leakage reactance of 16 % was selected for each transformer. Assuming there 

are two in parallel, the equivalent leakage reactance is 8 %. 

3.3.5 HVDC platform 

The main functions of the HVDC platform include: 

 To aggregate power delivered from each of the two WA HVAC platforms. 

 To step up the voltage from 220 kV to a voltage more suitable for HVDC 

transmission to shore. 

 To convert the AC waveform to DC to allow for more efficient power transfer to 

the MITS. 

 To provide for HVAC interconnections to other HVDC platforms. 

A diagram of the main electrical equipment located on the HVDC platform is shown in 

Figure 3.4. For modelling purposes, the components of interest include: 

 The AC grid connection 

 The converter transformers 

 The VSC including: 

- Number of IGBTs and sub-modules 

- Sub-module capacitance 

- Arm reactor inductance 

 DC chopper (onshore VSC only) 
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Figure 3.4 presents an overview of the key electrical equipment located on the HVDC 

platform. 

 

Figure 3.4 – Overview of the key electrical equipment located on the HVDC platform 

3.3.5.1 Converter Transformers 

As was the case with the HVAC platform, a number of transformer arrangements may 

be evaluated for any given project. In this study, it is assumed that two three phase 

YN0yn transformers are installed in parallel, each with a nameplate rating of 800 MVA. 

Again, N-1 redundancy and 150 % overload of the transformers is assumed. 

As was the case for the transformers located on the HVAC platform, a higher leakage 

reactance is generally of benefit to reduce fault currents. However, voltage regulation is 

perhaps a more important consideration for the HVDC platform as too much voltage 

drop may reduce the PQ capability of the VSC. This can be offset to some extent with 

the use of variable taps on the winding of the transformers; however this additional 

complexity is not incorporated in the models presented in this thesis. In addition, as the 

MVA rating of the transformer increases, generally so does the leakage reactance [82]. 

This implies that a 20 % reactance value would be an appropriate value for each 

transformer. Assuming there are two in parallel, the equivalent leakage reactance is 10 %. 
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3.3.5.2 Voltage Source Converter 

Number of IGBTs and sub-modules: 

The VSC located on each offshore HVDC platform is assumed to be a Multi-Modular 

Converter (MMC). An overview of the MMC can be seen in Figure 3.4. Figure 3.5 

presents a single sub-module as used in Siemens HVDC Plus, which is their variant of a 

MMC [83]. It consists of a single half-bridge arrangement and each switch consists of a 

single IGBT module and there is a single capacitor. 

 

Figure 3.5 – A single sub-module as used in Siemens MMC [34] 

 

Figure 3.6 – Converter tower arrangement for Siemens HVDC Plus [34] 

Figure 3.6 shows the module arrangement used within the MMC. A single module or 

converter tower, as it is referred to as by Siemens, contains three rows and four columns 

and each row consists of eight sub-modules, thus each module can contain up to 96 sub-

modules [34]. 

Sub-module 
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Sub-module 

capacitor 
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The IGBT module rating was assumed to have a maximum collector-emitter voltage of 4.5 kV and maximum DC collector current of 2 kA. A reasonable operating voltage 

across each sub-module of 2 kV is selected. As each switch position consists of just one 

IGBT module, the voltage across each sub-module (𝑉𝑆𝑀) is 2 kV. Figure 3.7 presents 

the single line diagram of a sub-module. 

 

Figure 3.7 – Single line diagram of a single sub-module 𝑆1 and 𝑆2 are the IGBTs located in each cell and 𝐶𝑆𝑀 is the cell capacitor. The total 

number of sub-modules required per phase arm is determined according to the 

maximum DC link voltage plus 10% additional sub-modules for redundancy, as given 

by (3.3). 

 𝑁𝑆𝑀 = 1.1 𝑉𝐷𝐶𝑉𝑆𝑀 (3.3) 

Where 𝑉𝐷𝐶 is the DC link voltage, 𝑁𝑆𝑀 is the number of sub-modules per phase arm and 𝑉𝑆𝑀 is the cell voltage. Each module consists of up to 96 sub-modules therefore the 

number of modules required per phase arm (𝑁𝑚𝑜𝑑) is given by, 

 𝑁𝑚𝑜𝑑 =  ceil(𝑁𝑆𝑀96 ) (3.4) 

The number of IGBTs, sub-modules and converter modules required for the MMC is 

shown in Table 3.4. 

Table 3.4 – MMC valve parameters 

Parameters 
Value 

Symbol Description 

NSM No. sub-modules per phase arm 352 

NSM_mod No. sub-modules per module 88 

Nmod No. modules per arm 4 

NIGBT Total No. IGBTs 4224 

 

Sub-module capacitance: 
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The sub-module capacitance for the MMC is determined by the following equation 

[84]: 

 𝐶𝑆𝑀  ≥ |𝑆|3𝜔 1.22𝑉𝐷𝐶𝑉𝑆𝑀∆𝑉 (3.5) 

The minimum sub-module capacitance to ensure the voltage ripple is less than 10% is 12.14 mF. 

Arm reactor inductance: 

The arm inductor is an important component in any VSC topology because it provides 

several key functions. One function of the arm inductor is to limit fault currents. In the 

event of a DC side fault, the VSC will act as an uncontrolled rectifier with current 

flowing through the free-wheeling diodes. Under these conditions the AC grid will feed 

the DC side fault until the AC breaker opens. The arm inductor of each phase arm is 

placed in series with the impedance of the transformer and AC grid impedance; the sum 

of which will limit the fault current. If the fault current is too large then the free-

wheeling diodes in each IGBT module will be damaged. To protect the diodes a 

thyristor (𝑇1) is inserted in parallel to each sub-module as shown in Figure 3.8. When 

fired, most of the fault current will flow through the thyristor, which has a higher 

current rating than the anti-parallel diodes [85]. 

 

Figure 3.8 – Single line diagram of a MMC sub-module including a protective thyristor 

Numerous sources in the literature have analysed DC pole-pole faults on HVDC links 

[49], [51], [86], [87]. The peak fault current on the AC-side ranges between 5 and 10 kA. Therefore, it is assumed that the maximum allowable peak fault current on the 

AC-side is ≤ 10 kA. The worst case peak fault current is given by (3.6), 

 𝐼𝑎𝑐𝑓𝑝𝑚 = 2𝑉𝑎𝑐𝑍𝑇 √2 (3.6) 
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Rearranging equation (3.6) in terms of |𝑍| and defining 𝐼𝑎𝑐𝑓𝑝𝑚 = 10 kA gives a 

required total impedance per phase 𝑍𝑇. It is assumed that the fault current flows through 

4 parallel arms with 4 arm reactors for 3 phases, as not all diodes are conducting at any 

one instant. Therefore, a total equivalent impedance for each phase is defined as [49]: 

 𝑍𝐸𝑄 = 𝑍𝑔𝑟𝑖𝑑 + 𝑍𝑡𝑥 + 3𝑍𝑎𝑟𝑚4  (3.7) 

Assuming 𝑍𝐸𝑄 = 𝑍𝑇 and rearranging equation (3.7) for 𝑍𝑎𝑟𝑚 yields the required arm 

impedance to limit the peak fault current in the event of a DC pole-pole fault to 10 kA. 

The grid impedance is determined from the assumed short circuit level (𝑆𝐶𝐿) and 𝑋/𝑅 

ratio as defined by: 

 𝑍𝑔𝑟𝑖𝑑 = 𝑅𝑔𝑟𝑖𝑑 + 𝑗𝑋𝑔𝑟𝑖𝑑 
(3.8) 

Where, 

 𝑋𝑔𝑟𝑖𝑑 = 𝑉𝑏𝑎𝑠𝑒2𝑆𝐶𝐿   

 𝑅𝑔𝑟𝑖𝑑 = 𝑋𝑔𝑟𝑖𝑑𝑋/𝑅   

The onshore 𝑆𝐶𝐿 is assumed as 10 000 MVA. The offshore 𝑆𝐶𝐿 is estimated as follows: 

 𝑆𝑔𝑟𝑖𝑑_𝑆𝐶𝐿 =∑𝑆𝑔_𝑚𝑎𝑥 (3.9) 

Where 𝑆𝑔_𝑚𝑎𝑥 is apparent power limit of each VSC and FRC-WT in the offshore 

network. Assuming that 𝑆𝑔_𝑚𝑎𝑥 = 1.1 pu, 𝑆𝑔𝑟𝑖𝑑_𝑆𝐶𝐿_𝑜𝑛𝑠ℎ = 7920 MVA. Using (3.8), 𝑍𝑔𝑟𝑖𝑑 is determined for both the on and offshore interface points. Equation (3.7) is then 

applied to determine the necessary arm inductance both on and offshore, as summarised 

in Table 3.5. 

Table 3.5 – Arm reactor inductance for VSCs 

Parameters 
Inductance (mH) 

Symbol Description 

Larm_onsh Onshore VSC arm reactor 145.0 

Larm_offsh Offshore VSC arm reactor 132.0 
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3.3.5.3 DC Chopper 

A DC chopper is a well proven method of avoiding an overvoltage in the DC link due to 

a power imbalance [56]. An overvoltage will arise in the event of more power being 

injected in to the DC link than is being extracted from the DC link. This could be due to 

an AC fault at the on or offshore interface point. The power imbalance between the on 

and offshore VSCs would cause the VSC sub-module capacitors to charge, possibly to 

damaging levels, if the power imbalance is not addressed. The DC chopper is able to 

address the power imbalance through dissipating the excess power as heat, thus 

avoiding the otherwise damaging overvoltage. 

Figure 3.9 shows the DC chopper installed close to the onshore VSC. It is normal to 

install the DC chopper onshore as it avoids additional weight and space requirements 

for the offshore VSC platform which would be very expensive. 

 

Figure 3.9 – DC chopper location on a HVDC link 

The DC chopper consists of two main components, including a suitably dimensioned 

resistor bank and a semiconductor switch (normally a series connected string of IGBTs). 

The DC chopper must be able to absorb the excess energy for the duration of the power 

imbalance caused by a fault. Therefore, the power rating should be equivalent to the 

rating of the VSC-HVDC link. The duration of the power imbalance is the time taken 

until the fault is cleared, which could be up to 140 ms. 
The power dissipated in the DC chopper resistor is given as: 

 𝑃𝑐ℎ𝑜𝑝𝑝𝑒𝑟 = 𝛿𝑉𝑑𝑐2𝑅𝑐ℎ𝑜𝑝𝑝𝑒𝑟 (3.10) 

Where 𝛿 is defined as the duty ratio of the chopper circuit [29]. Under normal 

conditions, 𝛿 = 0 therefore the chopper is switched off. Under fault conditions, the DC 
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voltage rises above the nominal value 𝑉𝑑𝑐𝑛𝑜𝑚. The duty cycle of the chopper is 

calculated as follows: 

 𝛿 = {  
  0𝑉𝑑𝑐 − 𝑉𝑑𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑉𝑑𝑐_𝑚𝑎𝑥 − 𝑉𝑑𝑐_𝑡ℎ𝑟𝑒𝑠ℎ1  for  𝑉𝑑𝑐 < 𝑉𝑑𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑉𝑑𝑐_𝑡ℎ𝑟𝑒𝑠ℎ < 𝑉𝑑𝑐 < 𝑉𝑑𝑐_𝑚𝑎𝑥𝑉𝑑𝑐 > 𝑉𝑑𝑐_𝑚𝑎𝑥   (3.11) 

Where, 

 𝑉𝑑𝑐 is the measured DC voltage. 

 𝑉𝑑𝑐_𝑡ℎ𝑟𝑒𝑠ℎ is the threshold at which the DC chopper begins to operate. 

 𝑉𝑑𝑐_𝑚𝑎𝑥 is the maximum allowed DC voltage 

The required chopper resistance 𝑅𝑐ℎ𝑜𝑝𝑝𝑒𝑟 is calculated by re-arranging (3.10) assuming: 

 𝛿 is equal to 1 

 𝑉𝑑𝑐 is equal to 𝑉𝑑𝑐𝑚𝑎𝑥  which is defined as 1.1𝑉𝑑𝑐 
 𝑃𝑐ℎ𝑜𝑝𝑝𝑒𝑟 is equal to 1.1 times the rated power of the DC link 

The resistance of the chopper resistor is found as 375.5 Ω for the VSC-HVDC links. 
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3.3.5.4 Summary of HVDC platform electrical parameters including the MMC 

Parameters 
Value Units 

Symbol Description 

- Platform location Offshore Onshore - 

SVSC Rated Power 1200.0 MVA 

SVSC_Tx Transformer rated power (each) 800.0 MVA 

Vline Transformer line-side AC voltage 220.0 400.0 kV 

Vvalve Transformer valve-side AC voltage 333.0 333.0 kV 

ZVSC_Tx Transformer Impedance 20.0 % 

Sgrid_SCL Grid SCL 7920.0 10000.0 MVA 

Lgrid Grid inductance 44.6 35.3 mH 

Rgrid Grid resistance 0.3 0.2 Ω 

Larm Arm reactor inductance 112.5 124.9 mH 

Rarm Arm reactor resistance 0.7 0.8 Ω 

VDC DC bus voltage 640.0 kV 

Rchop DC chopper resistance 375.5 Ω 

VSM Sub-module voltage 2.0 kV 

CSM Sub-module capacitance 12.1 mF 

NSM No. sub-modules per phase arm 2.0 - 

NSM_mod No. sub-modules per module 88.0 - 

Nmod No. modules per arm 4.0 - 

NIGBT Total No. IGBTs 4224.0 - 

 

3.3.6 Fully Rated Converter Wind Turbines 

The WTs use a PMSG connected to the offshore grid via a FRC as shown in Figure 

3.10. A DC chopper is included to dissipate excess power from the Generator side 

converter should there be a fault in the offshore AC network. The applied chopper is the 

same as that applied to the HVDC links with the parameters adjusted accordingly. 

 

Figure 3.10 – Outline of the FRC-WT 

The parameters used for the 5 MVA WT are obtained from [88]. The key parameters are 

summarised in Table 3.6. 
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Table 3.6 – List of FRC-WT parameters 

Parameters 
Value Units 

Symbol Description 

SWT PMSG rated power 5.0 MVA 

SWT_Tx Transformer rated power 5.0 MVA 

VHV / LV Transformer HV/LV voltage 33 / 0.69 kV 

LWT_Tx Transformer leakage inductance 0.1 pu 

RWT_Tx Transformer winding resistance 0.0 pu 

LWT Interface reactor inductance 0.2 mH 

RWT Interface reactor resistance 0.5 mΩ 

Vdc DC-link voltage 1.5 kV 

Cdc DC-link capacitance 10.0 mF 

Rchop DC chopper resistance 18.8 mΩ 

3.4 SimPowerSystems model of an offshore AC hub 

A model of the offshore AC hub has been developed in the SimPowerSystems toolbox 

of MATLAB Simulink. The components are modelled in the natural (abc) reference 

frame. Each component is considered individually in order to determine how it should 

be modelled. The intention is to avoiding unnecessary model complexity that could 

generate complex high-order interactions that are not of immediate importance in this 

work, and/or would lengthen simulation times dramatically. In addition, hardware 

limitations must be considered to ensure the model does not become difficult to handle. 

Figure 3.11 presents the single line diagram of the SimPowerSystems model. The 

following points summarise the key methods used to reduce model complexity: 

 Averaged models are used to represent the VSCs and FRC-WTs. 

 All 120 WTs in a single WA are modelled by a single equivalent WT model. 

 Each FRC-WT does not include the wind turbine side converter of the FRC, the 

WTG and rotor. An equivalent DC source is used instead to represent the 

generated wind power.  

 The MVAC cables between the first WT of each string and the HVAC platform 

are represented by a single equivalent cable model. The MVAC cables between 

FRC-WTs are neglected. 

 The two transformers on the HVAC platform are modelled by a single ideal 

transformer model. 
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 The two transformers on the HVDC platform are modelled by a single ideal 

transformer model. 

 Each HVAC cable circuit between the HVAC platform and the HVDC platform 

is represented by a single equivalent cable model. 

 Each HVAC cable circuit between HVDC platforms is represented by a single 

equivalent cable model. 

 

Figure 3.11 – Single line diagram of the offshore AC hub and HVDC links 
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3.4.1 Cable modelling 

When modelling any transmission line, be it a cable or overhead line, four per unit 

length parameters are normally considered, resistance (Ω/km), inductance (mH/km), 

capacitance (µF/km) and conductance (S/km). If waveforms at higher frequencies than 

the fundamental are to be investigated (>5 times), frequency dependent models must be 

used, such as the Bergeron model [81]. 

For short overhead lines it is common to model the transmission line using just a series 

resistance and inductance. This is acceptable because the capacitance and conductance 

would be minimal for a short overhead line. For cables however, the capacitance is 

considerable even for short lengths and therefore must be considered. 

If the length (𝑙) of the line is much less than the wavelength (𝜆) of the voltage and 

current waveforms, then the nominal 𝜋 equivalent circuit may be used, as shown in 

Figure 3.12. The approximation is valid if 𝑙 < 3000 𝑓⁄  km (< 60 km at 50 Hz) for 

underground cables. If the cable length is to be above 60 km, then cascaded nominal 𝜋 

equivalent circuits can be used representing distributed sections of the line. 

 

Figure 3.12 – Nominal π equivalent circuit 

For a lossless transmission line the propagation constant (𝛾) is defined by 

 𝛾 = 𝑗𝛽 = 𝑗𝜔√𝐿𝐶 (3.12) 

If 𝛾𝑙 ≪ 1, which is likely for an electrically short transmission line, then the expressions 

for 𝑍𝑒 and 𝑌𝑒 may be approximated as follows, 

 𝑍𝑒 = 𝑍𝑐 sinh(𝛾𝑙) ≈ 𝑍𝑐(𝛾𝑙) (3.13) 
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≈ 𝑧𝑙 = 𝑍 

And, 

 

𝑌𝑒2 = 1𝑍𝑐 tanh (𝛾𝑙2 ) 

≈ 1𝑍𝑐 (𝛾𝑙2 ) 

≈ 𝑦𝑙2 = 𝑌2 

(3.14) 

The inter platform HVAC cable whose parameters are defined in Table 3.3 has a 

propagation constant of 0.0027. Multiplying the propagation constant by the line length 

of 20 km gives 𝛾𝑙 = 0.053 ≪ 1. Therefore equations (3.13) and (3.14) are suitable to 

represent the total series impedance (𝑧𝑙) and total shunt admittance (𝑦𝑙) of the nominal 𝜋 equivalent circuit. The nominal 𝜋 equivalent circuit is used to represent all AC cable 

circuits in the AC hub model. 

3.4.1.1 Inter-array equivalent cable model: 

All 120 FRC-WTs located in a single wind array are aggregated into a single equivalent 

FRC-WT model. Therefore it is necessary to combine the cables serving each WT string 

in to a single equivalent cable model. The maximum length of cable between the HVAC 

platform and the first WT of each string is 5km. Therefore a nominal 𝜋 equivalent 

circuit is suitable as shown in Figure 3.12. There are six FRC-WTs in each string and 24 

strings per WA. 

The first stage of aggregation is made by splitting the WA in to five sections, as 

illustrated in Figure 3.13. Each section consists of 24 FRC-WTs connected in parallel to 

a single bus with connection to the HVAC platform made via four parallel MVAC 

cables of equal length. The length of each set of MVAC cables in a section then varies 

according to the distance from the HVAC platform. 
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Figure 3.13 – Illustration of first stage of WA aggregation 

The four parallel MVAC cables present in each section are then combined and 

represented by a nominal 𝜋 equivalent circuit. The series impedance and shunt 

admittance of a single cable is determined by (3.13) and (3.14) respectively. The 

equivalent series impedance of four cables in parallel is calculated as: 

 𝑍𝑒_24 = 𝑍𝑒4 = 𝑧𝑙4  (3.15) 

The equivalent shunt admittance of four cables in parallel is calculated as: 

 𝑌𝑒_242 = 2𝑌𝑒 = 2𝑦𝑙 (3.16) 

Where 𝑙 is the conductor length, 𝑧 is the series impedance of a single cable per unit 

length and 𝑦 is the shunt admittance of a single cable per unit length. 

The second stage of aggregation is made though combining each of the five sections in 

to a single section representing the entire WA as illustrated in Figure 3.14. 
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Figure 3.14 – Illustration of second stage of WA aggregation 

Therefore, the final section consists of 120 WTs connected in parallel to a single bus 

with connection to the HVAC platform via a single equivalent cable model. The 

equivalent series impedance and equivalent shunt admittance of the five equivalent 

cable section models is calculated using (3.17) and (3.18) respectively. 

 𝑍𝑒_120 = 1∑ 4𝑧𝑙𝑛 
(3.17) 

 𝑌𝑒_120 =∑2𝑦𝑙𝑛𝑁
𝑛=1  (3.18) 

Where 𝑙𝑛 is the length of each section 𝑛. The equivalent cable model parameters for the 

inter-array MVAC cables are given in Table 3.7. 

3.4.1.2 Inter-platform equivalent cable model: 

As discussed in section 3.3.3.2, each HVAC platform is connected to the HVDC 

platform via two 300 MVA HVAC cables. The length of each cable is 10 km, therefore 

𝑍𝑒_120 𝑌𝑒_1202  
𝑌𝑒_1202  
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again a nominal 𝜋 equivalent circuit is used, as shown in Figure 3.12. An equivalent 

cable model is developed by halving the series impedance and doubling the shunt 

admittance of a single cable length. 

The same method is used to determine the equivalent cable model of the HVAC cables 

strung between HVDC platforms. Again there are two 300 MVA HVAC cables per 

circuit, albeit the cables are 20 km in length. The equivalent cable model parameters for 

the inter-platform HVAC cables are given in Table 3.7. 

3.4.1.3 Transmission to shore (HVDC) equivalent cable model: 

Two HVDC cables connect the on and offshore platforms of each HVDC link as was 

discussed in section 3.3.3.3. As shown in Figure 3.15, an equivalent series resistance at 

each end of the cable is used to represent the total series resistance of the cable. 

 

Figure 3.15 – Equivalent cable model of the HVDC cables 

In order to perform a detailed analysis of DC fault response, the longer line length of the 

HVDC cables dictates that frequency dependent distributed parameter models should be 

used [45]. However, capturing a detailed DC fault response is not the aim of this thesis. 

The impact of a DC fault on the offshore AC-hub is of interest in this thesis. Therefore, 

the use of a basic DC cable model was considered as sufficient. 

3.4.1.4 Summary of cable model parameters 

Table 3.7 presents the equivalent cable parameters for each cable section used in the 

SimPowerSystems model. 
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Table 3.7 – Equivalent cable model parameters 

Parameters 
Value Units 

Symbol Description 

  Inter-array cable (33 kV):     

R33 Series resistance 65.00 mΩ 

L33 Series inductance 39.79 μH 

Y33/2 Shunt capacitance 0.15 μF 

  Inter-platform cable (220 kV, 10km):     

R220_10 Series resistance 132.50 mΩ 

L220_10 Series inductance 1.89 mH 

Y220_10/2 Shunt capacitance 1.89 μF 

  Inter-platform cable (220 kV, 20km):     

R220_20 Series resistance 265.00 mΩ 

L220_20 Series inductance 3.79 mH 

Y220_20/2 Shunt capacitance 3.79 μF 

  HVDC cable (320 kV, 150km):     

RDC_P/N Series resistance 1.35 Ω 

3.4.2 HVAC Platforms 

The key electrical components of the HVAC platform is the transformers, as shown in 

Figure 3.16. 

 

Figure 3.16 – Transformer arrangement on the HVAC platform 

A single ideal transformer model is used to represent the two transformers located on 

the platform. The transformer model is shown in Figure 3.17. 

 

Figure 3.17 – Ideal transformer model 

The parameter values for the equivalent linear transformer model are listed in Table 3.8. 
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Table 3.8 – Equivalent transformer model parameters for the HVAC platform 

Parameters 
Value Units 

Symbol Description 

R1 HV winding series resistance 96.80 mΩ 

L1 HV winding series inductance 15.41 mH 

R2 LV winding series resistance 2.18 mΩ 

L2 LV winding series inductance 0.35 mH 

3.4.3 HVDC Platforms 

The VSCs located on each offshore HVDC platform are assumed as Multi-Modular 

Converters (MMC). A single line diagram of a MMC is shown in Figure 3.18. The 

number of individual sub-modules in the MMC was calculated in section 3.3.5.2, hence 

there are 4224 IGBTs in each MMC complete with anti-parallel diodes. In the offshore 

AC hub, there are in total 8 VSCs and therefore there are 33792 IGBTs in total (not 

including FRC-WTs). 

 

Figure 3.18 – Single line diagram of the MMC topology 



65 

 

 

In [86], MMC models with varying levels of detail are simulated under normal and fault 

operational conditions. There is a trade-off to be made between model accuracy and 

computational effort. The choice of which model to use is therefore a question of which 

model provides sufficient accuracy for the analysis to be carried out with the least 

computational effort. 

The analysis carried out in this thesis is split into two areas: 

1. Normal operation - Analysis of changes in voltage, current and complex power 

in response to changes in dispatch orders and wind power output. 

2. Operation under fault - Analysis of the impacts of faults on the voltage/current 

and complex power. 

3.4.3.1 VSC model under normal operation 

For the first point of analysis, an averaged model [89] of a MMC, as shown in Figure 

3.19, can provide a sufficient level of detail and also requires the least computational 

effort. The AC side of the averaged model includes six equivalent voltage sources 

representing each phase arm of the MMC. On the DC side an equivalent current source 

represents the combined current flowing through each phase leg. A single equivalent 

capacitance is placed on the DC side to represent the sub-module capacitors. 

 

Figure 3.19 – Averaged model of a MMC 
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The voltage across each phase arm 𝑣𝑢𝑗 is equal to the sum of the sub-module voltages 

present in each arm. The average model assumes that the voltages across each sub-

module are perfectly balanced. Therefore no circulating current is present and 

consequently, circulating current suppression controllers are not required. 

From Figure 3.19 the voltage across the upper and lower phase arms are defined as: 

 𝑣𝑢𝑗 = 𝑉𝑑𝑐2 − Larm 𝑑𝑖𝑢𝑗𝑑𝑡 − 𝑣𝑗  (3.19) 

 𝑣𝑙𝑗 = 𝑉𝑑𝑐2 − Larm 𝑑𝑖𝑙𝑗𝑑𝑡 + 𝑣𝑗  (3.20) 

Where 𝑗 = 𝑎, 𝑏, 𝑐. The upper and lower arm currents are defined as: 

 𝑖𝑢𝑗 = 𝐼𝑑𝑐3 − 𝑖𝑗2 (3.21) 

 𝑖𝑙𝑗 = 𝐼𝑑𝑐3 + 𝑖𝑗2 (3.22) 

Combining (3.19)-(3.22) yields: 

 𝑣𝑢𝑗 = 𝑣𝑟𝑒𝑓𝑗 + 𝑉𝑑𝑐2  (3.23) 

 𝑣𝑙𝑗 = −𝑣𝑟𝑒𝑓𝑗 + 𝑉𝑑𝑐2  (3.24) 

Where, 

 𝑣𝑟𝑒𝑓𝑗 = 𝑣𝑢𝑗 − 𝑣𝑙𝑗2  (3.25) 

The voltage reference 𝑣𝑟𝑒𝑓𝑗 is provided by the MMC control loops. The arm voltages 

are then determined using (3.23) and (3.24). The power balance between the AC and 

DC side is maintained exactly and is described by  

 𝑃𝑎𝑐 = 𝑃𝑑𝑐 (3.26) 

 ∑ 𝑣𝑟𝑒𝑓𝑗𝑗=𝑎,𝑏,𝑐 𝑖𝑗 = 𝑉𝑑𝑐𝐼𝑑𝑐 (3.27) 

Therefore the dc current can be defined as: 

 𝐼𝑑𝑐 = ∑ 𝑣𝑟𝑒𝑓𝑗𝑗=𝑎,𝑏,𝑐 𝑖𝑗𝑉𝑑𝑐  (3.28) 
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Assuming all sub-modules have the same voltage 𝑉𝑆𝑀, the equivalent capacitor 𝐶𝑒 is 

determined as a function of the sub-module capacitance as defined by (3.29) [85]. 

 𝐶𝑒 = 6𝐶𝑆𝑀𝑁𝑆𝑀  (3.29) 

 

3.4.3.2 VSC model for operation under fault 

For the second point of analysis, more detailed models are normally required to capture 

the voltage and current perturbations occurring within the MMC [86]. However, the 

available computing resources for this project are limited and the increased 

computational effort required for the detailed models would exceed these limits. To 

overcome this issue, a modified average model capable of reproducing fault behaviour 

to sufficient levels of accuracy was developed. 

In [86], modifications to the average model are made in an attempt to produce a fault 

response that agrees with more detailed simulations. The authors show that even once 

modified, the average model fails to produce a valid fault response. The authors 

conclude that this is because the arm inductances are bypassed during the fault and 

therefore do not impede the fault current. The results confirm this as a large transient 

fault current is observed. 

To overcome this, further modifications to the average model are required. The 

modifications to account for faults with the VSC operating under normal conditions is 

shown in Figure 3.20. The key modifications to the averaged model include: 

 Six parallel diodes to represent the free-wheeling diodes that would be present in 

each sub-module. These are inserted when the IGBTs are blocked by opening 

switch 𝐾1𝑢/𝑙𝑗 and closing switch 𝐾2𝑢/𝑙𝑗 for each phase 𝑗 where 𝑗 = 𝑎, 𝑏, 𝑐. 

 A diode on the DC link to insure that the current flows in the correct direction in 

the event of a fault. This is inserted at the time the fault is initiated by opening 

switch 𝐾1𝑑𝑐 and closing switch 𝐾2𝑑𝑐. 
 A switch to isolate the equivalent capacitance of the DC link. The switch 𝐾3𝑑𝑐 

opens when the IGBTs are blocked. 
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Figure 3.20 – Averaged model with the additional modifications, operating under normal 

conditions 

Figure 3.21 shows the operation of the VSC when subject to a pole-pole fault on the DC 

side. The DC fault is applied on both the AC and DC side of the averaged model, with 

the same fault impedance 𝑍𝑓𝑎𝑢𝑙𝑡. The fault current in the AC side 𝐼𝑑𝑐𝑓(𝑎𝑐) is used as a 

signal to the equivalent current source on the DC side, causing the DC fault current 𝐼𝑑𝑐𝑓(𝑑𝑐) to flow. The DC voltage is therefore a product of the DC fault contributions 

from each VSC terminal across the fault impedance 𝑍𝑓𝑎𝑢𝑙𝑡. 
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Figure 3.21 – Averaged model with additional modifications operating under fault operating 

conditions 

3.4.3.3 Converter transformer 

As was discussed in section 3.3.5.1, two parallel three-phase transformers are required 

for each VSC, as shown in Figure 3.22. Again, an ideal transformer model is used to 

represent the transformer as shown in Figure 3.17. 

 

Figure 3.22 – Transformer arrangement on the HVDC platform 

The parameter values for the equivalent ideal transformer model are listed in Table 3.9. 
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Table 3.9 – Equivalent transformer model parameters for the HVDC converter transformers 

Parameters 
Value Units 

Symbol Description 

  Offshore HVDC Transformer model ( 333 / 220 kV)     

R1 HV winding series resistance 138.61 mΩ 

L1 HV winding series inductance 22.06 mH 

R2 LV winding series resistance 60.50 mΩ 

L2 LV winding series inductance 9.63 mH 

  Onshore HVDC Transformer model ( 400 / 333 kV)     

R1 HV winding series resistance 138.61 mΩ 

L1 HV winding series inductance 22.06 mH 

R2 LV winding series resistance 200.00 mΩ 

L2 LV winding series inductance 31.83 mH 

3.4.4 Wind Turbines 

All 120 FRC-WTs located in a single WA are aggregated into a single equivalent FRC-

WT model. The aggregation of the inter-array cables, as was described in Section 

3.3.3.1 means that the WTs are connected in parallel to a single bus. Therefore, the 

single equivalent WT model must represent 120 WTs in parallel. This is achieved by 

increasing the apparent power base from 5 MVA to 600 MVA and modifying the WT 

parameters listed in Table 3.6 accordingly.  

To reduce the computational burden further, the turbine blades and hub, PMSG and 

generator side converter of the FRC are replaced by an equivalent current source. This 

is placed on the DC link as shown in Figure 3.23. 

 

Figure 3.23 – Equivalent model of the FRC-WT 

The generator side converter maintains optimal torque according to the rotor speed to 

extract maximum power from the wind [89]. The regulation of the torque is achieved 

through vector control which has a time constant 𝜏𝑤𝑠𝑐 of approximately 10 ms. A 

current reference for the DC current source 𝐼𝑊𝑇∗  is determined from the specified wind 

power input 𝑃𝑊𝑇∗  and the DC voltage. The power reference is passed through a first-
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order transfer function with 𝜏𝑤𝑠𝑐 = 10 ms to account for the response characteristic of 

the vector control loop. 
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4 Chapter 4 – Managing planned and unplanned changes in 

operating condition in an offshore AC hub 

4.1 Introduction 

The offshore AC hub connects multiple HVDC VSCs and large numbers of FRC-WTs. 

Autonomous control of voltage, frequency and complex power is necessary to maintain 

stable operation of the network during changes in wind speed and dispatch orders. In 

addition, faults may lead to unacceptable operating conditions in the offshore AC hub. 

This could result in further outages as transmission and generation assets take protective 

action to avoid damage. This in turn could heavily impact the onshore MITS if left 

unmanaged. Before any suitable method of managing faults can be designed, the impact 

of faults in an offshore AC hub must be investigated and understood. 

In this chapter, control systems which are developed for point-to-point HVDC 

transmission links are extended to account for parallel operation in an offshore AC hub. 

In particular, master-slave and droop control schemes are implemented and compared 

on a model of the offshore AC hub developed in SimPowerSystems
TM 2

. The impact of 

three different faults in an offshore AC hub are presented. 

4.2 Design of control systems for FRC-WTs and VSCs 

The control systems used in the FRC-WTs and VSCs are implemented in the 

synchronous (dq) reference frame as was discussed in Section 2.4. It is important that 

each of the control loops are properly tuned to ensure satisfactory operation. In this 

section, the design criteria for each control loop are discussed. Confirmation that each 

control loop meets the design criteria is made through analysis of the bode diagram and 

step response of the open and closed loop transfer functions. 

                                                 
2
 SimPowerSystems

TM
 is a suite of component libraries and analysis tools developed by MathWorks

®
 in 

conjunction with Hydro-Québec of Montreal [105]. It is designed for use with the Simulink
®
 simulation 

environment in MATLAB
®
. 
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Figure 4.1 – Control overview of the VSC 

As seen in Figure 4.1, the VSC as seen from the AC side appears as a voltage source 

which drives a current in to the offshore grid. 𝑉𝑡 is the voltage produced at the VSC 

valve terminals and for each phase is described as: 

 𝑉𝑡𝑎 = 𝑅𝑡𝑖𝑎 + 𝐿𝑡 𝑑𝑖𝑎𝑑𝑡 + 𝑉𝑠𝑎 (4.1) 

 𝑉𝑡𝑏 = 𝑅𝑡𝑖𝑏 + 𝐿𝑡 𝑑𝑖𝑏𝑑𝑡 + 𝑉𝑠𝑏 (4.2) 

 𝑉𝑡𝑐 = 𝑅𝑡𝑖𝑐 + 𝐿𝑡 𝑑𝑖𝑐𝑑𝑡 + 𝑉𝑠𝑐 (4.3) 

To convert from the natural reference frame to the synchronous reference frame, the 

Park transformation is used as described by (4.4). 
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 [𝑉𝑠𝑑𝑉𝑠𝑞𝑉𝑠0] = 23 [  
   sin(𝜔𝑡) sin (𝜔𝑡 − 2𝜋3 ) sin (𝜔𝑡 + 2𝜋3 )cos(𝜔𝑡) cos (𝜔𝑡 − 2𝜋3 ) cos (𝜔𝑡 + 2𝜋3 )12 12 12 ]  

   [𝑉𝑠𝑎𝑉𝑠𝑏𝑉𝑠𝑐 ] (4.4) 

Equations (4.1)-(4.3) written in the synchronous reference frame are given by: 

 𝑉𝑡𝑑 = 𝑅𝑡𝑖𝑑 − 𝜔𝐿𝑡𝑖𝑞 + 𝐿𝑡 d𝑖𝑑d𝑡 + 𝑉𝑠𝑑 (4.5) 

 𝑉𝑡𝑞 = 𝑅𝑡𝑖𝑞 + 𝜔𝐿𝑡𝑖𝑑 + 𝐿𝑡 d𝑖𝑞d𝑡 + 𝑉𝑠𝑞 (4.6) 

Where 𝜔 is the frequency of the synchronous reference frame, 𝑉𝑠𝑑 and 𝑉𝑠𝑞 are the grid 

voltages in the synchronous reference frame, 𝑉𝑡𝑑 and 𝑉𝑡𝑞 are the converter voltages in 

the synchronous reference frame and 𝑖𝑑 and 𝑖𝑞 are the currents flowing into the grid in 

the synchronous reference frame. 𝑅𝑡 and 𝐿𝑡 represent the equivalent resistance and 

reactance between the VSC and the grid. 

Equations (4.5) and (4.6) show that it is possible to manipulate the current flowing into 

the grid at the interface point through adjustment of the converter voltage angle and 

magnitude or, equivalently 𝑉𝑡𝑑 and 𝑉𝑡𝑞 in the synchronous reference frame. This forms 

the basis of the vector control schemes implemented for each VSC as described in the 

following sections. 

4.2.1 Phase Locked Loop (PLL) design 

A PLL is required for all VSCs which are not participating in frequency control. The 

PLL operates by regulating 𝑉𝑠𝑞 to zero, which in turn ensures that 𝑉𝑠𝑑 = �̂�𝑠. The 

compensator design of the PLL follows the procedure defined in [89]. The schematic 

diagram of the PLL is shown in Figure 4.2. 
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Figure 4.2 – Schematic diagram of the PLL 

The control block diagram of the PLL is given in Figure 4.3. 

 

Figure 4.3 – Control block diagram of the PLL 

The input to the PLL includes a ramp term 𝜔0𝑡 therefore, the open loop transfer 

function of the block diagram in Figure 4.3 must include at least two poles at 𝑠 = 0 to 

ensure zero steady state error. One integral already exists, therefore, 𝐻(𝑠) must include 

one pole at 𝑠 = 0. To eliminate the double frequency ripple produced by the dq 

transform in the presence of negative sequence components, 𝐻(𝑠) must include a 

complex conjugate pair of zeros at 𝑠 = ±𝑗2𝜔0. In addition, to ensure that the loop gain 

magnitude continues to drop with a slope of −40dB/decade for 𝜔 > 2𝜔0, a double 

real pole at 𝑠 = −2𝜔0 is included in 𝐻(𝑠) [89]. Therefore, 

 𝐻(𝑠) = (ℎ�̂�𝑠) 𝑠2 + (2𝜔0)2𝑠(𝑠 + 2𝜔0)2 𝐹(𝑠) (4.7) �̂�𝑠 is the nominal peak magnitude of 𝑉𝑠 which is assumed as 1pu as the voltage is scaled 

to accept a per-unit voltage. 𝐹(𝑠) is the normal compensator transfer function with no 

zero at 𝑠 = 0. Based on the control block diagram presented in Figure 4.3, the open 

loop transfer function 𝐺(𝑠) is given by (4.8): 

 𝐺(𝑠) = ℎ 𝑠2 + (2𝜔0)2𝑠2(𝑠 + 2𝜔0)2 𝐹(𝑠) (4.8) 

Assuming a gain crossover frequency 𝜔𝑐 of 25 Hz and a phase margin of 60 ° is 

required, if ℎ𝐹(𝑠) = 1, the phase of the open loop transfer function 𝐺(𝑠) is equal to 

�̂�𝑠 
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−208 °. Therefore, to achieve the desired phase margin, 𝐹(𝑗160) must add 92 ° to ∠𝐺(𝑗160). As the required phase advance is large, 𝐹(𝑠) includes two cascaded lead 

compensators, each to provide approx. 46 ° at 𝜔𝑐. Therefore, 

 𝐹(𝑠) = (𝑠 + (𝜌 𝛼⁄ )𝑠 + 𝜌 )(𝑠 + (𝜌 𝛼⁄ )𝑠 + 𝜌 ) (4.9) 

Where, 

 𝜌 = 𝜔𝑐√𝛼 (4.10) 

 𝛼 = 1 + sin 𝛿𝑚1 − sin 𝛿𝑚 (4.11) 

Where the phase of each lead compensator 𝛿𝑚 is set equal to 46 °. The open loop 

frequency response of the PLL is shown in Figure 4.4. 

 

Figure 4.4 – Open loop frequency response of the PLL 

From Figure 4.4 it can be seen that the phase margin is 60 ° as was specified in the 

design. In addition, when 𝜔 > 𝜔𝑐 the slope of |𝐺(𝑠)| is −40 dB/decade which 

provides sufficient attenuation to harmonics that may be present in 𝑉𝑠. Figure 4.5shows 

the response of the PLL when 𝑉𝑠 is subject to a change in frequency. At 𝑡 = 0.25 s, 𝜔0 

is increased from 50 to 51 Hz. 
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Figure 4.5 – Response of the PLL to a step change in frequency 

4.2.2 On/Offshore VSCs 

4.2.2.1 Inner control loop – Current control 

The block diagram of the inner current control loops are shown in Figure 4.6. 
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Figure 4.6 – Control overview of the inner current control loop 

PI compensators 𝑘𝑑(𝑠) and 𝑘𝑞(𝑠) are used in the d-axis and q-axis inner current control 

loops respectively, in order to eliminate steady state offset. Each PI compensator is 

represented by the following transfer function: 

 𝑘𝑑(𝑠) = 𝑘𝑞(𝑠) = 𝑘𝑝𝑠 + 𝑘𝑖𝑠  (4.12) 

The plant through which the current is being controlled includes the series impedance of 

the arm reactors and converter transformer. Hence, the plant is represented by a first 

order transfer function, 

 𝐺𝑝𝑙(𝑠) = 𝑖𝑑(𝑠)𝑉𝑑(𝑠) = 1𝐿𝑡𝑠 + 𝑅𝑡 (4.13) 

Where 𝐿𝑡 and 𝑅𝑡 are the combined series inductance and resistance of the arm reactors 

and converter transformer. If the voltage feed-forward and cross-coupling terms are 
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treated as disturbances and are neglected, the inner current control loop can be 

represented by the simplified control block diagram as shown in Figure 4.7. 

 

Figure 4.7 – Inner current control loop block diagram 

The zero of the PI compensator can effectively cancel the plant pole assuming the PI 

compensator parameters are chosen as [89]: 

 𝑘𝑝 = 𝐿𝜏𝑖 (4.14) 

 𝑘𝑖 = 𝑅𝜏𝑖 (4.15) 

The transfer function of the inner current control loop becomes: 

 𝐼𝑑(𝑠)𝐼𝑑∗(𝑠) = 1𝜏𝑖𝑠 + 1 (4.16) 

Where 𝜏𝑖 is the time constant of the inner current control loop. The time constant is the 

time taken for the response to reach 63% of its final value [90]. The time constant of the 

inner current control loops is typically selected in the range of 0.5 − 5 ms [89]. The 

closed loop bandwidth of the inner current control loops expressed in rad s⁄  is defined 

as 1 𝜏𝑖⁄ . 

The time constant is selected as 1 ms and the controller gains are chosen using (4.14) 

and (4.15) accordingly. The closed loop bandwidth of the inner current control loops is 

approximately 160 Hz (1000 rad/s). To confirm the parameter selection is correct, a 

bode diagram and step response of the inner current control loops is shown in Figure 4.8 

and Figure 4.9. 
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Figure 4.8 – Closed loop response of the inner current control loop 

 

Figure 4.9 – Step response of the inner current control loop 

From the bode diagram, it can be seen that the frequency at which the gain is −3 dB is 160 Hz, which is the bandwidth of the system. From the step response, the time 

constant is found to be 1 ms which matches the design time constant. The gains for the 

inner current control loop are defined in Table 4.1 
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Table 4.1 – Inner current control loop parameters 

Inner control loop kp ki 

Offshore VSC 100 985 

Onshore VSC 107 1063 

4.2.2.2 Outer control loops – Voltage Control 

The objective of the outer loop of the VSC when operating in voltage control mode is to 

maintain 𝑉𝑠𝑑 and 𝑉𝑠𝑞 by providing a current reference 𝐼𝑑∗  and 𝐼𝑞∗ respectively. The 

voltage is being controlled across a load as seen from the converter transformer line side 

bus. The load itself is of a high order, non-linear and is influenced by other active 

sources in the AC hub. Therefore, the design of the control scheme is not a 

straightforward task. 

For two-level VSCs, it is common to define the filter capacitance as the controlled plant 

for the outer voltage control loop [89]. In the literature, this capacitance is used as a 

means to decouple the voltage dynamic at the connection point from the rest of the 

system. An MMC produces far less harmonic content and in most cases, under normal 

THD limits of < 1 %, no filter capacitance is included. Therefore, the VSC model does 

not include any filter capacitance and the decoupling is not performed. The block 

diagram of the outer voltage control loops are shown in Figure 4.10. 
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Figure 4.10 – Control overview of the outer voltage control loop 

PI compensators 𝑘𝑑𝑜(𝑠) and 𝑘𝑞𝑜(𝑠) are used to eliminate steady state offset.  

 𝑘𝑑𝑜(𝑠) = 𝑘𝑞𝑜(𝑠) = 𝑘𝑝𝑜𝑠 + 𝑘𝑖𝑜𝑠  (4.17) 

To tune the PI compensators suitable gains must be found which ensure the AC voltage 

is controlled with minimal overshoot and zero steady state error. In addition, the outer 

loop should be considerably slower than the inner loop to avoid undesirable interaction 

[91]. As the voltage dynamic at the connection point is not decoupled, a direct analytical 

approach to determining controller gains was not taken. Instead, suitable gains were 

identified through observing the performance of the outer voltage control loop in 

response to a step input using a range of controller gains. 

The step response was applied to a single offshore VSC located at bus 1. The load on 

the single VSC was assumed as all cables and transformers in the AC hub but not 
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including the other offshore VSCs and the FRC-WTs. Instead, an open circuit was left 

in place of each VSC or FRC-WT position as illustrated in Figure 4.11. 

 

Figure 4.11 – Model used for control tuning of the outer voltage control loop 

The design criteria for the voltage controller were specified as follows: 

 Closed loop response should have zero steady state error 

 The maximum percent overshoot (𝑂𝑆 %) of the step response should be less 

than 20 %. 

 The settling time (𝑇𝑠) should be less than 0.4 s. 
The percent overshoot is defined as the amount that the response surpasses the steady-

state or final value, expressed as a percentage of the final value. The settling time is 

defined as the time taken for the response to reach and stay within 2 % of its final value 

[90]. 
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Figure 4.12 shows the step responses of the d-axis voltage control loop with a range of 

proportional (𝑘𝑝𝑜) and integral (𝑘𝑖𝑜) gains for 𝑘𝑑𝑜(𝑠). The percent overshoot and 

settling time for each response are presented in Table 4.2. 

 

Figure 4.12 – Step response of the d-axis control loop 

Table 4.2 – Control gains used for each plot in Figure 3.32 

Run kpo kio OS % Ts 

1 0.010 0.10 5.80 0.54 

2 0.015 0.10 11.55 0.53 

3 0.015 0.20 13.40 0.27 

4 0.020 0.10 36.33 0.19 

From the data presented in Table 4.2 runs 1 & 2 have an acceptable level of overshoot 

however the settling time is too long. Run 4 has an acceptable settling time however the 

overshoot is too large. This is expected due to the increase in 𝑘𝑝𝑜. Finally run 3 has both 

an acceptable overshoot and acceptable settling time according to the design criteria. 

Therefore, the gains for both the d-axis and q-axis PI compensators 𝑘𝑑𝑜(𝑠) and 𝑘𝑞𝑜(𝑠) 
were selected according to run 3. 

4.2.2.3 Outer control loops – Active/Reactive Power Control 

A schematic of the outer power control loop is provided in Figure 4.13. The objective of 

the outer loop of the VSC when operating in power control mode is to maintain active 

and reactive power by providing suitable current references to the inner current control 

loop. 
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Figure 4.13 – Control overview of the outer power control loop 

The active and reactive power in the synchronous reference frame is described by (4.18) 

and (4.19) respectively. 

 𝑃 = 32 (𝑉𝑑𝐼𝑑 + 𝑉𝑞𝐼𝑞) (4.18) 

 𝑄 = 32 (𝑉𝑞𝐼𝑑 − 𝑉𝑑𝐼𝑞) (4.19) 

As described in section 4.2.1, the PLL ensures that 𝑉𝑠𝑞 = 0. In doing so the reference 

frame is aligned with the grid voltage vector 𝑉𝑠 and therefore can be defined as: 

 𝑉𝑠 = 𝑉𝑠𝑑 + 𝑗0 (4.20) 

Assuming the PLL has ensured the reference frame with the grid voltage, (4.13) and 

(4.14) become: 

23 (𝑃∗𝑉𝑠𝑑) 

−23 (𝑄∗𝑉𝑠𝑑) 
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 𝑃 = 32 (𝑉𝑠𝑑𝐼𝑑) (4.21) 

 𝑄 = −32 (𝑉𝑠𝑑𝐼𝑞) (4.22) 

Therefore, by re-arranging (4.21) and (4.22), the d and q-axis current references (𝐼𝑑𝑟𝑒𝑓 

and 𝐼𝑞𝑟𝑒𝑓) are defined according to the active and reactive power references (𝑃∗ and 𝑄∗) 
respectively, as shown in (4.23) and (4.24) [89]. 

 𝐼𝑑∗ = 23 (𝑃∗𝑉𝑠𝑑) (4.23) 

 𝐼𝑞∗ = −23 (𝑄∗𝑉𝑠𝑑) (4.24) 

4.2.2.4 Outer control loops – 𝑽𝑫𝑪/𝑸 control 

A schematic of the DC voltage/reactive power control loop is provided in Figure 4.14. 

This control scheme is used for the onshore VSC of each HVDC link. The main 

objective of the d-axis outer control loop is to maintain the nominal DC link voltage 𝑉𝐷𝐶. This is achieved by the varying 𝐼𝑑∗  to the inner d-axis control loop as necessary to 

export active power equal to the amount injected in to the DC link by the offshore VSC, 

minus losses. The main objective of the q-axis outer control loop is to maintain the 

reactive power output of the VSC to the reactive power set point 𝑄∗. This is achieved by 

varying 𝐼𝑞∗ to the inner q-axis control loop as dispatched. 

DC Voltage control: 

Again, it is important that the inner loop operates faster than the outer loop to ensure 

that there is no undesired interaction between the two [91]. 
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Figure 4.14 – Control overview of the outer DC voltage/reactive power control loops 

Assuming the VSC is lossless, the power balance between the AC and DC side of the 

VSC is given by: 

 𝑃 = 32 (𝑉𝑡𝑑𝐼𝑑 + 𝑉𝑡𝑞𝐼𝑞) = 𝑉𝑑𝑐𝐼𝑑𝑐 (4.25) 

The current flowing in the DC link is defined by: 

 𝐼𝑑𝑐 = 𝐶𝑑𝑐 𝑑𝑉𝑑𝑐𝑑𝑡 + 𝐼𝑙𝑜𝑎𝑑 (4.26) 

Where 𝐶𝑑𝑐 is the DC link capacitance, 𝑉𝑑𝑐 is the DC link voltage, 𝐼𝑑𝑐 is the DC link 

current and 𝐼𝑙𝑜𝑎𝑑 is the load current on the DC side as shown in Figure 4.14. Assuming 

the PLL ensures that 𝑉𝑠𝑞 = 0, hence 𝑉𝑠𝑑 is aligned with phase A (𝑉𝑠𝑎), (4.25) becomes: 

 𝑃 = 32 (𝑉𝑑𝐼𝑑) = 𝑉𝑑𝑐𝐼𝑑𝑐 (4.27) 

−23 (𝑄∗𝑉𝑠𝑑) 
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Finally, inserting (4.26) in to (4.27) and re-arranging, the plant dynamics for the outer 

DC voltage control loop are given by: 

 𝐶 𝑑𝑉𝑑𝑐𝑑𝑡 = 32 𝑉𝑑𝑉𝑑𝑐 𝐼𝑑 − 𝐼𝑙𝑜𝑎𝑑 (4.28) 

Now 𝑉𝑑 can be expressed in terms of the DC link voltage and the modulation index of a 

given phase (𝑀𝑎) as shown in (4.29). 

 𝑉𝑑 = 𝑀𝑎 𝑉𝑑𝑐2  (4.29) 

Therefore, by inserting (4.29) in to (4.28), the DC link voltage can be expressed as: 

 𝐶 𝑑𝑉𝑑𝑐𝑑𝑡 = 3𝑀𝑎4 𝐼𝑑 − 𝐼𝑙𝑜𝑎𝑑 (4.30) 

Based on (4.30), a transfer function for the plant with the d-axis current (𝐼𝑑) as an input 

and the DC voltage (𝑉𝑑𝑐) as an output can be defined: 

 𝑉𝑑𝑐(𝑠)𝐼𝑑(𝑠) = 34𝑀𝑎𝐶𝑠  (4.31) 

Again, a PI compensators 𝑘𝑑𝑜(𝑠) 𝑖𝑠 used to eliminate steady state offset. The transfer 

function for the PI compensator is shown in (4.30). 

The design criteria for the voltage controller were specified as follows: 

 The closed loop bandwidth should be approximately 10 times less than the inner 

current control loop 

 The open loop response should have a phase margin of at least 60° 
 Closed loop response should have zero steady state error 

 The maximum percent overshoot (𝑂𝑆 %) of the step response should be less 

than 20 %. 

Suitable gains for the PI compensator 𝑘𝑑𝑜(𝑠) was found through analysis of the bode 

and step response. Figure 4.15 shows the open and closed loop frequency response of 

the d-axis DC voltage control loop with the chosen gains 𝑘𝑝𝑜 = 0.023 and 𝑘𝑖𝑜 = 0.684. 
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Figure 4.15 – Open and closed loop frequency response of the outer DC voltage control loop 

From Figure 4.15, it can be seen that the magnitude of the closed loop response passes 

through −3 dB at 16 Hz. This represents the bandwidth of the outer DC voltage control 

loop and satisfies the design criteria as it is 10 times less than the bandwidth of the inner 

current control loop defined in section 4.2.2.1. Also in Figure 4.15 it can be seen that 

the phase of the open loop response is −111° when the magnitude is 0 dB. The phase 

margin (𝑃𝑀) is equal to 180° − 111° = 69°. Therefore, the phase margin is also within 

the design specification. 

 

Figure 4.16 – Step response of the outer DC voltage control loop 
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Figure 4.16 shows the closed loop step response of the outer DC voltage control loop. 

Zero steady-state error can is observed as is a percent overshoot of less than 20 %. 

Therefore, the response satisfies all the design criteria. 

Reactive Power control: 

The reactive power control loop for the onshore VSC is achieved using the same 

configuration as described for the reactive power control loop of the offshore VSC. 

Equation (4.22) shows that the reactive power of the onshore VSC can be controlled 

through adjustment of 𝐼𝑞. Therefore 𝐼𝑞∗ is determined from 𝑄∗ using (4.31). 

4.2.3 Grid side converter of FRC-WTs 

The inner control loop of the grid side converter has the same configuration as that used 

for the inner current control loop of the VSCs. Therefore, the same approach is taken to 

define the PI compensators and thus tune the control loops. The parameters used for the 

inner control loop of the FRC-WT grid side converter are described in Table 4.3. 

The FRC-WT grid side converter maintains the DC link voltage under fluctuating wind 

power outputs. Therefore, the same outer control loops that were used for the onshore 

VSC is applied for the FRC-WT grid side converter. The main objective of the d-axis 

outer control loop is to maintain the nominal DC link voltage 𝑉𝐷𝐶. This is achieved by 

the varying 𝐼𝑑𝑟𝑒𝑓 to the inner d-axis control loop as necessary to export active power 

equal to the amount injected in to the DC link by the FRC-WT wind turbine side 

converter, minus losses. The main objective of the q-axis outer control loop is to 

maintain the reactive power output of the FRC-WT grid side converter to the reactive 

power set point 𝑄∗. This is achieved by the varying 𝐼𝑞∗ to the inner q-axis control loop as 

dispatched. The parameters used for the outer control loop of the FRC-WT grid side 

converter are described in Table 4.3 

Table 4.3 – Control loop parameters of the FRC-WT 

Parameters 
Value 

Symbol Description 

kp Inner loop proportional gain 0.0017 

ki Inner loop integral gain 0.0042 

kpo Outer loop proportional gain 170.0 

kio Outer loop integral gain 852.0 
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4.3 Control of voltage, frequency and complex power under normal 

operating conditions 

As described in section 2.4, the control of voltage and frequency in an offshore AC 

network connected to the MITS via a single HVDC link falls to the offshore VSC. The 

offshore VSC operates with the AC voltage/frequency control scheme as defined in 

section 4.2.2.2. As additional HVDC links are included in the offshore network it is 

necessary to co-ordinate the control of voltage, frequency and complex power flow 

between the offshore VSCs. Two prominent control concepts are identified in the 

literature and compared for application in the offshore AC hub. Each concept is 

described in section 4.3.1 & 4.3.2. The results are presented and discussed for each 

control scheme operating under changes in normal operating conditions in sections 4.3.4 

& 4.3.5. 

4.3.1 The Master-Slave control strategy 

Using the master-slave control strategy, one VSC is defined as the master converter, and 

the others are defined as slave converters. The master converter uses voltage/frequency 

control as defined in section 4.2.2.2. As the voltage magnitude and angle are held 

constant at the master converter’s bus, it can be described as the slack bus within the 

system, generating or absorbing complex power as necessary. The slave converter uses 

active/reactive power control as defined in section 4.2.2.3 and therefore the power 

orders are dispatched. Each slave converter uses a PLL to synchronise with the voltage 

waveform produced by the master converter as defined in section 4.2.1. Figure 4.17 

highlights which converter is defined as the master and which are defined as slave 

converters. 
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Figure 4.17 – Overview of the AC hub using the master-slave control strategy 

4.3.2 The Droop control strategy 

Using the droop control strategy, the offshore VSCs 1, 2 and 3 all participate in 

maintaining voltage and frequency within the network. This implies that complex power 

is automatically shared amongst the three converters. Each droop converter uses 

voltage/frequency control as defined in section 4.2.2.2. However, rather than 𝜔 being 

fixed at 𝜔𝑛, it is drooped against 𝑃𝑠 according to the droop gain 𝑚𝑝 as given in (4.32) 

[92]. 
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 𝜔 = 𝜔𝑛 −𝑚𝑝𝑃𝑠 (4.32) 

In addition, rather than 𝑉𝑠𝑑∗  being fixed at the nominal voltage 𝑉𝑛, it is drooped against 𝑄𝑠 according to the droop gain 𝑛𝑞 as given in (4.33) [92]. 

 𝑉𝑠𝑑∗ = 𝑉𝑛 − 𝑛𝑞𝑄𝑠 (4.33) 

The droop gains are specified as given in (4.34) and (4.35). 

 𝑚𝑝 = 𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛𝑃𝑚𝑎𝑥  (4.34) 

 𝑛𝑞 = 𝑉𝑠𝑑(𝑚𝑎𝑥) − 𝑉𝑠𝑑(𝑚𝑖𝑛)𝑄𝑚𝑎𝑥  (4.35) 

The offshore VSC connected to bus 10 uses active/reactive power control as specified in 

section 4.2.2.3. The FRC-WTs connected to buses 4 – 9 use DC voltage/reactive power 

control as specified in section 4.2.2.4. Figure 4.19 highlights which converters are 

defined as the droop converters within the offshore AC hub. The droop characteristics 

are shown in Figure 4.18. 

 

Figure 4.18 – Droop characteristics 
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Figure 4.19 – Overview of the AC hub using the droop control strategy 

4.3.3 Initial steady state operating condition 

Before a change in dispatch order or wind generation power output is applied the 

system is in steady state. The active power output from the FRC-WTs is 3.75 MW and 

is consistent across all WAs. The HVDC link which is connected to Norway is 

importing 800 MW in to the offshore AC hub. The three HVDC links which are 

connected between the offshore AC hub and the UK MITS are absorbing active power.  
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When the master-slave control strategy is implemented, the offshore VSCs designated 

as slave converters each absorb 1200 MW. The master VSC is effectively the slack bus, 

therefore it absorbs both active and reactive power as necessary to maintain the voltage 

and frequency in the offshore AC hub. With reference to Figure 4.17 the initial 

conditions when using the master-slave control strategy are shown in Table 4.4. The 

apparent power base is 1200 MVA. 

Table 4.4 – Initial conditions when using the master-slave control strategy 

Bus V (pu) δ (°) P (pu) Q (pu) 

1 1.000 0.000 -0.779 -0.334 

2 1.002 -0.390 -1.002 0.000 

3 1.004 -0.251 -1.002 0.000 

4 1.008 9.734 0.373 0.000 

5 1.008 9.734 0.373 0.000 

6 1.010 9.296 0.373 0.000 

7 1.010 9.296 0.373 0.000 

8 1.012 9.397 0.373 0.000 

9 1.012 9.397 0.373 0.000 

10 1.006 0.414 0.664 0.000 

When the droop control strategy is implemented, all three HVDC links connected 

between the offshore AC hub and the UK MITS share the transfer of active and reactive 

power equally between them. With reference to Figure 4.19 the initial conditions when 

using the droop control strategy are shown in Table 4.5. 

Table 4.5 – Initial conditions when using the droop control strategy 

Bus V (pu) δ (°) P (pu) Q (pu) 

1 1.013 0.000 -0.928 -0.125 

2 1.011 -0.181 -0.928 -0.114 

3 1.013 0.000 -0.928 -0.125 

4 1.020 9.667 0.373 0.000 

5 1.020 9.667 0.373 0.000 

6 1.019 9.507 0.373 0.000 

7 1.019 9.507 0.373 0.000 

8 1.020 9.667 0.373 0.000 

9 1.020 9.667 0.373 0.000 

10 1.016 0.538 0.664 0.000 

4.3.4 Change in dispatch orders 

A change of dispatch orders is a routine operation for power systems responding to 

changing load and market conditions. The rate at which a typical generator responds to 

a dispatch order is limited to 50 MW/min in the MITS [55]. This limit is imposed to 
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ensure the safe and reliable operation of the transmission system under normal 

operating conditions. In the event of unacceptable frequency conditions on the MITS, 

generating units or interconnectors may be expected to respond dynamically to provide 

support. The VSC is able to ramp up or down its power output much more quickly than 

traditional rotating generators. In [93], the VSC is shown to achieve full power reversal 

in a matter of seconds to aid system stability. 

For the AC hub under consideration in this study, one likely scenario is that it becomes 

favourable to export power to Norway. To simulate this event, a new dispatch order is 

sent to the offshore VSC which is connected to bus 10. The offshore VSC connected to 

bus 10 is part of the HVDC link connected between the offshore AC hub and Norway. 

At 𝑡 = 0.2 s, the active power reference to the offshore VSC at bus 10 begins to ramp 

from generating 800 MW to absorbing 800 MW. To compare the dynamic performance 

of each control philosophy, a higher ramp rate than would otherwise be chosen for a 

dispatch order was selected. An active power ramp rate of 400 MW/s is assumed and 

therefore the ramp finishes at 𝑡 = 4.2 s. 
Figure 4.20 presents the change in active power through each offshore VSC bus using 

the master-slave control strategy (top graph) and droop control strategy (bottom graph). 

The active power through bus 10 ramps from generating 0.66 pu (800 MW) to 

absorbing 0.66 pu (800 MW) as specified by the dispatch command. 

 

Figure 4.20 – Active power at each offshore VSC bus following a change in dispatch order 
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In the top graph of Figure 4.20 the active power through bus 1 ramps from absorbing 0.78 pu to generating 0.57 pu of active power. This is expected as the offshore VSC 

connected to bus 1 is designated as the master converter. The offshore VSCs connected 

to bus 2 & 3 are both designated as slave VSCs. This is reflected in the result as the 

active power through bus 2 & 3 is constant throughout the change in dispatch order as 

they both absorb 1 pu. 

In the bottom graph of Figure 4.20 the active power through bus 1, 2 & 3 is equal and 

ramps from absorbing 0.93 pu to absorbing 0.48 pu of active power. This is expected 

as the offshore VSCs connected to bus 1, 2 & 3 participate in droop control and have 

equal droop gains. 

Figure 4.21 presents the change in voltage magnitude at each HV bus using the master-

slave control strategy (top graph) and droop control strategy (bottom graph). 

 

Figure 4.21 – Voltage magnitude at each offshore bus following a change in dispatch order 

In the top graph of Figure 4.21, it can be seen that before the change in dispatch 

(𝑡 < 0.2 s) the voltage magnitude at bus 1 is constant at 1 pu. This is expected as the 

offshore VSC connected to bus 1 is designated as the master converter and controls the 

voltage magnitude to 1 pu. The voltage magnitude at the other buses is > 1 pu but still 

well within the operating limits listed in [77]. This correctly reflects the capacitive 

nature of the offshore network where those buses farthest from bus 1 have the highest 

voltage magnitude. During the transition to the new dispatch order (𝑡 = 0.2 → 4.2 s) 
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the voltage magnitude at bus 1 drops to 0.98 pu before recovering to 1 pu once the 

transition is finished (𝑡 > 4.2 s). This deviation is considered as acceptable as the 

voltage magnitude remains well within limits. 

In the bottom graph of Figure 4.21, it can be seen that before the change in dispatch 

(𝑡 < 0.2 s) the voltage magnitude at bus 1,2 & 3 is constant at 1.01 pu. A small offset 

of 0.01 pu is present from the nominal voltage magnitude. This is a result of the 

proportional only action of the droop control loops. This can be corrected through a 

small reduction of the nominal voltage reference of the droop control loops. During the 

transition to the new dispatch order (𝑡 = 0.2 → 4.2 s) the voltage magnitude at bus 1 

drops marginally by 0.005 pu before recovering to 1.01 pu once the transition is 

finished (𝑡 > 4.2 s). This deviation is considerably less than that observed when using 

the master-slave control strategy. This is because the change in active power is shared 

among three VSCs. 

Figure 4.22 presents the change in line currents through the interconnecting HVAC 

cables using the master-slave control strategy (top graph) and droop control strategy 

(bottom graph).  

 

Figure 4.22 – Line current magnitude through each inter-platform HVAC cable following a change 

in dispatch order 

In the top graph of Figure 4.22, it can be seen that before the change in dispatch 

(𝑡 < 0.2 s) the current magnitude through all cables is well below the nominal current 
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order (𝑡 = 0.2 → 4.2 s) the current magnitude through Line 1 & 3 increases beyond 0.5 pu and the current magnitude through line 4 reduces. This is an unacceptable 

operating condition as lines 1 & 3 are overloaded. It is caused by the increase in power 

flow between bus 10 and bus 1 and reduction in power flow between bus 10 and bus 3. 

This could be corrected by adjustment of the dispatch orders to the slave VSCs to avoid 

constraining power flow. 

When using the droop control strategy (bottom graph), the same problem is not 

apparent. This is because the droop control scheme automatically balances the power 

flow through the VSCs. The power flow between bus 10 and bus 1 & 3 is equal and 

therefore the current is shared equally between lines 3 & 4. 

In conclusion, the results presented in Figure 4.20, Figure 4.21 and Figure 4.22 show 

that both the master-slave and droop control schemes can successfully manage the 

voltage, current and complex power flow in the offshore AC hub, following a change in 

dispatch orders. However, the droop control scheme is able to automatically balance 

active power flow through the participating VSCs which helps to avoid violating 

network constraints. 

4.3.5 Change in wind power output 

Changes in wind speed throughout the Dogger Bank zone will cause the power output 

from the wind turbines to vary continually. It is important that the AC hub control 

system philosophy is able to maintain control of voltage, frequency and complex power 

given the fluctuating power input from the WTs. The power reference to each 

equivalent WT (𝑃𝑊𝑇∗ ) is varied according to a variable wind speed input (𝑣𝑊𝑇∗ ) to 

simulate the effect of variable wind speed in the Dogger Bank zone. 

The mechanical power extracted by a WT rotor is described by the following equation 

[94]: 

 𝑃𝑚 = 12𝜌𝐴𝑟𝐶𝑝(𝜆, 𝜃)𝑣𝑤3  (4.36) 

Where 𝜌 is the air density in kg/m3, 𝐴𝑟 is the rotor swept area in m2, 𝐶𝑝 is the power 

coefficient which is dependent on the tip speed ratio 𝜆 and the pitch angle 𝜃, and 𝑣𝑤 is 

the wind speed in m/s. The wind power input 𝑃𝑊𝑇∗  to the FRC-WT is assumed to equal 

the mechanical power input 𝑃𝑚. Given the WT parameters used in this study as 
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specified in [79], (4.33) was rearranged for 𝐶𝑝, which is equal to 0.3 at the nominal 

power output and wind speed. With 𝐶𝑝 fixed at 0.3, the mechanical power input to the 

FRC-WT was determined from the wind speed using (4.33). 

The wind power input 𝑃𝑊𝑇∗  to the WT will not change immediately with changes in 

wind speed 𝑣𝑊𝑇∗  due to the inertia of the turbine blades, hub and PMSG. To simulate 

this inertia, a first-order transfer function is inserted with time constant 𝜏𝑊𝑇. In [88], the 

effective inertia constant for a 5 MW FRC-WT is 2.7 s. Therefore, 𝜏𝑊𝑇 was assumed 

equal to 3 s. 𝑣𝑊𝑇∗  is generated separately for each WT equivalent model and consists of three 

components including average wind speed, a gust and turbulence [94]. The average 

wind speed 𝑣𝑊𝑇_𝑎𝑣∗  is consistent across all WAs and is assumed as 10 m/s. A wind gust 𝑣𝑊𝑇_𝑔𝑠𝑡∗  is represented using the following equation [94], 

 𝑣𝑊𝑇_𝑔𝑠𝑡∗ = 𝐴𝑔𝑠𝑡 [1 − cos (2𝜋 ( 𝑡𝐷𝑔𝑠𝑡 − 𝑇𝑠_𝑔𝑠𝑡𝐷𝑔𝑠𝑡 ))] (4.37) 

Where 𝐴𝑔𝑠𝑡 is the amplitude of the gust [m/s], 𝐷𝑔𝑠𝑡 is the duration of the gust [s] and 𝑇𝑠_𝑔𝑠𝑡 is the starting time of the gust. 𝐴𝑔𝑠𝑡 and 𝐷𝑔𝑠𝑡 are assumed equal across all WAs. 𝑇𝑠_𝑔𝑠𝑡 is staggered across all WAs to represent a gust of wind moving through the 

Dogger bank zone. 

Turbulent wind is simulated according to a turbulent wind model as described in [95]. 

The turbulent wind is determined by passing white noise through an appropriate shaping 

filter. The amplitude of the turbulent component is equal for all WAs and is up to 20 % 

of the average wind speed. The white noise generator of each turbulence model is 

seeded with a different integer for each WA. 

Figure 4.23 presents the variable wind speed reference 𝑣𝑊𝑇∗  applied to each FRC-WT 

equivalent model. 
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Figure 4.23 – Variable wind speed across all WAs 

Figure 4.24 presents the change in active power generated at each WT bus using the 

master-slave control strategy (top graph) and droop control strategy (bottom graph). It 

can be seen in the top and bottom graph of Figure 4.24 that the FRC-WTs operating 

under the master-slave and droop control schemes respectively, operate satisfactorily. 

Note that although both graphs in Figure 4.24 look identical, the voltage profile in each 

simulation is different. 

 

Figure 4.24 –Active power generation at each FRC-WT bus with variable wind speed 

Figure 4.25 presents the change in active power through each offshore VSC bus using 

the master-slave control strategy (top graph) and droop control strategy (bottom graph). 
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Figure 4.25 – Active power at each offshore VSC bus with variable wind speed 

In the top graph of Figure 4.25 the active power through bus 1 varies according to the 

WA active power input. As the offshore VSC connected to bus 1 is designated as the 

master converter, it is solely responsible for responding to changes in WA output. The 

offshore VSCs connected to bus 2, 3 and 4 are designated as slave VSCs. This is 

reflected in the result as the active power through bus 2, 3 & 4 is constant. 

In the bottom graph of Figure 4.25 the active power through bus 1, 2 & 3 is equal and 

varies according to the WA active power input. This is expected as the offshore VSCs 

connected to bus 1, 2 & 3 participate in droop control and have equal droop gains. The 

offshore VSC connected to bus 4 is designated as slave VSCs and therefore the active 

power through bus 4 remains constant. 

Figure 4.26 presents the change in voltage magnitude at each bus using the master-slave 

control strategy (top graph) and droop control strategy (bottom graph). 
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Figure 4.26 – Voltage magnitude at each offshore bus with variable wind speed 

In Figure 4.26 it can be seen that the voltage magnitude varies with the change in wind 

power input. When comparing the master-slave and droop control strategies it can be 

seen that the master-slave strategy exhibits a less smooth response compared to the 

droop control strategy. The deviation seen in both strategies is considered as acceptable 

as the voltage magnitude remains well the statutory limits defined in [77]. The deviation 

that is apparent is caused by the varying reactive power flow in the network. Figure 4.27 

presents the change in reactive power through each offshore VSC bus using the master-

slave control strategy (top graph) and droop control strategy (bottom graph). 

 

Figure 4.27 – Reactive power at each offshore VSC bus with variable speed 
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In the top graph of Figure 4.27, the reactive power through bus 1 varies according to the 

WA active power input. As the wind power input increases, the reactive power absorbed 

by the master VSC decreases. As more current flows through the offshore AC cables 

and transformers, the series 𝐼2𝑋 reactive power loss increases and partially compensates 

the reactive power generated by the shunt capacitance of the AC cables, thus relieving 

the burden on the VSC. For the droop control strategy, the change in reactive power 

flow through is distributed amongst three offshore VSCs and therefore the change in 

reactive power flow is less for any single offshore VSC. 

In conclusion, the results presented in figures 3.44 to 3.48 show that both the master-

slave and droop control schemes can successfully manage the voltage, current and 

complex power flow in the offshore AC hub with varying wind power input. However, 

the droop control scheme is able to automatically balance reactive power consumed by 

the participating VSCs which improves the smoothness of the voltage profile across the 

network. 
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4.4 Impact of fault outages in the offshore AC hub 

The master-slave and droop control schemes are designed for use under normal 

operating conditions such as a change in dispatch order or wind speed. Under abnormal 

operating conditions, e.g. due to a fault, the control schemes could fail to maintain 

adequate control of voltage, frequency and complex power.  

Failure to maintain voltage, frequency and complex power to nominal levels for a short 

time period is permissible, provided the following conditions are met: 

 The maximum withstand levels of all equipment are not exceeded. 

 The duration a given parameter differs from its nominal operating range is not 

sufficient to damage any equipment. 

 The system returns to an acceptable operating condition following clearance of 

the fault. 

 The fault does not affect the onshore MITS beyond the limits stipulated by the 

SQSS standard. 

The behaviour of an offshore AC hub during a fault depends on the type and location of 

the fault. In order to determine the implications of a fault on the operating condition of 

the offshore AC hub, three separate faults are applied to the offshore AC hub. The 

droop control scheme is selected as the AC hub control strategy. The fault scenarios 

include: 

 A DC pole to pole fault on one of the HVDC links connected to the UK MITS. 

 A 3-phase fault occurring on one of the HVAC bus bars within the offshore AC 

hub. 

 A 3-phase fault occurring on one of the HVAC cables which interconnect two 

adjacent HVDC platforms. 

4.4.1 DC pole-pole fault 

The DC pole-pole fault is a severe fault affecting the HVDC system and possibly the 

wider offshore network. In a symmetrical monopole VSC, as used in this study, it is 

characterised by a high fault current between the poles on the DC side [76]. A DC pole-

pole fault is applied to HVDC link 1 of the AC hub model to study the implications on 

the AC hub and MITS. 
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At 𝑡 = 0.1 s, a DC pole-pole fault is applied at the midpoint of the cable of HVDC link 

1. After 1 ms, the VSC equivalent cell capacitors are isolated, the equivalent arm 

voltage sources are isolated and the diodes are inserted to simulate blocking of the 

IGBTs in the on and offshore VSCs. The AC CBs open to isolate the faulted HVDC 

link from the MITS and the offshore AC hub. The three-phase AC CB model provided 

in SimPowerSystems was used in the AC hub model. The model is capable of breaking 

the fault current at the next zero crossing after a trip signal is received. Modern high-

speed CBs are able to break the current in two cycles of the fundamental current 

waveform, while discrimination and selection of the correct protective action can be 

achieved within a single cycle [63]. Therefore, the trip signal is sent to the appropriate 

CBs after 60 ms and the current flow is broken at the next zero crossing for each phase. 

As shown in Figure 4.28, the DC link voltage of VSC1 drops rapidly. This is followed 

by a fault current contribution from the offshore VSC of approximately 2.5 pu as shown 

in Figure 4.29. 

 

Figure 4.28 – DC link voltage across each HVDC link following a DC pole-pole fault 
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Figure 4.29 – Current magnitude through each offshore VSC bus following a DC pole-pole fault 

From Figure 4.28 and Figure 4.29, the extent of the impact on the other healthy HVDC 

links is clearly apparent. Figure 4.28 shows the DC voltage of HVDC links 2 & 3 rise 

quickly following the fault. This is due to an increase in current in to the HVDC links 

from the offshore VSC, as can be seen in Figure 4.29. The DC link voltage of HVDC 

links 2 & 3 does not go above the upper voltage limit as it is managed by the DC 

chopper. The current through the VSCs does however increase beyond the upper current 

limit of the offshore VSCs which is 1.1 pu. This suggests the healthy offshore VSCs are 

unable to control the fault current during and after the occurrence of the fault. 

Figure 4.30 shows the voltage magnitude at the AC buses throughout the AC hub. The 

voltage magnitude across all buses drops initially until the AC breaker isolates the 

faulted HVDC link. After the AC breaker is opened, the voltage magnitude drops 

further initially before rising to approximately 1.3 pu after 275 ms. This level of 

voltage magnitude violates the upper voltage limit of the offshore AC network of 1.1 pu. This implies that the remaining healthy offshore VSCs operating under droop 

control are unable to maintain control of the voltage magnitude following clearance of 

the fault. 
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Figure 4.30 – Voltage magnitude at each offshore bus following a DC pole-pole fault 

Figure 4.31 shows the active power infeed at the onshore interface points of each 

onshore VSC. Loss of infeed from the faulted HVDC link (VSC 1) is expected and 

observed as it will no longer be able to transfer active power once the AC CBs are 

opened. Until the CBs are opened, a significant active power oscillation is observed 

from onshore VSC 1. This oscillation may severely impact the MITS. 

Onshore VSCs 2 & 3 initially increase their output up to 1.1 pu. This is a result of the 

increase in DC link voltage as observed in Figure 4.28. The onshore VSCs are tasked 

with maintaining DC link voltage therefore to address any overshoot they must export 

more active power. The infeed is approximately constant throughout the fault duration 

but significantly reduces after approximately 275 ms. This is after the fault is cleared 

and coincides with the peak in AC voltage magnitude observed in Figure 4.30. 
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Figure 4.31 – Active power infeed at each onshore interface point following a DC pole-pole fault 

In conclusion, the results presented in figures 4.28 to 4.31 confirm that the impact of a 

DC pole-pole fault on a single HVDC link greatly affects the offshore AC hub and 

MITS. The excess current through the healthy offshore VSCs cannot be tolerated for the 

duration it is experienced and therefore are likely to shut down. In addition, the voltage 

profile offshore is unacceptable after the fault is cleared. This is due to a power 

imbalance in the network. Finally, the MITS may be affected by significant power 

oscillations and loss of infeed above that stipulated in [96]. 

4.4.2 3ph fault on an offshore bus 

The 3ph fault occurring on an offshore bus is an unlikely but severe fault that could 

affect the entire AC hub. The offshore AC cables have a relatively low series impedance 

therefore the fault is expected to impact the voltage profile across the entire network. A 

3ph fault is applied to bus 3 of the AC hub model to study the implications on the AC 

hub and MITS. A double bus-bar arrangement is assumed for each bus therefore it is 

assumed that the faulted section can be isolated without influencing the topology of the 

AC hub. 

At 𝑡 = 0.1 s, a 3ph fault is applied to bus 3. The fault impedance was assumed as very 

small (𝑍𝑓 = 1 mΩ) to give the worst case scenario. At 𝑡 = 0.16 s the AC CBs open to 

isolate the faulted section of bus-bar and the remaining healthy bus-bar is utilised. 

Figure 4.32 shows the voltage magnitude at the AC buses throughout the AC hub. 
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Figure 4.32 – Voltage magnitude at offshore VSC buses following a 3ph fault on an offshore bus 

The voltage magnitude at bus 3 drops rapidly to zero. The voltage magnitude at the 

other buses drop to less than 0.5 pu, with those buses farthest from the faulted bus 

suffering the smallest reduction in voltage magnitude. The voltage magnitude at all 

buses begins to rise once the AC breaker isolates the faulted bus section after 60 ms. 
After the AC breaker is opened, the voltage magnitude at all buses above the upper 

voltage limit of the offshore AC network of 1.1 pu. When 𝑡 > 0.35 s the voltage 

magnitude at all buses drops below the upper voltage limit and returns to a steady state 

condition. 
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Figure 4.33 – Current magnitude through each offshore VSC bus following a 3ph fault on an 

offshore bus 

Figure 4.33 shows the current magnitude flowing through the offshore VSCs. 

Immediately after the fault, offshore VSCs 1, 2 & 3 experience a reduction in current 

magnitude followed by an increase up to the current limit. Offshore VSC 4 experiences 

an immediate increase in current magnitude. This difference can be explained by 

considering the pre-fault condition. Offshore VSCs 1, 2 & 3 are all absorbing active 

power from the AC hub before the fault as can be seen in Figure 4.34. During the fault 

they supply reactive power to the fault as shown in Figure 4.35. Therefore the current 

must first change direction which explains the initial reduction in current magnitude 

seen in Figure 4.33.  

It should be noted that the dynamic shown in Figure 4.33 after re-closing the breaker (𝑡 > 0.16 s) is heavily dependent upon the controller action present in each VSC. The 

healthy VSCs would trip given the excessive post-fault current magnitude. 
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Figure 4.34 – Active power through each offshore VSC bus following a 3ph fault on an offshore bus 

 

Figure 4.35 – Reactive power through each offshore VSC bus following a 3ph fault on an offshore 

bus 

From Figure 4.34 it can be seen that the active power through the each VSC returns to 

the pre-fault active power flow after approximately 0.7 s. However, the reactive power 

flow through offshore VSCs 1, 2 & 3 differs to the pre-fault reactive power flow. VSCs 

2 & 3 are absorbing reactive power while VSC 1 is generating reactive power. This 

leads to the undesirable steady-state condition where the droop VSCs work against each 

other rather than sharing the reactive power load. This is a new stable but undesirable 

operating point. 
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In conclusion, the results presented in Figures 4.32 to 4.35 show that the impact of a 

3ph fault on a single bus affects the offshore AC hub and MITS. The over-voltage 

following clearance of the fault at all buses in the AC hub, although short-lived is not 

acceptable. Two of the offshore VSCs experience an over-current above the current 

limit. The voltage profile and active power flows suggest the system will return to an 

acceptable steady state condition. However, closer observation of the reactive power 

flow through offshore VSC 1 reveals that it differs to that of offshore VSC 2 & 3. All 

participating droop VSCs have the same droop gains and therefore should share the 

reactive power demand equally. 

4.4.3 3ph fault on an offshore HVAC cable 

The 3ph fault occurring on an offshore HVAC cable is a more likely event than a bus 

fault due to the relatively high probability, for example, of damage being caused by a 

ship’s anchor. It is also a severe fault that could affect the entire AC hub. A 3ph fault is 

applied to line 2 of the AC hub model to study the implications on the AC hub and 

MITS. It is assumed that the entire circuit (including two parallel 3ph cables) is 

damaged and therefore must be removed from service. 

At 𝑡 = 0.1 s, a 3ph fault is applied at the midpoint of line 2. The fault impedance was 

assumed as very small (𝑍𝑓 = 1 mΩ) to give the worst case scenario. At 𝑡 = 0.16 s the 

AC CBs open to isolate the faulted cable circuit. Figure 4.36 shows the voltage 

magnitude at the AC buses throughout the AC hub. 
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Figure 4.36 – Voltage magnitude at each offshore bus following a 3ph fault on an offshore HVAC 

cable 

A similar result is observed as was presented for the 3ph fault at bus 3. However for the 

3ph cable fault, the voltage magnitude does not reach zero at any bus because there is 

always some cable impedance between the fault location and any given source. The 

voltage magnitude at all buses drops to less than 0.5 pu, with those buses farthest from 

the faulted bus suffering the smallest reduction in voltage magnitude. The voltage 

magnitude at all buses begins to rise once the AC breaker isolates the faulted bus 

section after 60 ms. After the AC breaker is opened, the voltage magnitude at the FRC-

WT buses (4–9) briefly rise above the upper voltage limit of the offshore AC network of 1.1 pu. 

Figure 4.37 shows the active power infeed to the MITS. The infeed from all onshore 

VSCs reduces to zero during the fault. The infeed from the onshore VSCs 1, 2 & 3 goes 

positive which implies that the HVDC links are absorbing power from the MITS. Once 

the fault is cleared, the infeed returns to the pre-fault steady state condition. 
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Figure 4.37 – Active power infeed at each onshore VSC interface point following a 3ph fault on an 

offshore HVAC cable 

Figure 4.38 shows the reactive power flow through the offshore VSCs. Again, the droop 

controlled VSCs do not share the reactive power load equally following clearance of the 

fault. 

 

Figure 4.38 – Reactive power at each offshore VSC bus following a 3ph fault on an offshore HVAC 

cable 

In conclusion, the results presented in Figures 3.55 to 3.57 show that the impact of a 

3ph fault on HVAC cable circuit affects the offshore AC hub and MITS. The over-

voltage following clearance of the fault at all buses in the AC hub, although short-lived 

is not acceptable. The active power infeed is restored to pre-fault levels following 
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clearance of the fault. Again, the reactive power flow through offshore VSC 1 reveals 

that it differs to that of offshore VSC 2 & 3. Again all participating droop VSCs have 

the same droop gains and therefore should share the reactive power demand equally. 
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5 Chapter 5 – Control systems for managing faults in an 

offshore AC hub 

5.1 Introduction 

Faults lead to unacceptable operating conditions in the offshore AC hub. This was 

proven in chapter 3 where it was shown that equipment operating limits were 

violated, the post-fault steady-state reactive power flow was undesirable and the 

loss of infeed to the MITS was too great during and after a DC pole-pole fault 

occurred. If an offshore AC hub is to be built in practice, these issues must be 

addressed. In this chapter, two fault management systems are applied to the 

offshore AC hub. The performance of each fault management system is compared 

given three different faults scenarios. 

Various fault management systems for offshore hubs have been identified in the 

literature [56]–[60], [97]. These systems primarily address power imbalance and 

ride-through of faults occurring at the onshore IP and across the poles of the 

HVDC links. The systems identified are de-centralised, therefore a number of 

controllers operate independently acting only on information available locally 

(voltage, frequency). This negates the requirement for low latency 

communication infrastructure, for application in the offshore AC hub. The result 

of the combined effort of de-centralised controllers located at each VSC and 

FRC-WT is to effectively manage certain faults that could arise in the particular 

test networks that are presented (e.g. ref [62] using two VSC and two FRC-WT). 

A centralised fault management system is presented in this chapter for 

comparison with the de-centralised fault management system. The centralised 

system has a single central controller which gathers information about the 

network in real-time and issues necessary instructions to local controllers should 

a fault occur. Applied to the offshore AC hub, the central controller could reside 

on any of the offshore HVDC platforms and the local controllers are the control 

loops of each VSC and FRC-WT. 
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The main potential disadvantage of the centralised fault management technique is 

its reliance on low latency communication infrastructure, which is not required by 

decentralised controllers. The centralised fault management system uses an online 

optimal power flow (OPF) algorithm to determine a new steady state post fault 

operating condition. The main advantage, as will be shown later in this chapter, is 

that the centralised controller is able to minimise the detrimental impacts of a 

range of faults in a complex offshore hub through fast provision of an acceptable 

post-fault operating condition. 

5.2 De-centralised fault management system 

A de-centralised fault management system is described in [62]. The system 

regulates power balance in an offshore transmission system in response to faults 

at the onshore IP and on the HVDC links. It achieves this by varying the 

operating frequency of the offshore AC grid. Local controllers use the change in 

operating frequency (as measured locally), to signal a reduction in power output 

and hence correct any power imbalance which is present as a result of a fault. A 

key benefit of this system is that it does not rely upon low-latency communication 

between onshore and offshore controllers. 

Other fault management systems are presented in the literature. However, the 

system presented in [62] is most interesting as the authors have applied it to an 

offshore transmission system which could be considered as a small AC hub. The 

offshore transmission system considered in [62] is presented in Figure 5.1. 
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Figure 5.1 – Offshore network configuration used in [62] 

As seen in Figure 5.1, the offshore network consists of two HVDC links and two 

offshore WAs. Each WA is represented by a single equivalent FRC-WT model. 

Each FRC-WT is connected to an offshore VSC. The offshore VSCs are 

connected together by a single HVAC cable which is represented by a nominal π-

section. It is the HVAC cable that is of key significance as it forces the otherwise 

separate offshore HVDC converters and WAs to share a common operating 

frequency. The authors implement a droop control strategy to allow both offshore 

VSCs to participate in managing voltage and frequency in the offshore network. 

In chapter 3, a model of an offshore AC hub was developed in SimPowerSystems 

as shown in Figure 5.2. 

HVAC inter-platform 

cable 
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Figure 5.2 – Single line diagram of the offshore AC hub and HVDC links 

The model was implemented using the droop control strategy as presented in 

Chapter 4 of this thesis. The offshore AC hub model developed is considerably 

larger than that presented in [1] and Figure 5.1 as it contains four HVDC links 

and six WAs instead of two HVDC links and two WAs. In addition, the model is 

more complex as it represents the AC cable sections right up to the first WT of 

each string. 

When there is more than one HVDC link operating in parallel, as is the case in an 

offshore AC hub, a fault in one of the HVDC links reduces the active power 
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through the faulted link to zero. Two possible outcomes exist following the 

occurrence of a fault in one of the HVDC links, which depend on the pre-fault 

operating conditions: 

1. If the amount of active power generated in the offshore AC hub is less 

than the available onward transmission capacity of the remaining healthy 

HVDC links, then the active power must be re-directed through those 

links. 

2. If the amount of active power generated in the offshore AC hub is greater 

than the available onward transmission capacity of the remaining healthy 

HVDC links, then a power imbalance will exist. This power imbalance 

must be corrected by reducing generation in order to avoid overloading 

transmission assets and causing loss of infeed to the MITS. 

The first outcome is actioned by the droop control applied to each participating 

offshore VSC. The reduction in active power through the faulted HVDC link 

causes the active power through the remaining healthy HVDC links to increase. 

The frequency produced by the remaining healthy offshore VSCs increases as 

they absorb more active power as determined by the droop characteristic. 

The second outcome cannot be remedied by the droop control alone. Additional 

control action is required to reduce the active power generated by the FRC-WTs 

and dispatch controlled VSC. To implement the de-centralised fault management 

system defined in [62], two key additions were made to the AC hub model 

including: 

 A frequency modulation controller on each offshore VSC participating in 

droop control (offshore VSCs 1-3). 

 A power reduction controller on each FRC-WT and each power dispatch 

controlled offshore VSC (offshore VSC 4). 

5.2.1 Frequency modulation controller 

The frequency modulation controller implemented on each offshore VSC 

participating in droop control is shown in Figure 5.3. 
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Figure 5.3 – Frequency modulation controller applied to droop controlled offshore VSCs 

Under normal operating conditions the DC voltage is below the DC voltage upper 

limit 𝑉𝑑𝑐_𝑢𝑝. If a fault occurs which causes a power imbalance between the 

onshore and offshore VSCs then the DC voltage will rise above the DC voltage 

upper limit. The frequency modulation controller is then activated and a transient 

frequency adjustment Δ𝑓 is made according to (5.1). 

 Δ𝑓 = 𝐾𝑓𝑝(𝑉𝑑𝑐 − 𝑉𝑑𝑐_𝑢𝑝) + 𝐾𝑓𝑑 d𝑉𝑑𝑐d𝑡  (5.1) 

Where 𝐾𝑓𝑝 and 𝐾𝑓𝑑 are the proportional and derivative gains respectively. The 

parameters used to for the frequency modulation controller are shown in Table 

5.1. 
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Table 5.1 - Frequency modulation controller parameters 

Parameters 
Value Units 

Symbol Description 

Vdc Nominal DC voltage 640.0 kV 

Vdc_up Upper DC voltage limit 653.0 kV 

Kfp Proportional gain 0.80 pu 

Kfd Derivative gain 0.01 pu 

The power reduction controller implemented on each FRC-WT and dispatch 

controlled offshore VSC is shown in Figure 5.4. 

 

Figure 5.4 – Power reduction controller applied to each dispatch controlled offshore VSC 

and FRC-WT 

Under normal operating conditions the offshore AC grid frequency 𝑓𝑚 as 

measured by the FRC-WT PLL is below the upper frequency limit 𝑓𝑢𝑝. If a fault 

occurs which results in an increase in DC voltage on the HVDC link, the offshore 

grid frequency will increase above 𝑓𝑢𝑝 and the power reduction controller will be 

activated. The power reduction controller reduces the active power reference 𝑃𝑊𝑇∗ by multiplying it by the reduction factor 𝐾𝑑 which is determined by (5.2). 

 𝐾𝑑 = 1 − 𝐾𝑑𝑃(𝑓𝑚 − 𝑓𝑢𝑝) − 𝐾𝑑𝐷 d𝑓𝑚d𝑡  (5.2) 

Where 𝐾𝑑𝑃 and 𝐾𝑑𝐷 are the proportional and derivative gains respectively. The 

parameters used to for the power reduction controller are shown in Table 5.2. 
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Table 5.2 – Power reduction controller parameters 

Parameters 
Value Units 

Symbol Description 

fm Nominal frequency 50.0 Hz 

fup Upper frequency limit 50.5 Hz 

KdP Proportional gain 0.40 pu 

KdD Derivative gain 0.02 pu 

5.2.2 Test of frequency modulation and power reduction method: 

To test the performance of the de-centralised method, a DC pole-pole fault was 

applied to HVDC link 1. Figure 5.5 presents the AC voltage magnitude across all 

HVAC buses. 

 

Figure 5.5 - Voltage magnitude at each offshore bus following a DC pole-pole fault 

The voltage across all HVAC buses reduces significantly during the fault. The 

voltage reduction is in fact greater than the response with no fault management 

method as was shown in Chapter 4. This suggests that this fault management 

method can actually increase the severity of the fault.  

Figure 5.6 shows the DC voltages across the HVDC links. The voltages measured 

at offshore VSC 2 & 3 increase above 1.1 pu which is the upper DC voltage 

limit. In addition, a voltage oscillation due to an exchange of energy between 

HVDC link 2 & 3 is observed when 𝑡 > 0.5 s. 
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Figure 5.6 – Voltage across each HVDC link following a DC pole-pole fault 

Figure 5.7 shows the active power delivered at the FRC-WT buses. The active 

power output reduces to zero throughout the duration of the fault, which is due to 

the collapse in voltage. Again, considerable oscillation is present after the fault, 

however it can be seen that the active power output reduces following the fault. 

This shows that the power reduction controllers are operating, albeit less than 

satisfactorily due to the oscillation. 

 

Figure 5.7 – Active Power at each FRC-WT bus following a DC pole-pole fault 
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Figure 5.8 shows the frequency measured at each offshore VSC bus. It can be 

seen that both VSC 2 and VSC 3 produce a frequency that increases then 

decreases. In addition, an oscillatory behaviour is observed between the two as 

when one increases the other does not. This suggests there is a problem associated 

with the frequency modulation controllers hunting against one another. This also 

explains why there is an exchange of energy between HVDC links 2 & 3 as was 

highlighted in Figure 5.6. 

 

Figure 5.8 – Frequency at each offshore VSC bus following a DC pole-pole fault 

The PLLs located at the FRC-WTs and dispatch controlled offshore VSC attempt 

to replicate the frequency produced by the droop controlled offshore VSCs by 

locking on to the phase of the local voltage measurement. The frequency 

produced by the PLLs at the FRC-WTs is shown in Figure 5.9. 
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Figure 5.9 - Frequency at each FRC-WT bus following a DC pole-pole fault 

As can be seen in Figure 5.9, the frequency as measured at the FRC-WTs 

contains considerable oscillation. The performance of the PLL will strongly affect 

the performance of the power reduction controller, which explains the results seen 

in Figure 5.7. The PLL provides the frequency measurement 𝑓𝑚 from which the 

power reduction acts upon. From Figure 5.9 it can be seen that for the 200 ms 
following the occurrence of the fault, the PLL swings between the upper and 

lower saturation limits which are set at 55 Hz and 45 Hz respectively. 

In a bid to improve the performance of the de-centralised method, the gains and 

thresholds of the frequency modulation and power reduction controllers were 

adjusted but without alteration to the system architecture. A trial and error 

method was used to try and improve the performance, which is the same method 

used in [62]. Unfortunately, a set of gains which improved the response of the 

controllers could not be found. 

5.2.3 Modifications to de-centralised method 

For the system to function correctly, two issues must be overcome. Firstly, the 

low frequency oscillatory interaction between the droop controlled offshore VSCs 

must be addressed. Secondly, the performance of the power reduction controllers 

must be improved. 
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The frequency modulation controller was modified by replacing the PD controller 

with a PI controller. The power reduction controller was modified to dampen the 

response by introducing a frequency threshold and upper limit, as well as a first-

order low-pass filter. In addition, the derivative action was removed. The power 

reduction factor is determined by (5.3): 

 𝐾𝑑 = {  
  1 − 1𝑓𝑚 − 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑓𝑢𝑝 − 𝑓𝑡ℎ𝑟𝑒𝑠ℎ0  for  𝑓𝑚 < 𝑓𝑡ℎ𝑟𝑒𝑠ℎ𝑓𝑡ℎ𝑟𝑒𝑠ℎ < 𝑓𝑚 < 𝑓𝑢𝑝𝑓𝑚 > 𝑓𝑢𝑝  (5.3) 

Where, 

 𝑓𝑚 is the frequency measured by the PLL. 

 𝑓𝑡ℎ𝑟𝑒𝑠ℎ is the threshold at which the frequency modulation controller 

begins to operate. 

 𝑓𝑢𝑝 is the maximum allowed DC voltage 

The modifications to the power reduction controller are highlighted in Figure 

5.10. 

 

Figure 5.10 – Modified power reduction controller 

The new parameters for both the frequency modulation controller and power 

reduction controller are shown in Table 5.3. 
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Table 5.3 – Updated frequency modulation and power reduction control parameters 

Parameters 
Value Units 

Symbol Description 

Frequency modulation controller:     

Vdc Nominal DC voltage 640.0 kV 

Vdc_up Upper DC voltage limit 653.0 kV 

Kfp Proportional gain 0.80 pu 

Kfi Integral gain 12.80 pu 

Power reduction controller:     

fm Nominal frequency 50.0 Hz 

fthresh Frequency threshold 50.5 Hz 

fup Upper frequency limit 52.0 Hz 

TLP Low-pass filter time constant 0.05 s 

5.2.4 Re-test following modifications to de-centralised method 

Again, a DC pole-pole fault is applied to HVDC link 1. Figure 5.11 shows the 

voltage magnitude at the HVAC buses throughout the AC hub. The voltage 

magnitude across all buses drops initially on occurrence of the fault. However, 

the magnitude only drops to approximately 0.85 pu. The maximum voltage is 

slightly higher than the upper voltage limit at 1.12 pu. 

 

Figure 5.11 - Voltage magnitude at each offshore bus following a DC pole-pole fault 

As shown in Figure 5.12, the DC link voltage of VSC1 drops rapidly. The voltage 

across the healthy HVDC links remain below the upper DC voltage limit. It is 

important to note that DC choppers are not used in this simulation. 

 

 

Bus 1

Bus 2

Bus 3

Bus 4

Bus 5

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1

1.2

Time (s)

V
o
lt

ag
e
 (

p
u

) Minimal reduction of bus 

voltage during fault 



130 

 

 

 

Figure 5.12 - Voltage across each HVDC link following a DC pole-pole fault 

The active power flowing through the offshore VSCs is shown in Figure 5.13. 

The active power through the offshore VSC connected to bus 1 reduces to zero as 

expected due to the fault. The active power through the offshore VSCs connected 

to bus 2 & 3 increases to compensate. The active power through the offshore 

VSC connected to bus 10 reduces, which confirms the power reduction controller 

is operating. 

 

Figure 5.13 – Active power through each offshore VSC bus following a DC pole-pole fault 
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Figure 5.14 shows the active power through the FRC-WT buses. Again, the 

operation of the power reduction controllers is validated by the reduction in active 

power transfer through all buses. 

 

Figure 5.14 - Active power through each FRC-WT bus following a DC pole-pole fault 

Figure 5.15 shows the frequency at each offshore VSC. The frequency of VSC 1 

drops to the nominal frequency as the active power reduces to zero due to the 

fault. The frequency at VSC 2 and 3 increases due to the rise in DC link voltage, 

confirming that the frequency modulation controllers are operating. The 

frequency at VSC 4 is determined by a PLL and oscillates between its limits 

during the fault before settling to a steady state condition. 
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Figure 5.15 - Frequency at each offshore VSC bus following a DC pole-pole fault 

The frequency as measured by each of the FRC-WTs is shown in Figure 5.16. As 

was the case for VSC 4, the frequency oscillates between its limits during the 

fault and then the oscillation decays once the fault is cleared. The new steady-

state operating frequency is just below 51 Hz. 

 

Figure 5.16 - Frequency at each FRC-WT bus following a DC pole-pole fault 
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5.3 Centralised fault management system 

A centralised fault management system is now developed and is referred to as the 

AC-hub controller. Figure 5.17 presents a simplified block diagram of the AC 

hub controller. The AC hub controller continually monitors the network and acts 

only when a fault is present. The controller pre-configures and executes an online 

OPF algorithm to calculate new dispatch orders for the post-fault condition. It is 

expected that the AC hub controller operates in a small amount of time i.e. less 

than 100 ms to ensure the impact of the fault on both the on and offshore 

network is minimised. 

 

Figure 5.17 – Simplified functional diagram of the AC hub controller 

5.3.1 Representation of the offshore AC hub 

It is important that a feasible post-fault operating condition is found as quickly as 

possible. It is expected that the new orders are ready for dispatch as soon as the 

fault has been cleared. To that end, a simple 10 bus representation of the AC hub 

network is used. The single line diagram (SLD) of the electrical network used for 
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the OPF algorithm is given in Figure 5.18. The voltage base is 220 kV and the 

apparent power base is 1200 MVA. 

 

Figure 5.18 – Single line diagram of offshore AC hub as used in OPF 

Each offshore VSC including the converter transformers are replaced by a voltage 

source at the respective offshore AC bus (buses 1, 2, 3 and 10). Each equivalent 

FRC-WT representing a single WA is replaced by a voltage source at the 

respective offshore AC bus (buses 4-9). The impedance of all electrical 

components between each offshore bus is combined into an equivalent 𝜋-section. 

Buses 1, 2 and 3 are droop controlled generator buses which collectively maintain 

voltage and frequency while distributing active (𝑃𝑔) and reactive (𝑄𝑔) power 

generation between them as determined by their respective droop gains. Buses 4 

to 10 are considered as generator buses which are available for dispatch. 

5.3.2 Functional description of the AC hub controller 

The internal functional layout of the AC hub controller is presented in Figure 

5.19. 
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Figure 5.19 - AC hub controller functional diagram 
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5.3.2.1 Input data 

The input data to the AC hub controller consists of two types. One type is polled 

data obtained through the SCADA system and the other is data which will trigger 

an immediate action by the algorithm, i.e. is event driven. 

Polled data: One aspect of the polled data is the CB status of each line present in 

the network. The CB status is used to determine the network configuration as 

lines are switched in or out under planned operating conditions. 

Another aspect of the polled data is the parameter values at each bus which are 

described as bus data. An example of the bus data is given in Table 5.4 and 

includes active and reactive power, voltage magnitude and voltage angle at each 

bus. 

Table 5.4 – Bus data table 

Bus No. P (pu) Q (pu) Vmag (pu) Vang (°) Bus type 

1 -0.9557 -0.1020 1.0002 0.0000 4 

2 -0.9557 -0.1019 0.9990 -0.1824 4 

3 -0.9557 -0.1020 1.0002 0.0000 4 

4 0.3750 0.0000 1.0079 10.1295 5 

5 0.3750 0.0000 1.0079 10.1295 5 

6 0.3750 0.0000 1.0067 9.9716 5 

7 0.3750 0.0000 1.0067 9.9716 5 

8 0.3750 0.0000 1.0079 10.1295 5 

9 0.3750 0.0000 1.0079 10.1295 5 

10 0.6667 0.0000 1.0038 0.5449 5 

An additional column is included in the bus data table called bus type. Each bus is 

defined a bus type number according to the way the OPF algorithm must treat 

each parameter at each bus. Each parameter can be either fixed, controllable or a 

state variable. For example, a slack bus will have fixed voltage magnitude and 

angle but variable active and reactive power. Table 5.5 is used as a reference to 

determine the appropriate bus number where: x is a state variable, u is a control 

parameter and p is a fixed parameter. 
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Table 5.5 – Bus parameter configuration look up table 

Bus type P Q Vmag Vang 
Description 

1 x x p p Slack bus 

2 u p x x P’Q bus1
 

3 p u x x PQ’ bus1
 

4 u u x x P’Q’ bus1
 

5 p p x x PQ bus 

1
A dash indicates that the parameter is a controllable. 

Trigger data: The trigger data stops the normal polling action of the AC hub 

controller and triggers the pre-configuration process. The trigger data consists of 

a table from which a fault code is read if any of the data in the table is non-zero. It 

is assumed that a fault occurring anywhere in the network is assigned a code 

defined as follows: 

- Asset Type: 

- 1 for fault on bus 

- 2 for fault on line 

- Bus No: 

- From bus 1 to 10 

- Bus Alarm No: 

- 1 onshore AC low voltage 

- 2 DC link over-voltage 

- 3 DC link over-current 

- Line Alarm No: 

- 1 over-current 

For example, a DC link over-current occurring on HVDC link 3 at bus 3 would 

have the fault code [1 3 3]. 

5.3.2.2 OPF pre-conditioning 

The OPF pre-conditioning phase analyses the input data and configures it 

appropriately for input into the OPF algorithm.  

Network post-fault state predictor: The first stage of the pre-conditioning phase is 

to predict the effect of the fault according to the fault code on the post-fault 

network state. This process is described in the flow chart in Figure 5.20. 
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If the fault present is related to a generator bus, then the objective of the function 

is to decide whether to force the active and/or reactive power to zero. The 

decision is made by comparing the fault code to a look up table which is pre-

defined with the appropriate action. The modification is achieved by modifying P 

and Q in the bus data table to zero and setting the bus type number to 5 which 

defines P and Q as fixed parameters. 

If the fault present is related to a line, then the objective of the function is to 

decide whether to take the line out of service. Again, the decision is made by 

comparing the fault code to a look up table which is pre-defined with the 

appropriate action, assuming that line is already in service. A new table is then 

created defining those lines in service according to the CB status and any post-

fault modification if necessary. 
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Figure 5.20 – Flow diagram of the network post-fault state predictor 

Admittance matrix constructor: The main objective of this function is to populate 

an admittance matrix according to the predicted post-fault network state. This 

process is described in the flow chart in Figure 5.21. 
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Figure 5.21 – Flow diagram of the admittance matrix constructor 

The function inputs include a table showing lines in service and a line data table. 

Table 5.6 presents the line data covering the entire network. The function extracts 

the necessary line data from Table 5.6 according to which lines are in service. 

The admittance of each branch of the network between bus m and bus n is defined 

by: 

 𝑌𝑎 = 𝑌𝑚𝑛 = 𝐺𝑚𝑛 + 𝑗𝐵𝑚𝑛 (5.4) 

To construct the admittance matrix, the function uses the following equations: 

For off diagonal elements, 

 𝑌𝑚𝑛 = −𝑌𝑎  (𝑚 ≠ 𝑛) (5.5) 
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For diagonal elements, 

 𝑌𝑚𝑚 =∑𝑌𝑚𝑛𝑛
1 + 𝑌𝑠ℎ𝑚  (5.6) 

Table 5.6 - Line data for offshore AC hub as used in OPF 

Line No. 
From bus m to bus n Series Z(pu) Series Y(pu) Shunt Y(pu) 

Busm Busn R X G B Y/2m Y/2n 

1 1 2 0.0066 0.0296 7.1475 -32.1989 0.0482 0.0482 

2 1 4 0.0578 0.4734 0.2540 -2.0816 0.0497 0.0037 

3 1 5 0.0578 0.4734 0.2540 -2.0816 0.0497 0.0037 

4 1 10 0.0066 0.0296 7.1475 -32.1989 0.0482 0.0482 

5 2 3 0.0066 0.0296 7.1475 -32.1989 0.0482 0.0482 

6 2 6 0.0578 0.4734 0.2540 -2.0816 0.0497 0.0037 

7 2 7 0.0578 0.4734 0.2540 -2.0816 0.0497 0.0037 

8 3 8 0.0578 0.4734 0.2540 -2.0816 0.0497 0.0037 

9 3 9 0.0578 0.4734 0.2540 -2.0816 0.0497 0.0037 

10 3 10 0.0066 0.0296 7.1475 -32.1989 0.0482 0.0482 

 

Power-imbalance checker: The objective of this function is to evaluate the 

balance of active power within the network. This process is described in the flow 

chart in Figure 5.22. 

 

Figure 5.22 – Flow diagram of the power-imbalance checker 
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Assuming a VSC is absorbing active power in the network, following a fault it 

may no longer be able to do so. This will cause a power imbalance as the amount 

of generation is greater than the load. To correct the power imbalance the amount 

of generation must be reduced. The OPF algorithm will only reduce the active 

power generation at a given bus if the active power parameter at that bus is set as 

a controllable parameter c. This is achieved by modifying the bus type number in 

the bus data table. 

To avoid unnecessary loss of infeed to the onshore transmission system, the buses 

with healthy offshore VSCs connected to them must ensure that the maximum 

capacity is used. To do this, the function identifies those buses which appear as a 

healthy load in the offshore AC hub and sets the active power parameter at that 

bus as fixed to the maximum. This is achieved by modifying the bus type number 

in the bus data table. 

OPF vector constructor: The main objective of this function is to create three 

vectors of parameters including: 

- [𝑥] is a vector of variable parameters 

- [𝑢] is a vector of control parameters 

- [𝑝] is a vector of fixed parameters 

This process is described in the flow chart in Figure 5.23. The function first 

identifies the bus type parameter located in the bus data table, which may or may 

not have been modified according to the network state and fault present. The bus 

type parameter is then compared to Table 5.5 to determine which vector to insert 

each of the bus parameters. 
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Figure 5.23 – Flow diagram of the OPF vector constructor 

5.3.2.3 Optimal power flow algorithm 

The post-fault operating condition is found using a classical optimal power flow 

(OPF) method known as the gradient method. In this application, the gradient 

method is an extension of the Newton-Raphson power flow method as defined in 

[68]. The method used is described in Appendix A. The objective of the Newton-

Raphson power flow is to solve a set of non-linear power flow equations for a 

given network. The key information obtained from the power flow is the voltage 

magnitude, voltage angle and complex power generation/demand at each bus 

[81]. 

Generalised OPF formulation: 

The generalised optimal power flow problem subject to equality and inequality 

constraints is as follows: 

Objective function: 
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 𝑓 =∑𝑃𝑖𝑁
𝑖=1 +∑𝑤𝑗𝑀

𝑗=1  (5.7) 

Subject to, 

Equality constraints: 

 

𝑔𝑝 = 𝑃𝑖 − 𝑃𝑖,𝑠𝑐ℎ
=∑|𝑌𝑖𝑛𝑉𝑖𝑉𝑛| 𝑐𝑜𝑠(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖) − (𝑃𝑔𝑖 − 𝑃𝑑𝑖)𝑁

𝑛=1= 0 

 

(5.8) 

 

𝑔𝑞 = 𝑄𝑖 − 𝑄𝑖,𝑠𝑐ℎ
= −∑|𝑌𝑖𝑛𝑉𝑖𝑉𝑛| 𝑠𝑖𝑛(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖) − (𝑄𝑔𝑖 − 𝑄𝑑𝑖)𝑁

𝑛=1= 0 

 

(5.9) 

Inequality constraints: 

 

𝑤𝑖𝑉
= { 
 𝐾𝑖𝑉𝑚𝑖𝑛(𝑉𝑖𝑚𝑖𝑛 − 𝑉𝑖)2 ∙ sgn(𝑉𝑖𝑚𝑖𝑛 − 𝑉𝑖) ≤ 0 ;  0 ;  𝐾𝑖𝑉𝑚𝑎𝑥(𝑉𝑖 − 𝑉𝑖𝑚𝑎𝑥)2 ∙ sgn(𝑉𝑖 − 𝑉𝑖𝑚𝑎𝑥) ≤ 0 ;  

 𝑉𝑖 < 𝑉𝑖𝑚𝑖𝑛𝑉𝑖𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖𝑚𝑎𝑥𝑉𝑖 > 𝑉𝑖𝑚𝑎𝑥  

(5.10

) 

 

𝑊𝑖𝐼𝑓= {𝐾𝑖𝐼𝑓(𝑌𝑎(𝑉𝑚 − 𝑉𝑛) − 𝐼𝑓𝑚𝑎𝑥)2 ∙ sgn(𝐼𝑓 − 𝐼𝑓𝑚𝑎𝑥) ≤ 0 ;0 ; 𝐼𝑓 > 𝐼𝑓𝑚𝑎𝑥0 ≤ 𝐼𝑓 ≤ 𝐼𝑓𝑚𝑎𝑥 

(5.11

) 

 

𝑊𝑖𝐼𝑡= {𝐾𝑖𝐼𝑡(𝑌𝑎(𝑉𝑛 − 𝑉𝑚) − 𝐼𝑡𝑚𝑎𝑥)2 ∙ sgn(𝐼𝑡 − 𝐼𝑡𝑚𝑎𝑥) ≤ 0 ;0 ; 𝐼𝑡 > 𝐼𝑡𝑚𝑎𝑥0 ≤ 𝐼𝑡 ≤ 𝐼𝑡𝑚𝑎𝑥 

(5.12

) 

 

𝑊𝑖𝑀𝑉𝐴= {𝐾𝑖𝑀𝑉𝐴 ((𝑃𝑖2 + 𝑄𝑖2) − (𝑆𝑖𝑚𝑎𝑥)2)2 ∙ sgn(𝑆𝑖 − 𝑆𝑖𝑚𝑎𝑥) ≤ 0 ;0 ; 𝑆𝑖 > 𝑆𝑖𝑚𝑎𝑥0 ≤ 𝑆𝑖 ≤ 𝑆𝑖𝑚𝑎𝑥 

(5.13

) 

Variable limits: 



145 

 

 

 𝑃𝑔𝑖𝑚𝑖𝑛 ≤ 𝑃𝑔𝑖 ≤ 𝑃𝑔𝑖𝑚𝑎𝑥,   𝑃𝑔𝑖 ∈ [𝑢] (5.14) 

 𝑄𝑔𝑖𝑚𝑖𝑛 ≤ 𝑄𝑔𝑖 ≤ 𝑄𝑔𝑖𝑚𝑎𝑥,   𝑄𝑔𝑖 ∈ [𝑢] (5.15) 

And where, [𝑥] is a vector of variable parameters [𝑢] is a vector of control parameters [𝑝] is a vector of fixed parameters 

Applied OPF formulation: 

The objective of the OPF algorithm is to find a feasible post-fault operating 

condition which is defined as there being no violation of constraints in the 

network. The objective function therefore becomes only to minimise the sum of 

the constraint penalties as given in (5.16). 

 𝑓 =∑𝑤𝑗𝑀
𝑗=1  (5.16) 

A detailed description of the applied OPF formulation is shown in Appendix A. 

5.3.2.4 Output 

The output of the AC hub controller is a set of power dispatch orders for the 

dispatch-able offshore VSCs and FRC-WTs (This does not include the healthy 

VSCs which are droop controlled). 

5.3.3 Test of AC hub controller algorithm 

The algorithm has been tested in response to a change in network state following 

a DC pole-pole fault. The original network parameters for the pre-fault condition 

are shown in Table 5.7. 
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Table 5.7 - Pre-fault bus data 

Bus No. P (pu) Q (pu) Vmag (pu) Vang (°) Bus type 

1 -0.9557 -0.1020 1.0002 0.0000 4 

2 -0.9557 -0.1019 0.9990 -0.1824 4 

3 -0.9557 -0.1020 1.0002 0.0000 4 

4 0.3750 0.0000 1.0079 10.1295 5 

5 0.3750 0.0000 1.0079 10.1295 5 

6 0.3750 0.0000 1.0067 9.9716 5 

7 0.3750 0.0000 1.0067 9.9716 5 

8 0.3750 0.0000 1.0079 10.1295 5 

9 0.3750 0.0000 1.0079 10.1295 5 

10 0.6667 0.0000 1.0038 0.5449 5 

The DC pole-pole fault on HVDC link 1 will stop the offshore VSC at bus 1 from 

transferring power. This is represented by reducing the allowable active and 

reactive power transfer through bus 1 to zero. Table 5.8 presents the bus data 

from a load flow analysis following occurrence of the fault. 

Table 5.8 - Bus data following occurrence of a fault 

Bus No. P (pu) Q (pu) Vmag (pu) Vang (°) Bus type 

1 0.0000 0.0000 1.0042 0.0000 5 

2 -1.4311 -0.1418 0.9973 -1.1690 4 

3 -1.4311 -0.1418 0.9973 -1.1842 4 

4 0.3750 0.0000 1.0120 10.0475 5 

5 0.3750 0.0000 1.0120 10.0475 5 

6 0.3750 0.0000 1.0049 9.0209 5 

7 0.3750 0.0000 1.0049 9.0209 5 

8 0.3750 0.0000 1.0049 9.0050 5 

9 0.3750 0.0000 1.0049 9.0050 5 

10 0.6667 0.0000 1.0043 -0.0458 5 

As can be seen in Table 5.8, the active and reactive power through buses 2 and 3 

increases to compensate for the reduction in active and reactive power in bus 1. 

This results in the inequality constraints 𝑊2𝑀𝑉𝐴 and 𝑊3𝑀𝑉𝐴 being violated. The 

OPF algorithm must take action to remove the constraint violation. 

In order to remove the constraint violation present at buses 2 and 3, the active 

power generation in the AC hub must be reduced. To achieve this, the algorithm 

identifies all those buses that are generating active power, which includes buses 4 

– 10. The active power generation at each of the generator buses is identified as a 

control parameter hence 𝑃𝑔4:10 becomes an element of [𝑢]. Once pre-configured, 
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the algorithm executes and produces a new table of bus data representing the 

post-fault operating condition with no active constraints as shown in Table 5.9. 

Table 5.9 - Post-fault bus data 

Bus No. P (pu) Q (pu) Vmag (pu) Vang (°) Bus type 

1 0.0000 0.0000 1.0193 0.0000 5 

2 -0.9550 -0.2934 1.0120 -0.7559 4 

3 -0.9550 -0.2934 1.0119 -0.6990 4 

4 0.2014 0.0000 1.0283 5.2050 2 

5 0.2014 0.0000 1.0283 5.2050 2 

6 0.2188 0.0000 1.0211 4.9841 2 

7 0.2188 0.0000 1.0211 4.9841 2 

8 0.2207 0.0000 1.0210 5.0911 2 

9 0.2207 0.0000 1.0210 5.0911 2 

10 0.6472 0.0000 1.0191 0.1638 2 

The OPF algorithm has reduced the active power output of the wind generation at 

buses 4 - 9 and also the imported power at bus 10 in order to correct the power 

imbalance in the offshore network. In addition, the reactive power absorbed by 

buses 2 and 3 has increased, mainly because the active power transfer through the 

HVAC cables has reduced which results in less compensation from those cables. 

The new power references are then calculated and passed to the relevant HVDC 

converters and wind turbine generators. 

5.3.4 Physical implementation of the centralised fault management system 

The method described above requires reliable, low latency connections in order to 

collect bus data and communicate the triggering signals required for proper 

operation of the AC hub controller. In a future offshore AC hub, it is reasonable 

to assume that each HVDC platforms, offshore AC platform and wind turbines 

would be connected via a fibre optic communication medium that is integral to 

the electrical power cables. This ensures that the physical communication 

‘backbone’ has low latency, i.e. capable of supporting communications over a 

timeframe shorter than a typical fault (<50ms). An estimation of the propagation 

delay of each fibre optic link in the offshore AC hub is shown in Figure 5.24. The 

speed of light in optical fibre is approximately 70 % of the speed of light in air, 

due to refraction of light in glass (i.e. a refractive index of 1.468) [98]. 
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Figure 5.24 – Fibre optic links in the offshore AC hub including distance and propagation 

delay 

Typically, fibre optic communications are implemented over secure digital 

hierarchy (SDH) networks for protection and control purposes [98]. One common 

example from present-day offshore HVDC platforms is in differential protection, 

where a dedicated fibre is used to allow two relays to communicate over a long 

distance [54]. 
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IEC 61850 is implemented in more modern substations. IEC 61850  is an 

international standard which covers digital communications within the substation 

[76]. As part of IEC 61850, a protocol known as GOOSE (Generic Object 

Oriented Substation Events) is specified. The GOOSE protocol spans the process 

bus which provides for communication between Intelligent Electronic Devices 

(IEDs) i.e. relays, and the station bus which communicates across the whole 

substation and is concerned with the SCADA system. The GOOSE protocol is 

implemented over a high speed Ethernet network. The GOOSE protocol specifies 

that packets must be communicated within 4 ms. The GOOSE protocol also 

allows for communication between substations which are geographically remote, 

again achieved over SDH fibre networks. This lends itself to the offshore AC hub 

which will consist of multiple offshore substations [76]. 

It is likely that redundant AC hub controllers will be present to guard against a 

single point of failure. However, only one AC hub controller should be 

operational in the AC hub network at any one time and so appropriate failover 

algorithms would need to be implemented to ensure a smooth transition between 

controllers. 

5.4 Comparison of centralised and de-centralised fault 

management systems 

To compare the performance of the de-centralised and centralised fault 

management systems described in 5.2 and 5.3, two fault scenarios are applied to 

the offshore AC hub (the bus bar fault is omitted as it has similar fault 

characteristics to the cable fault). The fault scenarios include: 

 A DC pole to pole fault on one of the HVDC links connected to the UK 

MITS. 

 A 3-phase fault occurring on one of the HVAC cables which interconnect 

two adjacent HVDC platforms. 

Failure to maintain voltage, frequency and complex power to nominal levels for a 

short time period is permissible, provided the following conditions are met: 
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 The maximum withstand levels of all equipment are not exceeded. 

 The duration a given parameter differs from its nominal operating range is 

not sufficient to damage any equipment. 

 The system returns to an acceptable operating condition following 

clearance of the fault. 

 The fault does not affect the onshore MITS beyond the limits stipulated by 

the SQSS standard. 

5.4.1 DC pole-pole fault 

A DC pole-pole fault is applied to HVDC link 1 of the AC hub model to study the 

implications on the AC hub and MITS. At 𝑡 = 0.1 s, a DC pole-pole fault is 

applied at the midpoint of the cable of HVDC link 1. After 1 ms, the VSC 

equivalent cell capacitors are isolated, the equivalent arm voltage sources are 

isolated and the diodes are inserted to simulate blocking of the IGBTs in the on 

and offshore VSCs. The AC CBs open after approximately 60 ms to isolate the 

faulted HVDC link from the MITS and the offshore AC hub. 

As shown in Figure 5.25, the DC link voltage of VSC1 drops rapidly. The voltage 

across the healthy HVDC links in both systems increases but remains below the 

upper DC voltage limit of 1.1 pu. However, for the de-centralised method the DC 

choppers were not used. This shows that the de-centralised system is able to 

manage the DC voltage during the fault. The centralised method cannot respond 

to the rise in DC voltage during the fault. Therefore, DC choppers must still be 

relied upon during the fault. 
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Figure 5.25 - Voltage across each HVDC link following a DC pole-pole fault 

Figure 5.26 shows the voltage magnitude at the HVAC buses throughout the AC 

hub. In both cases the voltage magnitude across all buses drops initially on 

occurrence of the fault. However, the magnitude only drops to approximately 0.85 pu. The maximum voltage in both cases is slightly higher than the upper 

voltage limit at 1.12 pu. The voltages return to a steady-state condition once the 

fault is cleared. 

 

Figure 5.26 - Voltage magnitude at each offshore HVAC bus following a DC pole-pole fault 

Figure 5.27 shows the current flowing through the offshore VSCs. The fault 

current fed through the faulted offshore VSC bus (bus 1) is 1.5 pu when using the 

DC choppers active on healthy HVDC links 

DC choppers not installed 
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de-centralised system and 2.6 pu when using the centralised system. In addition, 

when using the de-centralised system, the maximum current through the healthy 

VSC buses (2, 3 & 4) remains below the converter current upper limit of 1.1 pu 

both during and after the fault. When using the centralised system, the maximum 

current through the healthy VSC buses is 1.5 pu during the fault but returns 

below the upper limit once new orders are dispatched. 

 

Figure 5.27 – Current through each offshore VSC following a DC pole-pole fault 

Figure 5.28 shows the active power generated at the WT buses. When using the 

de-centralised system, the operation of the power reduction controllers during the 

fault is clearly apparent as the active power produced by the FRC-WTs reduces 

before the fault is cleared at 𝑡 = 4.16 s. The active power produced by the FRC-

WTs remains roughly constant during the fault but reduces once new dispatch 

orders are received. 

Fault current through offshore VSC 1 

while fault is present on the HVDC link 1 

Current through offshore VSCs 2 & 3 violate upper 

current limit of 1.1 pu during the fault 
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Figure 5.28 – Active power through each FRC-WT bus following a DC pole-pole fault 

Figure 5.29 shows the re-active power generated at the WT buses. In both cases, 

the reactive power output increases for a period then decreases for a period before 

returning to zero. When comparing the two results it can be seen that the period 

for which the re-active power deviates from zero is much less when using the de-

centralised system. 

 

Figure 5.29 –Re-active power through each FRC-WT bus following a DC pole-pole fault 

When using the centralised system, the increased active and re-active power 

contribution from the FRC-WTs during the fault explains why there is a 

Re-active power generated by the FRC-WTs 

increases for the duration of the fault 

Active power output from FRC-WTs remains 

roughly constant during the fault 

Active power output from FRC-WTs reduces 

during the fault 
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significantly higher fault current through VSC 1 compared to when using the de-

centralised system, as was shown in Figure 5.27.  

 

Figure 5.30 – Frequency at each FRC-WT bus following a DC pole-pole fault 

Figure 5.30 shows the frequency as measured by the PLL at each WT bus. A 

swing in the measured frequency is observed, although again, as was the case 

with the re-active power, the duration of the swing is considerably larger when 

using the centralised system. This change in frequency is a result of the PLL 

losing a lock on the phase as it changes during the fault. 

It is apparent that the centralised system is not able to perform as well as the de-

centralised system because no action is taken throughout the duration of the fault. 

The power reduction applied during the fault by the de-centralised system 

prevents the healthy VSCs being overloaded. It also enables the PLLs located at 

the FRC-WT buses to regain phase lock in a shorter period. 

5.4.2 3ph fault on an offshore HVAC cable 

At 𝑡 = 0.1 s, a 3ph fault is applied at the midpoint of line 2. The fault impedance 

was assumed to be effectively zero (𝑍𝑓 = 1 mΩ) to give the worst case scenario. 

At 𝑡 = 0.16 s the AC CBs open to isolate the faulted cable circuit. Figure 5.31 

shows the voltage magnitude at the AC buses throughout the AC hub. 

Longer duration of frequency excursion as 

measured by the PLL 
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Figure 5.31 – Voltage magnitude at each offshore HVAC bus following a 3ph cable fault 

In both cases, the voltage magnitude drops below 0.5 pu on occurrence of the 

fault, before recovering to nominal levels once the AC CBs are opened and the 

fault is isolated. The results of both cases differ to that presented in Chapter 4 as 

the voltage magnitude does not exceed the upper voltage limit of 1.1 pu. 

Figure 5.32 presents the active power flowing through each offshore VSC bus. It 

can be seen that when using the de-centralised method, the active power 

generated at bus 10 reduces significantly once the faulted line is isolated. In 

addition, the active power absorbed at buses 1,2 and 3 reduces to approximately 0.25 pu. When using the centralised system, the active power through the 

offshore VSC buses returns to the pre-fault amount once the faulted line is 

isolated. 
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Figure 5.32 – Active power through each offshore VSC bus following a 3ph cable fault 

The reduction of active power absorbed by offshore VSCs 1, 2 and 3 is explained 

by the change in active power generated at the FRC-WT buses, as shown in 

Figure 5.33. When using the de-centralised system, the post-fault generation 

reduces to 0.1 pu. When using the centralised system, the post-fault generation 

returns to the pre-fault amount, that being 0.375 pu. 

 

Figure 5.33 - Active power through each FRC-WT bus following a 3ph cable fault 

Therefore, if less power is being generated by the FRC-WTs and VSC 4 

(connected to bus 10), then the droop controlled VSCs (connected to buses 1, 2 
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and 3) will export less power to the MITS. This is confirmed in Figure 5.34 

where it can be seen that less active power is exported at the onshore IPs. 

 

Figure 5.34 - Active power through each onshore interface point following a 3ph cable fault 

The reason for the reduction in power output from the FRC-WTs and VSC 4 is 

the operation of the power reduction controllers. Figure 5.35 shows the frequency 

produced by each offshore VSC. During the fault, the frequency at VSC 1, 2 and 

3 reduces to the nominal frequency. This is expected as the active power absorbed 

reduces during the fault. After the faulted line is isolated, when using the de-

centralised system, a large increase in the frequency produced by VSC 1, 2 and 3 

is observed. This suggests that the frequency modulation controllers are 

operating. 
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Figure 5.35 – Frequency at each offshore VSC bus following a 3ph cable fault 

Figure 5.36 shows the DC link voltages as measured at each offshore VSC. The 

action of the frequency modulation controllers is justified as the DC link voltage 

at VSC 1, 2 and 3 can be seen to rise above the nominal DC voltage level 

immediately after the faulted line is isolated by the AC breakers. The DC voltage 

returns to the nominal DC voltage level however, the integral component of the 

frequency modulation controller is increased. The output of the integrator remains 

non-zero for the remainder of the test which explains the increased steady-state 

frequency observed in Figure 5.35. 

 

 

VSC 1

VSC 2

VSC 3

VSC 4

45

50

55

Top: De-centralised method
F

re
q

u
en

cy
 (

H
z)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

45

50

55

Bottom: Centralised method

Time (s)

F
re

q
u
en

cy
 (

H
z)

Frequency modulation controllers active 



159 

 

 

 

Figure 5.36 – Voltage across each HVDC link following a 3ph cable fault 

The test is re-run but with the integral gain 𝐾𝑓𝑖 of the frequency modulation 

controllers set to zero. Figure 5.37 shows the active power flowing through the 

offshore VSC buses. As can be seen the active power returns to the pre-fault 

condition once the faulted line has been isolated, albeit more slowly compared to 

when using the centralised controller. 

 

Figure 5.37 - Active power through each offshore VSC bus following a 3ph cable fault with 

no integral component in frequency modulation controllers 

Figure 5.38 shows the frequency produced by each offshore VSC. The frequency 

produced by VSC 1, 2 and 3 increases once the faulted line is isolated but returns 
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to the nominal frequency after that. This suggests the frequency modulation 

controllers are operating to manage the excess DC voltage. 

 

Figure 5.38 – Frequency at each offshore VSC bus following a 3ph cable fault with no 

integral component in frequency modulation controllers 

5.4.3 Discussion of results 

It is important to note that a 3ph fault on a HVAC cable was not simulated in 

[62]. Nonetheless, it is a fault which could occur and therefore the system must be 

able to cope with such a fault should it arise. 

The difference between the DC pole-pole fault and the 3ph HVAC cable fault is 

that a power imbalance exists only for the DC fault. The faulted cable offshore 

does not cause a permanent power imbalance. 

The de-centralised method is shown to work effectively in the event of a DC 

pole-pole fault, which corrects power imbalance. However, during a fault when 

no power imbalance is present, the de-centralised system actually exacerbates the 

problem. This suggests that the de-centralised system requires some form of 

selectivity to ensure that it only operates to correct power imbalance in the 

network and prevent over-voltage in the HVDC links. 

The centralised method has access to much more information about the network 

state. Therefore, it can act in an appropriate way to ensure that the network 

remains in a feasible operating condition post-fault with minimal loss of infeed to 
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the MITS. The main drawback of the centralised scheme is that it cannot act 

during the fault to prevent excessive fault currents. Therefore DC choppers are 

still required to operate to maintain the DC link voltage. However, it is likely that 

DC choppers would still be installed using the de-centralised method in case the 

local frequency modulation controller fails. 

The ideal system would incorporate elements of both schemes. The de-centralised 

controllers could act quickly to correct any power imbalance. The centralised 

system could act to ensure the post-fault condition does not violate constraints 

and provide some form of selectivity to the de-centralised method i.e. restrain 

operation when there is no power imbalance present. 
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6 Chapter 6 – Experimental validation of control 

systems for managing faults in an offshore AC hub 

6.1 Introduction 

This chapter presents the validation of the AC hub controller developed in 

Chapter 5 using an experimental test setup consisting of a Real Time Digital 

Simulator (RTDS) and a real time platform applied in a hardware-in-the-loop 

configuration. The AC hub model developed in Chapters 3 & 4 was implemented 

on the RTDS. The centralised fault management system called the AC hub 

controller was implemented on the real time platform which is a dSPACE 

DS1103 unit. Analogue and digital signals are used to exchange data between the 

RTDS and dSPACE unit. A DC pole-pole fault is applied to HVDC link 1 of the 

offshore AC hub model and the simulation and experimental results are 

compared. 

6.2 Hardware in the loop configuration 

Figure 6.1 shows the hardware in the loop configuration. 

 

Figure 6.1 – Hardware in the loop configuration 
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6.2.1 Using the Real Time Digital Simulator for validation of the AC hub 

controller 

The Real Time Digital Simulator (RTDS), as shown in Figure 6.2, is a power 

system simulator which can perform electromagnetic transient simulations in real 

time [99]. The RTDS is able to achieve real-time operation using a high speed 

digital architecture while maintaining a small time step, usually 50 μs. Nodal 

analysis is performed at each time-step to determine the network state using 

Dommel’s solution algorithm as described in [100]. 

 

Figure 6.2 – Two rack RTDS connected in point-point configuration 

A model was designed, implemented and analysed on the RTDS using a graphical 

user interface called RSCAD©. In this chapter, the implementation of the AC hub 

model developed in Chapters 3 & 4 on the RTDS using RSCAD is presented. 

Due to the number of nodes present in the AC hub model, the model was 

implemented across two RTDS racks as highlighted in Figure 6.2.  

Table 6.1 provides an overview of the cards used in a RTDS rack. 

Rack 1 
Rack 2 
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Table 6.1 – Overview of the cards used in the RTDS 

RTDS Component Description 

GPC card Giga-processor card: Used to solve the equations 

representing the power system and control system 

components which are modelled on the RTDS. 

PB5 card PB5 processor card: An updated version of the GPC card. 

It is more powerful and allows for twice as many nodes 

when present in a rack when compared to a GPC card. 

GTNET GTNET Network interface card: Used to interface 

various network protocols with RTDS simulator (GSE, 

SV, DNP3, PMU). 

GTWIF GTWIF Workstation interface card: Used to interface 

with a user’s computer workstation running the RSCAD 

software. It also performs synchronisation with other 

racks and communicates between other cards and racks. 

There is one GTWIF card per rack. 

Rack 1 consists of one PB5 processor card, three GPC processor cards, a GTNET 

card and a GTWIF card. Rack 2 consists of two PB5 cards, one GPC card and a 

GTWIF card. The processor cards perform the high speed computations 

necessary for real-time operation. The PB5 card is a more recent upgrade of the 

GPC card which allows for more nodes on a given power system solution. The 

GTNET card is a card specifically designed for interfacing with the RTDS using 

industry standard communication protocols such as DNP3. The GTWIF card 

provides for an interface between the RTDS and the host computer workstation. It 

also manages communications between the other cards on a rack and allows for 

point-point connection between two racks. 

To allow for hardware in the loop testing, Analogue Input/Output (AI/AO) cards 

are located within each RTDS cabinet. Interface panels which are connected to 

the AI/AO cards are located on the front of the RTDS to allow for straightforward 

access. These were used to connect to the dSPACE unit which provides a 

platform for the AC hub controller algorithm. 
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6.2.2 Using the dSPACE unit for validation of the AC hub controller 

The dSPACE DS1103 real time computer, as shown in Figure 6.3 was used in the 

experimental set up. This real time computer is used by industry as a rapid 

prototyping platform. The DS1103 is capable of real-time operation and has 

enough input/output channels for the application in hand. 

 

Figure 6.3 – dSPACE real time computer and input/output board 

The DS1103 has a separate input/output board called a CP1103 board to allow for 

straightforward access to input/output channels. The CP1103 is shown in Figure 

6.3. 

The DS1103 is fully programmable from the Matlab command line or from the 

Simulink environment. Real-time applications running on the dSPACE DS1103 

are interfaced directly with Matlab, therefore data acquisition and control actions 

can be performed in real-time. In addition, algorithms written in Matlab script can 

be downloaded, providing they are embeddable in C code. The AC hub controller 

developed in Simulink was implemented directly on to the DS1103 as a real-time 

or as-fast-as-possible application. Note that the DS1103 will run as fast as 

possible, as opposed to real time, when the execution of the downloaded script 

cannot be completed in a single time step. 

Once the real-time application is loaded on to the DS1103, it is managed from a 

software program called ControlDesk®. ControlDesk provides an environment 

from which to load and operate the real-time applications. It also provides an 

environment from which to visualise data in real-time [101]. 

CP1103 

interface 

board 

DS1103 

real-time 

computer 
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6.2.3 Hardware interfaces 

As described in Chapter 5, the AC hub controller requires the following 

communication interfaces: 

 Ethernet – This is required for the SCADA interface which is used for 

updating the pre-fault network state. The SCADA interface to the RTDS 

is provided by the GTNET card. A standard PC is used to interface with 

the GTNET card. 

 Digital Input/Output – This is required to signal that a fault is present in 

the offshore AC hub. The GTFPI board on the RTDS is used to provide 5 

V (OUTPUT ‘HIGH’) signals which are interfaced directly with digital 

inputs on the CP1103 board. A 4-bit word is used to relay the fault code 

which indicates the fault type and location. 

 Analogue Input/Output – This is required to communicate the post-fault 

dispatch orders from the AC hub controller to the RTDS. The CP1103 

board is used to output 0-10 V analogue signals to the GTAO/GTAI front 

panel interface board on the RTDS. The signals are sampled and held at 

the instant the AC hub controller provides an output. They are then scaled 

to per-unit to provide references for the FRC-WTs and offshore VSCs. 

6.2.4 Software interfaces 

Figure 6.4 shows the software architecture of the hardware-in-the-loop 

configuration. 
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Figure 6.4 – Diagram of the software interfaces between the RTDS and dSPACE equipment 

The AC hub controller requires that the bus and line data be continually updated 

for the OPF algorithm to function effectively. 

The SCADA system is implemented using DNP3 (Distributed Network Protocol), 

which was developed specifically for data acquisition and control in in the 

electric utility industry [102]. The GTNET card located in rack 1 of the RTDS is 

set up with DNP3 firmware and is designated as a DNP3 slave device. 

Communication is made via Ethernet to the host workstation. A software package 

called PeakHMI is used to act as the DNP3 master device. 

To transfer data from PeakHMI to the dSPACE unit the data must first be 

published using the OPC (OLE for Process Control) standard. OPC is an open 

source standard for the secure and reliable exchange of data between devices 

from different vendors [103]. PeakHMI is designated as an OPC server and 

publishes the data to any OPC clients that are connected. 

The data published by the OPC server is input in to Matlab using the OPC 

toolbox. The OPC toolbox allows data to be read, written and logged from 



168 

 

 

devices configured as OPC servers [104]. A script is run which configures Matlab 

as an OPC client and continually reads the data published by the OPC server. 

Once the data is present in Matlab it must be written to the real-time application 

running on the dSPACE board. This is achieved using an interface library called 

MLIB, which is one of the dSPACE control libraries installed on Matlab. The 

data is continually written to the real-time application as it becomes available on 

the OPC server. 

6.3 Implementation of offshore AC hub model on RSCAD 

The AC hub model developed in SimPowerSystems was implemented on the 

RTDS. The AC hub model implemented on the RTDS would ideally be an exact 

representation of the model implemented on SimPowerSystems. However, certain 

constraints are present which prevent an exact replication of the 

SimPowerSystems model on the RTDS. The main constraint was the available 

hardware resource in the RTDS, which determines the maximum number of 

nodes. 

The model was drafted in RSCAD using components from the pre-installed 

component libraries. Components are split up in to two groups: power system 

components and control components. If a required component is not present in the 

pre-installed libraries then it is possible for a user to construct and implement new 

components using the component builder tool.  

The component builder tool was used extensively to create new control 

components. The component builder tool includes a facility to import models 

from Simulink. This requires that the Simulink model is first compiled into a C 

code. The Simulink Coder toolbox was used to do this. The inner and outer 

control loops defined in Chapter 4 were implemented using the component 

builder tool, an example of which are those used in the offshore VSC control 

loops, as shown in Figure 6.5. 
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Figure 6.5 – RTDS user components implemented within offshore VSC control 

The point of interconnection between power system components is referred to as 

a node. A branch is a passive element such as a resistor, inductor, capacitor or 

some combination thereof which connects two nodes [99]. Figure 6.6 shows the 

interconnection of two three phase transformers (power system components) via a 

nominal pi-section (branch), with the six nodes highlighted. 

 

Figure 6.6 – Interconnection and node placement example using RSCAD 

A subsystem is defined as a network configuration including power system 

components, branches and nodes, whose mathematical solution is solved 

independently. It may only represent a portion of the power system but can be 

linked to another subsystem using travelling wave transmission lines. The 

maximum number of nodes per subsystem when a rack contains a PB5 processor 

card is 144 (older GPC processor cards allow for only 66 nodes per subsystem). 

Each rack consists of at least one PB5 processor card and therefore up to 144 

nodes may be present on each rack [99]. 

Nodes 

User defined control 

components 
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6.3.1 Modification to representation of inter-platform cables 

Due to the nodal requirements of the AC hub model it was partitioned in to two 

subsystems, with one subsystem per rack. Figure 6.7 shows how the AC hub 

model was implemented across two racks. 

 

Figure 6.7 – Partitioning of the AC hub model on the RTDS 

As can be seen, the two racks are interconnected using travelling wave 

transmission line models. These transmission lines coincide with the inter-

platform HVAC cables, which are modelled in SimPowerSystems using 

equivalent pi-sections. Equivalent pi-section models are not travelling wave based 

models and so a Bergeron model is used instead. Basic RLC data is required for 
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the Bergeron model. The cable data defined in Chapter 3 is adapted accordingly 

and is listed in Table 6.2. 

Table 6.2 – HVAC platform-platform cable data for modelling in RSCAD 

Description Value Units 

Design Frequency 50 Hz 

Line Length 20 km 

Positive sequence series resistance 0.013 Ω/km 

Positive sequence series inductive reactance 0.060 Ω/km 

Positive sequence shunt capacitive reactance 0.008 MΩ*km 

Zero sequence series resistance 0.053 Ω/km 

Zero sequence series inductive reactance 0.239 Ω/km 

Zero sequence shunt capacitive reactance 0.034 MΩ*km 

6.3.2 Modification to reduce required number of nodes 

Following examination of the AC hub model for implementation on the RTDS, it 

became clear that the maximum number of nodes would be exceeded should an 

exact replication of the SimPowerSystems model be implemented. To reduce the 

number of nodes, the VSC averaged model is modified. 

The original model used in the SimPowerSystems model used 13 nodes. Figure 

6.8 shows the VSC averaged model which uses just 9 nodes. As there are 8 VSCs 

present in the AC hub (not including FRCs), the total saving in use of nodes is 32, 

which is significant. 
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Figure 6.8 – Simplified averaged VSC model implemented on the RTDS 

The reduced node model shown in Figure 6.8 omits some detail that was 

contained in the original model. The most significant change in detail is that now 

the inductors appear as phase inductors, rather than arm inductors. A suitable 

phase inductance must be applied which represents the original arm inductance. 

In Chapter 3, an equivalent impedance 𝑍𝐸𝑄 is calculated to limit the peak fault 

current in the event of a DC pole-pole fault to 10 kA.  

 𝑍𝐸𝑄 = 𝑍𝑔𝑟𝑖𝑑 + 𝑍𝑡𝑥 + 3𝑍𝑎𝑟𝑚4  (6.1) 

The equivalent impedance includes the sum of the grid impedance, the 

transformer impedance and the arm impedance. It is assumed that the fault 

current flows through 4 parallel arms with 4 arm reactors for 3 phases, as not all 

diodes are conducting at any one instant. However, given the circuit presented in 

Figure 6.8, it is assumed that the fault current flows through the phase legs 

impeded only by the phase inductance. Therefore, assuming that: 
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 𝑍𝑝ℎ𝑎𝑠𝑒 = 3𝑍𝑎𝑟𝑚4  (6.2) 

To achieve the same equivalent impedance it is assumed that: 𝑍𝑝ℎ𝑎𝑠𝑒 = 𝑍𝐸𝑄 − 𝑍𝑔𝑟𝑖𝑑 − 𝑍𝑡𝑥 

In normal operation, an equivalent current source on the DC side represents the 

combined current flowing through each phase leg. During a fault, the VSC acts as 

an uncontrolled diode bridge. Therefore, when a fault occurs, the dc current in the 

event of a fault 𝐼𝑑𝑐𝑓 is determined according to a full wave rectifier block from 

the RSCAD component library. The component uses (6.3) to determine 𝐼𝑑𝑐𝑓 from 

the AC currents. 

 𝐼𝑑𝑐𝑓  = max (𝑎𝑏𝑠(𝑖𝑎𝑓), 𝑎𝑏𝑠(𝑖𝑏𝑓), 𝑎𝑏𝑠(𝑖𝑐𝑓)) (6.3) 

During the fault, the equivalent voltage sources are set equal to zero. The phase 

inductance used in the on and offshore VSCs is shown in Table 6.3. 

Table 6.3 – Phase inductance values for the on and off-shore VSCs 

Parameters 
Inductance (mH) 

Symbol Description 

Lph_onsh Onshore VSC phase reactor 93.7 

Lph_offsh Offshore VSC phase reactor 84.4 

6.4 Implementation of the OPF algorithm on dSPACE and 

interface with the RTDS: 

The AC hub controller developed in Simulink was implemented directly on to the 

DS1103 as a real-time (or as-fast-as-possible) application. The AC hub controller 

itself is an algorithm written in Matlab script. The script was implemented in 

Simulink using a number of user defined function blocks. 

To enable the AC hub controller to be run on the DS1103, all code specified in 

the user-defined function blocks must be embeddable in C code. The Matlab 

Coder toolbox was used to embed the functions into C. The Simulink model was 

then built in to a target file and downloaded on to the DS1103. 
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The OPF algorithm is triggered by the occurrence of a non-zero on any of the 

fault status digital inputs. The inputs are then read and a fault code is produced. 

The fault code is then used to pre-configure the OPF algorithm. Once the 

algorithm is pre-configured, the OPF is run. Once completed, new dispatch orders 

appear at the analogue outputs. 

The time taken for the algorithm to run is not directly known as it depends on the 

particular fault and network configuration. A number of tests were run to identify 

the OPF algorithm execution times on the dSPACE computer. Figure 6.9 

summarises the time taken for new dispatch orders to appear at the analogue 

outputs of the CP1103 board following different code sequences applied at the 

digital inputs. 

 

Figure 6.9 - OPF execution times with varying location and fault type 

As can be seen from Figure 6.9, there is a correlation between the execution time 

and the location of the fault. The algorithm is able to provide a new set of 

dispatch orders following faults affecting bus 2 more quickly than those affecting 

buses 1 and 3. This can be attributed to the network configuration. Should a fault 

occur which forces the active and reactive power through bus 2 to reduce to zero, 

then the active and reactive power must be re-distributed between bus 1 and 3. As 

the network configuration is symmetrical about bus 2, the impedance alone will 

act to share complex power between the healthy offshore VSCs. The OPF 
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algorithm will then be left with less active constraints to remove and thus a 

solution can be found with fewer iterations and thus is produced more quickly. 

The analogue outputs are read by the OPF algorithm after a pre-determined delay 

following occurrence of the fault. The delay is assumed as 70 ms which is 10 ms 
after the fault is cleared. This is considered a feasible time for the signals to be 

communicated to the FRC-WTs and offshore VSCs based on the analysis 

presented in Chapter 2. 

6.5 Experimental results 

A DC pole-pole fault is applied to HVDC link 1 of the AC hub model to study the 

implications on the AC hub and MITS. At 𝑡 = 0.1 s, a DC pole-pole fault is 

applied at the midpoint of the cable of HVDC link 1. The AC CBs open after 

approximately 60 ms to isolate the faulted HVDC link from the MITS and the 

offshore AC hub. 

As shown in Figure 6.10, the DC link voltage of VSC1 drops rapidly. The voltage 

across the healthy HVDC links in both systems increases but remains below the 

upper DC voltage limit of 1.1 pu. The result from the RTDS shows the DC 

voltage of HVDC links 2 & 3 remain above the nominal voltage level for 200 ms 
after the occurrence of the fault. However, the result from SimPowerSystems 

shows the DC voltage of HVDC links 2 & 3 remains above the nominal voltage 

level for just 120 ms after the occurrence of the fault. As the control system on 

both systems is identical, this would suggest that more energy is present in 

HVDC links 2 & 3 from the RTDS result. 
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Figure 6.10 - Voltage across each HVDC link following a DC pole-pole fault 

Figure 6.11 shows the voltage magnitude at the HVAC buses throughout the AC 

hub. The maximum voltage observed from the RTDS result is 1.35 pu, which is 

significantly higher than the maximum of 1.12 pu observed from the 

SimPowerSystems result. It is possible that a voltage of 1.35 pu will cause surge 

arresters to conduct. If surge arresters were present on the system and did 

conduct, the result would differ significantly to that presented due to the non-

linear response of the surge arrester. The voltages return to a steady-state 

condition once the fault is cleared. 
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Figure 6.11 - Voltage magnitude at each offshore HVAC bus following a DC pole-pole fault 

Figure 6.12 shows the current flowing through the offshore VSCs. The 

SimPowerSystems result shows the maximum fault current magnitude fed 

through the faulted offshore VSC bus (bus 1) is 2.6 pu. The RTDS result shows 

the maximum fault current magnitude fed through the faulted offshore VSC bus 

(bus 1) is 3.9 pu. 

 

Figure 6.12 - Current through each offshore VSC following a DC pole-pole fault 
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The current magnitude through offshore VSCs 2 & 3 is similar in both results, 

albeit that the maximum current magnitude is exceeded during the fault. In 

steady-state, both systems are seen to have a similar response. 

Figure 6.13 shows the active power flowing through the offshore VSC buses. The 

results are comparable from both systems. The only significant difference 

between the two is a transient change in active power immediately after the fault, 

as highlighted. 

 

Figure 6.13 - Active power through each offshore VSC bus following a DC pole-pole fault 

 

Figure 6.14 shows the re-active power flowing through the offshore VSC buses. 

The maximum re-active power absorbed at the faulted bus (1) from the 

SimPowerSystems result is 3 pu. The maximum re-active power absorbed at the 

faulted bus (1) from the RTDS result is 4 pu. This explains why the current 

magnitude through offshore VSC 1 is greater in the RTDS result. The reactive 

power through the non-faulted buses (2, 3 & 4) during the fault is similar in both 

systems. Therefore, the increased reactive power absorbed through bus 1 is not 

generated at buses 2, 3 & 4. Other sources in the offshore AC hub must be 

providing the reactive power generation. The steady-state reactive power through 

the offshore VSC buses is similar in both results. 
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Figure 6.14 – Re-active power through each offshore VSC bus following a DC pole-pole fault 

Figure 6.15 shows the active power through the FRC-WT buses. Again the results 

are comparable from both systems. The only significant difference between the 

two is a transient change in active power immediately after the fault, as 

highlighted. 

 

Figure 6.15 - Active power through each FRC-WT bus following a DC pole-pole fault 

Figure 6.16 shows the re-active power through the FRC-WT buses. The 

maximum re-active power injected at the FRC-WT buses from the 

SimPowerSystems result is 2.5 pu. The maximum re-active power injected at the 
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FRC-WT buses from the RTDS result is 4 pu. Therefore, regarding the RTDS 

results, it can be seen that the additional re-active power absorbed by the faulted 

offshore VSC is provided by the FRC-WTs. The steady-state reactive power 

through the offshore VSC buses is similar in both results. 

 

Figure 6.16 – Re-active power through each FRC-WT bus following a DC pole-pole fault 

 

Figure 6.17 shows the active power delivered to the MITS at the IP of each 

HVDC link. The dynamics seen in both results are the same. The active power 

through IP1 oscillates during the fault before dropping to zero once the AC 

breakers are opened. The active power delivered to the MITS by the healthy 

VSCs connected to IP 2 & 3 increases during the fault before returning to the pre-

fault condition. This is desirable as it helps to reduce the loss of infeed to the 

MITS. 
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Figure 6.17 - Active power through each onshore interface point following a DC pole-pole 

fault 

The difference in magnitude of the active power oscillation of onshore VSC 1 

(the faulted HVDC link) seen in Figure 6.17 is explained when looking at the 

three-phase current, as shown in Figure 6.18. The peak current through the 

faulted onshore VSC (1) from the SimPowerSystems result is 7.5 kA. The peak 

current magnitude through the faulted onshore VSC (1) from the RTDS result is 10 kA. 

 

Figure 6.18 – Fault current measured at onshore IP 1 (Faulted HVDC link) 
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6.5.1 Discussion of results 

It is apparent that the current flowing through both the on and offshore VSCs of 

the faulted HVDC link is greater in the RTDS result than the SimPowerSystems 

result. In fact, the peak current magnitude through the faulted onshore VSC (1) 

from the RTDS result of 10 kA is equal to the maximum design current of the 

VSC as discussed in Chapter 3. Therefore, the peak current magnitude observed 

in the SimPowerSystems result is less than expected. 

In the design phase, the peak current magnitude was determined as: 

 𝐼𝑎𝑐𝑓𝑝𝑚 = 2√2 𝑉𝑎𝑐𝑍𝐸𝑄 
(6.4) 

Therefore 𝐼𝑎𝑐𝑓𝑝𝑚 is determined according to a single AC side voltage source 𝑉𝑎𝑐 
and an equivalent impedance 𝑍𝐸𝑄. For the VSC model applied in the RTDS, (3.6) 

determines the peak current magnitude exactly as the VSC valve voltage is set to 

zero and the DC fault impedance is not apparent on the AC side of the VSC. 

In the SimPowerSystems model, (3.6) is not accurate in determining 𝐼𝑎𝑐𝑓𝑝𝑚. This 

is because the voltage across the VSC valve stack is not always zero due to the 

operation of the anti-parallel diodes and therefore a voltage is produced which 

opposes the fault current. In addition, the DC side fault impedance is represented 

on the AC-side as discussed in Chapter 3 which will also impede the fault current. 

It would have been possible to modify the arm reactance of the VSCs 

implemented on the RTDS to reduce the fault current to that seen on the 

SimPowerSystems model, which is considered as more realistic. However, this 

would have required the re-tuning of all the control loops of those converters 

which will have altered the system dynamic response. 

In addition, re-arranging (3.6) to determine an equivalent impedance of the VSC 

model for a given peak fault current will always yield a larger than necessary 

impedance. This is because (3.6) represents the worst case scenario when the DC 

fault impedance is zero and the voltage across the VSC valve stacks are zero. 
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Therefore, the result seen from the RTDS represents the worst case scenario with 

the highest permissible fault current. 

As side from the difference in fault current, the results are very similar. In both 

cases, a new post-fault operating point is identified and communicated to the 

offshore VSCs and FRC-WTs. All offshore VSCs and FRC-WTs are able to 

adopt the new operating condition with no violation of network constraints once 

the fault is cleared. The loss of infeed to the MITS is restricted to the loss of a 

single link in both results. 
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7 Chapter 7 – Conclusions and Further Work 

7.1 Conclusions 

7.1.1 Managing planned changes in operating condition in an offshore AC 

hub 

It is widely anticipated that by 2050, significant investment in energy 

infrastructure will result in the development of a pan-European Supergrid. The 

offshore AC hub has been identified as a feasible infrastructure solution for 

implementation in a future pan-European Supergrid. 

A model of the offshore AC hub has been developed in SimPowerSystems
TM

 

using the round three offshore wind development zone Dogger Bank, as a case 

study. Dynamic models of the VSCs and FRC-WTs are implemented using 

averaged models. Appropriate modifications to these models are made to properly 

represent the impact of faults. Vector control loops are implemented for control 

of local variables, which are tuned using formal control design techniques. 

Two common control philosophies, master-slave and droop control, which are 

developed for point-to-point HVDC transmission links are extended to account 

for parallel operation in the offshore AC hub. It is shown that both the master-

slave and droop control schemes can successfully manage the voltage, current and 

complex power flow in the offshore AC hub following a change in dispatch 

orders and with varying wind power input. 

Having compared the control philosophies, it is shown that the droop control 

strategy is able to maintain tighter control of the voltage and current profile 

throughout the offshore AC hub, well within the limits set in National Grids 

SQSS. This is because it is able to automatically balance complex power between 

participating VSCs. 
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7.1.2 Impacts of faults in an offshore AC hub 

Three fault scenarios occurring in an offshore AC hub are simulated using the 

SimPowerSystems model. This includes: 

 A DC pole to pole fault on one of the HVDC links connected to the UK 

MITS 

 A 3-phase fault occurring on one of the HVAC bus bars within the 

offshore AC hub 

 A 3-phase fault occurring on one of the HVAC cables which interconnect 

two adjacent HVDC platforms. 

The impact of a DC pole-pole fault on a single HVDC link greatly affects the 

offshore AC hub and MITS. Excess fault current is shown to flow through 

healthy offshore VSCs which is likely to cause damage. In addition, the post-fault 

voltage profile was unacceptable due to power imbalance. Finally, the DC fault 

results in a significant loss of infeed to the MITS. 

The impact of a 3ph fault on a single bus or HVAC cable circuit negatively 

affects the offshore AC hub and MITS. A significant over-voltage following 

clearance of the fault occurs which is beyond maximum equipment ratings. Once 

the fault is cleared, the system is shown to operating within acceptable limits, 

although the ability of the droop VSCs to share reactive power is impeded. 

Based on the above outcomes it is concluded that additional action is required to 

manage the impacts of these faults if the offshore AC hub is to be a feasible 

offshore infrastructure solution. 

7.1.3 Control systems for managing faults in an offshore AC hub 

A de-centralised fault management system detailed in the literature has been 

implemented in the offshore AC hub model. The offshore AC hub model 

described in this thesis is larger and more complex than the model implemented 

in the literature.  

Having applied a DC pole-pole fault with the de-centralised fault management 

system in operation, it was shown to function unsatisfactorily by worsening the 
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impact of the fault. Changes were made to the de-centralised method which 

allowed it to function correctly. 

A novel centralised fault management method has been developed using an 

online OPF algorithm, called the AC hub controller. The online OPF is 

implemented using a gradient method solution algorithm. The algorithm is shown 

to be able to calculate a new post-fault operating condition, following an 

unplanned network event. 

Two fault scenarios are used to compare the performance of each fault 

management strategy including: 

 A DC pole to pole fault on one of the HVDC links connected to the UK 

MITS. 

 A 3-phase fault occurring on one of the HVAC cables which interconnect 

two adjacent HVDC platforms. 

The de-centralised method is shown to work effectively in the event of a DC 

pole-pole fault, which corrects power imbalance. However, during a 3ph fault, 

when no power imbalance is present, the de-centralised system actually 

exacerbates the problem. The centralised method is shown to operate 

satisfactorily following both faults, albeit that it relies more heavily on DC 

choppers to manage the fault current during the fault. It is concluded that the ideal 

system would incorporate elements of both schemes. 

7.1.4 Experimental validation of centralised fault management systems 

applied in an offshore AC hub 

An experimental platform has been developed to test the novel control system as 

hardware in the loop with an RTDS. The results from the SimPowerSystems 

model and from the RTDS are compared and generally show good agreement. A 

discrepancy in fault current is identified, however on closer inspection it is shown 

that this discrepancy is due to a modelling compromise because of hardware 

constraints with the RTDS.  

The validity of the result is maintained as it is proven that the result from the 

RTDS is a worst case scenario. All offshore VSCs and FRC-WTs are able to 
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adopt a new operating condition with no violation of network constraints once the 

fault is cleared. The loss of infeed to the MITS is restricted to the loss of a single 

link in both results. 

7.1.5 Main contributions of thesis 

 To design a suitable control system for operating an offshore AC hub under 

planned changes in operating conditions. This was achieved through the 

implementation of both master-slave and droop control schemes. 

 To identify the implications of various faults in an offshore AC hub. Faults 

were shown to heavily impact the offshore AC hub and cause significant loss of 

infeed to the MITS. 

 To design a suitable control system to manage the impacts of faults in an 

offshore AC hub. A novel fault management system using an online OPF 

algorithm has been presented. It is compared with a de-centralised method 

adapted from the literature. 

 To design and build an experiment using hardware in the loop to 

demonstrate and validate the novel control system for managing the impact 

of faults in an offshore AC hub. The novel fault management system was 

successfully implemented on a real time control platform as hardware-in-the-

loop with a Real Time Digital Simulator (RTDS). 

7.1.6 Main achievements of research 

This research has resulted in the following achievements: 

A presentation and poster was delivered to describe and compare topologies for 

the offshore node to industry professionals at the CIGRE-UK conference, 2012. It 

was titled: “Counting the number of IGBTs in competing offshore hub designs,”. 

A conference paper was written comparing the performance of two control 

philosophies applied in the offsore AC hub. The reference is as follows: 

 J. Stevens and D. Rogers, “Control of multiple VSC-HVDC converters 

within an offshore AC-hub,” in 2013 IEEE Energytech, Energytech 2013, 

2013, no. 11220744. 

In addition, simulation results of this research were presented to industrial 

partners including Ove Arup & Partners ltd, National Grid and Alstom Grid. 

Also, presentations of the ongoing research were made to research peers at the 

annual university HVDC colloquium. 
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7.2 Further Work 

Given the research outcomes of this thesis and building upon the work carried 

out, further progress on this line of research can be readily made. These possible 

avenues of research are listed below. 

7.2.1 Combine the de-centralised and centralised fault management 

systems 

It was identified in Chapter 5 of this thesis that both the de-centralised and 

centralised fault management systems have advantages. The de-centralised 

system was shown to operate during a DC link fault, thus managing fault current. 

A key benefit of the centralised system is its decision making ability, where it 

was shown to be able to distinguish whether or not a power imbalance is present 

in the offshore AC hub. In addition, it was shown that it could ensure the post-

fault operating condition did not violate any network constraints. 

It is proposed that these two systems be combined in to a single fault management 

solution. The de-centralised system could act during the fault to minimise fault 

current. The centralised system could then decide upon the appropriate action to 

take once the fault is cleared and then provide a suitable post-fault solution. To 

some extent, the communication requirements of the centralised system may be 

relaxed as the online OPF need only indicate to the de-centralised system whether 

to take action or not, with new orders issued after a short period. 

7.2.2 Use of Particle Swarm Optimisation as solution algorithm for OPF 

The solution algorithm used to solve the OPF within the AC hub controller was 

based on the gradient method. This was shown to give satisfactory results by 

removing any violation of constraints. One possible solution algorithm is particle 

swarm optimisation (PSO). This has some advantages over gradient method if 

larger networks were to be considered. In addition, if an objective function 

designed to optimise the post-fault network state (as opposed to only removing 

any violation of constraints), this could yield further scope and advantages for the 

centralised system. 
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A. Appendix – Optimal Power Flow formulation 

An algorithm has been developed to identify a feasible post-fault operating 

condition following a fault in an offshore AC hub. At present, the only 

requirement of the post-fault operating condition is that all network constraints 

are honoured. A future aim is to ensure that an operating condition is found which 

maximises transmission capacity through the remaining healthy transmission 

links. 

The post-fault operating condition is found using a classical optimal power flow 

(OPF) method known as the gradient method. In this application, the gradient 

method is an extension of the Newton-Raphson power flow method as defined in 

[68]. The objective of the Newton-Raphson power flow is to solve a set of non-

linear power flow equations for a given fixed network. The key information 

obtained from the power flow is the voltage magnitude, voltage angle and power 

flow between nodes [81]. The single line diagram (SLD) of the electrical network 

used in this work is given in Figure 1. 

 

Figure 8.1 - 10 bus equivalent model of AC-hub 

Each of the transmission lines shown in the SLD of the network is represented by 

a nominal pi-section and hence consists of series impedance and shunt 

capacitance which is split between each end of the line. The network consists of 
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10 buses in total. Buses 1, 2 and 3 are droop controlled generator buses which 

collectively maintain voltage and frequency while distributing active (𝑃𝑔) and 

reactive (𝑄𝑔) power generation between them as determined by their respective 

droop gains. Buses 4 to 10 are generator buses which are available for dispatch. 

Note that in this application as all buses have active sources connected to them, 

which represent Voltage Source Converters (VSCs), they are all considered as 

generator buses. Of course it is necessary that some of these buses absorb active 

power (i.e. like a classical load) hence this is treated as negative generation. 

A.1. Newton-Raphson Power-flow solution: 

A typical branch element 𝑌𝑖𝑗 of the network is defined as: 

 
𝑌𝑖𝑗 = |𝑌𝑖𝑗|∠𝜃𝑖𝑗 = |𝑌𝑖𝑗| cos 𝜃𝑖𝑗 + 𝑗|𝑌𝑖𝑗| sin 𝜃𝑖𝑗= 𝐺𝑖𝑗 + 𝑗𝐵𝑖𝑗 (8.1) 

The voltage at any bus i in the network is defined as: 

 𝑉𝑖 = |𝑉𝑖|∠𝛿𝑖 (8.2) 

Denoting 𝑃𝑖 and 𝑄𝑖 as the net real and reactive powers entering the network at bus 

i and accounting for all branches connected to bus i, the following power flow 

equations can be written: 

 𝑃𝑖 =∑|𝑌𝑖𝑛𝑉𝑖𝑉𝑛| cos(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1  (8.3) 

 𝑄𝑖 = −∑|𝑌𝑖𝑛𝑉𝑖𝑉𝑛| sin(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1  (8.4) 

Now letting 𝑃𝑔𝑖 and 𝑃𝑑𝑖 denote the scheduled active power generation and 

demand at bus i respectively and 𝑄𝑔𝑖 and 𝑄𝑑𝑖 denote the scheduled reactive 

power generation and demand at bus i respectively, the active and reactive power 

mismatch is given by: 

 ∆𝑃𝑖 = (𝑃𝑔𝑖 − 𝑃𝑑𝑖) − 𝑃𝑖 (8.5) 
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 ∆𝑄𝑖 = (𝑄𝑔𝑖 − 𝑄𝑑𝑖) − 𝑄𝑖 (8.6) 

In solving the power-flow problem the goal becomes to reduce the power 

mismatch to zero. This ensures that the power calculated flowing into the bus is 

equal to the scheduled power generation minus scheduled demand. When this 

conditioned is achieved, the power-balance equations can be written: 

 𝑔𝑖′ = 𝑃𝑖 − (𝑃𝑔𝑖 − 𝑃𝑑𝑖) = 0 (8.7) 

 𝑔𝑖′′ = 𝑄𝑖 − (𝑄𝑔𝑖 − 𝑄𝑑𝑖) = 0 (8.8) 

For a standard Newton-Raphson power flow, there are four potentially unknown 

quantities associated with each bus i including 𝑃𝑖, 𝑄𝑖, 𝛿𝑖 and |𝑉𝑖|. In addition, 

there are up to two equality constraint equations associated with each bus i. The 

general practise in power flow studies is to identify each bus i from three types of 

buses in the network. For each bus type two of the four quantities are specified 

and the other two remain unknown. The three types of buses include: 

1. Slack bus (reference bus): 𝛿𝑖 and |𝑉𝑖| are specified, 𝑃𝑖 and 𝑄𝑖 are unknown 

(usually node 1). 

2. Load bus (PQ bus): 𝑃𝑖 and 𝑄𝑖 are specified, 𝛿𝑖 and |𝑉𝑖| are unknown. 

3. Voltage controlled bus (PV bus): 𝑃𝑖 and |𝑉𝑖| are specified, 𝛿𝑖 and 𝑄𝑖 are 

unknown. 

If the master-slave control scheme were implemented in the offshore AC hub, this 

would correspond to Bus 1 being defined as the slack bus and buses 2:10 being 

defined as PQ buses. Therefore, a vector [𝑥] of all unknown variables and a 

vector [𝑦] of all specified variables can be defined: 

 
[𝑥] = [𝛿2:10, 𝑉2:10]’ [𝑦] = [𝛿1, 𝑉1, 𝑃2:10, 𝑄2:10]’ (8.9) 

Defining [𝑔] as the vector of mismatch equations: 

 

[𝑔(𝑥, 𝑦)] =[ 𝑃2:10(𝛿1:10, 𝑉1:10) − (𝑃𝑔2:10 − 𝑃𝑑2:10) = 0 𝑄2:10(𝛿1:10, 𝑉1:10) − (𝑄𝑔2:10 − 𝑄𝑑2:10) = 0]  
(8.10) 

Using Newton’s method, a linear system of mismatch equations is defined: 
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 𝑱0[∆𝑥0] = [∆𝑔0] (8.11) 

Where [∆𝑥0] is a vector of the initial changes in [𝑥], [∆𝑔0] is a vector of the 

initial changes in [𝑔] and 𝑱0 is an initial matrix of [𝜕𝑔𝜕𝑥], otherwise known as the 

Jacobian. 

By solving for [∆𝑥0], new values for the unknown variables in [𝑥] are identified: 

 [𝑥1] = [𝑥0] + [∆𝑥0] (8.12) 

Repeating this process until the changes in [𝑥] become so small that they satisfy a 

chosen precision index 𝜀 > 0; that is, until [∆𝑥] are both less than 𝜀. 

The Jacobian index is defined as follows: 

 𝑱 = [𝜕𝑔𝜕𝑥] = [  
 𝜕𝑃𝜕𝛿 |𝑉| 𝜕𝑃𝜕|𝑉|𝜕𝑄𝜕𝛿 |𝑉| 𝜕𝑄𝜕|𝑉|]  

 
 (8.13) 

Where, 

 

𝜕𝑃𝜕𝛿 = [  
 𝜕𝑃2𝜕𝛿2 ⋯ 𝜕𝑃2𝜕𝛿10⋮ ⋱ ⋮𝜕𝑃10𝜕𝛿2 ⋯ 𝜕𝑃10𝜕𝛿10]  

 ; |𝑉| 𝜕𝑃𝜕|𝑉| =

[  
 |𝑉2| 𝜕𝑃2𝜕|𝑉2| ⋯ |𝑉10| 𝜕𝑃2𝜕|𝑉10|⋮ ⋱ ⋮|𝑉2| 𝜕𝑃10𝜕|𝑉2| ⋯ |𝑉10| 𝜕𝑃10𝜕|𝑉10|]  

 
; 

𝜕𝑃𝜕𝛿 = [  
 𝜕𝑄2𝜕𝛿2 ⋯ 𝜕𝑄2𝜕𝛿10⋮ ⋱ ⋮𝜕𝑄10𝜕𝛿2 ⋯ 𝜕𝑄10𝜕𝛿10]  

 
; |𝑉| 𝜕𝑃𝜕|𝑉| =

[  
 |𝑉2| 𝜕𝑄2𝜕|𝑉2| ⋯ |𝑉10| 𝜕𝑄2𝜕|𝑉10|⋮ ⋱ ⋮|𝑉2| 𝜕𝑄10𝜕|𝑉2| ⋯ |𝑉10| 𝜕𝑄10𝜕|𝑉10|]  

 
; 

(8.14) 

And, 
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𝜕𝑃𝑖𝜕𝛿𝑗 = −|𝑉𝑖𝑉𝑗𝑌𝑖𝑗| sin(𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖) 𝜕𝑃𝑖𝜕𝛿𝑖 = ∑|𝑉𝑖𝑉𝑛𝑌𝑖𝑛| sin(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1𝑛≠𝑖  

𝜕𝑄𝑖𝜕𝛿𝑗 = −|𝑉𝑖𝑉𝑗𝑌𝑖𝑗| cos(𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖) 𝜕𝑄𝑖𝜕𝛿𝑖 = ∑|𝑉𝑖𝑉𝑛𝑌𝑖𝑛| sin(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1𝑛≠𝑖  

|𝑉𝑗| 𝜕𝑃𝑖𝜕|𝑉𝑗| = −𝜕𝑄𝑖𝜕𝛿𝑗  

|𝑉𝑖| 𝜕𝑃𝑖𝜕|𝑉𝑖| = 𝜕𝑄𝑖𝜕𝛿𝑖 + 2|𝑉𝑖|2𝐺𝑖𝑖 |𝑉𝑗| 𝜕𝑄𝑖𝜕|𝑉𝑗| = 𝜕𝑃𝑖𝜕𝛿𝑗 |𝑉𝑖| 𝜕𝑄𝑖𝜕|𝑉𝑖| = −𝜕𝑃𝑖𝜕𝛿𝑖 − 2|𝑉𝑖|2𝐵𝑖𝑖 

(8.15) 

A.2. Newton-Raphson power flow with droop control: 

It is assumed that droop control will be used in the offshore AC hub. This implies 

that there is no single slack bus, which maintains the power balance in the 

network but rather three buses acting equally to share control of the power 

balance. In addition, the voltage and frequency are no longer fixed at any single 

point in the network. To account for this, additional terms must be specified in the 

Newton-Raphson power flow. 

For each droop controlled bus i, the active and reactive power is determined as 

follows: 

 𝑃𝑔𝑖 = −𝐾𝑤𝑖(𝜔𝑖 − 𝜔𝑖0) (8.16) 

 𝑄𝑔𝑖 = −𝐾𝑣𝑖(𝑉𝑖 − 𝑉𝑖0) (8.17) 
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The power mismatch equations for each droop controlled bus i are defined in 

equations (8.18) and (8.19). For non-droop controlled buses, they are defined in 

equations (8.7) and (8.8). 

 𝑔𝑖′ = ∑|𝑌𝑖𝑛𝑉𝑖𝑉𝑛| cos(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1 − (−𝐾𝑤𝑖(𝜔 − 𝜔𝑖0) − 𝑃𝑑𝑖) = 0 

(8.18) 

 𝑔𝑖′′ = −∑|𝑌𝑖𝑛𝑉𝑖𝑉𝑛| sin(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1 − (−𝐾𝑣𝑖(𝑉𝑖 − 𝑉𝑖0) − 𝑄𝑑𝑖) = 0 

(8.19) 

Therefore, a vector [𝑥] of all unknown variables and a vector [𝑦] of all specified 

variables can be defined: 

 
[𝑥] = [𝛿1:10, 𝑉1:10, 𝜔] [𝑦] = [ 𝑃4:10, 𝑄4:10, 𝐾𝑤𝑖1:3, 𝐾𝑣𝑖1:3, 𝜔𝑖01:3, 𝑉𝑖01:3] (8.20) 

The Jacobian is defined as follows: 

 𝑱 = [𝜕𝑔𝜕𝑥] = [  
 𝜕𝑃𝜕𝛿 |𝑉| 𝜕𝑃𝜕|𝑉| 𝜕𝑃𝜕𝜔𝜕𝑄𝜕𝛿 |𝑉| 𝜕𝑄𝜕|𝑉| 𝜕𝑄𝜕𝜔]  

 
 (8.21) 

Where, 

𝜕𝑃𝜕𝛿 = [  
  𝜕𝑃1𝜕𝛿1 ⋯ 𝜕𝑃1𝜕𝛿10⋮ ⋱ ⋮𝜕𝑃10𝜕𝛿1 ⋯ 𝜕𝑃10𝜕𝛿10]  

  |𝑉| 𝜕𝑃𝜕|𝑉| = [  
  |𝑉1| 𝜕𝑃1𝜕|𝑉1| ⋯ |𝑉10| 𝜕𝑃1𝜕|𝑉10|⋮ ⋱ ⋮|𝑉2| 𝜕𝑃10𝜕|𝑉1| ⋯ |𝑉10| 𝜕𝑃10𝜕|𝑉10|]  

  𝜕𝑃𝜕𝜔 = [  
  𝜕𝑃1𝜕𝜔⋮𝜕𝑃10𝜕𝜔 ]  

  

𝜕𝑃𝜕𝛿 = [  
  𝜕𝑄1𝜕𝛿1 ⋯ 𝜕𝑄1𝜕𝛿10⋮ ⋱ ⋮𝜕𝑄10𝜕𝛿1 ⋯ 𝜕𝑄10𝜕𝛿10 ]  

  |𝑉| 𝜕𝑃𝜕|𝑉| = [  
  |𝑉1| 𝜕𝑄1𝜕|𝑉1| ⋯ |𝑉10| 𝜕𝑄1𝜕|𝑉10|⋮ ⋱ ⋮|𝑉1| 𝜕𝑄10𝜕|𝑉1| ⋯ |𝑉10| 𝜕𝑄10𝜕|𝑉10|]  

  𝜕𝑄𝜕𝜔 = [  
  𝜕𝑄1𝜕𝜔⋮𝜕𝑄10𝜕𝜔 ]  

   (8.22) 

And, 

 𝜕𝑃𝑖𝜕𝛿𝑗 = −|𝑉𝑖𝑉𝑗𝑌𝑖𝑗| sin(𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖) (8.23) 
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𝜕𝑃𝑖𝜕𝛿𝑖 = ∑|𝑉𝑖𝑉𝑛𝑌𝑖𝑛| sin(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1𝑛≠𝑖  

𝜕𝑄𝑖𝜕𝛿𝑗 = −|𝑉𝑖𝑉𝑗𝑌𝑖𝑗| cos(𝜃𝑖𝑗 + 𝛿𝑗 − 𝛿𝑖) 𝜕𝑄𝑖𝜕𝛿𝑖 = ∑|𝑉𝑖𝑉𝑛𝑌𝑖𝑛| sin(𝜃𝑖𝑛 + 𝛿𝑛 − 𝛿𝑖)𝑁
𝑛=1𝑛≠𝑖  

|𝑉𝑗| 𝜕𝑃𝑖𝜕|𝑉𝑗| = −𝜕𝑄𝑖𝜕𝛿𝑗  

|𝑉𝑖| 𝜕𝑃𝑖𝜕|𝑉𝑖| = 𝜕𝑄𝑖𝜕𝛿𝑖 + 2|𝑉𝑖|2𝐺𝑖𝑖 |𝑉𝑗| 𝜕𝑄𝑖𝜕|𝑉𝑗| = 𝜕𝑃𝑖𝜕𝛿𝑗 |𝑉𝑖| 𝜕𝑄𝑖𝜕|𝑉𝑖| = −𝜕𝑃𝑖𝜕𝛿𝑖 − 2|𝑉𝑖|2𝐵𝑖𝑖 − |𝑉𝑖|𝐾𝑣𝑖 𝜕𝑃𝜕𝜔 =  −𝐾𝑤𝑖 𝜕𝑄𝜕𝜔 = 0 

A.3. Optimal power flow without inequality constraints: 

This application of the gradient method is an extension of the Newton-Raphson 

power flow method as defined in [68]. An objective function 𝑓 is defined which 

must be minimised subject to equality and inequality constraints. To begin with 

the minimisation of losses is selected as an objective function: 

 𝑓 =∑𝑃𝑖𝑁
𝑖=1 =∑𝑃𝑔𝑖𝑁

𝑖=1  (8.24) 

Where N is the total number of buses. 

The generation of active power in the network is predominantly from the wind 

turbines, with the interconnector to Norway generating enough active power to 

utilise any excess transmission capacity. Correspondingly, buses 1 to 3 are the 

loads (although modelled as negative generation) within the network that transfer 
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the active power to the UK main interconnected transmission system (MITS). In 

this work, buses 1, 2 and 3 are droop controlled and buses 4 to 10 are PQ buses. 

For the OPF, there is no change to the vector of unknown variables [𝑥] from that 

specified for the Newton-Raphson power flow, however the vector of specified 

variables [𝑦] is split up into control [𝑢] and fixed [𝑝] parameters.  

In a normal operating condition, the active power output from the wind turbines is 

determined by the power exerted by the wind and therefore it must be considered 

a fixed parameter at any moment in time. The active power output from the 

interconnector to Norway must also be considered as fixed. The active power 

being absorbed by the HVDC links connected to the UK are available for 

dispatch and hence can be included as control parameters. Only droop controlled 

busses can contribute in reactive power control. 

The following vectors are defined: 

 

[𝑥] = [𝛿1:10, 𝑉1:10, 𝜔] [𝑢] = [𝐾𝜔𝑖1:3, 𝐾𝑣𝑖1:3] [𝑝] = [𝑃4:10, 𝑄4:10, 𝜔𝑖01:3, 𝑉𝑖01:3] (8.25) 

Using the classical optimisation method of Lagrangian multipliers, the minimum 

of the objective function as defined in (8.24), subject to the equality constraints, is 

found by minimising the unconstrained Lagrangian function: 

 ℒ(𝑥, 𝑢, 𝑝) = 𝑓(𝑥, 𝑢) + [𝜆]𝑇[𝑔(𝑥, 𝑢, 𝑝) = 0] (8.26) 

Where [𝜆] includes as many auxiliary variables 𝜆𝑖 as there are equality 

constraints. To obtain a minimum, the following conditions are required: 

 

[𝜕ℒ𝜕𝑥] = [𝜕𝑓𝜕𝑥] + [𝜕𝑔𝜕𝑥]𝑇 [𝜆] = 0 

[𝜕ℒ𝜕𝑢] = [𝜕𝑓𝜕𝑢] + [𝜕𝑔𝜕𝑢]𝑇 [𝜆] = 0 

[𝜕ℒ𝜕𝜆] = [𝑔(𝑥, 𝑢, 𝑝)] = 0 

(8.27) 



206 

 

 

Note that (8.27) contains the transpose of the Jacobian matrix from the Newton-

Raphson power flow solution. Also note that [𝜕ℒ𝜕𝑢] = [∇𝑓], which is the gradient 

vector of the objective function. 

The steps taken in performing the OPF algorithm is as follows: 

1. Assume starting set of control variables [u] 

The starting set of control variables are as defined as: 

 [𝑢] = [𝐾𝜔𝑖1:3, 𝐾𝑣𝑖1:3] (8.28) 

2. Solve NR power flow to ensure equality constraints are satisfied 

(𝒈(𝒙, 𝒖, 𝒑) = 𝟎)) 
A feasible power flow solution is found using Newton’s method as described in 

section A.1 and section A.2, which yields the Jacobian matrix. 

3. Define Lagrangian function 𝓛(𝒙, 𝒖, 𝒑) and solve for Lagrange multipliers [𝝀] 
The lagrangian function is defined as: 

ℒ(𝑥, 𝑢, 𝑝) =∑𝑃𝑔𝑖10
𝑖=1 + [𝜆1:20]𝑇 [ 𝑔1:10′ 𝑔1:10′′] (8.29) 

Solving for the Lagrange multipliers: 

 [𝜆] = − [𝜕𝑔𝜕𝑥]𝑇−1 [𝜕𝑓𝜕𝑥] (8.30) 

Where, 

 

[𝜕𝑔𝜕𝑥] = 𝑱
[𝜕𝑓𝜕𝑥] = [  

   ∑
𝜕𝑃𝜕𝛿∑ 𝜕𝑃𝜕|𝑉|∑ 𝜕𝑃𝜕𝜔 ]  

    (8.31) 

And, 
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∑𝜕𝑃𝜕𝛿 = [  
  𝜕𝑃1𝜕𝛿1⋮𝜕𝑃10𝜕𝛿1

+++………
𝜕𝑃1𝜕𝛿10⋮𝜕𝑃10𝜕𝛿10]  

  
 

∑ 𝜕𝑃𝜕|𝑉| = [  
  𝜕𝑃1𝜕|𝑉1|⋮𝜕𝑃10𝜕|𝑉1|

+++………
𝜕𝑃1𝜕|𝑉10|⋮𝜕𝑃10𝜕|𝑉10|]  

  
 

∑𝜕𝑃𝜕𝜔 = [  
  𝜕𝑃1𝜕𝜔⋮𝜕𝑃10𝜕𝜔 ]  

  
 

(8.32) 

4. Compute gradient of objective function [𝜵𝓕] 
The gradient of the objective function is defined by: 

 [𝛻𝑓] = [𝜕𝑓𝜕𝑢] + [𝜕𝑔𝜕𝑢]𝑇 [𝜆] (8.33) 

Where, 

 

[𝜕𝑔𝜕𝑢] = [ 𝜕𝑔𝜕𝐾𝜔𝜕𝑔𝜕𝐾𝑣 ] 
[𝜕𝑓𝜕𝑢] = [ 𝜕𝑓𝜕𝐾𝜔𝜕𝑓𝜕𝐾𝑣 ] 

(8.34) 

And, 

 

𝜕𝑔𝑖𝜕𝐾𝜔𝑖 = 𝜔 − 𝜔𝑖0 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈  [𝑢] 𝜕𝑔𝑖𝜕𝐾𝑣𝑖 = 𝑉𝑖 − 𝑉𝑖0 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈  [𝑢] 𝜕𝑓𝑖𝜕𝐾𝜔𝑖 = 𝜔 − 𝜔𝑖0 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈  [𝑢] 𝜕𝑓𝑖𝜕𝐾𝑣𝑖 = 0 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈  [𝑢] 
(8.35) 

5. If gradient is within prescribed tolerance, the minimum has been reached 
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The maximum value of the gradient vector is then checked to see if it is less than 

the tolerance which is assumed as 1e-3. 

6. Otherwise check feasible direction of steepest descent 

The feasible direction of steepest descent [𝑟] is formed according to the following 

conditions: 

 𝑟𝑖 =
{   
   0,   𝑖𝑓 𝜕𝑓𝜕𝑢𝑖 < 0 𝑎𝑛𝑑 𝑢𝑖 = 𝑢𝑖𝑚𝑎𝑥0,   𝑖𝑓 𝜕𝑓𝜕𝑢𝑖 > 0 𝑎𝑛𝑑 𝑢𝑖 = 𝑢𝑖𝑚𝑖𝑛− 𝜕𝑓𝜕𝑢𝑖 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (8.36) 

7. Find a new set of control variables [𝒖]𝒏𝒆𝒘 

 [𝑢𝑛𝑒𝑤] = [𝑢𝑜𝑙𝑑] + [∆𝑢] (8.37) 

Where, 

 [∆𝑢] = −𝑘𝑐[r] (8.38) 

And, 𝑘 = 1𝑒 − 6;  𝑐 = −∑𝑟𝑖2 ;  
The linear parameter constraints of the elements in [𝑢] are also maintained by the 

following: 

 𝑢𝑖 = {𝑢𝑖𝑚𝑎𝑥,   𝑖𝑓 (𝑢𝑖 + ∆𝑢𝑖) > 𝑢𝑖𝑚𝑎𝑥𝑢𝑖𝑚𝑖𝑛,   𝑖𝑓(𝑢𝑖 + ∆𝑢𝑖) < 𝑢𝑖𝑚𝑖𝑛𝑢𝑖 + ∆𝑢𝑖, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  (8.39) 

A.4. Constrained optimal power flow applied (including 

loss minimisation and inequality constraints): 

The penalty method is used to implement these inequality constraints, therefore 

the objective function must include an additional term to account for the penalties 

of each active constraint: 
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 𝑓 =∑𝑃𝑖𝑁
𝑖=1 +∑𝑤𝑗𝑀

𝑗=1  (8.40) 

Where there are M violated functional inequality constraints. The physical 

constraints in the network that need to be considered include: 

 Upper and lower voltage limits at all buses in the network 

 Current limits flowing through each line 

 Apparent power transfer limit through the VSCs 

The following penalty functions are therefore applied: 𝑤𝑖𝑉
= { 
 𝐾𝑖𝑉𝑚𝑖𝑛(𝑉𝑖𝑚𝑖𝑛 − 𝑉𝑖)2 ∙ sgn(𝑉𝑖𝑚𝑖𝑛 − 𝑉𝑖) ≤ 0 ;  0 ;  𝐾𝑖𝑉𝑚𝑎𝑥(𝑉𝑖 − 𝑉𝑖𝑚𝑎𝑥)2 ∙ sgn(𝑉𝑖 − 𝑉𝑖𝑚𝑎𝑥) ≤ 0 ;  

 𝑉𝑖 < 𝑉𝑖𝑚𝑖𝑛𝑉𝑖𝑚𝑖𝑛 ≤ 𝑉𝑖 ≤ 𝑉𝑖𝑚𝑎𝑥𝑉𝑖 > 𝑉𝑖𝑚𝑎𝑥  

(8.41

) 

𝑤𝑖𝐼𝑓= {𝐾𝑖𝐼𝑓(𝑌𝑎(𝑉𝑚 − 𝑉𝑛) − 𝐼𝑓𝑚𝑎𝑥)2 ∙ sgn(𝐼𝑓 − 𝐼𝑓𝑚𝑎𝑥) ≤ 0 ;0 ; 𝐼𝑓 > 𝐼𝑓𝑚𝑎𝑥0 ≤ 𝐼𝑓 ≤ 𝐼𝑓𝑚𝑎𝑥 

(8.42

) 

𝑤𝑖𝐼𝑡= {𝐾𝑖𝐼𝑡(𝑌𝑎(𝑉𝑛 − 𝑉𝑚) − 𝐼𝑡𝑚𝑎𝑥)2 ∙ sgn(𝐼𝑡 − 𝐼𝑡𝑚𝑎𝑥) ≤ 0 ;0 ; 𝐼𝑡 > 𝐼𝑡𝑚𝑎𝑥0 ≤ 𝐼𝑡 ≤ 𝐼𝑡𝑚𝑎𝑥  

(8.43

) 𝑤𝑖𝑀𝑉𝐴= {𝐾𝑖𝑀𝑉𝐴 ((𝑃𝑖2 + 𝑄𝑖2) − (𝑆𝑖𝑚𝑎𝑥)2)2 ∙ sgn(𝑆𝑖 − 𝑆𝑖𝑚𝑎𝑥) ≤ 0 ;0 ; 𝑆𝑖 > 𝑆𝑖𝑚𝑎𝑥0 ≤ 𝑆𝑖 ≤ 𝑆𝑖𝑚𝑎𝑥 

(8.44

) 

The steepness of the penalty function is determined by the applicable constants 

from [𝑘]: 
 [𝑘] = [𝐾𝑖𝑉𝑚𝑖𝑛, 𝐾𝑖𝑉𝑚𝑎𝑥, 𝐾𝑖𝐼𝑓, 𝐾𝑖𝐼𝑡, 𝐾𝑖𝑀𝑉𝐴] (8.45) 

The values of [𝑘] for now are determined through trial and error. 

The Lagrangian is updated to account for the inequality constraint functions as 

follows: 
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 ℒ(𝑥, 𝑢, 𝑝) = 𝑓(𝑥, 𝑢) + [𝑤]𝑇[ℎ(𝑥, 𝑢, 𝑝) ≤ 0]+ [𝜆]𝑇[𝑔(𝑥, 𝑢, 𝑝) = 0] (8.46) 

Therefore to obtain a minimum, it is assumed that the following is necessary: 

 

[𝜕ℒ𝜕𝑥] = [𝜕𝑓𝜕𝑥] + [𝜕𝑤𝜕𝑥] + [𝜕𝑔𝜕𝑥]𝑇 [𝜆] = 0 

[𝜕ℒ𝜕𝑢] = [𝜕𝑓𝜕𝑢] + [𝜕𝑤𝜕𝑢] + [𝜕𝑔𝜕𝑢]𝑇 [𝜆] = 0 

[𝜕ℒ𝜕𝜆] = [𝑔(𝑥, 𝑢, 𝑝)] = 0 

(8.47) 

It is therefore necessary to obtain the partial differentials of each of the penalty 

functions in [𝑤] with respect to [𝑥] and [𝑢]. 
Partial differentials of voltage limit weighting functions: 

 

[𝜕𝑤𝑖𝑉𝑚𝑖𝑛𝜕𝑥 ] = [𝜕𝑤𝑖𝑉𝑚𝑖𝑛𝜕|𝑉𝑖| ] = −2𝐾𝑖𝑉𝑚𝑖𝑛|𝑉𝑖| 
[𝜕𝑤𝑖𝑉𝑚𝑖𝑛𝜕𝑢 ] = 0 

[𝜕𝑤𝑖𝑉𝑚𝑎𝑥𝜕𝑥 ] = [𝜕𝑤𝑖𝑉𝑚𝑎𝑥𝜕|𝑉𝑖| ] = 2𝐾𝑖𝑉𝑚𝑎𝑥|𝑉𝑖| 
[𝜕𝑤𝑖𝑉𝑚𝑎𝑥𝜕𝑢 ] = 0 

(8.48) 

Partial differentials of line current limit weighting functions: 

 

[𝜕𝑤𝑖𝐼𝑓𝜕𝑥 ] = [𝜕𝑤𝑖𝐼𝑓𝜕𝛿 ] = 𝑅𝑒 (𝜕𝑤𝑖𝐼𝑓𝜕𝛿 ) + 𝐼𝑚(𝜕𝑤𝑖𝐼𝑓𝜕𝛿 ) 

[𝜕𝑤𝑖𝐼𝑓𝜕𝑥 ] = [𝜕𝑤𝑖𝐼𝑓𝜕|𝑉𝑖| ] = 𝑅𝑒 (𝜕𝑤𝑖𝐼𝑓𝜕|𝑉𝑖| ) + 𝐼𝑚(𝜕𝑤𝑖𝐼𝑓𝜕|𝑉𝑖| ) 

[𝜕𝑊𝑖𝐼𝑓𝜕𝑢 ] = 0 

[𝜕𝑤𝑖𝐼𝑡𝜕𝑥 ] = [𝜕𝑤𝑖𝐼𝑡𝜕𝛿 ] = Re (𝜕𝑤𝑖𝐼𝑡𝜕𝛿 ) + Im (𝜕𝑤𝑖𝐼𝑡𝜕𝛿 ) 

[𝜕𝑤𝑖𝐼𝑡𝜕𝑥 ] = [𝜕𝑤𝑖𝐼𝑡𝜕|𝑉𝑖|] = Re (𝜕𝑤𝑖𝐼𝑡𝜕|𝑉𝑖|) + Im (𝜕𝑤𝑖𝐼𝑡𝜕|𝑉𝑖|) 

[𝜕𝑊𝑖𝐼𝑓𝜕𝑢 ] = 0 

(8.49) 

And where, 
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Re (𝜕𝑤𝑖𝐼𝑓𝜕𝛿 ) = 2𝐾𝑖𝐼𝑓 (𝑌𝑓𝑡(𝑉𝑓 − 𝑉𝑡)) (𝜕Re(𝑤𝑖𝐼𝑓)𝜕𝛿𝑓 + 𝜕Re(𝑤𝑖𝐼𝑓)𝜕𝛿𝑡 ) 

Im(𝜕𝑤𝑖𝐼𝑓𝜕𝛿 ) = 2𝐾𝑖𝐼𝑓 (𝑌𝑓𝑡(𝑉𝑓 − 𝑉𝑡)) (𝜕Im(𝑤𝑖𝐼𝑓)𝜕𝛿𝑓 + 𝜕Im(𝑤𝑖𝐼𝑓)𝜕𝛿𝑡 ) 

Re (𝜕𝑤𝑖𝐼𝑓𝜕|𝑉| ) = 2𝐾𝑖𝐼𝑓 (𝑌𝑓𝑡(𝑉𝑓 − 𝑉𝑡)) (𝜕Re(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑓| + 𝜕Re(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑡| ) 

Im(𝜕𝑤𝑖𝐼𝑓𝜕|𝑉| ) = 2𝐾𝑖𝐼𝑓 (𝑌𝑓𝑡(𝑉𝑓 − 𝑉𝑡)) (𝜕Im(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑓| + 𝜕Im(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑡| ) 

Re (𝜕𝑤𝑖𝐼𝑡𝜕𝛿 ) = 2𝐾𝑖𝐼𝑡 (𝑌𝑓𝑡(𝑉𝑡 − 𝑉𝑓)) (𝜕Re(𝑤𝑖𝐼𝑡)𝜕𝛿𝑓 + 𝜕Re(𝑤𝑖𝐼𝑡)𝜕𝛿𝑡 ) 

Im(𝜕𝑤𝑖𝐼𝑓𝜕𝛿 ) = 2𝐾𝑖𝐼𝑓 (𝑌𝑓𝑡(𝑉𝑡 − 𝑉𝑓))(𝜕Im(𝑤𝑖𝐼𝑡)𝜕𝛿𝑓 + 𝜕Im(𝑤𝑖𝐼𝑡)𝜕𝛿𝑡 ) 

Re (𝜕𝑤𝑖𝐼𝑓𝜕|𝑉| ) = 2𝐾𝑖𝐼𝑓 (𝑌𝑓𝑡(𝑉𝑡 − 𝑉𝑓))(𝜕Re(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑓| + 𝜕Re(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑡| ) 

Im(𝜕𝑤𝑖𝐼𝑓𝜕|𝑉| ) = 2𝐾𝑖𝐼𝑓 (𝑌𝑓𝑡(𝑉𝑡 − 𝑉𝑓))(𝜕Im(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑓| + 𝜕Im(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑡| ) 

(8.50) 

Given that the admittance between each bus is given by: 

 𝑌𝑓𝑡 = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 + |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 (8.51) 

Finally, 𝜕Re(𝑤𝑖𝐼𝑓)𝜕𝛿𝑓 = 𝜕Re(𝑤𝑖𝐼𝑡)𝜕𝛿𝑓 = −|𝑌𝑓𝑡| cos 𝜃𝑓𝑡 |𝑉𝑓| sin 𝛿𝑓 − |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 |𝑉𝑓| cos 𝛿𝑓 𝜕Re(𝑤𝑖𝐼𝑓)𝜕𝛿𝑡 = 𝜕Re(𝑤𝑖𝐼𝑡)𝜕𝛿𝑡 = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 |𝑉𝑡| sin 𝛿𝑡 − |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 |𝑉𝑡| cos 𝛿𝑡 𝜕Im(𝑤𝑖𝐼𝑓)𝜕𝛿𝑓 = 𝜕Im(𝑤𝑖𝐼𝑡)𝜕𝛿𝑓 = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 |𝑉𝑓| cos 𝛿𝑓 − |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 |𝑉𝑓| sin 𝛿𝑓 𝜕Im(𝑤𝑖𝐼𝑓)𝜕𝛿𝑡 = 𝜕Im(𝑤𝑖𝐼𝑡)𝜕𝛿𝑡 = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 |𝑉𝑡| cos 𝛿𝑡 + |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 |𝑉𝑡| sin 𝛿𝑡 𝜕Re(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑓| = 𝜕Re(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑓| = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 cos 𝛿𝑓 − |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 sin 𝛿𝑓 𝜕Re(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑡| = 𝜕Re(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑡| = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 cos 𝛿𝑡 − |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 sin 𝛿𝑡 

(8.52) 
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𝜕Im(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑓| = 𝜕Im(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑓| = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 sin 𝛿𝑓 + |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 cos 𝛿𝑓 𝜕Im(𝑤𝑖𝐼𝑓)𝜕|𝑉𝑡| = 𝜕Im(𝑤𝑖𝐼𝑡)𝜕|𝑉𝑡| = |𝑌𝑓𝑡| cos 𝜃𝑓𝑡 sin 𝛿𝑡 − |𝑌𝑓𝑡| sin 𝜃𝑓𝑡 cos 𝛿𝑡 
Partial differentials of apparent power limit weighting functions: 

[𝜕𝑤𝑖𝑀𝑉𝐴𝜕𝑥 ] = [   
 𝜕𝑤𝑖𝑀𝑉𝐴𝜕𝛿𝑖𝜕𝑤𝑖𝑀𝑉𝐴𝜕|𝑉𝑖| ]   

 

= [   
  4𝐾𝑖𝑀𝑉𝐴 ((𝑃1(𝛿1:10, 𝑉1:10)3. 𝜕𝑃1𝜕𝛿1:10) + (𝑄1(𝛿1:10, 𝑉1:10)3. 𝜕𝑄1𝜕𝛿1:10))4𝐾𝑖𝑀𝑉𝐴 ((𝑃1(𝛿1:10, 𝑉1:10)3. 𝜕𝑃1𝜕|𝑉1:10|) + (𝑄1(𝛿1:10, 𝑉1:10)3. 𝜕𝑄1𝜕|𝑉1:10|))]   

  
 

[𝜕𝑤𝑖𝑀𝑉𝐴𝜕𝑢 ] = [   
 𝜕𝑤𝑖𝑀𝑉𝐴𝜕𝑃𝑖𝜕𝑤𝑖𝑀𝑉𝐴𝜕𝑄𝑖 ]   

 = [4𝐾𝑖𝑀𝑉𝐴𝑃𝑔𝑖34𝐾𝑖𝑀𝑉𝐴𝑄𝑔𝑖3] , 𝑤ℎ𝑒𝑟𝑒 𝑖 ∈  [𝑢] 
(8.53) 

The optimal power flow algorithm is then performed using the procedure 

described in section A.3 but including the necessary modifications to account for 

the penalty functions. 
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A.5. Constrained optimal power flow applied (inequality 

constraint minimisation only): 

The OPF was considered with the goal of just eliminating physical constraints. 

The objective function then becomes as follows: 

 𝑓 =∑𝑤𝑗𝑀
𝑗=1  (8.54) 

The Lagrangian is updated accordingly as follows: 

 ℒ(𝑥, 𝑢, 𝑝) = [𝑤]𝑇[ℎ(𝑥, 𝑢, 𝑝) ≤ 0]+ [𝜆]𝑇[𝑔(𝑥, 𝑢, 𝑝) = 0] (8.55) 

Therefore to obtain a minimum, it is assumed that the following is necessary: 

 

[𝜕ℒ𝜕𝑥] = [𝜕𝑤𝜕𝑥] + [𝜕𝑔𝜕𝑥]𝑇 [𝜆] = 0 

[𝜕ℒ𝜕𝑢] = [𝜕𝑤𝜕𝑢] + [𝜕𝑔𝜕𝑢]𝑇 [𝜆] = 0 

[𝜕ℒ𝜕𝜆] = [𝑔(𝑥, 𝑢, 𝑝)] = 0 

(8.56) 

Again, the same method as that described in section A.3 is utilised to reach a 

minimum condition. 

 


