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Realtime Reconstruction of an Animating
Human Body from a Single Depth Camera

Yin Chen, Zhi-Quan Cheng*, Chao Lai, Ralph R. Martin, Gang Dang

Abstract—We present a method for realtime reconstruction of an animating human body, which produces a sequence of
deforming meshes representing a given performance captured by a single commodity depth camera. We achieve realtime
single-view mesh completion by enhancing the parameterized SCAPE model. Our method, which we call Realtime SCAPE,
performs full-body reconstruction without the use of markers. In Realtime SCAPE, estimations of body shape parameters and
pose parameters, needed for reconstruction, are decoupled. Intrinsic body shape is first precomputed for a given subject, by
determining shape parameters with the aid of a body shape database. Subsequently, per-frame pose parameter estimation is
performed by means of linear blending skinning (LBS); the problem is decomposed into separately finding skinning weights and
transformations. The skinning weights are also determined offline from the body shape database, reducing online reconstruction
to simply finding the transformations in LBS. Doing so is formulated as a linear variational problem; carefully designed constraints
are used to impose temporal coherence and alleviate artifacts. Experiments demonstrate that our method can produce full-body
mesh sequences with high fidelity.

Index Terms—Realtime reconstruction, Human animation, Depth camera, SCAPE.

F

1 INTRODUCTION1

Realtime reconstruction of animating full-body perfor-2

mances is of use in a range of applications requiring3

3D personalized avatars, for example movie produc-4

tion and game control.5

Here, we present an approach to markerless realtime6

reconstruction of an animating human, captured us-7

ing a single commodity depth camera such as the8

Microsoft Kinect [1]. Single-view capture offers sev-9

eral advantages over multi-view techniques, includ-10

ing lower price, simpler calibration, and more flexible11

setup. However, there are several technical challenges12

in using such an approach. Firstly, depth data from a13

single low-price camera are typically very noisy, and14

suffer from significant missing regions due to self-15

occlusion. Secondly, computing the deformation giv-16

ing the pose for each frame is inherently a nonlinear17

problem, so is hard to solve in real time, especially if18

there is rapid motion between adjacent frames. Lastly,19

to reconstruct a smooth full-body animation from20

low quality depth data, temporal coherence needs to21

be carefully taken into account in pose estimation—22

yet without markers or manual assistance to build23

inter-frame correspondences, coherence is difficult to24

ensure.25
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We address these challenges by treating full-body re- 26

construction from single-view data as a parameterized 27

template fitting problem. In particular, we extend the 28

SCAPE (Shape Completion and Animation of PEople) 29

approach [2] to provide realtime performance. The 30

original SCAPE method was devised for reconstruc- 31

tion of a complete human body from a set of markers 32

attached to the target subject. Directly using unmodi- 33

fied SCAPE for full-body reconstruction is very time- 34

consuming: e.g. see the markerless method in [3]. 35

Fortunately, estimation of body shape and pose pa- 36

rameters can be decoupled when using the SCAPE 37

model. The intrinsic body shape of a performing 38

subject does not change, and so body shape param- 39

eters can be estimated offline beforehand, leaving 40

just the pose parameters to be determined for each 41

frame of a motion sequence. We take advantage of 42

this approach, but to enable realtime reconstruction, 43

we further enhance SCAPE, which formulates pose 44

parameter computation in terms of linear blending 45

skinning (LBS) deformation [4]. The LBS approach 46

represents pose using skinning weights and transfor- 47

mations. The skinning weights are again fixed with 48

respect to time, so can also be learnt offline from 49

a human database, reducing realtime reconstruction 50

to the solution of a linear variational problem to 51

determine a set of transformations. To provide high- 52

quality output with temporal coherence and avoiding 53

deformation artifacts, carefully designed constraints 54

are also imposed. 55

In summary, the contribution of Realtime SCAPE is a 56

method for accurate, realtime, geometry and motion 57

reconstruction of an animating human from a single 58

low-cost depth camera: see Figure 1. Its key features 59
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Fig. 1. Frames from a performance, showing: photograph of the pose, depth data (left), and watertight mesh
produced in realtime (right).

are:60

• Two stages of parameter decoupling, permitting61

pose estimation at realtime speed.62

• Constrained pose transformation recovery to sup-63

press deformation artifacts and ensure temporal64

coherence.65

• Robust reconstruction results, even for challeng-66

ing performances, e.g. those including 360◦ rota-67

tions of the human body.68

2 RELATED WORK69

Human body reconstruction has been studied both70

theoretically and algorithmically in computer vision71

and graphics. Existing approaches can be classified72

as single- or multi-view, according to the number of73

cameras used. We focus on single camera methods74

and related recent advances; see [3], [5], [6], [7] for75

comprehensive reviews.76

Shape/geometry reconstruction. The Kinect [1] is a77

representative low-cost depth camera, producing low-78

quality data with a high rate. The GPU-based Kinect-79

Fusion method [8] can be used for both tracking and80

static surface reconstruction. In particular, we utilize81

KinectFusion to capture static initial body shape data82

as a 3D mesh, which is used offline to determine pa-83

rameters of an intrinsic body shape model particular84

to the subject.85

Even large gaps in captured data can be overcome86

by use of template-based registration, which leads87

to a template fitting problem [2], [9], [10], [11], [12],88

[13], [14]. Earlier work often tracked marker points89

for correspondence estimation [2], [9], but more re-90

cently, markerless reconstruction methods [10], [11],91

[12], [13], [14] have made great progress. The single-92

view method in [12] is a good example, but it requires93

high-quality data, and is unable to handle relatively94

low-quality depth data such as that provided by a 95

Kinect device. Our method is also markerless, and 96

can robustly reconstruct human geometry and motion 97

from low-quality data. 98

We use a SCAPE model as the basis for shape and 99

pose reconstruction [2]. Two important lines of re- 100

search have emerged in this area, those using 2D 101

images [15], [16], and those using a single depth 102

camera [3], [17], [18]. The latter category is most 103

similar to our work: it estimates body shape using 104

image silhouettes and depth data using a single Kinect 105

device. However, the method in [3] takes approxi- 106

mately one hour to produce a result, which is far too 107

slow for many practical applications, and underlines 108

the difficulties in reconstructing human geometry and 109

motion from single-view data in real time. 110

Pose/motion capture. A skeleton provides a compact 111

object representation, summarizing both geometrical 112

and topological information, and so is frequently 113

adopted as a proxy in place of capturing accurate ge- 114

ometry when estimating motion from a single camera. 115

Weiss [19] combines motion capture with physically- 116

based simulation to obtain skeleton-based motion 117

results using a traditional 2D camera, but manual 118

labeling of key frames is required. The same group’s 119

later work [20] uses a depth camera, and provides a 120

more accurate solution based on an iterative process 121

of tracking and detection. Related research estimate 122

3D pose in realtime by using trained randomized 123

decision trees [21], a context-sensitive regression for- 124

est [22], or one-shot skeleton fitting using Vitruvian 125

manifold methods [23]. These methods, as well as 126

those in [24], [25], [26], [27], [28], all rely on a database 127

of prerecorded human motions. However, such a 128

database cannot include every possible pose which 129

may occur in a human performance. Note further that 130

the main goal of such skeleton tracking methods is to 131

estimate the motion in terms of parameters describing 132
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Fig. 2. Framework. Top: Realtime SCAPE model. Center: offline template acquisition, intrinsic body shape
reconstruction, and weight computation for use in linear blending skinning (LBS). Bottom: online animating
human body reconstruction, matching deformed intrinsic body shape to each dynamic data frame, via rapid
computation of the LBS pose transformations.

the skeleton, whereas our goal is to perform surface133

reconstruction from each frame of depth data. Thus,134

methods such as those in [20], [21], [24], [25], [26], [29],135

cannot be compared directly to ours. These differences136

in goals mean that they are complementary rather137

than competing.138

As noted in both recent [18], [27] and earlier [24], [25],139

[26], [29] work, performances including such motions140

as 360◦ human rotation present a severe challenge.141

For example, [28] uses body-worn inertial sensors142

to help in such cases. Similar problems also arise143

in the state-of-the-art skeleton extraction approach144

taken by the Kinect SDK [1]. This shortcoming was145

successfully overcome in [20], by taking advantage of146

temporal coherence between neighboring frames. We147

also use temporal cues to allow such performances to148

be robustly handled by our method, without the need149

for complementary sensors.150

Linear blending skinning Linear blending skinning151

(LBS) [4] is a popular deformation model, providing152

fast performance and good deformation qualities. [30]153

proposed an automatic algorithm to extract an LBS154

model from a set of example poses based on rigid155

bones; it borrowed the term skinning decomposition156

from [31] to refer to the inverse problem of fitting an157

LBS model to measured data. The latter is formulated158

as a constrained optimization problem in which the159

least-squares errors of vertex positions reconstructed160

by LBS are minimized; a linear solver iteratively161

updates a weight map and the bone transformations.162

However, the speed of this approach is far from suffi-163

cient for realtime work. We build on these ideas, and164

further decouple pose deformation using the human 165

database to significantly increase performance. 166

3 OVERVIEW 167

Fig. 2 illustrates our framework, which has three main 168

components: a modified SCAPE model (our Realtime 169

SCAPE model), an offline preprocessing module, and 170

a module for online reconstruction from the single 171

depth camera. 172

SCAPE [2] describes the human body using coupled 173

shape and pose parameters. We modify the original 174

SCAPE model (see Section 4) in Realtime SCAPE to 175

meet the needs of realtime reconstruction. The shape 176

model is revised to include offline construction of 177

a template, based on scanned data, to capture the 178

subject’s individual body shape. To improve speed, 179

the pose representation used in the original SCAPE 180

approach is replaced by LBS decomposition [30], [31]. 181

This LBS decomposition is represented by sparse rigid 182

transformations and weights. The weights are also 183

learnt offline for use in online pose determination, 184

reducing the dimensionality and difficulty of the ge- 185

ometry and motion reconstruction problem. The only 186

parameters remaining to be estimated in real time are 187

a set of rigid transformations. 188

During offline preprocessing (see Section 5), KinectFu- 189

sion [8] is used to provide an initial mesh representing 190

a particular subject. The subject stands in a static 191

T-pose. Depth data is captured and registered into 192

a single coordinate system, by moving the camera 193
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Fig. 3. Reconstructed poses matched to real data, for
two subjects. Left: rest pose (grey) and target pose
(orange). Center: match between reconstructed pose
(grey) and target pose (orange). Right: bones for which
each triangle has largest weight.

around the subject until sufficient data have been194

acquired. This mesh, together with intrinsic attributes195

of weight, height and gender, are used to determine196

the body shape parameters in the shape deformation197

model which describe this particular individual. We198

call this the subject’s intrinsic body shape model. LBS199

skinning weights are also determined.200

Online motion capture of the subject is then per-201

formed using the Kinect, which provides a depth202

image sequence with resolution 320×240 at 30 frames203

per second. We use a linear variational approach to204

determine the transformation parameters, which are205

used together with the learnt weight parameters of206

LBS to reconstruct the motion of the performer from207

the single depth camera (Section 6).208

4 REALTIME SCAPE MODEL209

4.1 SCAPE overview210

SCAPE [2] is a decoupled deformation model which211

separately accounts for shape variation between dif-212

ferent people, and changes in pose.213

• Shape is parameterized by Θ = Uθ+µ, where µ is214

mean human body shape, and U are eigenvectors215

found by principal component analysis (PCA).216

Both µ and U can be directly determined by217

using a reference human database. The param- 218

eter vector θ of linear coefficients characterizes a 219

particular subject. 220

• Pose is parameterized by a set of pose matrices 221

Q, which determine the articulated pose. 222

These two sets of parameters may be combined to 223

reconstruct realistic results for various humans in 224

different poses. 225

The SCAPE model [2] deforms a body template M 226

to fit a particular mesh Msp, corresponding to a 227

subject s in the database in pose p. In detail, consider 228

some triangle inM with vertices (vk1 , vk2 , vk3). Shape 229

and pose deformations are applied in turn to trans- 230

form it into its counterpart in Msp. Deformations are 231

computed in terms of the triangle’s local coordinate 232

system, obtained by translating point vk1 to the global 233

origin. Thus, deformations are applied to triangle 234

edges ekn = vkn − vk1 , n = 2, 3. Given Q,Θ, for each 235

template triangle, SCAPE can thus determine a mesh 236

for a specific person and pose by finding the set of 237

vertex locations v1, · · · , v|V | (where |V | is the number 238

of mesh vertices) that minimizes the reconstruction 239

error for the observed triangle edges: 240

arg min
v1,··· ,v|V |

∑
k

∑
n=2,3

‖Qspk Θsp
k ekn − (vkn − vk1)‖2. (1)

4.2 Realtime SCAPE using LBS-based pose de- 241

formation 242

In our enhancements to SCAPE for realtime perfor- 243

mance, we replace the pose deformation matrices Q 244

by the LBS technique [4]. To learn our modified Real- 245

time SCAPE model parameters, we used the CAESAR 246

human database [32], which includes 2400 subjects in 247

|P | = 70 poses. Each subject is represented by a closed 248

mesh, fitted to a templateM with 12,500 vertices and 249

25,000 faces. 250

LBS synopsis. In LBS, pose is represented using
transformations of rigid bones relative to a rest pose,
and skinning weights. For a subject s, the weight wij
represents the influence of the j-th bone on the i-th
vertex. Each vertex is associated with no more than
|N | bones, and there are |B| bones in total, If vri is
the position of the i-th vertex in the rest pose, and
each Rpj and T pj are a 3× 3 rotation matrix and 3× 1
translation vector transforming the j-th bone in the
p-th pose, then the deformed i-th vertex, vpi , is given



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.X, NO.X, 2013 5

by:

vpi =

|B|∑
j=1

wij(R
p
jv
r
i + T pj ), (2a)

subject to :

wij ≥ 0, ∀i, j, (2b)
|B|∑
j=1

wij = 1, ∀i, (2c)

|{wij |wij 6= 0}| ≤ |N |, ∀i, (2d)

Rpj
T
Rpj = I, |Rpj | = 1, ∀p, j. (2e)

Eqns. (2b–2d) ensure physically meaningful bone-251

vertex influences, while Eqn. (2e) ensures that Rpj is a252

proper rotation matrix.253

Skinning decomposition. Following [30], the trans-254

formations and weights may be determined by solv-255

ing a constrained least squares optimization problem;256

the example poses in the human database are used as257

data to learn the set of weights:258

arg min
w,R,T

|P |∑
p=1

|V |∑
i=1

‖vpi −
|B|∑
j=1

wij(R
p
jv
r
i + T pj )‖2, (3)

subject to the constraints in Eqns. (2b–2e).259

Each subject s has a variety of poses in the human260

database. The subject’s body surface is initially au-261

tomatically decomposed with faces allocated to |B|262

rigid bones (|B| = 17 in practice), using a rigging263

technique [33]. As all shapes in the database have264

the same topology, decomposition of one subject can265

be directly transferred to all other subjects. We define266

neighbors for each bone. The weights of a vertex v267

belonging to bone b are non-zero weights only for268

b and its neighboring bones. Since each bone has at269

most 3 neighboring bones, |N | = 4.270

The weights are determined by iteratively solving271

Eqn. (3). Since we have initial vertex clusters for each272

bone, we can initialize each Rj and Tj using the273

method in [30]. Then, for every pose of s, the LBS274

weights W and transformations R, T are iteratively275

updated by alternating two steps, until convergence,276

or a maximum number of iterations (experimentally277

set to 20) has been reached. These steps are:278

Weight computation. The bone transformations are279

fixed, and W optimized by solving a constrained least280

squares problem as in [30].281

Transformation computation. The weights W are fixed,282

and optimization is performed to find the bone trans-283

formations, via LBS minimization as in Eqn. (3). The284

objective function is now:285

min
R,T

E = min
R,T

|P |∑
p=1

|V |∑
i=1

‖vpi −
|B|∑
j=1

wij(R
p
jv
r
i + T pj )‖2 (4)

subject to: Rpj
T
Rpj = I, detRpj = 1, ∀p, j. 286

We solve Eqn. (4) iteratively after linearizing the 287

rotation matrices. Specifically, when optimizing R, we 288

use the standard approximation Rnew ≈ (I + R̂)Rold, 289

where the vector r = (r1, r2, r3) is a linear approxima- 290

tion for a small rotation R̂: 291 0 −r3 r2

r3 0 −r1

−r2 r1 0

 . (5)

This quickly converges to a local optimum of the 292

objective function in Eqn. (4). This approach converts 293

the LBS optimization problem into a linear variational 294

problem which can be rapidly solved. 295

Our experiments using the CAESAR human 296

database [32], (e.g. see Fig. 3) indicate that essentially 297

identical weights are obtained for all human subjects, 298

and hence do not need redetermination for new 299

subjects. 300

Decoupled Realtime SCAPE. In our Realtime SCAPE 301

model, the PCA parameters θ describing shape defor- 302

mation are learnt as described in Section 5. Pose de- 303

formation is represented in terms of sparse rigid bone 304

transformations and the weight map, greatly reducing 305

the dimensionality of the learning problem. The learnt 306

model contains |B|×|P | rotation transformations plus 307

a weight vector, where the same weight map W is 308

used for all subjects in any pose, while the rotation 309

Rps is similar for all subjects in a given pose p. 310

Our tests have shown that the Realtime SCAPE model 311

with LBS decomposition can accurately approximate 312

all test subjects in a variety of poses. Example matches 313

between the reconstructed pose and real data are 314

shown in Fig. 3, illustrating the high quality of results 315

obtained. As the same weight map is used for all 316

subjects, it can be computed once during offline Real- 317

time SCAPE analysis, and saved for direct application 318

during online motion reconstruction, helping to meet 319

the realtime goals. 320

5 OFFLINE INTRINSIC BODY SHAPE RECON- 321

STRUCTION 322

We start by scanning the subject in an initial static T- 323

pose, using KinectFusion [8] to create a mesh, which is 324

used for offline reconstruction of the subject’s intrinsic 325

body shape. An objective function is used to deter- 326

mine various body shape attributes (represented in 327

PCA space), while minimizing the difference between 328

the target shape and the mesh: 329

minEshape = arg min
θ

(Eap + λ1Ediff), (6)

where λ1 is experimentally set to 2. The two terms 330

have the following meanings: 331
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Fig. 4. Left: pre-scanned template. Center: intrinsic
body shape reconstructed from it, taking into account
known attributes of height, weight, and gender. Right:
match between template and intrinsic body shape.

• Eap is an attribute-preserving term which tries332

to enforce the known height, weight, and gender333

of the subject. Tthe method in [15] is followed334

to constrain shape deformation to variation in a335

subspace orthogonal to these three attributes.336

• Ediff measures the difference between the target337

shape and the mesh, using the bi-directional ob-338

jective function from [16].339

Finding the vector θ of linear coefficients that char-340

acterizes the input subject provides the model of the341

subject’s intrinsic body shape. Intrinsic shapes for two342

subjects are shown in Fig. 4. As can be seen, the343

reconstructed body shapes are plausible and fit the344

scanned data well.345

6 REALTIME FULL-BODY CAPTURE346

We now explain how the Realtime SCAPE model347

provides online full-body reconstruction from a single348

depth camera. It reconstructs complete geometry, even349

when the input data suffers from self-occlusion, as350

well as the motion for an animating subject.351

In the model, the parameters θ, W , R, and T model the352

specific shape and pose. We must determine suitable353

values to provide a mesh sequence consistent with354

successive depth images. The shape parameters θ for355

the particular subject are determined during initial356

offline processing, as explained in Section 5. The357

LBS weight map W is fixed for all subjects, and is358

learnt during Realtime SCAPE analysis, as explained359

in Section 4. The remaining unknown variables to be360

found per depth image are the transformations R, T .361

6.1 Transformation formulation 362

The transformation is determined by optimizing a 363

function with four terms which represent: 364

1) how well the reconstructed mesh fits the current 365

frame’s depth data, 366

2) the constraint that neighboring bones remain 367

connected, 368

3) inertia of rigid bone rotation, 369

4) orientation preservation for certain bones. 370

Mathematically, this leads to the formulation: 371

min
R,T

E = min
R,T

|t|∑
t=1

|V |∑
i=1

{‖v̂ti −
|B|∑
j=1

wij(R
t
jv
r
i + T tj )‖2 +

α1

|B|∑
j=1

|B|∑
l=1

wijwil
τjl

‖Rtjvri +T tj−Rtlvri −T tl ‖2 +

α2

|B|∑
j=1

‖Rtj −RtjparentR
t
jlocal

)‖2 +

α3

|Bs|∑
j=1

‖Rtjdtj −Rtjparentd
t
j‖2}. (7)

The weights α1, α2 and α3 are experimentally set to 372

10, 5 and 1 respectively. We now explain each term in 373

detail. 374

Goodness of fit. The reconstructed mesh should agree 375

with the observed depth map. Fitting error is mea- 376

sured in terms of the correspondence between each 377

mesh point vti =
∑|B|
j=1 wij(R

t
jv
r
i + T tj ), and v̂ti , the 378

closest point in the depth data in frame t. 379

Joint constraints. A joint is any mesh region in- 380

fluenced by more than one bone. Joint constraints 381

serve to keep bones connected. We formulate them 382

as in [34]; τjl =
∑|B|
j=1

∑|B|
l=1 wijwil is a normalization 383

factor. In order to determine which vertices belong to 384

a joint, we use products of weight functions: the joint 385

region for a pair of bones j and l comprises those 386

vertices vi for which wijwil > 0. 387

Inertia of local rotation. Physics determines that each 388

bone should maintain its state of rest or uniform local 389

rotation unless acted upon by an external force. As 390

Fig. 5(right) shows, bones in the articulated body are 391

connected in a tree structure. The rotation of bone j 392

in frame t combines its own local rotation with the 393

rotation of its parent in the tree: Rtj = RtjparentR
t
jlocal

. 394

To provide inertia, Rtjlocal for frame t remains un- 395

changed from frame t − 1, Rtjlocal = Rt−1
jlocal

, so is 396

directly computed from Rt−1
jlocal

at frame t−1. Bones are 397

computed in top-down tree order, therefore Rtjparent 398

is already known at frame t, while Rtjroot remains 399

fixed as an identity transformation. (The root does not 400

correspond to any body part and merely serves as a 401

reference for other body parts—see Fig. 5). 402
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Fig. 5. Body representation. Left to right: mesh regions
associated with bones, close-up of a special bone with
axis shown by a red arrow, and bone tree.

Main-axis orientation invariance. Seven particular403

bones: those for the head, feet, forearms, and lower404

legs, are treated specially. The corresponding body405

parts are approximately cylindrical, and have limited406

freedom of movement. Each can only rotate about a407

main axis in its local reference frame, with one degree408

of freedom. Thus, each has a chosen axis attached to it409

whose direction d is resistant to variation during the410

motion. This axis attempts to merely follow changes411

induced by its parent, and refrains from introducing412

changes of its own: ideally Rtjd
t
j should be close to413

Rtjparentd
t
j . This constraint helps prevent candy-wrapper414

artifacts, where parts of the body near joints are415

unnaturally twisted like a candy wrapper, a problem416

discussed in [35].417

These four terms play different roles during online418

reconstruction. The fitting and joint constraint terms419

are essential, and have already been used in previous420

reconstruction algorithms, such as [34]. While using421

these two obvious terms alone leads to a basically422

correct mesh, the results typically suffer from both jit-423

ter, and candy-wrapper artifacts. Clear improvements424

result from adding the inertia term to give temporal425

smoothness, and the final term to solve the candy-426

wrapper problem, as can be seen in Fig. 6.427

6.2 Reconstruction of animating subject428

During online reconstruction, the performer starts429

from a predetermined static T-pose, then moves in430

front of the single depth camera. We compute Rt, T t431

by minimizing the function in Eqn. 7, using the solu-432

tion in frame t− 1 to initialize computation of a local433

minimum in frame t.434

Utilizing the expected temporal coherence of the435

transformation in this way helps to quickly determine436

the solution. In detail, given the transformation Rt−1
j437

in the previous time step for some rigid bone j, we438

solve Rtj iteratively in a similar way to Eqn. 5. We439

approximate the rotation via Rtj ≈ (I+R̂)Rt−1
j , where440

r = (r1, r2, r3) is a vector linearizing a small rotation441

without

with
inertial

with
invariance

with
both

Fig. 6. Effects of the last two terms in Eqn. 7. Top:
without additional terms: head orientation jitter and left
shoulder candy-wrapper artifact present. Row 2: inertia
term only. Row 3: main-axis orientation invariance term
only. Bottom: both additional terms: jitter and artifacts
are absent.

R̂; see Eqn. 5, leading to a linear solution for Rtj . 442

On average, 3.5 iterations are required to compute 443

the optimized Rtj , which is fast enough for online 444

processing. T can be directly computed once R has 445

been found. 446

After finding R, T for each frame, the SCAPE re- 447

construction is found by Eqn. (2a), using the pre- 448

computed skinning weights W and intrinsic body 449

shape in T-pose defined by shape parameter θ. 450

The whole framework for online pose parameter cal- 451

culation is listed in Algorithm 1; further details are 452

now discussed. The resolution of the Kinect depth 453

images is 320 × 240. To reduce the time for kd- 454
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Fig. 7. Example reconstruction results. Top: dynamic depth images and corresponding complete meshes.
Bottom: reconstructed meshes overlaying the depth data. These are pseudocolor depth images: red is nearest,
and blue furthest from the reader.

Fig. 8. Comparison. Left: result using the method
of [3]. Right: our result. Our reconstructed meshes
are better aligned with the depth data (center) in the
presence of self-occlusion.

tree construction and k-nearest-neighbour search, we455

subsample to half this resolution. There are about 5000456

points in the final set P of valid human surface points.457

To construct the kd-tree, we use the flann library.458

The human template mesh contains 6252 vertices and459

12500 faces; in the view of camera, about one third460

of the template vertices are visible. To determine461

the visible vertices, the VBO technique is used to462

determine the depth image of the template. We then463

compare the depth of each vertex to the corresponding464

pixel of the rendered depth image, and keep vertices465

whose depth differences are less than 0.002 m. In the466

linear equation, for each of the 17 bones, 3 unknowns467

determine its rotation increment and 3 give its transla-468

tion increment. There are 4 constraint terms. Denoting469

the visible vertices of the template by V , we divide470

them into two sub-classes: for V1, the depth of V1471

is close to the corresponding pixel of the captured472

depth image, while V2 are the remainder. For vertices473

in V1, we just constrain their depths (z coordinates).474

For vertices in V2, we search for the closest point in P475

using the kd-tree and choose pairs whose distance is476

less than a threshold of 0.02m as correspondences. We477

Algorithm 1 Calculation of pose parameters for each frame

Input: Depth image of frame It

Output: Pose parameters βt = (Rt, T t)

1: Initialize pose parameters βt ← βt−1

2: Build kd-tree for point cloud P t from It

3: i ← 0
4: repeat
5: Render the depth image of the model M(θ, βt) spe-

cialised to this person and pose, to get the visible
vertex set V t

6: Build kd-tree for V t

7: Classify P t into P t
1 and P t

2 , V t into V t
1 and V t

2

8: Build correspondences from V t to P t

9: Set up linear equation for ∆Rt and ∆T t

10: Solve the equation
11: Update Rt, T t and M(θ, βt)
12: if

∥∥∆rt
∥∥
max

< ε1 and
∥∥∆T t

∥∥
max

< ε2 then
13: break
14: else
15: i← i+ 1
16: end if
17: until i > nmax

use the same strategy to classify P into P1 and P2 and 478

build up correspondences from P2 to V to improve 479

robustness. This gives |V 1|+3(|V2|+|P2|) equations for 480

the goodness of fit term. The joint constraints lead to 481

3×18 equations since we have 18 joints. The rotational 482

inertia term leads to 9 × 17 equations since we have 483

17 bones. The main-axis orientation invariance term 484

leads to 3×7 equations since there are 7 special bones. 485

The total number of linear equations is the sum of 486

the above. We use the conjugate gradient algorithm 487

to solve the linear system, which terminates when 488

either the largest rotation angle increment ‖∆rt‖max 489

of any bone is less than a threshold ε1 and the largest 490

translation vector increment ‖∆T t‖max is less than a 491

threshold ε2 or the number of iterations exceeds a limit 492

nmax. We set ε1 = 5◦, ε2 = 0.025 m and nmax = 7 in 493

all experiments. Table 1 demonstrates the efficiency 494

of our algorithm, providing average computational 495
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TABLE 1
Times per frame for each step of Realtime SCAPE

model processing.
offline online

Step θ W 2 5 6 7 8 9 10 11
Time(ms) 3000 1000 4.2 0.5 1.5 0.3 1.8 0.9 0.6 0.4

times for each major component.496

The output for a performance is a reconstructed mesh497

sequence that both fits the single-view depth data,498

and is consistent with the Realtime SCAPE model. As499

shown by Figs. 1 and 7, our method can automatically500

and accurately model any parts of each frame which501

are occluded. Fig. 7 shows sample input depth image502

data (top) and overlaid reconstructed poses (bottom).503

7 EVALUATION AND DISCUSSION504

Our method has been implemented using Visual C++505

and OpenGL on a desktop PC with a 3.4GHz CPU.506

Table 1 indicates average times for each computational507

step recorded during all tests carried out for this508

paper. The parameters θ representing body shape and509

W representing LBS weights can be pre-computed510

offline in a few seconds. The online times refer to511

the steps of Algorithm 1 by line number. The total512

calculation time for each frame is t2 plus the number513

of iterations times the sum of the other steps. On514

average, 3.5 iterations are needed, so overall about515

25 ms per frame are needed to compute the LBS516

transformation variables R, T .517

7.1 Evaluation518

Firstly, we compared our method to alternative519

SCAPE-based methods. Fig. 8 shows one sample520

frame result produced using our method and the one521

in [3]. The latter failed to correctly model the person’s522

right forearm because the corresponding depth data is523

disconnected due to self-occlusion. Both methods use524

preprocessing to initially determine shape parameters525

from a T-pose, then match the intrinsic body shape in526

the rest T-pose to the sampled frame data. The main527

difference lies in the approach to pose reconstruc-528

tion: we use an LBS-based pose deformation model,529

while [3] utilizes linear regression deformation and530

the traditional SCAPE model [2]. As this comparison531

shows, our surface reconstruction process is more532

robust than the one in [3], especially in the presence533

of self-occlusion. This is mainly because our method534

reconstructs the pose using an LBS-based top-down535

tree representation, and does not treat the isolated536

left arm depth data as an outlier. A further, very537

significant, advantage of our system over the one538

in [3] is that our method takes just about 25 ms to539

reconstruct each pose, while the latter takes about an 540

hour. 541

Secondly, a comparison was made with a skeleton- 542

based character animation approach to realtime mo- 543

tion reconstruction from a single-view depth camera. 544

This used skeleton extraction plus shape rigging [33]. 545

Again, the intrinsic body shape built offline was used 546

as the mesh for the given subject; the method in [33] 547

was employed to automatically embed the skeleton in 548

the intrinsic body shape. The online process used the 549

Kinect SDK [1] to produce skeletal motion data as a 550

basis for shape rigging to drive motion reconstruction 551

in realtime. Although skeleton-based character anima- 552

tion can also produce a deformable mesh sequence, it 553

has limitations. Firstly, motion accuracy is mainly de- 554

termined by the skeleton extraction algorithm, which 555

uses a model learnt from a pre-defined database. 556

In particular, the skeleton for each frame is deter- 557

mined independently, and temporal coherence is not 558

enforced. Secondly, alignment between the skeleton 559

and the input depth data is not guaranteed; often 560

the skeleton extraction algorithm does not output a 561

skeleton accurately lying within the data. Thirdly, 562

even if this were accurate, accuracy of the output 563

mesh with respect to the depth data would still be 564

affected by the rigging scheme. Finally, jitter and 565

candy-wrapper problems would occur without taking 566

any special precautions. A visual comparison between 567

the results of our method and such a skeleton-based 568

character animation approach is shown in Fig. 9. 569

Accurate alignment between the skeleton and the data 570

has been performed to obtain reasonable results. As 571

expected, surface matching, jitter and candy-wrapper 572

issues all arise in the skeleton-based method. Over- 573

all, the aims and output of skeleton-based character 574

animation and our reconstruction are very different: 575

our goal is an accurate surface model, while the 576

former merely concentrates on capturing a sequence 577

of skeletons (typically to drive animation of a different 578

character). They should be seen as complementary 579

rather than competing techniques. 580

Thirdly, we compared our method with the latest 581

database approach [27] for the challenging 360◦ hu- 582

man rotation performance using the data provided 583

by [27]. Existing approaches [18], [25], [26], [27] pro- 584

vide results with limited success, or even fail com- 585

pletely, as the depth data are very similar when the 586

actor is facing the camera or has his back towards 587

it. When using low-quality depth data, this results 588

in unreliable pose recognition, even when based on 589

database retrieval. Figure 10 shows that our Realtime 590

SCAPE method can successfully handle such data. 591

This is due to careful technical choices in our ap- 592

proach: (i) using SCAPE [2] as a basis gives us the ad- 593

vantage of SCAPE’s capability for robust single-view 594

mesh completion, which guarantees that an acceptable 595

entire surface of the human body is reconstructed even 596
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Fig. 9. Comparison, showing poses modelled. Top: skeleton-based character animation results using Kinect-
provided skeletons. Bottom: Realtime SCAPE results.

Fig. 10. Reconstructed 360◦ human rotation performance; data from [27]. Above: depth data (left) and results
using the method in [27] (right) for each frame. Below: reconstruction results using our method.

from partial depth data, and (ii) in the rigid bone597

transformation computation (Eq. 7), any occluded part598

retains its previous transformation state, due to the599

use of temporally consistent transformations which600

are incrementally updated.601

Fourthly, we evaluated the robustness of our method602

using ground truth data: see Fig. 11. Ground-truth603

for an animating subject was obtained from a de-604

formation transfer approach [33], producing a se-605

quence of dynamic closed-manifold body meshes. The606

motion capture process was simulated by creating607

an artificial depth map (with 320 × 240 resolution)608

from a single viewpoint. Our reconstruction approach609

aligned the intrinsic body shape to the depth images.610

These experiments demonstrated that the geometry611

and motion of the animating subject could be correctly612

reconstructed, without use of markers or user assis-613

tance. Quantitatively, the maximum L2 distance error 614

between the reconstructed meshes and the ground 615

truth for all frames was about 0.03 units, while the 616

average distance error for all frames was about 0.001 617

units, where the unit is the diagonal of the bounding 618

box diagonal for the subject. 619

Fifthly, we compared our method to one based on 620

cylindrical models with ICP tracking [20]. Figure 12 621

shows that our method works better; in this case the 622

input data came from the Stanford EVAL dataset [29]. 623

This is because of two reasons. Firstly, our SCAPE 624

model more accurately models the human body than 625

a set of cylindrical models. Secondly, constraints are 626

used in our optimization framework to avoid artifacts. 627

Figure 13 shows further results using the dataset 628

from [20]; again our approach produces better results. 629

Finally, we measured reconstruction accuracy on the 630
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reconstruction ground  truth input  frame 

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 11 21

max

average

error 

frame L2 distance error 

0.000 

0.035 

Matching 

Fig. 11. Ground truth comparison for a synthetic full-body example. Above: input frame sequence. Below: depth
images from two selected viewpoints, the reconstructed mesh and corresponding ground truth, match between
the reconstructed mesh and ground truth, and color-coded L2 distance error between the reconstruction and
ground truth. The graph shows the maximum and average distance errors for each frame as a fraction of the
diagonal length of the bounding box.

Fig. 12. Reconstructed poses from a sequence; data
from [29]. Above: depth data and results using cylin-
drical models with ICP tracking for each frame. Below:
depth data and results using our method, which shows
better agreement.

Stanford EVAL dataset [29] for a set of depth se-631

quences, including handstands, kicks, and sitting632

down on the floor. We evaluated tracking accuracy633

using joint accuracy, as described by [29]: we es-634

timated 3D joint positions using our system, and635

compared these to the true joint positions provided636

in the dataset using motion capture markers. We637

counted a joint as detected correctly if the system638

estimated the 3D joint location to lie within 10 cm of639

the true joint location. Quantitative results are given640

in Fig. 14, showing accuracy histograms for all motion641

sequences (S0 to S7) for Human 0 in the dataset. For642

S0 to S6, about 82% accuracy was achieved by [29],643

while we achieved about 94% accuracy. However, for644

the more tricky example S7 involving a handstand,645

Fig. 13. Reconstruction of a sequence from [20].
Above: depth data and results for selected frames
using the method in [20]. Below: depth data and results
using our method.

0
0.2
0.4
0.6
0.8

1

S0 S1 S2 S3 S4 S5 S6 S7

[29]
Ours

Fig. 14. Tracking accuracy of the approach in [29] and
our approach, for the Stanford EVAL dataset.

our approach failed to reconstruct accurate results, 646

for reasons we shortly explain. In this example, our 647

accuracy rate fell to 39%, worse than the 80% achieved 648

by [29]. 649
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7.2 Discussion650

The major advantage of our method over existing651

single view human shape completion methods such652

as [2], [3] is speed, while still producing high quality653

geometry. This is achieved by careful factoring of the654

computation. In preprocessing, intrinsic body shape655

parameters are precalculated, as are weights for the656

LBS representation. During online motion reconstruc-657

tion, only transformation parameters remain to be de-658

termined. These can be found quickly via a linearized659

variational solution, as changes between neighboring660

frames are small.661

However, our method has certain limitations. The662

prior template built by KinectFusion [8] requires suf-663

ficiently dense data to produce the initial static refer-664

ence pose. An unsuitable template may result due to665

misalignments if the subject does not hold still during666

scanning, which takes about 30 s. This is a little long667

for comfort, but not unreasonable.668

Clothing increases the difficulty of human body re-669

construction. Fig. 15 shows reconstruction results for670

a female body with fairly tight fitting clothes; clearly671

a skirt or loose fitting clothing would be trickier672

to handle. With tight clothing Realtime SCAPE can673

reconstruct accurate poses and high-quality shapes.674

As the performers in the Stanford EVAL dataset [29]675

are dressed in such clothing, we can reconstruct good676

models for this data.677

Fast and sudden motions, such as kicking (see Fig. 16),678

are potentially trickier to handle. Some such motions679

are present in the Stanford EVAL dataset [29]; for ex-680

ample, frames 274 and 275 in sequence S4 for Human681

0 have large differences. In our approach, this mainly682

affects affects speed, as more iterations are needed to683

compute the transformation parameters (Eq. 7). Even684

so, surface reconstruction takes only about 35 ms per685

frame in this case.686

The handstand examples, S6 and S7 in the Stanford687

EVAL dataset, present more serious challenges for688

our approach. S6 was correctly reconstructed, but our689

approach broke down for S7, as shown in Fig. 17.690

This is because if parts of the body are out of view691

for a period of time, and also undergo deformations,692

our assumption of smooth and continuous movement693

breaks down. This is an inherent limitation of single-694

view systems, in which some parts are invisible at any695

given moment.696

We currently do not take any steps to prevent global697

self-intersection of the deforming meshes. Neverthe-698

less, as the visual results show, our method can ro-699

bustly reconstruct complex poses, mainly due to the700

suitability of the modified SCAPE model for guid-701

ing motion reconstruction. Avoiding self-intersections702

entirely would require an additional collision detec-703

Fig. 15. Reconstruction results for a clothed woman.

Fig. 16. Fast sudden kicking motion, in adjacent
frames S4-274 and S4-275 of Human 0 in the Stanford
EVAL dataset.

tion and avoidance step in motion estimation, which 704

would add a significant computational burden in an 705

online process. 706

Ultimately, the problem of full-body animation is very 707

challenging. We believe, however, that our method 708

has advanced the possibilities of what can be achieved 709

with low quality depth data, providing a capability 710

for dynamic human modeling in real time. 711

8 CONCLUSIONS 712

We have presented Realtime SCAPE, a markerless, 713

automatic human full-body geometry and motion 714

reconstruction method, using a single depth camera. 715

The key to its success is that Realtime SCAPE uses two 716

levels of decoupling. Firstly SCAPE decomposition 717

allows intrinsic body shape to be determined offline, 718

separately from pose estimation. Secondly pose de- 719

formation based on linear blending skinning decom- 720

poses into problems of weight determination, again, 721
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Fig. 17. Handstand examples, frames S6-237 and S7-
216 of Human 0 in the Stanford EVAL dataset.

carried out offline, and transformation determination,722

computed online. The latter is formulated as a linear723

variation problem, providing realtime performance.724

We have demonstrated the speed and geometric plau-725

sibility of our method on a wide range of subjects with726

a variety of motions, achieving realistic reconstruction727

of dynamic motion with complete geometry in all728

except the most challenging cases.729

Future work is needed to address reconstruction of730

animated human bodies with loose clothing. We also731

wish to evaluate our method in a multi-view setting732

where more of the body can be seen at the same733

or alternating time instances. Further plans include734

integrating a dynamic model to ensure stable motion735

estimates for occluded limbs and topology changes,736

more realistic deformation modeling by use of a more737

accurate skinning method, and a means to automati-738

cally reset the system after failures if it gets stuck in739

a local minimum.740
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