data reports

OPEN access

Crystal structure of 2-(1-methylethyl)-

1,3-thiazolo[4,5-b]pyridine

Gamal A. El-Hiti,^a* Keith Smith,^b Amany S. Hegazy,^b Saud A. Alanazi^a and Benson M. Kariuki^b‡

^aCornea Research Chair, Department of Optometry, College of Applied Medical, Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, and ^bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales. *Correspondence e-mail: gelhiti@ksu.edu.sa

Received 5 March 2015; accepted 25 March 2015

Edited by G. Smith, Queensland University of Technology, Australia

In the title molecule, $C_9H_{10}N_2S$, one of the methyl groups is almost co-planar with the thiazolopyridine rings with a deviation of 0.311 (3) Å from the least-squares plane of the thiazolopyridine group. In the crystal, weak $C-H \cdots N$ hydrogen-bonding interactions lead to the formation of chains along [011].

Keywords: crystal structure; thiazolopyridine; hydrogen bonding.

CCDC reference: 1056012

1. Related literature

For related compounds, see: Smith et al. (1994, 1995); El-Hiti (2003); Johnson et al. (2006); Thomae et al. (2008); Rao et al. (2009); Lee et al. (2010); Luo et al. (2015). For the X-ray crystal structures of related compounds, see: Yu et al. (2007); El-Hiti et al. (2014).

2. Experimental

2.1. Crystal data $C_9H_{10}N_2S$ $M_r = 178.25$ Orthorhombic, Pna21 a = 9.6376 (2) Å

b = 10.1602 (2) Å c = 8.9254 (2) Å V = 873.98 (3) Å³ Z = 4

‡ Additional correspondence author, e-mail: kariukib@cardiff.ac.uk.

2.2. Data collection

Agilent SuperNova, Dual, Cu at
zero, Atlas diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2014)
$T_{\rm min} = 0.897, T_{\rm max} = 0.940$

Definement

2

2.3. Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.021$	1 restraint
$wR(F^2) = 0.057$	H-atom parameters constrained
S = 1.08	$\Delta \rho_{\rm max} = 0.19 \ {\rm e} \ {\rm \AA}^{-3}$
1366 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$
111 parameters	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C4-H4\cdots N1^i$	0.95	2.51	3.391 (2)	153
Symmetry code: (i)	$-x + \frac{1}{2}, y + \frac{1}{2}, z$	$+\frac{1}{2}$		

T = 150 K

 $R_{\rm int} = 0.012$

 $0.23 \times 0.20 \times 0.14 \text{ mm}$

2848 measured reflections 1366 independent reflections 1351 reflections with $I > 2\sigma(I)$

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Acknowledgements

The authors extend their appreciation to the Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, for funding this research and to Cardiff University for continued support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2329).

References

- Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.
- El-Hiti, G. A. (2003). Monatsh. Chem. 134, 837-841.
- El-Hiti, G. A., Smith, K., Hegazy, A. S., Masmali, A. M. & Kariuki, B. M. (2014). Acta Cryst. E70, 0932.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Johnson, S. G., Connolly, P. J. & Murray, W. V. (2006). Tetrahedron Lett. 47, 4853-4856.
- Lee, T., Lee, D., Lee, I. Y. & Gong, Y.-D. (2010). J. Comb. Chem. 12, 95-99.
- Luo, L., Meng, L., Peng, Y., Xing, Y., Sun, Q., Ge, Z. & Li, R. (2015). Eur. J. Org. Chem. pp. 631-637.
- Rao, A. U., Palani, A., Chen, X., Huang, Y., Aslanian, R. G., West, R. E. Jr, Williams, S. M., Wu, R.-L., Hwa, J., Sondey, C. & Lachowicz, J. (2009). Bioorg. Med. Chem. Lett. 19, 6176-6180.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Smith, K., Anderson, D. & Matthews, I. (1995). Sulfur Lett. 18, 79-95.

- Smith, K., Lindsay, C. M., Morris, I. K., Matthews, I. & Pritchard, G. J. (1994). *Sulfur Lett.* **17**, 197–216.
- Thomae, D., Perspicace, E., Hesse, S., Kirsch, G. & Seck, P. (2008). *Tetrahedron*, 64, 9309–9314.
 Yu, Y.-Q., Wang, Y., Ni, P.-Z. & Lu, T. (2007). *Acta Cryst.* E63, 0968–0969.

supporting information

Acta Cryst. (2015). E71, o272-o273 [doi:10.1107/S2056989015006039]

Crystal structure of 2-(1-methylethyl)-1,3-thiazolo[4,5-b]pyridine

Gamal A. El-Hiti, Keith Smith, Amany S. Hegazy, Saud A. Alanazi and Benson M. Kariuki

S1. Chemical context

Thiazolopyridines have been efficiently synthesized and in high yield using different synthetic procedures (Smith *et al.*, 1994, 1995; El-Hiti, 2003; Johnson *et al.*, 2006; Thomae *et al.*, 2008; Rao *et al.*, 2009; Lee *et al.*, 2010; Luo *et al.*, 2015). During our continuing research towards the development of novel synthetic routes for the production of heterocyclic compounds, we have synthesised the title compound 2-(methylethyl)-1,3-thiazolo[4,5-*b*]pyridine in high yield (Smith *et al.*, 1995). The X-ray structures for related compounds have been reported (Yu *et al.*, 2007; El-Hiti *et al.*, 2014).

S2. Structural commentary

The asymmetric unit of the title compound consists of a single molecule of $C_9H_{10}N_2S$ (Fig. 1). In the molecule, one of the methyl groups is almost co-planar with the thiazolopyridine ring. The deviations from the least-squares plane of the thiazolopyridine group are 0.311 (3)Å and 1.269 (3)Å for C8 and C9 respectively, corresponding to torsion angles N1—C1—C7—C8 and N1—C1—C7—C9 of 169.47 (19) and -65.9 (3)°, respectively.

Weak C—H···N hydrogen-bonding interactions occur in the structure to form chains along [011] (Fig. 2, Table 1). No π - π interactions are observed in the crystal structure.

S3. Synthesis and crystallization

2-(1-Methylethyl)-1,3-thiazolo[4,5-*b*]pyridine was obtained in 98% yield from acid hydrolysis (HCl, 5 M) of 3-(diisopropylaminothiocarbonylthio)-2-(1-methylethylcarbonylamino)pyridine under reflux for 5 h (Smith *et al.*, 1995). Crystallization of the crude product from diethyl ether gave colourless crystals of the title compound. The spectroscopic and analytical data for the title compound were consistent with those reported previously (Smith *et al.*, 1995).

S4. Refinement details

H atoms were positioned geometrically and refined using a riding model with $U_{iso}(H)$ constrained to be 1.2 times U_{eq} for the atom it is bonded to except for methyl groups where it was 1.5 times with free rotation about the C—C bond. Although not of relevance with this achiral compound, the absolute structure factor (Flack, 1983) was determined as 0.031 (11) for 434 Friedel pairs.

Figure 1

A molecule of $C_9H_{10}N_2S$ with atom labels and 50% probability displacement ellipsoids for non-hydrogen atoms.

Figure 2

Crystal structure packing viewed down the c axis with C—H···N interactions shown as dotted lines.

2-(1-Methylethyl)-1,3-thiazolo[4,5-b]pyridine

Crystal data	
$C_9H_{10}N_2S$	V = 873.98 (3) Å ³
$M_r = 178.25$	Z = 4
Orthorhombic, $Pna2_1$	F(000) = 376
a = 9.6376 (2) Å	$D_{\rm x} = 1.355 {\rm ~Mg} {\rm ~m}^{-3}$
b = 10.1602 (2) Å	Cu <i>K</i> α radiation, $\lambda = 1.54184$ Å
c = 8.9254 (2) Å	Cell parameters from 2276 reflections

 $\theta = 6.3-73.8^{\circ}$ $\mu = 2.81 \text{ mm}^{-1}$ T = 150 K

Data collection

Duiu conection	
Agilent SuperNova, Dual, Cu at zero, Atlas diffractometer	$T_{\min} = 0.897, T_{\max} = 0.940$ 2848 measured reflections
Radiation source: sealed X-ray tube, SuperNova (Cu) X-ray Source	1366 independent reflections 1351 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.012$
Detector resolution: 10.5082 pixels mm ⁻¹	$\theta_{\rm max} = 74.0^\circ, \ \theta_{\rm min} = 6.3^\circ$
ω scans	$h = -11 \rightarrow 10$
Absorption correction: multi-scan	$k = -12 \longrightarrow 8$
(CrysAlis PRO; Agilent, 2014)	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.021$	H-atom parameters constrained
$wR(F^2) = 0.057$	$w = 1/[\sigma^2(F_o^2) + (0.0375P)^2 + 0.1081P]$
S = 1.08	where $P = (F_o^2 + 2F_c^2)/3$
1366 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

Special details

111 parameters

1 restraint

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

Block, colourless

 $0.23 \times 0.20 \times 0.14 \text{ mm}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.13501 (18)	0.59856 (18)	0.8660 (2)	0.0227 (4)	
C2	0.23657 (17)	0.67547 (17)	1.1015 (2)	0.0208 (3)	
C3	0.29550 (18)	0.56187 (17)	1.0365 (2)	0.0203 (3)	
C4	0.2865 (2)	0.72261 (17)	1.2365 (3)	0.0257 (4)	
H4	0.2483	0.7985	1.2829	0.031*	
C5	0.39534 (19)	0.6532 (2)	1.3007 (3)	0.0279 (4)	
H5	0.4342	0.6813	1.3931	0.034*	
C6	0.44760 (19)	0.54145 (19)	1.2283 (3)	0.0273 (4)	
H6	0.5220	0.4959	1.2752	0.033*	
C7	0.05003 (18)	0.57871 (19)	0.7259 (3)	0.0271 (4)	
H7	0.0177	0.4852	0.7251	0.033*	
C8	-0.0783 (2)	0.6663 (2)	0.7204 (3)	0.0365 (5)	
H8A	-0.1375	0.6475	0.8070	0.055*	
H8B	-0.1299	0.6488	0.6279	0.055*	
H8C	-0.0499	0.7589	0.7227	0.055*	
C9	0.1411 (2)	0.5992 (3)	0.5875 (3)	0.0421 (6)	
H9A	0.1666	0.6923	0.5796	0.063*	
H9B	0.0897	0.5727	0.4977	0.063*	

supporting information

H9C	0.2253	0.5457	0.5966	0.063*
N1	0.23563 (16)	0.52156 (16)	0.9037 (2)	0.0241 (3)
N2	0.40055 (14)	0.49434 (16)	1.0985 (2)	0.0254 (4)
S 1	0.10273 (4)	0.73079 (4)	0.98822 (7)	0.02515 (14)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0205 (8)	0.0253 (8)	0.0224 (10)	-0.0013 (7)	0.0032 (7)	-0.0026 (8)
C2	0.0212 (8)	0.0210 (7)	0.0203 (9)	-0.0011 (6)	0.0033 (6)	-0.0004 (7)
C3	0.0199 (7)	0.0206 (7)	0.0204 (9)	-0.0026 (6)	0.0032 (6)	-0.0024 (7)
C4	0.0292 (9)	0.0258 (9)	0.0221 (9)	-0.0028 (7)	0.0018 (8)	-0.0061 (8)
C5	0.0302 (9)	0.0353 (11)	0.0184 (9)	-0.0058 (7)	-0.0024 (7)	0.0002 (9)
C6	0.0258 (8)	0.0303 (9)	0.0259 (9)	0.0005 (7)	-0.0035 (8)	0.0042 (8)
C7	0.0266 (8)	0.0293 (9)	0.0254 (9)	-0.0036 (7)	-0.0032 (8)	-0.0030 (8)
C8	0.0293 (9)	0.0428 (12)	0.0374 (13)	0.0037 (9)	-0.0127 (9)	-0.0071 (11)
C9	0.0351 (11)	0.0705 (16)	0.0207 (11)	-0.0072 (11)	-0.0024 (8)	-0.0025 (11)
N1	0.0231 (7)	0.0264 (8)	0.0229 (8)	0.0012 (6)	0.0001 (6)	-0.0067 (7)
N2	0.0238 (8)	0.0239 (7)	0.0284 (9)	0.0024 (6)	-0.0016 (6)	-0.0002 (7)
S 1	0.0242 (2)	0.0266 (2)	0.0246 (2)	0.00703 (13)	-0.0007 (2)	-0.0048 (2)

Geometric parameters (Å, °)

C1—N1	1.291 (2)	C6—N2	1.334 (3)
C1—C7	1.508 (3)	С6—Н6	0.9500
C1—S1	1.7585 (19)	C7—C8	1.524 (3)
C2—C4	1.383 (3)	С7—С9	1.530 (3)
C2—C3	1.411 (2)	С7—Н7	1.0000
C2—S1	1.7325 (19)	C8—H8A	0.9800
C3—N2	1.342 (2)	C8—H8B	0.9800
C3—N1	1.380 (2)	C8—H8C	0.9800
C4—C5	1.388 (3)	С9—Н9А	0.9800
C4—H4	0.9500	С9—Н9В	0.9800
С5—С6	1.400 (3)	С9—Н9С	0.9800
С5—Н5	0.9500		
N1—C1—C7	122.91 (17)	C8—C7—C9	111.1 (2)
N1—C1—S1	115.73 (15)	С1—С7—Н7	107.6
C7—C1—S1	121.36 (14)	С8—С7—Н7	107.6
C4—C2—C3	120.08 (17)	С9—С7—Н7	107.6
C4—C2—S1	130.92 (14)	С7—С8—Н8А	109.5
C3—C2—S1	108.98 (14)	C7—C8—H8B	109.5
N2—C3—N1	121.16 (16)	H8A—C8—H8B	109.5
N2—C3—C2	123.53 (18)	С7—С8—Н8С	109.5
N1—C3—C2	115.30 (16)	H8A—C8—H8C	109.5
C2—C4—C5	116.51 (17)	H8B—C8—H8C	109.5
C2—C4—H4	121.7	С7—С9—Н9А	109.5
С5—С4—Н4	121.7	С7—С9—Н9В	109.5

C4—C5—C6	119.6 (2)	H9A—C9—H9B	109.5
С4—С5—Н5	120.2	С7—С9—Н9С	109.5
С6—С5—Н5	120.2	Н9А—С9—Н9С	109.5
N2-C6-C5	124.73 (18)	H9B—C9—H9C	109.5
N2C6H6	117.6	C1—N1—C3	110.99 (16)
С5—С6—Н6	117.6	C6—N2—C3	115.54 (16)
C1—C7—C8	112.90 (18)	C2—S1—C1	89.00 (9)
С1—С7—С9	109.85 (15)		
C4—C2—C3—N2	-0.3 (3)	C7—C1—N1—C3	-179.88 (16)
S1—C2—C3—N2	-179.06 (14)	S1—C1—N1—C3	0.6 (2)
C4—C2—C3—N1	178.46 (16)	N2-C3-N1-C1	178.62 (17)
S1—C2—C3—N1	-0.3 (2)	C2—C3—N1—C1	-0.1 (2)
C3—C2—C4—C5	0.4 (3)	C5—C6—N2—C3	0.0 (3)
S1—C2—C4—C5	178.89 (15)	N1-C3-N2-C6	-178.61 (17)
C2—C4—C5—C6	-0.4 (3)	C2-C3-N2-C6	0.1 (3)
C4-C5-C6-N2	0.2 (3)	C4—C2—S1—C1	-178.11 (19)
N1-C1-C7-C8	169.47 (19)	C3—C2—S1—C1	0.50 (14)
S1—C1—C7—C8	-11.0 (2)	N1-C1-S1-C2	-0.64 (15)
N1-C1-C7-C9	-65.9 (3)	C7—C1—S1—C2	179.79 (16)
S1—C1—C7—C9	113.64 (19)		
	115.04 (17)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
C4— $H4$ ···N1 ⁱ	0.95	2.51	3.391 (2)	153

Symmetry code: (i) -*x*+1/2, *y*+1/2, *z*+1/2.