GARETH OLUBUNMI HUGHES

Student ID Number: 0944776

A Submission for the Award of a PhD Qualification in Music
at Cardiff University

Title of Thesis: “A Portfolio of Acoustic/Electroacoustic
Music Compositions & Computer Algorithms that Investigate

the Development of Polymodality, Polyharmony, Chromaticism
& Extended Timbre in My Musical Language”

VOLUME #2 (of 2): “Academic Commentary”

August 2015

Abstract

The emphasis of this PhD is in the field of original/contemporary musical composition and |
have submitted a portfolio of original compositions (volume 1/2, comprising of music scores of both
acoustic and electroacoustic music compositions [totalling ¢. 114:30 minutes of music] as well as
written material relating to notation and artistic motivation), along with an academic commentary
(volume 2/2 [totalling c. 19,500 words], which places the original compositional work in the portfolio
in its academic context).

The composition works in first volume are varied and broad ranging in scope. In terms of
pitch organisation, the majority of works adopt some form of modality or polymodality, whilst certain
works also incorporate post-tonal chromaticism and serialism into their syntax. Certain key works
also explore extended timbre and colouration (in particular for bowed strings, voices, flute and
electronics) and adopt the use of timbral modifications, harmonics, microtones, multiphonics,
sprechgesang (i.e. “speech-song’), phonetics and the incorporation of electroacoustic sampling, sound
synthesis and processing.

The academic commentary in the second volume sets out several initial theoretical pitch
organisation models (namely relating to modes, polymodes, rows, serial techniques and intervallic
cells), with a particular emphasis placed on the formation of a melodic/harmonic language which is
fundamentally polymodal, polychordal and polyharmonic.

The commentary then takes a closer look at various works within the portfolio which adopt
modal, polymodal and chromatic forms of pitch-organisation (whilst intermittently discussing wider
musical parameters, such as rhythm, counterpoint, timbre, structure etc...). Separate chapters also
discuss a work for flute and electronics and a lengthy work for string quartet (inspired by urban
dystopian film) in greater depth.

The commentary also discusses my style of writing, placing individual works within the
portfolio in their academic context alongside key influences as well as contextualising non-musical

aesthetics and sources of artistic inspiration relating to my work.

Contents

Pages 6-8 Project Aim

Pages 9-27 Chapter 1: Pitch Organisation Models

Pages 12-16 Modes

Pages 16-21 Polymodes

Pages 21-25 Rows & Serial Techniques

Pages 26-27 Intervallic Cells

Pages 29-47 Chapter 2: Modality

Pages 49-59 Chapter 3: Explicit Polymodality

Pages 61-70 Chapter 4: Electronic & Computer-Generated Sonorities

Pages 71-82 Chapter 5: “Urban Wilderness” for String Quartet

Pages 83-88 Chapter 6: Style, Influence & Context

Pages 89-98 Bibliography

Pages 99-100 | Appendix 1: Table of Diatonic Modes Referred to in the Academic Commentary
Pages 101-2 Appendix 2: A Chart of Natural Harmonics on the Contrabass

Pages 103-7 Appendix 3: Handwritten sketches for Human Visions: “Civilisations”

Pages 109-21

for symphony orchestra

Appendix 4: Handwritten sketches for #2: “Utopian Mirror”

Pages 123-33

from “Urban Wilderness™ for string quartet

Appendix 5: Handwritten sketches for “Amber on Black™ for solo SATB singers

Pages 135-58

Appendix 6: A User Guide for Eternal Owl Call’s Electronic Performance Interface

Pages 136-7 Contents
Pages 159-308 | Appendix 7: SuperCollider Documentation & Source Code for the Z Library
Page 161 Contents

Pages 163-219

SuperCollider Class Extension Library Documentation

Pages 220-308

SuperCollider Class Extension Library Source Code

Project Aim

The portfolio of compositions submitted (i.e. vol. 1), along with the academic commentary
contained in this second volume of the PhD investigate the possibility of creating a hub between modal
and chromatic forms of composing music, as well as investigating the possibility of incorporating
extended timbre, colouration and electronics into a style of composing which remains inherently modal or
polymodal. Key exponents of post-tonal theory and early 20" modernism are important to this
progression within my work: in particular Debussy, Ravel, members of Les Six, Messiaen, Bartok,
Starvinsky and members of the Second Viennese School. Compiling the portfolio, whilst being influenced
by other key composers and theorists, has taken me on a journey towards an individual musical language
which, despite bearing certain characteristics of the above mentioned influences, has a voice of its own
nonetheless.

One particularly unigue theoretical system which operates in my work is been that of ‘stacking’
chromatically related modes on top of one another in different pitch regions and then unifying these
modes through the use of a ‘polymode’ (a continuous interrelated combination of modes which do not
repeat at the octave — leading to a deliberate avoidance of any sort of octave doubling in the majority of
my work). This concept is discussed in detail in the Polymodes section of chapter 1 (vol. 2, pp. 16-21)
and arguably stands as the most significant contribution to music theory within this PhD project.

In addition, a few of the most experimental works within the portfolio engage with more specific
influences of later modernists who developed more radical approaches to composing contemporary music
during the second half of the 20" century and the 21% century. Of particular note, Utopian Mirror (the
second movement of Urban Wilderness for string quartet [vol. 1, pp. 72-99]), Amber on Black for four a
cappella singers (vol. 1, pp. 253-89) and Eternal Owl Call for bass flute and electronics (vol. 1, pp. 291-
300) are, perhaps, the most experimental works within the portfolio: the use of extended string timbre and
unorthodox string harmonics in Utopian Mirror can boast influences as diverse as composers such as
Geroge Crumb, Kajia Saariaho, Helmut Lachenmann and Salvatore Sciarrino; the use of extended vocal
techniques and phonetics in Amber on Black can cite the vocal writing of Luciano Berio, Gyorgy Ligeti
and Karlheinz Stockhausen as influences; in addition, the incorporation of electronic sound synthesis, live
electronic processing, stochastic procedures,* extended flute timbre and symbolism with the natural world
in Eternal Owl Call are partially indebted to the influence of composers such as Toru Takemitsu,

Stockhausen, lannis Xenakis and Saariaho.

! As pertaining to some of the random and stochastic generative procedures described in lannis Xenakis’ Formalized
Music: Thought and Mathematics in Compaosition and relating to similar techniques adopted in Xenakis’ electronic
and/or computer-generated music compositions.

The order in which the individual works occur in the portfolio (i.e. vol. 1) is explained and laid-

out as shown in the table below (i.e. starting with large-scale works and then eventually working its way

through to more intricate and specialist chamber and electroacoustic works):

Order of Works in the Portfolio of Compositions

Category

Order #

Title of the Piece

Large Scale:
Instrumental

[in order of magnitude
(i.e. the number of instruments
employed)]

1

Human Visions: *““Civilisations™
for symphony orchestra

“Urban Wilderness™ for string quartet

Choral

[in order of magnitude
(i.e. the number of individual vocal
lines employed)]

“Ynys Afallon” (“Isle of Avalon™)
recomposed for SSAATTBB choir a cappella

“Ynys Afallon™ (““Isle of Avalon™)
for SATB choir & pianoforte

Chamber Works:

Instrumental

Arrangement/Re-composition of “Cwyn y Gwynt™
(“The Wind’s Lament”) for flute & harp

“Twilight Impulse” for clarinet, cello & pianoforte

Instruments & Voices

“Cwyny Gwynt” (““The Wind’s Lament™)
for contralto, vibraphone & cello

“Y Gwylanod” &*“lar fach yr haf”
("Butterfly..." & "The Seagulls™)
for soprano, flute/piccolo & pianoforte

A Cappella Voices

“Amber on Black” for solo SATB singers

Mixed Electroacoustic

10

“Eternal Owl Call” for solo bass flute with live
electronic processing

Since Urban Wilderness is a work for string quartet, it would normally be classed as a chamber work,
however, due to the very long structure of both movements and the vision that this piece be combined
with live video projection at some point in the future it has been categorised as a large-scale instrumental
work as indicated.

Chapter 1 of the commentary sets out several initial theoretical pitch organisation models (namely
relating to modes, polymodes, rows, serial techniques and intervallic cells), with a particular emphasis
placed on the formation of a melodic/harmonic language which is fundamentally polymodal, polychordal
and polyharmonic. Chapters 2 and 3 then take a closer look at various works within the portfolio which
adopt modal, polymodal and chromatic forms of pitch-organisation (whilst intermittently discussing
wider musical parameters, such as rhythm, counterpoint, timbre, structure etc...). Chapter 4 discusses the
use of the SuperCollider audio synthesis computer programming language before taking a closer look at
Eternal Owl Call for bass flute and electronics (which uses this language for its computer algorithms).
Chapter 5 discusses Urban Wilderness for string quartet (a work inspired by urban dystopian film) in
greater depth. Chapter 6 then further discusses my style of writing, placing individual works within the
portfolio in their academic context alongside key influences as well as contextualising non-musical

aesthetics and sources of artistic inspiration relating to my work.

CHAPTER 1
Pitch Organisation Models

10

Pitch Organisation Models

The style of pitch organisation in my work has developed and evolved perpetually since | was an
undergraduate student at King’s College London (graduating in the year 2000). In the years that have
followed, | have experimented with several recognised styles of composition and pitch organisation,
ranging from modal and post-tonal theory through to the use of serialism, microtones and electronics.
Several unique and elaborate systems of pitch organisation have emerged from this, forming an essential
part of my style of composition. Although some of my works adopt a number of methods which look
outside of the realm of the 12-tone Pythagorean system adopted in Western art-music (i.e. by using
natural harmonics, microtones, electronics etc...), the core of my most recent work has centred on a
number of methods which act as a hub between modal and chromatic styles of writing.

I have attempted to compile a portfolio which is broad ranging in scope and demonstrates a high
level of variety and versatility. Some of the pieces are unashamedly modal in style; however, the majority
adopt some form of polymodality (operating in several chromatically related modes simultaneously®). |
have categorised the pitch organisation style in such pieces as being either ‘explicitly polymodal’ or
‘chromatically polymodal’: explicit polymodality is where the individual modes which form each
polymodal or polyharmonic block are transparent and can clearly be related back to a more conventional
modal style of writing; chromatic polymodality is where the individual modes which form each
polymodal or polyharmonic block are disguised and diluted by high levels of chromaticism — in such
instances the modal origins are not immediately obvious and some passages might even come close to
atonality. In addition, some pieces in the portfolio adopt various Schoenbergian or Stravinskian methods
of manipulating chromatic note-rows or dividing them into smaller modes or pitch-collections, which can
be linked to the polymodal systems in my work.

I have classed the various methods of pitch organisation relating to individual works within the
portfolio as being either modal (without the use of any form of polymodality), explicitly polymodal (as
defined in the above paragraph), chromatically polymodal (ibid.) or using some form of serial rotation. In
addition, certain works also incorporate extended timbre and colouration or electronics into their
respective soundworlds. The table overleaf categorises the pitch/timrbal organisation methods in
operation in each individual movement within the portfolio according to the six methods defined above
(namely Modal, Explicitly Polymodal, Chromatic/Polymodal, Serial Rotation, Extended Timbre &

Colouration, Electronics):

! This differs from “polytonality” which shares multiple diatonic/non-modal ‘tonal centres’ (i.e. shares multiple
major/minor keys).

Pitch Organisation Chart

e Primary Feature
o Secondary Feature

Individual Movement Modal . Explicitly | Chromatic/ . Serial = Extended Timbre = Electronics
Polymodal ;| Polymodal | Rotation : & Colouration
Human Visions: “Civilisations™ for symphony orchestra ° ° o
Urban Wilderness #1: ““Apathetic Machines” for string quartet °
Urban Wilderness #2: ““Utopian Mirror” for string quartet ° ° °
“Ynys Afallon” for SSAATTBB a cappella °
“Ynys Afallon” for STAB singers & pianoforte ° ° o
Cwyn y Gwynt #1: Llwydnos Gwynfannus for flute & harp ° o
Cwyn y Gwynt #2: Galargan “‘Dagrau ddaw...”” for flute & harp ° o
Cwyn y Gwynt #3: Breuddwyd for flute & harp ° ° o
“Twilight Impulse™ for clarinet, cello & pianoforte ° o
Cwyn y Gwynt #1: Gwylltineb for alto, vibraphone & cello ° o
Cwyn y Gwynt #2: Galargan for alto, vibraphone & cello ° o
Cwyn y Gwynt #3: Breuddwyd for alto, vibraphone & cello ° ° o
“lar fach yr haf ”” for soprano, flute & pianoforte o °
““Y Gwylanod” for soprano, piccolo & pianoforte o ° o
“Amber on Black’ for SATB singers a cappella o o °
*““Eternal Owl Call” for bass flute & electronics o o . °

11

12

As indicated, most works adopt multiple methods in either a primary or secondary capacity.
Prior to analysing the individual pieces in my portfolio, it is important that | first illustrate some

of the core theoretical ideas and models of pitch organisation which are adopted in my work:

Modes

Both the Lydian? and Dorian mode are adopted predominantly in my modal and polymodal
systems. | effectively treat the Dorian mode as the ‘relative minor’ equivalent to its Lydian mode
counterpart. This is the by-product of many years of composing with these modes as well as working with
them in jazz, folk and other styles of improvisatory music. | have always liked the bright sound which
these modes possess and prefer them to the, perhaps more conventional, lonian and Aeolian modes
adopted predominantly in western art-music prior to the twentieth century.

I regard the Lydian mode to be brighter than the lonian mode due to the augmented fourth
interval which exists from its root (as opposed to a perfect fourth) and consequently the greater number of
sharpened intervals which it possesses (i.e. C lonian is neutral whereas C Lydian has one sharp, G lonian
has one sharp whereas G Lydian has two sharps etc... similarly of their respective relative minor modes:
A Aeolian is neutral whereas A Dorian has one sharp, E Aeolian has one sharp whereas E Dorian has two
sharps etc...).

Both modes can also be used to construct the bright and colourful polychords shown in the

examples based on white-note modes below:

F major 13

polychord
G major

. upper-structure

F Lydian triad

o <
W._D'— _ F major 7"

: : lower-structure

rd —=—chord

Fig1.1.1

2 A table containing the 7-note and 5-note diatonic modes discussed in this commentary [namely modes of the
major, melodic/harmonic minor, major (»6) and pentatonic scale respectively] is supplied in Appendix 1 (vol. 2, p.
100).

D minor 15%
polychord

E minor 7%
upper-structure
chord
D Dorian
i - _ D minor 7"
lower-structure
- Uh(_l]'d

Fig 1.1.2

Another feature in my modal and polymodal systems is the idea of upper/lower-structure chords or
patterns being in operation within a specific pitch region as illustrated above.

It is often a characteristic of my style that one mode floats chromatically to the next without a
conventional modulation or cadence (as would be seen in western art-music prior to the twentieth
century), thus conventional cadences are relatively infrequent; however, some examples of harmonies
with a conventional dominant function do occasionally occur and | adopt special chromatic modes for this
purpose. Such modes might similarly be seen in the style of impressionist or post-impressionist
composers (i.e. Debussy, Ravel, Messiaen), Bartdk, Stravinsky or various styles of modern jazz. Below is

an example of three modes with harmonic blocks that might form the basis of typical cadences:

Cadance on
A7 polychord(s) D minor 15%
using the altered scale polychord

E5F major
upper- suuuun.
triads
Altered Scale on A
n (a mode of B melodic-minor) . "
p A dominant 7
'I’\“ lower- strui:turu
S
[y

e @ ®— I‘—hl‘rd
-V

44
Fig 1.1.3
) Cadance on
7 ¥
,?l ;;)ohlych'ord using | D minor 15"
the Phrygian (£3) scale pOchhord
B> major
upper-structur C
| triad
Phrygian (£3) on A

(a mode of D harmonic minor) & |
- A dominant 7
= lower-structure
L S —

. o [] ! % chord
o o fe

N>

Fig 1.1.4

13

14

7 . Cadance on
/'}\ %(ﬁyc]'l_ord l;:mg | D minor 15%
the Phrygian (b4) scale polychord

F major 7
upper- stlucturc
chord

Phrygian (b4) on A '

[a mode of F major (56)] " '
A dominant 7
",‘n lower- ‘iT.I‘lll.T.I.I.I‘L
<V I '_._i & chord
e — b—.' o V

-

Fig 1.1.5

Note that the accidental spellings on the upper/lower-structure chords occasionally differ from the logical
spelling used on the mode shown in isolation on the left (i.e. in Fig 1.1.3 & 1.1.5 the lower-structure

chord uses C¢ rather than Db — this is to clearly show that the lower-structure chord is an A dominant 7,
which should normally be spelt with a C#). Slight modifications of this nature are often made so that the

upper/lower-structure chords within a polychord are spelt in a natural way.
Pentatonic modes are also frequently used in my work. If we look at a Lydian mode on F (or any
7-note white-note scale for that matter) 3 separate major pentatonic scales can be extracted from it as

shown below:

C major pentatonic

:’9 F major pentatonic G major pentatonic

|
ﬁ

Basic pentatonic scales
extracted from F Lydian

Fig1.1.6
Pentatonic modes work well when used for upper-structure melodic/harmonic patterns as illustrated in the

two following examples:

G major pentatonic Eb major pentatoric

as upper-sturcture as Tpggf‘-stu(rlcture
melodic mode R melodic mode
7 P - I
(; i e 5 ——

o Perfect fifth on the +—#g— Adominant 7"
ﬁ' root of F Lydianas —— : lower-structure ———L

—Z———— lower-structure chord —— ———® chord
Fig 1.1.7 Fig 1.1.8

Fig 1.1.8 uses all the pitches of the altered scale on A as shown in Fig 1.1.3

There is a subjective avoidance of symmetrical scales and arpeggios in my work (in particular the
chromatic, whole-tone®, hexatonic, octatonic* scales and diminished 7" arpeggios). This is a decision
which | have consciously made as a composer as | generally find the sound of repeated symmetrical
patterns to be somewhat monotonous and lacking in subtlety — that said, highly effective use of
symmetrical patterns has been seen in the work of composers such as Debussy and Stravinsky: The

whole-tone scale (i.e. C-D—-E—-F#-G#—A#-C) is utilised very successfully in works such as Debussy’s solo

piano piece Cloches a travers les feuilles (from Images, Set 2, 1907) and his operatic work Pelléas et
Mélisande® (1898), as well as Paul Dukas’ Ariane et Barbe-bleue® (1906); of the two latter works,
Messiaen states in The Technique of My Musical Language that both works “have made such remarkable
use of it [the whole-tone scale] that there is nothing more to add. Then we shall carefully avoid making
use of it, unless it is concealed in a superposition of modes which renders it unrecognizable”.’

In a similar vein, remarkable use of the octatonic scale (i.e. C-C#-Dg—E—F¢t—G-A-Bb—C) has

already been seen extensively in much of Stravinsky’s work, as seen in works such as his ballet Petrushka
(1910-11) - this includes the recurrence of its (in)famous ‘Petrushka chord’ extracted from the pitches of
a single octatonic scale, which juxtaposes two major triads a tritone apart and recurs in various horizontal
or vertical formations throughout the work. Bartok has made remarkable use of the hexatonic scale (i.e.

[C-Dg—-E-G-Ab—B-C], otherwise known as the ‘magic hexachord’) in pieces such as the third movement

of the Concerto for Orchestra (1943) marked “Elegia” Andante non troppo to create an evocative and
mystical musical ambiance.

However, one intention with the use of modes in much of my own work is to avoid any obvious
cliché that might cause the music to sound as if it could have been composed a hundred years ago and the
overuse of explicit symmetrical modes, such as the whole-tone or octatonic scale might lead to this. One
of the features of diatonic and pentatonic modes is their asymmetry and this is what gives them their
subtlety; this is a feature of modality that | am interested in exploring further as I develop my (poly)modal
methods and style. It is, however, worth noting that the first four notes of the Lydian mode make up part

of a whole-tone scale, similarly, the first five notes of the Lydian (¢#5) mode are whole-tones, therefore

® Defined in Olivier Messiaen’s The Technique of My Musical Language (Paris: Alphonse Leduc, 1956) as the “first
mode of limited transpositions’, vol. 1, p. 59.

* Ibid., defined as the ‘second mode of limited transpositions’, vol. 1, pp. 59-60 & vol. 2, p. 50.

® Ibid., vol. 1, p. 59.

® Ibid.

" Ibid.

15

16

patterns using these modes will frequently make use of their whole-tone portions and might occasionally

give the impression of using the whole-tone scale without actually doing so in an explicit fashion.

Polymodes

Fig 1.1.1 illustrates how a Lydian mode is used as the basis for an F major 13™ 7-note modal
polychord. Similarly, Fig 1.1.2 illustrates how a Dorian mode is used as the basis for a D minor 15™ 8-
note polychord. A feature of both of these chords is that their consecutive intervals always alternate
between a major and minor third. However, if one were to continue this pattern on the F major 13" chord

the next pitch in the series would be an F# rather an Fy — a pitch which does not belong to the Lydian

mode on F. This idea creates a polychord which effectively has two different pitch regions in two
different keys simultaneously. This new pattern can be used as the basis for forming a polymode which

combines two different Lydian modes in two differing pitch regions:

Two octave polymode stacking G/F Lydian F major 15%
polychord

auxiliary note G major 7"
upper-structure
F Lydlan chord
G Lydian
. o 2i2 Lydian —
7 T . F major 7'
O A lower-structure

s e ———— chord

Fig 1.2.1

This polychord (which is a signature chord in my work and frequently occurs in some guise) now features
an interesting ‘false relationship’ between F# and Fs. In this particular instance it is logical to describe the

interval between these pitches as an ‘augmented octave’ or ‘augmented fifteenth’ rather than a compound
minor 9" or minor 2", because of the modal relationship which exists between these two pitches (i.e. as
the upper structure of the polymode/polychord is based on G Lydian it is normally logical to think of the

top pitch as an Fg rather than a Gb). It is also interesting to note that despite the false relationship the

polychord retains a consonant and neutral sound.

The polychord effectively stacks two major 7" chords a major 9" apart on top of one another and
the polymode created from this chord stacks two Lydian modes a major 9" apart on top of one another
(with an auxiliary note added to link the two modes). This pattern can be continued for a further two

octaves to produce an extended polymode and polychord as shown below:

Four octave polymode stacking B/A/G/F Lydian

Polychord stacking
B/A/G/F major 7t

diliary notes
p.
B major 7"
upper-structure
chord

A Lydian
ydian '#’_ i
P e O ST e % 3

dian
A /JI\ o ®e™—""— —— — — — . A : h
X [el 1 [_Z: il 1F BT Pt A/G major 7'
Ve N e /- e=*1 mid-structure
N - o 1
. o chords
F major 70
lower-structure
chord
Fig1.2.2

All twelve chromatic pitches operate simultaneously in this extended polychord. It also passes through
each respective interrelated major/minor 7" chord in a cycle of fifths as it moves upwards through the
pitch spectrum. This is illustrated in the diagram below, which uses colours to help with visually

differentiating between each chord:

Interrelated major/minor 7% chords
within a stacked B/A/G/F major 7™
polychord

D# minor

4 triad l—ﬂ—lﬁz—
[F] 1 r”?

$ G# minor 70| ——1~—®= B major 7m
L2

Ct minor 7| 4
]

E major 710

L

2% minor 7 B ai C
F# minor 7" I A major 7" || D major 7"

1y

1%
— B minor 7" —
E minor 7| —————

G major 7" | —— —
C major 7"
A minor 7" q
et i) F major 7
"I H —, o
- .
Fig 1.2.3

Similarly the extended polymode passes through each respective interrelated Lydian/Dorian in a cycle of
fifths as it moves upwards through the pitch spectrum:

Interrelated Lydian/Dorian modes within a stacked B/A/G/F Lydian polymode

D Lydian E Lydian

C Lydian [F# Lydian]
A Lydian fo fe 4 yee
F Lydian Lte . Lte otef2 =) —
. - 2" AG Lydian L\ 4, e _‘gﬁ_ —_ - = = ,ﬁBLYd'd“f:—F’T He e
D . e e T J S ege il T

7 (e o o \é_: L

A Dorian Y BDorim C# Dorian v D¢ Dorian]
E Dorian F# Dorian Gz Dorian
Fig 1.2.4

If we think of F3 as being the ‘root’ of the polymode above, it is an interesting feature of this polymodal
system that transposing the polymode up or down an octave would effectively ‘change key’, thus each

individual pitch within the pitch-spectrum has, in effect, its own unique key with an “absolute root’. As a

17

18

consequence, there is a subjective avoidance of consecutive octaves in my style of composing. | also
frequently (but not exclusively) try to avoid doubling the same pitch class at the octave within an
individual harmonic block; however melodic or contrapuntal material based on each block might include
auxiliary notes which double at the octave without forming part of an individual block.

This polymodal system differs from the technique described as “polymodal chromaticism” by
Bart6k® in relation to his own polymodal style, where multiple chromatically related modes operate
simultaneously whilst sharing a common root (e.g. in Mikrokosmos No0.80 [“Hommage a Robert
Schumann”, from Book 111, 1926-39]) C-Phrygian/Lydian are employed simultaneously comprising all
twelve pitches of the chromatic scale [C-Db—Eb—F-G-Ab—Bb/C-Dt—Er—Fz—G-As—Bg]). Here, Bartdk
juxtaposes chromatically related modes within the same pitch regions, which differs from my own
polymodal style in which chromatically related modes are superimposed (or ‘stacked’) in different
regions of the pitch spectrum.

Another well-known early twentieth century work to adopt this form of polymodal chromaticism

was Poulenc’s Mouvements Perpetuels, 1. (1918),° which includes passages which stack a B> major (or
lonian mode) ostinato pattern in the left-hand below a Bb Phrygian or Locrian hexachord-based melody

(i.e. employing Bb—Cbh—Dbv—Eb—Gb—Ab) in the right hand. This comes closer to the stacked polymodal
system which | adopt in my own work because there are chromatically related modes in operation in
different regions of the pitch spectrum; however, a key difference to emphasise is that the Poulenc
example employs two modes which share a common root of Bb, whereas in my own system | frequently
employ modes in different pitch regions which do not share a common root. To illustrate this, consider
the polymode in Fig 1.2.1: | regard Fs3 to be the absolute root of this polymode; however, the upper
structure mode is G Lydian (which does not contain an Fz) and the auxillary note which links F Lydian
and G Lydian is F#4, therefore it cannot properly be said that various octave transpositions of Ft3 (namely
Ftd or Ft5) are also roots because they do not feature in the polymode. However, the fact that G Lydian

forms the upper-structure to this polymode does not mean that multiple roots are in operation, instead G
Lydian is an interrelated collection which forms part of larger synthetic/extended polymode with a
common absolute root of F3.

The stacked Lydian/Dorian polymodes illustrated in Figures 1.2.1-4 are employed exhaustively
in my style and might be regarded as typical type of ‘pure-form’ polymodes. If we consider these

polymodes, the interval from one adjacent pitch to the next is always either a major or minor second but it

& Benjamin Suchoff, Bartok’s Mikrokosmos: Genesis, Pedagogy and Style (Lanham, Md: Scarecrow Press, 2002),
115.
% John Vincent, The Diatonic Modes in Modern Music (Berkeley: University of California Press, 1951), 272.

avoids the inclusion of two adjacent minor second intervals — this is a characteristic which such
polymodes share with conventional diatonic scales. As a consequence | subjectively avoid the inclusion
of trichords which consist of two adjacent minor seconds within any individual harmonic block, as
illustrated below:

Chromatic trichord:
not normally used within
a single harmonic block

Fig 1.2.5

However, the following trichords are frequently seen within individual harmonic blocks:

Major scale Minor scale Phrygian or Locrian
trichord trichord mode trichord
_q-_d T b!s T jl;pb T
y - ! f f
Fig 1.2.6

It is, of course, logical to add harmonic variety by deviating from the pure-form Lydian/Dorian
polymodes as any musical passage runs its course and one way of doing this is by ‘omitting” a particular
pitch-region within the pure-form series and then shifting other regions within the series up or down a
specified number of octaves. For example, if | were to remove the G Lydian and B Lydian portions from
the polymode in Figures 1.2.2—4 and then shift the A Lydian portion down an octave (adding a couple of
auxiliary notes to link the two Lydian modes) | might produce the following new polymodal pattern:

Polychord stacking
A/F major 7t

Two octave polymode stacking Fg Dorian/Fy Lydian A major 7
. upper-structure
F Lydian chord

A Lydian

- * ydian_——1
< = I - F major 7™
- - \ ; lower-structure
rd - ——chord

——
F# Dorian

-

BN
= = =

Fig 1.2.7

Similarly, if I were to remove the G Lydian and A Lydian portions and then shift the B Lydian portion
down two octaves | might produce the following pattern:

Polychord stacking
B/F major 7"

Two octave polymode stacking F# lonian/Fs Lydian B major 7
llpch—slrllclurc
F Lyd[an chords

B Lydian
i - g e f
- A —a—4 - — F major 7
. y.4 P— : i e lower-structure
Z [f;ﬁ Z chord
v
F# Ionian

Fig 1.2.8

19

20

The above diagram also illustrates the possibility of re-voicing the upper structure B major 7™ chord (so
that it is in 2" inversion position) as a means of avoiding the slightly unnatural gap between the two root
position major 7™ chords.

Another method of changing the ‘shape’ of a pure-form polymode is to vary its range of an
interralted mode within the series (e.g. | might change mode after a fifth or two octaves rather than every
octave). Thus the rate of change of the stacked Lydian/Dorian modes will be compressed or expanded
respectively from its pure form. The following example shows an expansion of the polymode seen in Fig
1.2.1:

#‘.— G major T
. upper-structure
F Lyd 1an [portion expanded into two octaves plus a major seventh] chord
| —~
-o-ﬂ-'—
- 2 - 2 T T __
- 2 = — [._p——
Q'‘._. st 1J -_'_._'_'—'—.
L] .4
7 e F major 7"
v lower-structure
. — chord
C Lydian h'

tetrachord
Fig 1.2.9

Note that the above polymode is very close to actually being modal and the false relationship does not
occur until the final high F¢ in the series. Another point to clarify here is that when a root mode (in this
case F Lydian) is expanded in this way, it opens up the possibility of multiple roots being shared on
octave transpositions of the same pitch-class: because F Lydian has been extended for two and a half
octaves in the above polymode, this means that F3, F4 and F5 can all be regarded as roots but F6 cannot
because it does not feature in the polymode.

The following example shows a compression of the polymode seen in Fig 1.2.1

F Lydlan (ﬂS) G major 7
[a mode of D melodic minor] upper-structure
chord

ﬁ,_n_tﬂﬁ

[1%

F major
lower-structure
2-note chord

G Lydian
F L}’dii‘lﬂ [portion compressed into a tritone]
Fig 1.2.10

Generally, expanding a polymode will reduce the perception of chromaticism and shift it towards
modality whereas compressing a polymode will do the opposite and increase the perception of
chromaticism.

These methods of generating and modifying polymodes open up the idea of visualising an
‘invisible’ (or hidden) polymode/polychord which spans the entire musical pitch spectrum. Then when we
have harmonic sequences each individual harmonic block within the sequence contains a new invisible
polymode/polychord. Examples of this technique will feature later on in the commentary relating to a
harmonic analysis of sections within some of the pieces in the portfolio.

There is a complexity to the theory behind such a system, however | have found that adopting and
developing these theories over a continuous period of time has meant that extracting interesting pitch
material from a corresponding invisible polymode has become second nature to me, leading to a system
of pitch organisation which is both unique and elaborate but also practical enough to work with

nonetheless.

Rows & Serial Technigues

When adopting rows in my work, | will generally think of them as defining the individual pitch-
classes used for the purposes of constructing individual harmonic/melodic blocks, without necessarily
defining the exact octave within the pitch spectrum where that particular pitch-class might occur — this
differs from the interrelated polymodal system previously illustrated which does define the exact octave
for each individual pitch within it. Any individual pitch-class should not be repeated within a row,
therefore when adopting rows which contain more than 7 individual pitch-classes | will always be
working with an initial set which ventures outside of the realms of any individual 7-note diatonic mode —
thus the row is treated as being part-modal and part-chromatic/polymodal.

Rows are rarely adopted explicitly in my recent compositional work; by this I mean that one
would be unlikely to find many examples of rows which are repeated, retrograded, inverted and
transposed continually (as is the case in serial and other row-based works by pioneers in this field such as
Schoenberg or Webern). Instead, rows are normally adopted as tools (in an auxiliary fashion) to help me
create individual polymodal harmonic/melodic blocks and there is often a new row for each constituent
block rather than a repetition of the same prime row or some transformation of it.

A row might be constructed from the first eight pitches of the ploymode in Fig 1.2.1 (also
equivalent to the individual pitch-classes in the stacked G/F major 7" polychord on the right-hand side of

the same figure):

21

22

Example polychords
using the pitch-classes
Polymodal 8-note Row in the 8-note row:
. o2 Collections from B minor pentatonic
C Lydlan — as upper-structure tetrachords
:: tLydéand tetrachord (:_? <
etrachor
L e ==
T T 1]
y ; ; (= = Collections from F major pentatonic
55 1 t as lower-structure tetrachords
Fig 1.3.1

The above 8-note row (on the left-hand side) possesses palindromic characteristics: If inverted about Fz4

it produces a retrograde of exactly the same row; when inverted about any other pitch it will produce a
transposed retrograde; in addition, when the leftmost polychord is inverted about By5 it produces the
rightmost polychord, which contains two tetrachords with exactly the same notes as the former.

Similarly a 9-note row might be constructed from all nine of the individual pitch-classes which

occur in the ploymode in Fig 1.2.1 (adding a C# to the row in the previous example):

Example polychord
using the pitch-classes

Polymodal 9-note Row (Prime) in the 9-note row:

A major pentatonic
as upper-structure
pentachord

F Lydian 7-note mode
(or “heptachord™) upper-structure

lack-n
j‘ Py !l black-note dyad
. Y
() iy T .
7 ! 'W‘ a collection from
& |‘1$ F major pentatonic as
e q ! lower-structure tetrachord

Fig 1.3.2

N CQ%

®

If the above row is inverted about F¢4 it produces an interesting result with a perfect fifth at the bass end

of the row:

Example polychord
using the pitch-classes

Polymodal 9-note Row (Inversion about F£4) in the 9-note row:

a collection from
Perfect fifth | A #h"‘. B minor pentatonic as
: ertect fitth on the ' _structurs ac
G Ionian heplachord L ! upper-structure tetrachord
root of Bb Lydian as
.’'\’ lower-sturcture dyad b
— = &2 o ._._. T~ N
). L fe : J } B> major pentatonic
- + pe + :@b—?‘: as lower-structure
v I pentachord
Fig 1.3.3

A 10-note row might be constructed from the individual pitch-classes of a stacked A/G/F major 7"
polychord and inverted as in the two following examples:

23

Example polychord
using the pitch-classes
in the 10-note row:

Polymodal 10-note Row (Prime) E major pentatonic
as upper-structure
pentachord

F Lydian heptachord upper-structure A

K

black-note trichord e
; > = 2 .

P E i ,l:\ - te i y 4 : F major pentatonic
ST -_1'|_g_"_|_ 4@_%— as lower-structure
er e 'q pentachord

Fig 1.3.4
Example polychord

using the pitch-classes

Polymodal 10-note Row (Inversion about F£4) in the 10-note row:

D major pentatonic

h‘# as upper-structure
pentachord

G lonian heptachord B> major pentatonic 6
v

lower-sturcture trichord
2 o Py
_ = = - — r__"“"--——--} : R
). 1 1 / ; > major pentatonic
7 o= " %

G-

& as lower-structure
pentachord

\
N

Fig 1.3.5

Similarly, an 11-note row might be constructed from the individual pitch-classes in a stacked E/A/G/F

major 7" polychord and inverted as shown in the two following examples:

Example polychord
using the pitch-classes
i in the 11-note row:
Polymodal 11-note Row (Prime) a collection from

#"" G¢ minor pentatonic as

upper-structure trichord

upper-structure
black-note tetrachord

eGiF

F Lydian heptachord
-
- & = A A # a collection from
: — 3= z 1 ﬂ—ﬁ-ﬁé— B minor pentatonic as
7 P £ ft PP . {6 id-structure tetrac
% e (> mid-structure tetrachord
o ? ©
.y
1
V4 a collection from
%b F major pentatonic as
- lower-structure tetrachord
Fig 1.3.6

Example polychord
. using the pitch-classes
Polymodal 11-note Row (Inversion about F%4) in th% 1]_,],Jme row:

P a collection from
3 Tonis ac Ab major pentatonic D major pentatonic as
G Tonian heptachord lower-Jsczchture tetrachord upper-strueture etrachord
¥ 3 v
i2 o 0 o T A
): ._‘lﬂ-ﬂ—b-.——' Y a collection from
- 1 1 :M;: F major pentatonic as

mid-structure tetrachord

®

|

b... a collection from
bbﬂ Ab major pentatonic as
'l

lower-structure trichord

y |
=

Fig 1.3.7

24

When the above trend is extended to a 12-note row a typical result would be a row with a 7-note
diatonic mode as one set (thought of as a heptachord) which leaves a 5-note pentatonic mode (or
pentachord) when rotated as shown in the next two examples:

Example polychord

using the pitch-classes

Polymodal 12-note Row (Prime) in the 12-note row:

a collection from

upper-structure #### ‘! C# major pentatonic as
. . black-note pentatonic upper-structure tetrachord
F Lydian heptachord P)

a7
- L)
- * = A # a collection from
. : ! M— B minor pentatonic as
4 [o

7 !f:rhu. -ﬁ id-structure tetrach
o5 {5 mid-structure tetrachord
v L2}
1J
y 4 : a collection from
@ hE‘. F major pentatonic as
bd —'q - lower-structure tetrachord
Fig 1.3.8
Example polychord
. using the pitch-classes
Polymodal 12-note Row (Inversion about F#4) in the 12-note row:

a collection from

fe ; _

.) ot . . D major pentatonic as
G Ionian heptachord D> major pentatonic j:hggg: upper-structure tetrachord
lower-sturcture pentachord &
b e y
— T e 4 N]]

o) I : T 7] a collection from
7 L be —L— :W F major pentatonic as

r © - mid-structure tetrachord

b l; a collection from

b bﬁ Db major pentatonic as
At i
e

lower-structure tetrachord

Fig 1.3.9

This way of arranging 12-note rows is a form of ‘literal pitch-class complementation” (where an
‘aggregate’ is divided into smaller subsets, each containing pitch-classes absent from the other(s)'°) and is
similar, in principle, to the technique of hexachordal rotation seen extensively in Schoenberg’s works, as
well in many of the late works of Stravinsky, Krenek and more recently in the works by contemporary
British composers such as Oliver Knussen and Julian Anderson. One clear differentiation to make here is
to emphasise my tendency to extract an asymmetrical 7-note or 5-note mode (such as a diatonic or
pentatonic mode) from the row. As previously mentioned, there is a subjective avoidance of symmetrical
scales in my work and when working with hexachordal rotation the resulting hexachords tend to imply
symmetry (e.g. 6-note modes/scales such as such the whole-tone scale, the hexatonic scale, or six-note
collections from the octatonic scale). Rotating seven or five notes instead tends to lead to the resulting
heptachords/pentachords being asymmetrical in one way or another. Summarily | would describe the
serial rotation techniques which I adopt in my work as either “heptachordal rotation” or in some cases

“pentachordal rotation.”

19 Arnold Whittall, The Cambridge Companion to Serialism (Cambridge: Cambridge University Press, 2008), 272.

I also often work with hybrids of some of the patterns in the row-based examples above, for

example if | were to create a type of 12-note hybrid of the rows in Figures 1.3.8-9 I might produce the

following result:

Hybrid Polymodal 12-note Row

Ab perfect fifth as F Lydian heptachord

F# major upper-

Example polychord
using the pitch-classes
in the 12-note row:

a collection from
E Lydian as upper-
structure pentachord

lower-structure dyad h_._ structure triad \{f
A\ - » N I .
rax T T 1) [y — 1

I'- I = 2 " ! 4\ [y 'rq‘ '__ﬂli : ﬁhF F major pentatonic

P AN " as mid-structure
Yy & FIq pentachord
Fayy 1
/ L * Ab perfect fifth as
Splll Pentachord X] lower-structure dyad
Fig 1.3.10

Note how the pentachord in Fig 1.3.8 has been split into a dyad plus a trichord and some of the black

notes have been shifted below the register of the white-note heptachord. Similarly, the heptachord in Fig

1.3.8 could be split as illustrated in the following example:

Hybrid Polymodal 12-note Row

lower-structure
white-note trichord

—

mid-structure
black-note pentatonic

upper-structure
white-note tetrachord

“fote =

|
I

Example polychord
using the pitch-classes
in the 12-note row:
.i a collection from

C¢ Locrian or Phrygian as
upper-structure hexachord

L=

ry L
S T—— T " LT J T :
7 : lgh iy 'IT"I'._]). B E I 1 —fﬁb-blo— a collection from
L =¥ By F Dorian or Acolian as
i hd q“— lower-structure hexachord
g
Split Heptachord
Fig 1.3.11

An interesting feature in the above example is that the polychord on the right-hand side is made up of two
hexachords, which imply asymmetrical diatonic modes, illustrating the fact that it is, of course, possible
to do this with hexachords in certain circumstances.

As illustrated in Figures 1.3.1-7, I will frequently be working with rows which contain less than
twelve individual pitch classes but the principle of rotating asymmetrical heptachords or pentachords will
still apply in the same way. Similarly, I might sometimes extend a row to more than twelve pitches for
various pragmatic reasons. As an example, the stacked B/A/G/F polychord in Figures 1.2.2-3 contains all
twelve pitch-classes and four of the pitch-classes are also doubled at the octave (hamely As, Eb, By and Fg)
— in appropriate circumstances this type of harmonic/melodic block might be thought of as a type of 16-

note row.

25

26

Intervallic Cells

In order to create a logical interface between (poly)modality and chromaticism in my work, |
have devised a set of intervallic cells which are commonly seen in some of my most recent compositional
work. This idea owes itself, in part, to the ideas of theorist David Lewin, who was a pioneer in
approaching the analysis of works by Schoenberg, Webern and Alban Berg in this way, deducing typical
intervallic cells adopted in the work of each respective composer. Lewin’s analysis of Berg’s opera Lulu
derived several intervallic cells typical in the composer’s work (i.e. z-cell, y-cell, x-cell), which could be
linked to the post-tonal, post-chromatic origins which are transparent in Berg’s work. A similar approach
was also applied to the analysis of intervallic cells linked to chromatic polymodality in Bartdk’s work by
scholars and theorists such as George Pearle and Benjamin Suchoff, in particular the z-cell (which
combines two tritones a semitone apart [i.e. C-Db—F#—G]) and the x-cell (four adjacent semitones [i.e. C-
Dv—D-Eb]).

The typical intervallic cells which I have applied to my own work are based on pitches and the
exact intervals which occur in the polymodes which | adopt, but are not closely related to more
conventional modal or tonal melodic/harmonic patterns. | am particularly fond of the major 7" and
augmented octave intervals which occur in the pure-form stacked Lydian polymode (i.e. if we consider

the first eight pitches within this polymode: F~-G-A-B-C—-D-E—F#, | often extract the major 7" which
occurs between F—E and the augmented octave which occurs between Fe—F4#), thus | divide each cell

into a lower and upper structure pitch collection, where the lowest pitch in the upper-structure is either a
major 7" or an augmented octave above the lowest pitch in the lower-structure. The lower and upper
portion each contain between one and four individual pitch-classes (thus the maximum number of
individual pitch-classes possible within the cell is eight [i.e. a lower-structure tetrachord plus an upper-
structure tetrachord]). If a lower or upper-structure portion is a dyad then its two pitches must be either a
major 2™ or a major 3" apart (i.e. F+G or F+A); if it is a trichord then it must contain two adjacent whole-
tones (i.e. F+G+A); if it is a tetrachord then it must contain three adjacent whole-tones (i.e. F+G+A+B,
making it a Lydian mode tetrachord over a tritone).

A table containing these intervallic possibilities is provided overleaf (Fig. 1.4.1, on an Fy root). |

have also given each cell its own unique label (e.g. 3+2e) where the leftmost digit represents the number
of pitches in the lower-structure, the rightmost digit represents the number of pitches in the upper-
structure and the letter at the end is unique to that exact cell. These labels are useful for the purposes of

analysis and deducing these cells from the intervallic patterns in my work.

27

Fig. 1.4.1: Typical Intervallic Cells (on an Fy root)

simple dyads:

major second major third major seventh augmented octave
7. : e e 7
ié?:::!’ —g — + hp i

2+1 trichords: 1+2 trichords:

2+1a 2+1b 2+1¢ 2+1d 1+2a 1+2b 1+2¢ 1+2d

I I I I I I I 1l
%&—‘—8—‘—@#—‘—5 —r ” he fe i
3+1 tetrachords: 2+2 tetrachords: 1+3 tetrachords:
3+la 2+2¢ 2+2d 2+2¢g 2+2h 1+3b

3+1b 2+2a 2+2b 2+2e

1+3a

3+2 pentachords:
3+2a 3+2b

4+1 pentachords:
4+1b

2+3 pentachords:
2+3a 2+3b

4+1a

1+4 pentachords:

1+4a 1+4b

>

4+2 hexachords:

3+3 hexachords:

2+4 hexachords:

4+2a 4+2b 4+2¢ 4+2d 3+3a 3+3b 2+4a 2+4b 2+4c 2+4d
; a8 Y Y
I I L. 1l
fae——— (18— fgo————— 18—

4+3 heptachords: 3+4 heptachords: 444 octachords:
4+3a 4+3b 3+4a 3+4b 4+4a 4+4b

T bbb-‘ 1T ﬁ#ﬁﬁ T bbbﬁ 1|
438 [freg 1 g [- e i

28

CHAPTER 2
Modality

30

Modality

Ynys Afallon for SSAATTBB choir a cappella and the second movement of Cwyn y Gwynt (both
the flute/harp and contralto versions) are, perhaps, the most conventional sections of music within my
portfolio. These pieces are composed in style which is predominantly modal, providing insight into how |
employ the modal models previously discussed (as pertaining to Figures 1.1.1-8). Despite this,

occasional passages within these pieces do hint, albeit in a somewhat oblique fashion, at the more
elaborate form of polymodality which is present in much of my most recent compositional work.

Ynys Afallon for SSAATTBB (vol. 1, pp. 108-29) was composed so that it could be entered for
the composer’s medal at the 2013 Welsh National Eisteddfod in Denbighshire, in response to a call for a
new work for a cappella choir set to Welsh-language text. It was important for this new work to be
suitable for performance by a good level amateur or semi-professional choir, thus | wanted to avoid a
style of vocal writing which was overtly chromatic or complex in terms of pitch-organisation. It is in fact
a top-to-bottom re-composition (rather than an arrangement) of a previous setting of the same poem for
SATB choir and pianoforte (also included in the portfolio), which was in a polymodal style and deemed
not to be suitable for performance by amateur choirs. There are certain structural and motivic similarities
between the two versions, however in reality, they are rather different from one another.

The first verse is atmospheric and harmonic, beginning with 4-part alternations between F and D
major 7" harmonies (in second and third inversion respectively) in the soprano and alto parts, before a
tenor melody enters in m. 3. The bass line is absent in the first few bars but there is a harmonic suggestion

of an alternation between F and D Lydian modes for three bars, then an F Lydian to Db Lydian (or lonian)

to F Lydian cadence in m. 4 before the bass line finally emerges with a drone on F. The same four-bar
progression is then re-ordered, starting with 4-part harmonies in the alto and tenor lines before a soprano
melody enters in m. 7, this time announcing the first verse of the poem (rather than the phonetic vowel
sounds previously heard), before the bass drone once again emerges at the end of m. 8.

Following this, mm. 9-19 assumes the format of an 8-voice chorale, with text from the poem
being set in all parts, a greater variety of harmonic/modal changes and a metric modulation from 4/4 to

6/8 time, before a cadence and a pause on a C¢ Dorian harmony in mm. 18-19. The F-D Lydian modal

progression from m.1l then recurs in the tenor and bass from m. 20 onwards; a harmonic/modal

progression model for mm. 20-35 is provided overleaf:

Fig. 2.1.1: harmonic/modal model for mm.

[END OF VERSE 1]

Slowly, Atmospheric, Celestial D =c.60

20-35 of “Ynys Afallon” for SSAATTBB

SOPRANOS & ALTOS
20 21 22 23 3_ 3 24
0 ALTOS 3 —3— , , | ﬁ ‘ | L
{ & % . F . } - } o o o b ’ (D = |hlr) QI
(&% = — £ CE B L
U L4 -
PP € P0Co a poco cresc. f
RALLE SN e — 2t b & 5 bas bem
O /1 o <
y DR 3 -3 o -3 Po3 </
T T tq) " X [~ [~
F Lydian D Lydian F Lydian E Mixolydian FLydian D Lydian F Lydian | .)
F Aeolian F Lydian
D major 7 in
fourth inversion [START OF VERSE 2]
Warm, Expressive 2 =¢.60
melodic anacrusis on final . .
_ _ or 2. of each bar SOPRANOS 5 nljajqr penftatiJ?lc +thGh
25 F# major pentatonic 26 P 27 G major pentatonic 28 yads In perrect rourtns
O # %gﬁ.‘ ¢ TR) 1 /‘1 22 E
p’ A r-] - Y ﬂe - bl T u:ﬁg) g. = — > -
(& 4!{3:15,‘1—3“ CRELEY fo !—'—‘ﬁ:t
!) o b b (mj) il
——PPpPpP
] o)
& e
- P e B —) & o | B
rax P2 "3) 7
7 —a" & ' = =
L.
p
D Lydian Altered Scale on B#/C F Lydian C Lydian
[a mode of C# melodic minor]
SOPRANOS & ALTOS
C major pentatonic D major pentatonic + Gt F# = chromatic
o major/quartal triads 30 Major/quartal tetrachords - 2 au)ﬂlliry note
B ——— - P — SOP. I
s iy e # : T
D) ® & " 2 /ﬂ'09' &
: . 21 A bb oo
g\': . 7 o - o -
7 7 5y
| i =5 . Y
F Lydian C Lydian A Dorian Altered Scale on E E Phrygian (»4)
[a mode of F [a mode of
melodic minor] C major (+6)]
Bb major pentatonic + Et
33 34 major/quartal triads 35
- | 4 N |
0 T ©
e : (®) #83
%—W—?:ﬁwgg - or o
i . R — b
o8 2 : 2 ﬁﬁ—%'—“ﬁ 5
\ Y ﬁ? |
A Dorian B Aeolian C Lydian D lonian Altered Scale on E A Dorian G Lydian C Lydian

31

32

The passage from mm. 20-26 ends with the equivalent of an imperfect cadence in F on a B#/C dominant
7" harmony which uses pitches from the altered scale on B (a mode of C# melodic minor) and uses an F3

major pentatonic mode as its upper-structure collection. This is identical to the modal concept illustrated
in Fig. 1.1.8, where an upper-structure pentatonic collection is extracted from the altered scale.

Following a pause, the second verse then begins on a quaver-pulse anacrusis at the end of m. 26
with polyphonic and somewhat fugue-like material. This alternates between F Lydian and C Lydian in
adjacent bars (corresponding with the question—-answer/tonic—dominant principle seen in fugues of J.S.
Bach), with upper-structure pentatonic collections which relate to these modes being employed. Further
examples of dominant-harmony substitution modes occur in the passage that follows, namely the altered
scale on E in m. 32 and m. 34 and a brief glimpse of E Phrygian (b4) at the end of m. 32 (both cadence on

A Dorian) and an altered scale on D in m. 39 which cadences on G Dorian.

A further harmonic/modal progression model for mm. 46-53 is provided overleaf:

Fig. 2.1.2: harmonic/modal model for mm. 46-53 of “Ynys Afallon” for SSAATTBB

[END OF VERSE 2]

Warm, Expressive < =¢.60
(poco a poco allargando)

| [

— Jtg <1 — &
) @ o GG O SO g Lo By P
Vo log® © | & F T gler T (" 9 o 9

L
Yy

N

-
\

D Dorian a chromatic mix of D Dorian and D Mixolydian,
the entire passage uses the exact pitch-classes
in the polymode below:

§i H r 3 ®

o & o2

CQ;\:>

|)
Eey

Upper-structure 4-note chords

48 49
O d p |

T i e :

I I "\ '/7 v
— ; - ;
[a mix of D Dorian and D Mixolydian] A Phrygian (+4)
[a mode of F major (»6)]

Upper-structure 4-note chords

i dkand

D Dorian E Phrygian F Lydian D Dorian E Dorian A Phrygian (v4)
[a mode of F major (»6)]

Upper-structure triads

153
b - m
I‘ﬁll‘I - 5
- 4
B
-3 ~
B
= 7
3

D Dorian E Phrygian FLydian E Dorian Altered Scale on A
[a mode of B> melodic minor]

34

The melismatic passage in mm. 46°-48° uses a chromatic mix of pitches from both D Dorian and D
Mixolydian (above a bass pedal point on D), thus containing a chromatic alternation between a modal set
containing either Fy or Fi respectively. | have added a polymode below this passage in my diagram to
show the exact collection of pitches in use. There are changes between different harmonic blocks every
semiquaver beat, some of which contain Fy and some of which contain Fg, however, there is never a
simultaneous clash between these two pitches, which corresponds to the principle illustrated in Fig. 1.2.5
(which explains that there is a subjective avoidance of trichords which might consist of two adjacent
minor seconds within any individual harmonic block in my style).

Dominant-harmony substitution modes with a root of A are then used to emphasise the D Dorian-
based modality in this section whilst building to the movement’s climax in the third verse: Firstly in mm.

48°-49 using A Phrygian (»4) and then from the final quaver beat of m. 50 to m. 51 using the same mode
(relating closely to the example A Phrygian (»4) cadence illustrated in Fig. 1.1.5). The altered scale on A

is then is then employed in mm. 52°-53 with upper-structure triads in the soprano and alto lines (similarly
relating closely to the example altered scale cadence illustrated in Fig. 1.1.3).

Finally, a harmonic/modal progression model for mm. 54-57 is provided overleaf:

Fig. 2.1.3: harmonic/modal model for mm. 547 of “Ynys Afallon” for SSAATTBB

[START OF VERSE 3]
Broad, Powerful, Majestic D=c.84
33—
“ L - e
— S— % 7
2 | %
f 33— [3 — .
% b 3 s bﬁ - 3 Y 2 g g i,
——r s r—7
D meldoic minor D Dorian Altered
scale on D (|3 T

. . E A D
D Dorian C Lydian Altered
scale on B | | | | | |

Dorian

= * =1

this passage uses the exact pitch-classes in the polymode below
(hinting at a stacked C/F Lydian or A/D Dorian polymode):

Used on the final chord only

Fodan o te
) e -_'_!_,_l—a"—‘;#

Qé;\:»

—¥
@)

C Lydian

D Dorian

36

The majestic third verse is highly chromatic and frequently modulates or changes quickly from one
chromatically related mode to another. It starts in 5/4 time (with long drawn-out bars and greater rhythmic
irregularity than previously seen) and modal changes or modulations often occur on adjacent semiquaver,
triplet or quintuplet beats. There are brief dominant-harmony substitution modes (namely the altered scale
on D in m. 54 and the altered scale on B in m. 55) which add rhythmic as well as modal emphasis and m.
56 is perhaps the most chromatic bar in the entire movement.

Following this, m. 57 sees a similar idea to that previously discussed in mm. 46°-48°, where there

are chromatic alternations between a modal set containing either Fy or F# respectively; where an F Lydian

harmony is displaced either upwards or downwards by a G lonian or E Aeolian-based harmonic block.
Here, there are some changes between different harmonic blocks on the 32"-note beat, but a polyphony
reminiscent of patterns seen in madrigals or in some forms of folk music is retained. The polymode added
below m. 57 is very similar to the pure-form stacked Dorian/Lydian modes previously illustrated except

that what would be C5 has been replaced with Ci5 and G#5 has been replaced with Gt5, thus the C

Lydian portion of the polymode has been expanded. However, as is the case with the passage in mm. 46°-
48, every individual harmonic block contains pitch-classes from just one diatonic mode at a time; there

are no simultaneous false relationships between say Fy and F# within an individual block, thus the passage

merely hints at polymodality without actually being polymodal in a strict sense.

In mm. 58-59 there is a brief two bar recurrence of the initial atmospheric idea seen in mm. 1-8
and mm. 20-23 (transposed down a major fourth such that the alternation is now between C Lydian and A
Lydian), before a 6/8 meter recurs in m. 60 and this final section of the third verse contains further hints at
polymodality: in m. 60 there are alternations between C Lydian and D lonian (emphasising a false

relationship between Cj and Ct); in m. 62° (J. beat) there is an alternation between Ab Lydian and Bb
Lydian (emphasising false relationships between Ab/Eb and As/Es respectively); similarly in m. 63
between Eb Lydian and F Lydian (emphasising Eb/Bb and Ex/Bg); finally, in m. 65" there are alternations
between F Aeolian/Db Lydian and Eb Lydian (emphasising Db/Ab and Dt/Ay) before the section cadences

chromatically on an A Lydian harmony.

The coda section in mm. 69-83 recapitulates material seen in the first verse, starting with dyads
in major 7" intervals between the altos and tenors and then building harmonically in cannon form.

Cwyn y Gwynt for flute & harp (vol. 1, pp. 161-77) is based on a previous version of the same
piece composed for alto voice, vibraphone and cello (also included in the portfolio: vol. 1, pp. 201-15).
The original alto-voice version of this movement was set to the text from John Morris-Jones’s Welsh-
language poem, shown at the beginning of the score (vol. 1, p. 164). The three movement flute & harp

version of this piece won the composer’s medal (“Tlws y Cerddor”) at the 2012 Welsh National

Eisteddfod in the Vale of Glamorgan, where the requirement was to compose a sonata for flute & harp. |
felt that | could make a transcription/re-composition of the original alto-voice version work well for flute
& harp (by occasionally adding some higher pitched flute material to the lower pitched song lines that

already existed), but as the vocal part in the original version goes down to F#3, | needed to transpose it

upwards so that it would be in appropriate range for the C-flute. This piece has also been well-received by
contemporary flautist Carla Rees (who specialises in new repertoire for alto/bass flute) and plans are in
place to transcribe the C-flute version for alto flute & harp so that it can be performed and recorded by the
Rarescale contemporary music ensemble at some point in the near future.

As the harp can only be tuned to seven modal/chromatic pitches at any given time, it was
necessary for me to rethink and scale-down much of the pitch material which had existed in the original
version (where greater levels of harmonic/modal chromaticism were present in the original vibraphone
line in particular), which would not have been possible to achieve in the same way on the harp. As a
consequence, some of the polymodal elements of this piece are more explicit in the original alto-voice
version and it was necessary for me to sit down and carefully consider how to translate the original
harmonic language so that it would work as a harp accompaniment. The structure in the two different
versions is pretty much identical, however the harmonic/chromatic language is rather different, thus I
have appropriately described the flute & harp version as a re-composition of the original rather than a
transcription.

The second movement of the flute & harp version (vol. 1, pp. 170-4) is composed in song
structure, which corresponds to the song which was set to the text from the poem in the second movement
of the original alto-voice version (as opposed to the first and third movements in the original version
which are described as ‘abstracts’ and are both set to melismatic words which have been extracted from
the original poem). When analysing the second movement of the flute & harp version one should not pay

too much attention to the keys written below the harp part (i.e. Db melodic minor, Cb major, etc..) as these

are intended to represent harp tunings and make it easy for the harpist to check that the correct pedal
configuration has been set when some sort of a conventional tuning is in operation. They do not represent
the actual modes which are in operation musically.

The movement has a root mode of Ab Dorian and a key signature of six flats. This is the only
movement within the portfolio to employ a key signature, but this has been done to make the accidental
spellings in the harp line part easier to read (as the majority of tunings employ several flattened pitch-
classes). In addition, flat tunings have a richer sound on the harp, hence my decision to employ a root

mode of Ab Dorian (with six flats) rather than G Dorian (with six sharps). The most prominent modes in

operation in the movement are Ab Dorian, Fb/E Lydian and A Lydian, which frequently recur and there is

37

38

a melancholy relationship between the harmonies that are created from these three modes. The occasional
flutter-tongues on minim beats in the flute part provide an effective timbral modification and add
something of a melancholy edge to the flute melody — these characteristics correspond with the poetic
representation of an elegy, tears, longing and despair which relates to the subjectivity of the poem, which
this movement is based on.

A harmonic/modal progression model for the equivalent of the first verse in mm. 1-8 is provided
overleaf (in Fig. 2.2.1). Most of this movement is modal (in a conventional sense), however, there are
some clear pointers towards polymodality at times. The harmonies/modes employed in m. 3 are facilitated
by chromatic harp tunings, with the tuning in m. 3'2 (J beat) of D»—Ch—BHEr—-Fr—Gh—Aj used to

enharmonically facilitate an A Lydian polychord (minus the Bb, which is chromatic to this mode). The
same tuning is also used to facilitate an altered scale on Eb in m. 4, which serves as a dominant
substitution for an interrupted cadence on an Fb Lydian harmony, as indicated in the diagram. The tuning

in m. 3** is used to facilitate a stacked E/D Lydian polychord, as demonstrated below with a logical
enharmonic spelling in sharps and naturals, with the implied polymode on the left-hand side:
logical re-spelling

of polychord in
m. 3 {rJ beats 3—4)

melodic pitches
(fute)

- A Lydian

- =

ﬁ_'_ - - .l_#!#_ = ZL upper-structure

Esg;ﬁi—‘—‘ i) i — :p:;&g: harp tetrachord
: B2 : —_——

o —
D major pentatonic

- lower-structure

harp tetrachord

D Lydl'cll’l [expanded into a compound major seventh]

A Lydian [expanded into a compound fifth]

D42,Ch,Bb,
Eb,Fb,Gb,Ag
enharmonic — ! i
harp tuning: & —
T | 1,

Fig. 2.2.2

The lasciare vibrare indication above the harp part in m. 5 is intended to imply that the harpist blends
both polychords into one another, once again hinting at polymodality. A sum of the resulting polymodal

pitch material in this measure is shown overleaf (in Fig. 2.2.3).

Fig. 2.2.1: harmonic/modal model for mm. 1-8 of 2. Galargan from “Cwyn y Gwynt” for flute & harp

FI.

FI.

FI.

Slow, Melancholy, Sustained
J=c400rJ=c80

2 3
4b 17— ! ! — — -
g\ b [VI =% I Py I Py I I | 77~ I e I |
[Yl 9 2N >) I = [P = 0 I I o I | I & W= |
SV V A& - | Islo] | 1 | | | Do 1 | | 9]
°® - \ T — ‘ ‘ ‘ ! \
mp
harmonies facilitated by
chromatic harp tunings
bo
g o
[h=al 8 e X Ad e X
o D bH 1 r L L I O Py O
g\ H | VID=k | | DO ~
A~ D5 o T A
ANI"4 VA = —
© ' b b
m o o $
P o .g s
« 1T /! 2924 1J Y b
“Je D 1T =k L V= .4 O) S
2528 . 2o (GRS =
s Do - o —
altered scale on C F» Lydian hﬂ stacked E/D
AbDorian F»Lydian BbDorian Gb Lydian ~ [@mode of D melodic minor] A Lydian Lydian

Ab/Gt adds a harmonic/modal

5 —— pitch-class not present in the
4 J 5 //—*rrem harp tuning
o e T 7= r >]
g\ b [V1 DIy | | | = I = |
(&~ D bH Ll [@ X | I I I (D)@ I |
SV L 1 I I I I I 1
) [4 ‘ ‘ \ \
A
_) merge of sustained harp resonance
A major/B [or Cb] major upper-structure creating a polymodal cluster
triads facilitated by a chromatic harp tuning |
Moo= - - m - - -
2 8 & o —— g
L e & & z (g)i $ %2 $ 8 o
D5 - Y 24 P O
g\ Vi) & O ~
[an Y9 Y
SV v ’I
)
s R
7 ORI R | heS 1J
e D H 1 - ho- V== V.4 O
Z B 1V V== (D1 O
VD VO
v - v hg_
altered scale on Eb Fb Lydian A Lydian
[a mode of Fb/Es melodic minor]
interrupted Ab Dorian cadence on Fb major 13
6 7 fl 5 8
Z.
L | = flz 5 T A
Gy e e e L Tt ECr=E =
AN L I I I 1 L 1 | PN 1]
D) ‘ ‘ $ \ L b
5 5
be M
g s - £
[Ko n - 1 bg— ——~ 1 8
D5 P O d P
g\ b Vi) ~ b4
[an Y 0 B 2Y ~
YV L
D) — [~
e ™
o 1
[Ko I 1] | ~ © -
D5 o) O 1Y (bY (b)Y P (@]
g\ b Vi) P] L AUd AU ~ (@)
2D Hh L~ Z O L I
b&l L QIB_ gl O DO
f— o/
Gb lonian Cb Lydian Ab Dorian Fb Lydian Db Dorian A Lydian Ab Dorian

40

logical re-spelling of merged

AbGE moved to the flute when harp]Jolychord in m. 5
Ab is retuned to Az on the harp [sum of both modal bIOCkS]
ry
E Lydian melodic pitch-
- = ‘e classes (flute)
E Ionian ‘ e >+

I'd
,#L#i oo # E Lydi
o _;g;#r*‘ﬁ'#" —= = Mﬂ"ﬁé % uppar-gtructre
¥ ; rﬁ\ ! harp cluster

v S
E lonian or A Lydian
A Lydian [expanded into a compound major seventh] 5 Il:::;‘;;:;l?;:tltg‘r. d
D6,Ch,Bb,

E»,Fb,Gb,(Ab-Af) |
1

. AL
enharmonic I —
harp tunings: {6

I
L 1|
T e
'

v llllllll_’_llllll

Fig. 2.2.3

The equivalent of the second verse in mm. 9-18 is based on similar harmonic material with
arpeggiated ostinato figures in the harp, which use quaver rhythms with some triplets and quintuplets
adding rhythmic variety and something of an ethereal feel, adding further poetic meaning to the music.

A further harmonic/modal progression model for the equivalent of the third verse in mm. 19-28 is

provided overleaf:

41
Fig. 2.2.4: harmonic/modal model for mm. 19-28 of 2. Galargan from “Cwyn y Gwynt™” for flute & harp

B 20 21 L he D
A7 - : - : — ——
Ao b | == =
Y pp € misterioso
-3
X = = .a_/\ O
H o, = = = :W Pre %
D5 I S
2 51D I o
(2 D b |
Dl !
A P JJSSNES S Pp € misterioso
p o
o =i o8 o
Dl o ©
Ab Dorian Gb lonian Bb Phrygian Ab Dorian -
7
bass pedal-point on Co———> gy _b__E__ ____________ |9_ o i
Cb Lydian (z5)
[a mode of A»> melodic minor]
i i Common pitches ;
Fb/Ez melodic minor h X A Common pitches
2 23 inF/E> Lydian iy c/By/Ab Lydian o4
— - /—}\1 —Hh -/—\‘ T } T (R tr I
Fl e e = |
() \ 1 |
cresc
b X
__________________________ I o
8ve bl o o ® o
Ho1 © LS e ho M
D5 P V&S Ldhd THy
/ y 4T A) S O) 5O -
(&~ D b O o I"[@]
W v T |
ggf;&sg:gsctgrre Fb> maior 11 stacked Db [or C#] Dorian/ stacked stacked doubled Db major/Eb major
polymodes ! Fb [or Eg] melodic minor F/Eb Lydian C/Bb/Ab Lydian upper-structure triads
9 s o (0] (0] 2P
g\ b Vi) (@) O HES -
o WY e) ZEP=N 7 =4 o
=¥ s 7X@ OO ED24 @8 ;ﬁg:‘q_i‘
o 3 d d
cresc b (cresc.) -
Q:: lr) Iq] -
4 erx IDVIP-\D [X3
’ bIer ﬁ'cr p— o
®- -2 1] 4 -
Cb lonian (25) altered scale on G
r[161m°d('3‘.0f"f\b] [a mode of Ab/G¢ melodic minor]
armonic minor
fly hflz.
25 /_\ m 26 . .
O 1 . ho- * e | . E ek
- T I T L]
Al by —F YR S— 7 o o=
t)y v = I i i } 1
mf e cresc. f 5
l.v. sempre ho
= 2
R z o]
0 by bS5 2 | S yi
AP o -
[O an Y9 Y i}
Dl
mjf e cresc.
() | f h.- h
p A T T 5 Tt 17 4
g\ VI | s] UL L
N~ D H 1 =1 1=l 9] il Il od
})V v tﬂil | | | |
Z :
“ : 2
L L/ ! = o = T bS
Z H 1TV 9] I
~PUb q o ul
. . . Db Lydian (#5)— |
G Locrian F Dorian C Dorian y (#5)
Gy adds a harmonic/modal
pitch-class not present in the
27 28 M current harp tuning
L
H 1, hﬁ b be - Lt]
Fl. % 7 f b”. o — i ﬂo‘{ ey 7 H
D) . \ — '
dim 5 | \5\J mp o
m
o
O “ o
0. EF 2 5
D5 ~ ~
g\ b Vi) - -
o WY
ANS 74 14
© dim. mp e dim.
0 [M
A0 T T T N o
4})@9—7 : |
ANS"4 v v A, — Py
[Y) = =
~ rp
« [O H m
YD1 -]
A Pl-) TV DO 1OH
D h O
4 - <~
Gb Lydian (#2) Cb Lydian Bb Dorian

42

The four chords in m. 19 are all modal clusters which belong to the same harp tuning, before a pedal point
begins on Cb, using the lowest string on the harp. The bass pitches on the harp are then rhythmically
suspended from this point onwards (occurring on the second and fourth beat in each bar, whilst the
polychords in the mid—upper range occur on the first and third beats), however | have simplified the bass
rhythms in the diagram to make the harmonic/modal progressions easier to follow. The polychords from

m. 22°-23 are polymodal, as demonstrated below with logical enharmonic spellings and implied

polymodes:
logical re-spelling
of polychord in
m. 22 (2 beats 3-4)
A
. . melody pitches
E Lydian —— % fom o
tetrachord 54 minor (flute)
- o
r 3 iﬂ_ j— stacked E/A Lydian
A E melodic minor_— - ‘_#1#_ — === ﬂ§ upper-structure
P 4 E — harp tetrachord
[o
a7
—" L2

A Lydian [expanded into a compound major seventh] . —_—
E melodic minor
mid-structure
Db,Ch,Bb o harp tetrachord

Eb5,Fb,Gs, Al

]
. ! 7
enharmonic P | Z
harp tuning: 5 e T I ————— h;ms piwlh E‘r(?m
b O E melodic minor
gy ! . g 1 (low harp)

Fig.2.2.5

logical re-spelling
of polychord in
m. 23 (J beats 1-2)

melodic pitches
common o
F/E» Lydian (flute)
F Lydian - o
-
: \,/’/ﬁ-\iﬂi - = hﬁ' A major pentatonic
0 Eb Lydian 1\ 'h‘.‘ T — — — — = h “©%2 upper-structure
P 4 N ﬁ: harp trichord
F 4
x

C Lydian hexachord

L&

Eb Lydian
Dg,Ch,Bb, mid-structure

harp tetrachord
E> Fb,Ga, Az ple

I
i A I e —
enharmonic — - e —
harp tuning: — Y
arp £ —5 —be 2 { ————————— hass pitch from
1 | e

Eb Lydian
(low harp)

oIl

Fig. 2.2.6

logical re-spelling
of polychord in
m. 23 (,J beats 3—4)

A . N
1J melodic pitches
C Lydian ,‘9— ® _ ommon to
trichord T3 —— C/Bb/Ab Lydian (flute)
. Bb Lydian th! q-& G major pentatonic
0 Ab Lydlan Mq-‘- —_——_—— h upper-structure
- —— T harp tetrachord
S N [£rY
Si= &
her® -
1
Ab Lydian
D&, Ch,Bb, % mid-structure
Eb,Fb,Ga,Ab ! !73:’ harp tetrachord
1
. V-
enharmonic — | ! o)
harp tuning: — =
P 2 \.'}’ el —————————— bass pitch from
#'L.L ! b AbLydian
(low harp)
Fig. 2.2.7

Both of the polychords in m. 23 (i.e. Figures 2.2.6—7) are based on the pitches obtained from pure-form
stacked Lydian modes (stacking C/F/E» and C/Bb/Ab respectively). The polychord in m. 22° (i.e. Fig.

2.2.5) is modified from its pure form and has an E melodic minor portion at its bottom end.

In the previous progression model | have only shown the harmonic blocks in mm. 25-28 and
avoided including the arpeggiated acciaccaturas in the harp part such as to make the harmonic/modal
progressions easier to follow. Here each modal harmony is changed chromatically by modifying a single
pitch-class in the harp tuning every two minim beats — This reaches a relatively bright harp tuning on C

Dorian (with 5 naturals) in m. 26 before the passage cadences in B» Dorian in m. 28.

The final section in mm. 29-38 is the equivalent of a re-emphasis of the third verse (in terms of
the words used in the original alto-voice version), but uses harmonic material similar to that in the first
verse in mm. 1-8. The modal clusters in m. 29 are an exact transposition up a perfect fourth of the figure
in m. 19. The harmonic progression from m. 30°~31 is a diminution of that seen in m. 1-3, with the modal
harp tunings changing every minim beat rather than every two minim beats as previously seen. The final
polychord in m. 31* is based on the same polymodal harp tuning as that seen in m. 3** and Fig. 2.2.2 as
shown overleaf:

logical re-spelling
of polychord in
m. 31 (J beat 4)

melodic pitches
(flute)
— e *

. - * E major pentatonic
f) D Lydlan . - .._#ﬁﬂ_ j— upper-structure
P A T — harp trichord
7 4l "
IL._____
A Lydldn [expanded into a compound fifth]
L= stacked A/D Lydian
" | lower-structure
[?q‘c"‘"l‘b ~ harp tetrachord
Eb5,Fo,Gb,Aj
. - 1
enharmonic] 3
harp tuning: <& el
!J 1 "
%
Fig. 2.2.8

The colourful flute figure in mm. 30°-31 is an embellishment of previous melodic material, with little
runs and shorter time values to those previously seen. The harmonies in mm. 32-35 are then similar to
those seen in mm. 4-7 above a steady walking bass line in the harp before a short coda with further flute
embellishment in mm. 36-38.

The second movement of the version for contralto, vibraphone & cello (vol. 1, pp. 209-12) has a

modal root of C# Dorian and a greater level of chromatic modulation than that seen in the version for flute

& harp. As an example of this, m. 1% modulates from A Lydian to F Dorian, which can easily be
achieved on a fully chromatic polyphonic instrument such as a vibraphone or piano but cannot be
facilitated instantaneously on the harp in the same way and would be a problematic scoring issue in that
respect. The melancholy vocal line introduces extended techniques such as sprechgesang, sprechstimme
and glissandi, which serve to further enhance the musical representation of despair relating to the poem
that is set.

There are occasional passages in this movement which are explicitly polymodal: mm. 5-6 sees
polychordal harmonic blocks between the vibraphone and the cello, following a dominant cadence using

the altered scale on G# in m. 4, as shown overleaf:

harmonic/modal model for mm. 4-6 of 2. Galargan from “Cwyn y Gwynt” for contralto, vibraphone & cello

Lento Sostenuto
4 A J =30 J [IM D Lydian 6 Ft Dorian E Dorian
n r——————]
Ao L i : : e e s
vl W e e, Weas L, Jee e,
Y= L =" 7
D major/E major
upper-structure triads
> h Gé major T E major 7 B major " A major 9
N H-.I—‘—\! I_Ebﬁ]chunl # h: ai—l chord ﬁﬁﬁq tetrachord ﬁt{}jlc‘lmchord
. s) T -] EPY & Haga t T 1
vib. e o esell R IS : H#8 S8
- - = T E major 7" T3 T D major 7 1 !]
o — =l §'J chord O chord
#' =3
A major G major F# minor -
2-note chory . ¢l " E minor
§1u. hord | 3;“0'” chord 2-note chord , 2-note chord
: P iy ol Q 5% 3 |
ve. (= po i FEe |
o 1 I 1
altered scale on G# stacked stacked stacked B Lydian/ stacked A Lydian/
[a mode of A melodic minor] GHE/A Lydian E/D/G Lydian Fz Dorian E Dorian
interrupted C# Dorian cadence on a polychord
with a root mode of A Lydian
Fig. 2.3.1

This passage is set to the words “Wrth fy ffenestr yn gwynfannus” (*At my window restlessly”) and the
switch into polymodality in this passage is intended to be a symbolic representation of the wind against
the window. Another prominent harmonic feature demonstrated here is the idea of shifting a polymodal
harmonic block down by a whole-tone, as seen between the two polychords in m. 5 and the two
polychords in m. 6 above. There is further polymodality in mm. 15-16. An illustration of the modal/pitch

collections in use in these two measures is shown below:

modal/pitch collections used in mm. 15-16 of 2. Galargan from “Cwyn y Gwynt” for contralto, vibraphone & cello

(Sprechgesang)
! 5{} belonging to F# Dorian 16 belonging to E Dorian
Allo == — == P— |
) bl
C# Dorian
T B Dorian __—
RS T P P — . s wtete T |
Vib. — = '+|1'—O—|11 i e W T — . !
{:% _ T : — -]
F# Dorian te
Ve. ﬂ: — i = i
\\\\Ej. .5{/
E Dorian
stacked C#/F2 Dorian polymodal block: stacked B/E Dorian polymodal block:
false relationship between A#/Ajg false relationship between G#/Gt
Fig. 2.3.2

This passage is set to the words “Ary gwydr yr hyrddia’i ddagrau” (“On the glass it hurls its tears”), once
again using polymodality to emphasise the poetic symbolism which exists between the representation of
rain/water on a glass/window pane and tears/despair. On this occasion, a stacked Dorian harmonic block

is shifted down by a whole-tone between the two measures.

45

46

Finally, the movement’s climax occurs in mm. 24-28, where there is a more extensive polymodal
passage. The text that this passage is set to finally reveals that the despair of poem’s subject is related to
the death of a loved one, which is further represented musically by the use of consecutive explicit
polymodal blocks in mm. 25-27. A dense, and atmospheric musical texture is generated here by using the
sustaining pedal on the vibraphone to stack chromatically related polychords on top of one another. A
modal/harmonic model showing the polychordal breakdown between voice, vibraphone and cello is
shown overleaf. All of the individual harmonic blocks in mm. 25-27 consist of 9, 10, 11 or 12 separate

pitch-classes and bear a similarity to several of the row-based polychords illustrated in Figures 1.3.1-11

in the first chapter.

The movement ends above a pedal-point on a low C# in the cello. There are polymodal harmonic
blocks above this in the vibraphone part in mm. 33-34 (equivalent to those seen in mm. 5-6) and then
further modal (non-polymodal) harmonic blocks above the pedal-point in mm. 35-38, where the
movement ends. In this final section, the pitch material in the vocal line is modally related to that which

occurs in the vibraphone accompaniment.

47
Fig. 2.3.3: harmonic/modal model for mm. 24-28 of 2. Galargan from “Cwyn y Gwynt™ for contralto, vibraphone & cello

10 chromatic pitch-classes 10 chromatic pitch-classes
(Sprechgesang)
o) 4 4
Alto A < /'h\gf- ; % —H
%\'\y :P)O AL H’T Lj
upper-structure) trichord belonging trichord belonging
tetrachords B Lydian to G Lydian to F Lydian
,\ htetrachord / l
o O _
) r3 (o) & [7,“9: ﬁ#% A Lydian
; A o : o | 1=l oo . — T tetrachord =
Vib. { (e p-w— = T O=—"% g1 7=]
SV * he hey -/ 1 —] = 1
) Ve vO —7 = O
e (e p z e
. C major Bb major
(pizz.) triad mp triad
0 |]
Ve, BEF o f - = s 12) bod I
I A= |
altered scale on B _ _
[a mode of C melodic minor] stacked B/G/C Lydian stacked A/F/Bb Lydian
A
interrupted E Dorian cadence on a polychord
with a root mode of C Lydian polyharmonic block transposed down by a whole-tone
11 chromatic 12 chromatic 9/10 chromatic 9 chromatic
pitch-classes pitch-classes pitch-classes pitch-classes
chromatic auxiliary grace-note
. . (Singing Voice)
260 wd'an t“Chorf 27 belonging to C»/B Lydian belonging to B Lydian
| I I I 1 I 1
b 4 N T 3 N3 I T 1 1 T T %'
Alto Hes—rna- o o—h T | - — P —— |
SV \H)= IQIIO () 1 7o b ﬁ!l{)é - .“.t‘lél‘.}.“. 1
© - """
. . . C Lydian
E Lydian D Lydian F Dorian or Db Lydian pentachord
hexachord F Lydian hpe_ntachord I7tetrachord h
. <
o) ﬁﬂﬁﬁﬁgl trichord hﬁag bh hgl hhu
R D" 4 T O J Mo L e 2 I el I L o <]
vib. {5 é ez | AT — o |
ANGYS g [2) I =21 B Lydian ge 1
) qhg bhg _ gz tetrachord
. A major Bb major
F major . pentatonic entatonic
pentatonic Ab Lydian trichord (ag:O) g
0 = T I
Ve, B2F - = v I I & i be o= qu
) i € =f D& Lq.\.\l
stacked E/F Lydian stacked D/Eb/Ab Lydian stacked Db/B/A Lydian stacked C/Bb Lydian
polymode transposed down by a whole-tone
and a perfect fifth added in the bass
root mode transposed upwards by three adjacent semitones
28 7 modal pitch-classes ' 6 modal pitch-classes
) :
b 4 + |
Alto s T 7 |
SV 1 1
[Y) O : @)
> i
|)
H = xZ ! gD
. P A | " TS]
vib. {{—= = . #:S |
SV h O] P 1
D)) OO i
e i
: ~ |
. 1
ve. Z :] i
Heeoo
F Lydian (»7) E Lydian

[a mode of C melodic minor
or the altered scale on B]

modal block transposed down by a semitone
and (»7) modal element is neutralised

48

CHAPTER 3
Explicit Polymodality

50

Explicit Polymodality

Much of the previous chapter has illustrated how works in my portfolio, which have been
composed in a predominantly modal style, are either occasionally hinting at polymodality or contain
occasional passages which are explicitly polymodal. This chapter will now take a closer look at works
within the portfolio which are set in a polymodal style “where the individual modes which form each
polymodal or polyharmonic block are transparent and can clearly be related back to a more conventional
modal style of writing”, described as ‘explicit polymodality” in the first chapter (vol. 2, p. 10, with the
pitch organisation chart on p. 11 categorising several work within the portfolio in this category).

The two songs for soprano, flute/piccolo & pianoforte set to words by Sir John Morris-Jones (vol.
1, pp. 217-51) are, perhaps, some of the earliest examples of explicit polymodality in my portfolio. At
this point in my development as a composer | was beginning to devise ways of linking modality with
polymodality and wanted to experiment with various ways of making this possible in a pragmatic fashion.

“lar fach yr haf” (“The Butterfly”, vol. 1, pp. 222-36) is set to three verses and adopts an
A1A;B1B,AzA, structure, where each respective verse is repeated once — A;, B; and A; are the initial
settings of each respective verse, while A,, B, and A, are embellished settings with melismatic runs in
the soprano line the second time around: A;A, (mm. 1-13 and 14-27 respectively) are both settings of
the first verse with a modal root of F Lydian; B1B, (mm. 28-40 and 41-53) are both settings of the
second verse with a modal root of D Lydian; AsA, (mm. 54-70 and 71-92) are both settings of the third

verse, Az has a modal root of Bb Lydian (following an initial bridge section in mm. 54-57) and A, starts

with a modal root of A Aeolian before working its way back to its modal equivalent of F Lydian.
The song begins with the 4-measure flute and piano sequence shown in the harmonic/polymodal

model overleaf:

51

harmonic/polymodal model for mm. 1-4 of Iar fach yr haf for soprano, flute & pianoforte

} Leggiero Sempre 5 E major pentatonic
J=c.112
) ‘ —
Flute @ = —= ﬁi—.ﬂ . =
f i | ——
D — —

G major pentatonic

T - i
i — — — — I —— — — ——
I —— — —
w——#
P
- — - ' N —w"
- T —— > T &

5 : fr—y kb =5 Sy —ak
F major) \"_" ry — E major pentatonic
pentatonic A major ?

}']L‘,I'Ilﬁ[()nli_'

A major pentatonic
3 - | rF|‘|‘I1g;'|’g o
-4 it Lydiar
0 7 I b
: '\3 I 1
bl d il bod) e, d
0 i e - ol h h he e | s — = -
/ SR e A T o S====sss
() o — ———
[===
- |] | T
] e — . i1 Fbe:
F major — Y — Gb major pentatonic
pentatonic A mayj or T
pentatonic
stacked G/F Lydian
Fig. 3.1.1

An ostinato pattern is formed, which juxtaposes different modally or chromatically related pentatonic
blocks. Initially, an F Lydian texture is created by juxtaposing F major pentatonic block chords in the left
hand with a broken G major pentatonic pattern in semiquavers in the right hand. The left hand also
alternates to and from A major pentatonic on the off-beat to add chromatic/rhythmic emphasis and
displaces its F major root downwards by a semitone on E major pentatonic at the end of m. 2 and upwards
by a semitone on Gb major pentatonic at the end of m. 4. The flute line complements the E major

pentatonic portion at the end of m. 2 before a sequence based on a triplet rhythm using A major
pentatonic in mm. 3-4, where the resultant superposition of A/G/F major pentatonic scales equates to a

pure-form stacked G/F Lydian polymodal block.

52

The vocal line then enters at the end of m. 4 with a G major pentatonic-based melody and the
circular ostinato accompaniment relates to the poem and symbolises the butterfly which “hovers around”
(“hofran o’i gylch”) the rose. The ostinato sequence is then transposed up a whole-tone in mm. 9-10
(such that the modal root becomes G Lydian) and up a further tritone in m. 11 (such that the modal root
becomes Db Lydian) before returning chromatically to F Lydian in mm. 12-13. A similar ostinato pattern
is then seen from m. 14 onwards, with the piano line scored in the instrument’s upper register with the
previous modal blocks slightly re-ordered and quicker broken chords in the left hand. Following the first
melismatic vocal section, the first verse ends on a Gb Lydian root, which juxtaposes falling/rising Gb/Ab
major pentatonic blocks in m. 25. There is, however, a polymodal twist in m. 26-27: the flute line sees

the inclusion of Gg on the trill in m. 26 and the Eb> major pentatonic figure in m. 27, which hints at a
stacked Db/Gb Lydian polymodal block with a false relationship between Gy/Gb.
The second verse starts in m. 28. A harmonic/modal model for mm. 28-31 is shown below:

harmonic/modal model for mm. 28-31 of lar fach yr haf for soprano, flute & pianoforte
Un poco meno mosso

3 Lydiz belonging to the
«=c.96 :14::11};1‘cl}‘11:rd altered scale on E
= . .
28 - 29 e, . 30 l’/'h:; o ;//:"/‘:::5-
F 1t - = .o = 31 E
) £ Ete”| Step | e E 3 E
A—H— —= — t f =]
NG : — 11 - .l |
) PP [a—-g— RE———
#’:2 L '[ﬁ’f [1 gram-mmmmmms 1
g B b e te o &= i bz 1% te
A Ira»] ! I}] -]]
7 i ? [.P
| Y 1 1
Dl ' ‘
AQ Iu.y’ b’ ﬁ Er—k" -3 k_&
l’ﬂ.l\ u% 1Y 2] ;\l- L # r.d I'(] -
AN 2 g id i v & - L &
Y o o - ig = g iz
D Lydian f]lr:ull;"d scale g (f’ b |—|' A Lydian altered scaleon E A Dorian A Lydian
1..)-'di11|3 I]’t:]d{.'.s falling stacked B/A Lydian above an Aj pedal
chromatically
Fig. 3.1.2

If the piano line is treated in isolation in the above passage, all of its individual harmonic blocks are
modal. The flute does, however, introduce a polymodal element as seen in m. 30, where a B Lydian

pentachord is stacked above an A Lydian harmony. A harmonic/polymodal model for mm. 36-44 is

shown overleaf:

53

Fig. 3.1.3: harmonic/polymodal model for mm. 36-44 of lar fach yr haf for soprano, flute & pianoforte

Bb major pentatonic Ab major pentatonic

36 P
H & b b)
7 = L ul - n N]
Sop. Hfes 4) I 2 b 2 I
SV J J 1 J 1
DR 4 4
e - oS a gan ei mel - ys gainc, Ai
mf
Ot he . he, b b b] M
P’ A [P Y T L1 he g = b & £ " - a
FI. Hfes ie i ie i Y I 1 ot e Do o 7 |
VYV I I I I 7/ 1 I I 1
© —)

T8V
>
e
-
e
rie-v
e

/x piano figure from m.1 (inverted)
b be >, b.n_b?bt P I ~ba
N o P# Fhe] The the T f || = he 5 o 3 erp’f
i — 1 i i o i i e i

I I I I I I I I I

L - 5- 1 5 |1 5)
F Mixolydian E> Mixolydian E> Lydian
stacked Eb/Ab Lydian
N @ 4o
on A=) R = | |
n o —he—g . i — e |
i % — 1l pitches belonging to a stacked
taw - el Ser - en yr hwyr? E/D Lydian polymode
tr
= 5
0 -H-Q e # ﬁ"‘ . ! !
D" 4 - I P e I o L. ™Y L 1 I
NG i S e, te]
> PP | —~— kel 7
8U£l """ ‘I
n_——
$gd—"" o o
A = . f— —
& e o ——o
ORER |
rp n 111
f | bo # 8 — — I8
A = L
[Fan) o O O
AND"4 1 —
.) PPP
o
o 1o
8%] O]
D Lydian
Y stacked E/D Lydian
. belonging to the
a1 2 B Lydian pentachord altered scale on E
2 4 L he) —
1 I s — =4 —he 1 ! I 1 I
Fl i = i e = |
D) 4 — e = e — =<
rp —3—
&gra=-=""- | P £ | Quam T TT Ty T *l
b 157 #% bh§ tg b, o feemm -y iz
phE hha i B ok Y Wz wf P
{es | — # 4
o pp
be tg | bf i
) b NG Tk X T e .
P’ AT] T H s} w o o
V AW I I I) A o
— 1 — - 4 -
D) AIG AWG» GIF GHE
,Sot\?gkﬁ?,dian g::t;reegn D | | |] stacked altered scale on E A Dorian stacked
stacked Lydian modes B/A Lydian above an Ag pedal E/A Lydian

falling chromatically

54

The embellished broken chord figures in the flute and piano lines in mm. 36-37 represent the “singing

Nightingale” with its ‘sweet melody’ (“eos a gan ei melys gainc”). In m. 372 (J beat), the stacking of Eb
Lydian in the upper range of the piano line above Ab major pentatonic figures in the soprano and flute line
equates to a stacked E»/A» Lydian polymodal block; however, the former polymodal block in m. 37*
stacks Eb Mixolydian in the upper range of the piano line above Bb major pentatonic in the soprano and

flute line — which does not relate closely to the pure-form polymodal models discussed in Figures 1.2.1-
10. This is explained by the fact that at this stage in the development of my poloymodal methods I had not
formulated a clear singular system for stacking polymodes and was experimenting with various differing
stacked polymodal structures, such as that in m. 37*.

The passage in mm. 38-40 sees a sudden change in musical temperament, to a pp dynamic with

delicate and gentle harmonic writing, this time representing the “silent Evening Star” (“tawel seren yr
hwyr™). Here, a D Lydian modal block in mm. 38-39 is modulated into a stacked E/D Lydian polymodal
block in m. 40 via the inclusion of a polymodal figure which emphasises the false relationship between

A#/Ag in the flute line.

The B, section begins in m. 41 and the predominantly modal accompaniment previously seen at
the start of the B, section (in Fig. 3.1.2) has now been thickened up and turned into a group of stacked
polymodal harmonic blocks, as shown at the bottom of Fig. 3.1.3. These thicker harmonic layers continue
above a melismatic repetition of the second verse in the soprano line and there is further emulation of
birdsong and the nightingale call in mm. 49-50 with question/answer type dovetails between the
melisma/coloratura-like figures in the soprano and similar regular/quintuplet semiquavers in the flute line,
above modal 8/9-note block chords in the upper register of the piano.

The Aj; section begins with the 4-measure bridge section shown in the harmonic/polymodal

model overleaf:

55

harmonic/polymodal model for mm. 54-57 of Idr fach yr haf for soprano, flute & pianoforte
Leggiero (Tempo primo)

=c.112
G major pentatonic
54 55 D¢ minor pentatonic
A mp | ey
Sop. HA——= e e e
s e e e
D] el = ¥
a - a - a - a - a
D major pentatonic
te,_ o _ & b3 -
N :hﬁ::ﬁ::ﬁﬁ.p. ::#ﬁ:
y A Il 1 | i Il I 1]
Fl. Hes = e = f !
AN I 1
v P
belonging — b8 |A major [A 1
A to E Lydian ﬂﬁ.ﬁ/ﬁﬁ #ﬂ pentatonic D minor | b, € ﬂﬂ
A " = : - pentatonic
[Fan - 7 T ry t t t
S b i Il Il
o P v } !
] = ~ b . altered ﬂg’—‘*{ #8, altered
— Emajor :m 1.‘.“5‘{ C major ¥ scale on B - scale on BE/C
pentatonic £ - = pentatonic [; i
1
D)) i [) [
Y
‘ stacked G/C Lydian
-hromatic/dissonant rhythmic anticipations
G major pentatonic G4 minor pentatonic
56 57
fi : = = = = H: fH]}/\. }z-\l. }/-\. -~
p ARy e 1 R e ﬁgﬁZﬂ
SOp. [Fan I S 1 —— |) s 1 —
\!_j’ ¥ 1 1 | | | 1 ¥ - 1 1 1 1 I 1
ﬁ ————
. a A - A - a - a - a a -a-a-a -
G major pentatonic
o| Eefefet,
y A 1 |
Fl. Hfes 1]
A4 1 l
[}
—
h . A minor q ——] ﬂ
belonging w‘“ 3h£ Demg{g:;ic pentatonic — ﬁhﬁ;
—— to A Lydian R P ¥ w; i -
5" i € a : :
'S % }
) h_| = — i
. A major F major 4 altered . E"ﬁ: altered
pentatonic m: pentatonic scale on F# F Eo— scale on E2/F
— Y |
0 stacked C/F Lydian]
——chromatic/dissonant rhythmic anticipations
Fig. 3.1.4

As shown, the chordal blocks marked in red are chromatic/dissonant rhythmic anticipations which, do not
form part of the wider harmonic block in each respective measure. In m. 56 the rhythmic alternation from
an A Lydian block to a stacked C/F Lydian block in the piano part corresponds to the alternations
between A major pentatonic and F Lydian in the left hand of the piano part in m. 1 (as illustrated in Fig

3.1.1) and the same idea is seen transposed up a perfect fifth in m. 54. In m. 55 the altered scale on B

56

block is displaced downwards by a semitone in the altered scale on By block in red and the Ds minor
pentatonic block is an upper-structure collection extracted from the altered scale on B#. This idea is
transposed down a perfect fifth in m. 57, except that the altered scale E# block is displaced upwards

(rather than downwards) by a semitone in the altered scale on F# block in red.

The remainder of the A; section, in mm. 58-70 is a recapitulation of the A; section (mm. 1-13)
transposed up a perfect fourth and set to words from the third and final verse, with a modal root of Bb
Lydian and double-tongued figures in the flute line to add timbral variety.

The A4 section begins in m. 71 with a brisk ostinato figure in sextuplets in the piano part; this
alternates between A Aeolian and a C# Aeolian modal blocks (relating closely to the alternation between
F major pentatonic and A major pentatonic in m. 1 [i.e. F major pentatonic and A major pentatonic are
collections from A Aeolian and Cg Aeolian respectively]). In addition, the G# Aeolian block on the final
crotchet beat of m. 72 relates closely to the E major pentatonic block on final crotchet beat of m. 2 and the
Bb Aeolian block on the final crotchet beat of m. 74 relates closely to the G major pentatonic block on
the final crotchet beat of m.4. When the soprano enters, there are some transparent false relationships

which exist between the F# pitches in the vocal line at the start of m. 76 and m. 78 and the A Aeolian
texture in the flute/piano (containing or implying F).
The third verse comes to a head on the altered scale on C block (below a Gb major pentatonic

upper-structure) in m. 81 and then mm. 82-83 sees a brief recapitulation of the “silent Evening Star”
passage seen at the end of sections B, and B, this time modulated to the song’s root mode of F Lydian.
Following this the final two lines of the poem are repeated above the flute/piano accompaniment figure
seen at the start of B; and B, (in mm. 84-85), before a further altered scale on C block in mm. 86-87 acts
as a dominant cadence on F Lydian (once again stacking G/F major pentatonic) in the final five measures
of the song.

“Y Gwylanod” (“The Seagulls™, vol. 1, pp. 238-51) is similarly set to three verses and adopts an
A1A,B1B,A3A, structure, with each respective verse repeated/embellished once: A;A, (mm. 1-16 and
17-32 respectively) are both settings of the first verse and have a somewhat ambiguous modal root of F
Dorian; B1B, (mm. 33-46 and 47-60) are both settings of the second verse with a modal root of E

Lydian; AzA, (mm. 61-77 and 78-95) are both settings of the third verse, returning to a modal root of F

Dorian, which is great deal more transparent in the cadences at the end of A; and A, respectively.
As with lar fach yr haf, Y Gwylanod is constructed using a stylistic mix of both modal and
explicitly polymodal writing. There are frequent chromatic modal modulations throughout (sometimes on

the off-beat or on irregular beats within a measure) and short musical gestures are used symbolise the

words in the poem. The most common time signature in the first and third verse (A1A, and AzA4
respectively) is 6/8, but there are also several time signature changes to 4/8, 7/8 and 3/8 to create metric
irregularity. The second verse (B1B,) modulates to 8/8 (equivalent to 4/4 or 2/2), but retains some
changes to 7/8 and 3/8.

A harmonic/polymodal model of mm. 1-4 is shown below:*

. [. ; .
Colourfully, »'=." always) stacked C/Bbs/Ex/Db Lydian
M=c156 stacked D/G Lydian belonging 10
;‘Llligf]';::;' belonging to D Lydian E Dorian Es lonian =i,_—[_""ﬂn
; e . 4 3 11— 4 4 e
B ——priie |lbeie, B e e’
Pice. [HnS el tibe - Er H i i e e I L e v] = == |
. L:?_Hi':- I — " ST . t T — 1
|| === - g
P —
" s 1| (] [2e b s | [e
L g = . - = b — X}
oo |low o | || ¥B e || |FE| F2||F R 22|55
Ao i = '] e
N—* T b I + r
[¥ L r =
Piie. o) p N = Tra - ‘e g | lbe: | D I | |
A e = e —%- Ee—te— : gt e
'3 §—< 'b,": i boas — } - = T 1 F .),:i‘—' :
A . r A =
G major pentatonic
. Ct B D Eb G Eb Db
D Lari D Aeolian 4 T T
.ocrian Fz lonid
ontan Lydian 1
Dorian

Fig. 3.2.1

The first measure uses modal blocks and quite clearly changes mode chromatically on its third, fourth and
sixth quaver beat respectively. Following this, the next three measures all posses polymodal
characteristics: m. 2 points towards a pure-form stacked D/G Lydian; the first two quaver beats in m. 3

(marked in blue) hint at a stacked C#/B/E Dorian polymodal block and the next four quaver beats (marked
in red) hint at a stacked F/Eb/Ab Lydian block (with the D Dorian portion being closely related to F

Lydian); m. 4 hints at a stacked C/Bb/Eb/Db Lydian (with the G Dorian portion being closely related to Bb
Lydian).

A harmonic/polymodal model of mm. 33-39 is shown overleaf. This diagram relates to the
beginning of the second verse, where harmonic blocks tend to change on regular minim beats, rather than
on irregular beats as seen in the first verse. The piano reduction shows the harmonic changes on each
minim beat as block chords (rather than the arpeggiated figures in the full score) in order to make the
polymodal relationships easier to decipher. The rapid 16™ and 32™-notes in the piano in mm. 35-39
symbolise words in the poem which describe the seagulls’ wings “Spinning swiftly” (“Troelli’n ebrwydd
ar yr adain”). There are interesting polymodal stackings of Aeolian and lonian modes (in m. 33 and m. 38

respectively), which deviates from the more commonly seen stacking of Lydian/Dorian modes in my

! When analysing the polymodal stacking in operation in Y Gwylanod, it is important to bear in mind that the piccolo
line will sound an octave higher than notated in the score. However, it should also be noted than the piccolo line is
written at actual pitch in some of the analytical diagrams shown in this chapter (as specified).

57

58

Fig. 3.2.2: harmonic/polymodal model for mm. 33-39 of Y Gwylanod for soprano, piccolo & pianoforte

Sustained & less articulate, but =2 Z+2e-cell tetrachord on F|
tr b
33 e 34 fe o e 35 he Ge
N — "= | (—b\ﬂ_ L E e = e —
Piccolo FA=S p—l tHe—2#+ o = —= I
[actual pitch] D8 < -7 1 L i i i
D) H) ! 3 belonging to mp
C Lydian
bs 8““0'_' """"""""" E
o) #7 |< E major 7t bl—fE p #:2 hoo-
g Q bl o =N
g O " 95
G
rp P
o - .
{5 77 +==—D major 7" el 7 fpe =
NSV o A i & "
© b= bz) Bb Lydian
stacked Cg/F# Aeolian A Loclriﬁ\n, Bb Lydian F#Eor:gn_
- or Aeolian
quartal harmony stacked C/Bb Lydian nexachord
36 Eb Lydian dyad D Lydian trichord 37
n | ™ Y — be | ke .
)" A LN} #= Mg W o T L T |
sop. eyt) S /A I o J) 2
\Q)y I’l}é Iz/\ } 71 i YA |
Troe - lli'n eb - rwydd ar yr a - dain
belonging to belonging ¢
A Lydian elonging to
@) (h) belonging to s #_a_ De Lydian/ﬁz\:
) ="~ ~B, Lydian iz = | b.r = fe ’ mn_ |
Picc. ey —_— i p3 — - — i
b,\/ I I 3]
QT TTTTTTTT T T T R Y R ﬁ"'_ """""""""" T T T T T T |
B _ = # 2] E minor 13t
,ﬁe fe #'qhg Ib‘,h B £ upper-structure
) P ik 1) =] arpeggio
© i —
Eb Lydian D Lydian b Gb Lydian b %
0 b% g .
p 4 - . 0
#R | /’ | qf’ f{h
o D= = PT_ i N
stacked By/Eb Lydian stacked A/D Lydian _ D lonian
stacked Db/Gb Lydian
38 PR 39
F# lonian trichord
o) Inl.)- b" He) ¢ loni ! # | |
sop. He—=F) to—te 12 = = 7
- Ho— | | | i e te- 7118
N——
Whaeth yr a - dar liwyd - ddu hyn;
belonging to
Ab lonian
tr — bl
e ha_ /\ |
et te E fe e | #E
. 9 — — — — I — -y >y — — [
Picc. Cmy — i ?r r i é
© pp
8Uﬂ """""""""" e 5 ’I
be e
= fo be iz
i i B o 4 v a
&) | | 8
D Prpe F# lonian]
H b 4 By ——————|
P’ —u-Y oY e P 2]]
G Py, : L 4
\Q)y Vv ?% - n?—; (o)
Gb Lydian stacked Ab/F% lonian __ -
) 4
7 = (]
. i =: S
D¢ Phrygian (b4) T

[a mode of B major (»6)]

style. There is also a 2+2e-cell tetrachord on F in m. 34, with this song illustrating some of the earliest
examples of intervallic cells being used in this way in my work.

A colourful return to the harmonic/melodic material seen in the first verse occurs in m. 61, with
the piano line adopting broken chords which alternate between both hands in a percussive fashion. The

first clear sight of the song’s stacked G#/Fg Dorian root is revealed in the cadence which takes place in

mm. 75-77, as illustrated in the figure below:

C# Dorian hexachord

75 I 76 77
—
Y r—— — :
Sop. |[{Fy : s I : ! f & 1
© r
5 ‘I# -~ h‘IF-. it T F-_. T _I-F. 1
Pice. {‘9 t I[. 1) 1 " t % i

C@i;}
1
%

™

,
=
5
43| 4
AAAAAY
D
E3 2
[
B

e
T
[Y
w(
S
(!.'

C¢ Phrygian (54)
[mode of A nexjor (+6)]

stacked G#/F# Dorian polychord
Fig. 3.2.3

The C¢ Phrygian (»4) block serves as a dominant harmony in the cadence, however the high Dg in the

piccolo is interestingly chromatic to the corresponding dominant harmonic block below it. A similar
cadence occurs in the song’s final measures in mm. 92-95 with the harmonic blocks slightly thickened
and re-voiced from that seen in the figure above and natural harmonics employed in the piccolo line in
mm. 93-95. There is a further interesting polymodal block in m. 79, which sees a 3+2a-cell pentachord on

D in the piccolo line, as shown below:
(Very Colourful)

3+2a-cell
pentachord on D

E Lydian
79 a| - ﬁﬁ.., N [
L g tiem, et Sea torioes]
I)]'CCI .@} I i 1 I 1 | 1 1 I 1 1 1 :i
D} I#_ 56 9:6
e
Y L 3
7 1 ¥
o =
Pfe. : -
) I s 5| | ¥

b

G Lydian D Lydian
stacked E/D/G Lydian

Fig. 3.2.4

59

60

CHAPTER 4

Electronic & Computer-Generated

Sonorities

62

Electronic & Computer-Generated Sonorities

The project aims for this PhD (which are outlined on pp. 6-8 of vol. 2) explain how one of the
aims is to investigate the possibility of incorporating extended timbre, colouration and electronics into a
style of composing which remains inherently modal or polymodal. Prior to beginning the PhD | had
ample experience in composing for instrumental forces and had gained experience of composing musique
concréte and acoustmatic music (electroacoustic music for pre-recorded tape), whilst completing a
master’s degree at Birmingham University from 2001-3 under the supervision of electroacoustic
composers Jonty Harrison and Erik Ofia. Following this, I had also gained experience and familiarity with
many of the principles of commercial audio engineering whilst producing commercial and underground
styles of music in a freelance capacity following the completion my master’s degree.

For the PhD project, | wanted to include at least one piece in the portfolio of compositions which
merged live acoustic performance with electronics (through the use of live processing, sound synthesis,
sampling and stochastic’ procedures), as a means of increasing the timbral and sonic possibilities
available to me as a composer. In order for me to be able to achieve this, it was necessary for me to
choose a modern music/audio-specific computer programming language to use to develop the interfaces
required for this new piece. It was then also necessary for me to learn the language chosen to an advanced
level as well as gaining a technical understanding of the core principles of modern computer
programming and software development.

In addition to my interests as a composer, | also have both an academic and practical background
in mathematics, physics, computing and sound engineering. | wanted to develop this aspect of my
knowledge alongside the completion of this PhD and integrate these additional skills into the formation of
a new piece of ‘live’ electroacoustic music to include in the portfolio. During the course of the PhD, | also
spent 18 months taking formal qualifications at night school in a variety of generic (non-musical)
computer programming languages, namely C, C++, Java, Perl and UNIX shell-scripting and through this,
| was also awarded the D. E. Evans Prize for outstanding work on the advanced-level C-programming
course in 2013.

I have a strong interest in the current activities of various centres of excellence in
electronic/computer music, in particular at BEAST (Birmingham Electroacoustic Sound Theatre,
Birmingham University, which | worked in close collaboration with during my master’s degree from
2001-3), IRCAM (Institut de Recherche et Coordination Acoustique/Musique, Paris) and CCRMA

! As pertaining to some of the random and stochastic generative procedures described in lannis Xenakis’ Formalized
Music: Thought and Mathematics in Compaosition and relating to similar techniques adopted in Xenakis’ electronic
and/or computer-generated music compositions.

(Center for Computer Research in Music and Acoustics, Stanford University, USA). A variety of
music/audio-specific computer programming languages are popular at these institutions, with three of the
most commonly used being MAX/MSP, Pure Data (Pd) and SuperCollider.

The MAX/MSP audio signal-processing language (currently maintained by Cycling 74 and
originally developed by Miller Puckette) has become very popular among composers of ‘live’ electronic
music which requires real-time performance interfaces. | believe that this is largely due to the fact that it
is a powerful and versatile programming language which runs in a graphical environment, thus it is
intuitive to use and does not necessarily require conventional script-based programming skills, which
traditionally have a steep learning curve and require high levels of mathematical precision.

I completed a MAX/MSP summer school course in 2010 at Goldsmith’s University and
experimented with this language, however, | eventually decided against using it for the new
electroacoustic piece which | wanted to work on because | found that creating algorithms with high levels
of mathematical complexity, although possible, can be problematic in MAX/MSP, especially when high
levels of accuracy and efficiency are required. Therefore due to the skills that | had developed in script-
based programming | felt that | would prefer to use a script-based programming language of some
description. That said, | found that MAX/MSP is actually very useful for creating relatively sophisticated
algorithms in a short space of time. This is especially useful for prototyping and for trial and error testing
purposes.

Following further research, | discovered that CCRMA at Stanford University offer an open-
sourced distribution (i.e. publicly owned, freely distributed) known as Planet CCRMA, that mirrors the
systems which are configured at their institution in Stanford University and is built on a powerful open-
sourced operating system called Linux Fedora (maintained by Red Hat — this differs from the Apple-Mac
or Microsoft Windows-based systems frequently adopted by the majority of professional electrocacoustic
composers and music industry professionals). The Planet CCRMA distribution, which runs on Fedora
(also known as Planet Fedora) modifies the operating system configuration so that it is optimised
correctly for use with real-time audio and also provides a variety of audio-specific programming
languages. One such language is Pure Data (or Pd), which is an open-sourced equivalent to MAX/MSP
(currently maintained by the open-sourced community, but also originally developed by Miller Puckette;
another is SuperCollider (developed by James McCartney, also maintained by the open-sourced
community), which is a fully expressive script-based music synthesis language and has become very
popular over recent years with sound synthesis specialists and post-Xenakisian® computer music

specialists, as well as engineers and scientists who work with spectral analysis.

? Ibid.

63

64

I liked the mathematical precision which SuperCollider allowed me to work with and also liked
the fact that it is a script-based language (which was familiar to me because of the background which 1
had developed in generic script-based languages such as C, C++ and Java during the course of my PhD),
rather than a graphical programming language (as is the case with MAX/MSP and Pure Data). Despite
being script-based, SuperCollider is also an interactive language to work with and allows the programmer
to run or sonically ‘audition” a program or part of a program without needing to compile it first (as is the
case with most generic programming languages and can be rather time-consuming when extensive testing
is required).

SuperCollider also allows the programming of hundreds (or even thousands) of efficient and
complex synthesizers simultaneously — this can be done either manually with great accuracy, or via the
use of a pre-programmed automated function which can be written to randomly or stochastically®
generate each individual synthesizer in a fraction of a second! A graphical programming language such as
MAX/MSP or Pure Data would struggle to allow the programmer to work in this way and it is a highly
effective way of allowing a programmer or composer to synthesize complex, evocative and atmospheric
sound-masses or clusters of sound. | believe that this a strong factor that has lead to the SuperCollider
language becoming popular amongst post-Xenakisian composers in recent years.

Following careful consideration, | felt that SuperCollider would be an appropriate language for
me to use to develop my real-time performance interfaces and felt that it would allow me to work in
exactly the way | wanted to work. The electronic interfaces for Eternal Owl Call for Kingma system bass
flute & electronics (vol. 1, pp. 291-300) were all coded using SuperCollider, the source code for which is
supplied in Appendix 7 (vol. 2, pp. 220-308), following explanatory class library extension
documentation (vol. 2, pp. 163-219). A user guide for the software, written in layman’s terms, is also
supplied in Appendix 6 (vol. 2, pp. 135-58) and there is an example run script at the end of the user
guide, which contains some commented-out information (in blue syntax on pp. 155-8) which provides
background to the piece as well as technical specifications. The concept for Eternal Owl Call, along with
its Celtic mythology-based subjectivity is also described in layman’s terms in the programme note on p.
293 of vol. 1. The flute writing in the piece incorporates a variety of unorthodox extended techniques and
I worked very closely with avant-grade flautist Carla Rees in order to verify the practicality and
playability of the techniques called for. Much of what is written in the flute line is specific to Carla Rees’s
specialist technique, in particular the use of quarter tones, very precise microtonal pitch bends, timbral
trills, natural harmonics, multiphonics, articulated air sounds (using phonetic syllables) and modifications

to the instrument’s natural timbre.

* Ibid.

Eternal Owl Call follows an A;BCA; structure (mm. 1-16, 17-46, 47-64, 65-81 respectively).
The flute writing in A is a retrograde of structural material in A; with timbral modifications added. The
flute line starts with a microtonal root of Fy without any clear suggestion of the (poly)modality seen in
much of my previous compositional work. However, this does change as the piece progresses. In mm.

14-15 there is a first emergence of typical intervallic cells as shown below:

7 5 2+1a-cell
14 8 ;’-‘2‘1\"’"”‘ J54 2+2e-cell |5 |—.'1‘—|] 16
LA . —— = :
B A e S A et === 1
Y === foats &2 7 =~
(] a5
Fig. 4.1

The first software patch (labelled as sub-patch 1.01-1.05 in the score, mm. 1-16) sets an organic
tone by fading in samples of neotropical ambience along with other nature sounds and a series of owl
calls — which are particularly symbolic to this piece as it is a depiction of the fate of the Celtic
mythological figure Blodeuwedd, a beautiful maiden who is conjured from flowers and oak to marry a
prince but flees and is eventually transformed into an owl for all eternity as punishment for her sin.
Random-value frequency modulation and pan (i.e. spatial, left-right) modulation is applied to nature
sounds in sub-patches 1.02-1.03 at given time intervals, which relates to the type of Xenakisian*
procedures previously described — the values generated are not completely random, but are instead set to
certain mathematical limits, as a way of controlling the type of sound created whilst allowing a certain
degree of indeterminacy. Sometimes the nature samples mutate/modulate in a subtle way, whilst at other
times they become very electronic and sound quite alien — almost like something out of a science-fiction
movie!

The nature sounds begin a long fade-out in m.15, which is then blended with the sound of both
natural harmonics in the flute and electronically generated harmonics in the B section, relating to the
second patch (i.e. sub-patches 2.01-2.11). The microtonal pitch bends in the flute line in mm. 21-32 are
closely related to partials from the harmonic series, which are related to the frequencies of the harmonics
which also occur in the electronics. There is a much clearer glimpse of (poly)modality in the flute line in

mm. 36-40, with intervallic cells which relate closely to the modes in operation, as shown overleaf:

* Ibid.

65

66

2+3a-cell inverted 4+1b-cell 7
36 m 4‘: . o I u 2+2a-cell
e bttt e . oe friRitiete st e | TN 4 8
4 AP————t—1—t—T*] —] —— —5 1 ¥ E
B.Fl. i) — & :
[% i 9:5 | —) ‘-‘_\\-—-—-__I, I
A Lydian C Lvdian Stacked B/E Lydian
; 4+3a-cell
7 !.l "’v_ 3a-cell 40
394 T T _be - > _II
f 1 T o — il T T - - = ai|
— —hg—= 7 ’ t I p< H
v e —

In addition, further cells occur at the end of m.46:

3+1b-cell
orm ?_Th‘_‘-e_n._l
46 - flz. -35
P e~
B.Fl. f&5— bi—i"—i ; £ i
s mp mf
Fig. 4.3

The electronically generated frequencies use sine waves at a given frequency controlled by a
square wave amplitude filter — the resulting sounds are reminiscent of little bells or chimes, which
symbolise perpetual judgment, as is relevant to the narrative behind this piece. In addition, the looped 9-

note row in m. 38 uses an electronically generated bell algorithm, created using SuperCollider’s “Klank”

bell-modelling interface.® The frequencies in operation in sub-patches 2.01-2.07 and 2.09 are all based on

natural harmonics of six separate musical pitch frequencies: namely Db2-Eb2—-F2-G2-C3-Dy3, which
makes up a 4+2a-cell hexachord on Db. The natural harmonics employed based on this intervallic

collection are all prime-numbered partials of the relevant harmonic series (a prime number is an integer
that can only be divided by itself or one, i.e. 2", 3" 5™ 7™ 11" partials of the harmonic series etc...). My
reason for choosing prime-numbered partials was to avoid any octave doublings within that harmonic
series in order to avoid any obvious and clichéd natural harmonic sequences (i.e. | wish to avoid the 4"
and 6" partials as they are octave doublings of the 2™ and 3" respectively, etc...). As a consequence of
this, 1 am effectively creating a type of ‘microtonal serialism’ principle, where | avoid repeating any
microtones at the octave, with the software-based sound synthesis techniques involved making the level
of mathematical accuracy required to achieve this a possibility. To illustrate this, all prime numbered
partials up to the 23" partial of C3 (130.81 Hz) are shown overleaf, with the microtonal offset from the

nearest musical pitch given in cents:

® In SuperCollider, the Klank bell-modelling class was preceded by the Klang class (which is the German word for
“sound” and also shares its name with a well-known acousmatic work by electroacoustic composer Jonty Harrison
[composed in 1982], which processes and transforms a recorded acoustic metallic/bell-like sound).

http://doc.sccode.org/Classes/Klank.html
http://doc.sccode.org/Classes/Klank.html
http://doc.sccode.org/Classes/Klang.html

Prime Numbered Partials of C3 (130.81 Hz)

parial #—1]

+1 +41 F é """ 4: 2-§ o
31 - - +5 - .
{) (fundamental) +2 - 14 l) - ¢: = #! #i ﬁ:
p 4 T T —r T : , : 1 I
'\.’.1_'3 ! : P : ot : 1 l : E i
Y] — >
)

Fig. 4.4

In addition, the sum of microtonal frequencies that ring simultaneously at the climax of the B section (in
mm. 41-43) is shown overleaf (Fig. 4.5). This diagram illustrates the origin of the precise microtonal
pitches indicated in the electronics part in the B section.

Breathy multiphonics are adopted predominantly in the flute line in the C section, starting in m.
47, marked “Atmospheric, Warm, Breathy”. In sub-patch 3.01 (m. 48) a long, atmospheric reverberation
and 12-line delay algorithm is added to the microphone in order to sustain the flute multiphonics and
build to a sound-mass. This technique is similar to that adopted in much of Kajia Saariaho’s ‘live’
electronic music, where a reverb algorithm of very long, or even infinite decay time is used to ‘freeze’ a
sound without the necessity to use potentially problematic FFT® and spectral re-synthesis algorithms
(which can lead to problems with computer memory consumption and speaker distortion in some
circumstances). Here, the reverb/delay on the breathy flute sounds symbolises a ‘trapped’ human being,
as is related to the work’s narrative. The bass pulse and the low-pitched modulated sine wave pulses
which are initialised in sub-patch 3.02 (m. 54) are also symbolic — representing the heartbeat of a human.

Following a crossfade between the reverberated modular synths in the C section and the
recurrence of nature sounds and neotropical ambience in m. 65, the ‘retrograded’ recapitulation, starting

in m. 66 sees further examples of typical intervallic cells in the flute line, as shown overleaf (in Fig. 4.6):

® FFT (Fast Fourier Transform) is a quantised mathematical system for working with three dimensional coordinates.
In audio engineering FFT is used for the purposes of the spectral analysis and re-synthesis of live or pre-recorded
audio signals (with the three respective dimensions being time, amplitude and frequency). A three dimensional
coordinate system such as FFT is necessary where frequency (i.e. pitch) variations need to be analysed or re-
synthesised without changing the sample rate (i.e. the playback speed) of the signal.

67

68

Fig. 4.5: Sum of Electronically Generated Harmonics in mm. 41-43

128
e

T8 428

fe

%

LA

8va

45
: -

811!1 +5
e

%

7]

A

C3

A

G2

F2

Eb2

A

23

Db2

4+2a-cell

Partial # of...

1+2a-cell

2]
|

Do

D@

1+2a-cell

bo

Looped 9-note row extracted from a stacked Ab/Db/Gb polymode

Tempo Primo (Very Subdued,
Melancholy, Sustained)

The flute timbre in the final section is always either
hollow sound (h.s.) or flutter tongued (flz.)

66 5] flutter & trill 684 h.s. ‘__\.r"\

L A . ie e o te b e
R G L L P e —
¥ N I '=LE = [—

1 Lo |
2+2e-cell 3+2a-cell

Fig. 4.6

The long atmospheric reverb algorithm remains present on the microphone signal throughout the duration
of the A, section, therefore as a result the flute line sounds rather different to that heard in A; with a
haunting feel to the section. This is further enhanced in m. 72, where a series of owl call samples are also
sent to the reverb channel, with slight pitch bends added for further effect.

Some of the modal and intervallic techniques in the solo flute writing in Eternal Owl Call can be
closely related to classical 20™ century works for solo flute, such as Debussy’s Syrinx (1913, sharing its
mythology-related subjectivity) and Edgar Varese’s Density 21.5 (1936), however the organic feel of the
writing, along with the adoption of several effective extended techniques (including multiphonics) moves
it closer stylistically to some of Toru Takemitsu’s writing for solo flute in works such as Voice (composed
in collaboration with avant-garde flautist Pierre-Yves Artaud, 1971), Itinerant—In Memory of Isamu
Noguchi (1989) and Air (1995). The application of electronics and live electronic interfaces to a piece for
solo instrument has origins in some of Stockhausen’s pioneering pieces of ‘live’ electronic music,
including Mikrophonie I for solo tam-tam and electronics (Nr. 15, 1964) and Solo for any solo melodic
instrument and electronics (Nr. 19, 1965-6).

During the composition of Eternal Owl Call | also liaised closely with electroacoustic composer
Michael Oliva, who is a resident composer with the Rarescale contemporary music ensemble. Some of
Oliva’s well-known recent works for solo flute and electronic medium include Apparition and Release’
for Kingma system alto flute and electronics (2005) and Bereft Adrift® for Kingma system bass flute and
electronics (2007) which are similar both conceptually and stylistically to much of my writing, in
particular the bass flute writing in Bereft Adrift which uses a number of multiphoncs with exactly the
same finger positions as those adopted in my own flute line. Oliva’s approach to the live electronic
component does, however, tend to be different and he tends to use a pre-recorded electronic backing track

rather than a live ‘on-the-fly’ interface as | have created using SuperCollider.

" Discussed further in Carla Rees’s recent PhD thesis, ‘Developing a Repertoire of Extended Techniques for the
Kingma System Alto and Bass Flute’ (unpublished doctoral thesis, Royal College of Music, 2014), 51.
® Ibid., 52.

69

70

One composer who is also a SuperCollider programmer and has composed live electroacoustic
works for Carla Rees is Scott Wilson (currently an academic at the University of Birmingham). Some of
Wilson’s recent works for flute and electronics include Fluxion for Kingma system alto flute, piano and
electronics (2006) and Vortically® for Kingma system bass flute and electronics (2009). It should be noted
that Wilson is also a leading authority on the SuperCollider language and is one of the editors of the de
facto textbook for learning and studying this language, along with David Cottle and Nick Collins [The
SuperCollider Book (Massachusetts: MIT Press, 2011)]. Wilson is also an active contributor to the
development of the SuperCollider language.

The sound recordings of wildlife which were used in Eternal Owl Call have been obtained from
the Macaulay Library at the Cornell Laboratory of Ornithology (CLO), Ithaca, New York, USA (via the
recommendation of Dr Arlene Sierra, who also recently utilised birdsong recordings from this exhaustive
audio/video file archive in her composition Urban Birds [2014] for three pianos and live electronics). A
copyright agreement has been reached between myself and CLO for the use of these audio files in the

corresponding piece.

® Ibid., 86-7.

CHAPTER 5

“Urban Wilderness”

for String Quartet

72

“Urban Wilderness” for String Quartet

As mentioned in the programme note on p. 37 of vol. 1, Urban Wilderness is part of a cycle of
works for string quartet which I am currently in the process of completing. Its concept is inspired by Fritz
Lang’s hugely influential 1927 cult science-fiction movie Metropolis (originally based on a novel under
the same name by Thea von Harbou). At present the cycle contains two individual works:

#1: Apathetic Machines (representing apathy and subconscious machine control as portrayed in
Metropolis’ “Shift Change” scene);
#2: Utopian Mirror (representing a machine-generated utopian ‘virtual reality’ or ‘false reality’).

In a strict sense, Urban Wilderness is not a film score. Instead, it is part of a cycle of individual

works which are inspired, in one way or another, by films/videos which conceptualise the idea of
futuristic urban technological dystopia, in particular Metropolis, Ridley Scott’s Blade Runner (1982), the
Wachowskis” The Matrix (1999) [as well as the sequels in its trilogy: The Matrix Reloaded (2003) and
The Matrix Revolutions (2003)] and the music videos for Kraftwerk’s electronic music album Man
Machine (1978). From a philosophical perspective, my intention with the idea for Urban Wilderness is
also to draw attention to certain symmetries which exist between real-life modern urban existence and the
fictional futuristic/dystopian vision which was present in Fritz Lang’s movie almost a century ago.

At the present time Urban Wilderness exists as a cycle of works for string quartet which would be
performed without any film or video projection in the background; however, video projection is
something which may be added to the cycle at some point in the future. In this respect, my intention is not
that any particular film or video be shown chronologically from start to finish, instead, my intention is
that scenes from multiple films or videos (which are particularly significant to the concept which an
individual piece within the cycle conveys) be projected one after the other in the background whilst a
particular piece is being performed (for example certain key scenes from the futuristic dystopian films
Metropolis, Blade Runner and The Matrix Trilogy, as well as sections from some of the futuristic music
videos for Kraftwerk’s Man Machine aloum would be projected consecutively in the background while
the string quartet is performing; in addition, when the musical character changes the sequence of
film/video scenes could be changed using some sort of an electronic controller).

The plot for The Matrix is quite clearly modelled on that of Metropolis: both feature futuristic
urban dystopias; both feature the concept of humans being controlled by machines; both feature
underground human communities that revolt and wage war against the machines; both feature a
“prophecy” about the arrival of a “mediator” (Metropolis) or “chosen one” (The Matrix); both feature the

concept of humans being replicated by machines whilst in a semi-conscious state.

In addition, | have a strong interest in other contemporary art-forms which have been influenced
by Metropolis, in particular the link which exists with the albums of German electronic music band
Kraftwerk.! Kraftwerk were heavily influenced by Metropolis and their 1978 album Die Mensch-
Maschine (The Man-Machine) shares its name with the film’s semi-human robot (“Maschinen-Mensch”,
as named in the starting credits). Kraftwerk’s album features six individual tracks (The Robots, Spacelab,
Metropolis, The Model, Neon Lights and The Man-Machine). Their mechanical/repetitive style of
electronic music, was intended to symbolise technological and futuristic concepts.

My reason for choosing to set music based on this concept to a work for string quartet was
because | wanted to emulate a classical film score, such as is set to many of the American black-and-
white films in the 1940s, 50s and 60s. Metropolis is, of course, German rather than American and
predates such films. It is a silent movie with intertitles and various soundtracks have been added to it by
various composers and bands over the years, however, its original score was composed by Gottfried
Huppertz in an orchestral style inspired by Richard Wagner and Richard Struass. Whilst Huppertz’s score
can be regarded to suggest and portray emotions in the film to good effect, | wanted to create a work
which was more closely aligned with the styles of post-tonal modernist composers in the 20" and 21°
century — moving away from tonality and towards the use of modes, chromaticism and serialism. The type
of musical ambience which | wanted to convey in my own version was something which would initially
be similar to some of the string writing in scores from later expressionist American films with some sort
of an urban theme associated with them, such as Billy Wilder’s Double Indemnity (1944, with the score
composed by Bartok-influenced Hungarian composer Miklés R6zsa) and Alfred Hitcock’s Psycho (1964,
with the score composed by Bernard Herrmann).

Billy Wilder advised R6zsa that he wanted a “restless string fugue” for Double Indemnity,? and
consequently the score is composed in a style which is contrapuntal and chromatic, incorporates elements
of jazz harmony, Bartokian (poly)modality and has a feel of tonal or modal ambiguity to it, akin to many
works by post-tonal classical composers in the first half of the twentieth century. Bernard Hermann’s
score for Psycho is composed for a string ensemble, with the music on the title credits (prior to the initial
urban apartment scene) creating psychological suspense and intrigue with rhythmic, repetitive ostinato-
based polyphony set in a contemporary modal style with several dissonant intervals. This thematic
material reaches its head in the infamous/iconic ‘shower scene’, where screeching high-pitched violin
dischords on a repeated crotchet figure accompany the premature murder of the film’s heroine Marion
Crane (played by Janet Leigh).

! This is a topic of research which | discussed in my final-year undergraduate dissertation, ‘Germany, Psychedelia,
Technology: A Consideration of the Interface Between Electronic and Commercial Music (1953-1986)’,
(unpublished undergraduate dissertation, King’s College London, 2000).

% Miklés Rozsa, Double Life: The Autobiography of Miklés Rézsa (New York: Hippocrene Books, 1998), 119.

73

74

Apathetic Machines (the first movement of Urban Wilderness, vol. 1, pp. 52-71) is inspired by
the “Shift Change” scene at the start of Metropolis, where large groups of frown-faced, apathetic and
oppressed-looking, machine-controlled men walk into work all in a straight line, wearing identical
uniforms and having identical facial expressions. Apathetic Machines follows a conventional sonata form
with two separate motifs: firstly the “apathy motif” and secondly the “machine motif”. The “apathy
motive” is slow, atmospheric and subdued, whilst the “machine motif” is lively, rhythmic and repetitive,
with the repetition representing the subconscious, psychotic and trance-like state of the machine-
controlled humans — this concept relates to the expressionist movement, which influenced the making of
Metropolis.

In fact the structure was inspired by the evolved type of sonata form which is seen in Beethoven’s
Sonata Pathetique: Op. 13 in C minor for solo piano, which starts with a slow, sombre section marked
“Grave” before moving into an agitated rhythmic section marked “Allegro di molto e con brio”, which
starts with contrapuntal right hand material above tremolos on pedal points in the left hand. Likewise,
Apathetic Machines starts in a slow subdued fashion before changing to a lively section with repeated
rhythmic figures.

On reflection, | would class this piece in the ‘explicit polymodality’ category and place it
alongside other explicit polymodal works in the portfolio, such as the two John Morris-Jones settings (l1ar
fach yr haf & Y Gwylanod), the first movement of Cwyn y Gwynt (both the flute and contralto versions)
and Twilight Impulse. It was completed in 2010, at a similar period in my development as a composer to
the above mentioned pieces. | would, however, argue that it does begin to move away from an
explicit/transparent form of polymodality and towards a style which begins to demonstrate a greater level
of chromatic complexity.

Apathetic Machines starts with long sustained polymodal harmonies using double stops in the
second violin, viola and cello whilst the first violin plays a soloistic figure above these harmonies. This
idea is reminiscent of that seen in the third movement of Bartok’s fourth string quartet (the work’s
‘nucleus’, marked “Non troppo lento™), which starts with long sustained double stops in the violins and

viola (forming an A-B-C#-E-F4-G# modal hexachord), whilst a cello melody plays a
chromatic/polymodal passage below, starting with an alternation between Dy and D% (which implies a

constant modal fluctuation between A lonian and A Lydian). In this instance, Bartok’s polymodality is
‘crossed’ (i.e. the chromatically related modes ‘cross’ one another in the same pitch regions, as opposed
to the ‘stacked’ form of polymodality which is typically seen in my own polymodal style), as is often the
case in Bartok’s polymodal style. There are some instances of crossed polymodality in Apathetic
Machines, however the overwhelming bias is towards stacked polymodality.

A table showing the structural breakdown of Apathetic Machines is provided overleaf:

Apathetic Machines Structural Breakdown:

75

Measures Section/Subsection Description Concept
mm. 1-52 Exposition
mm. 1-12 first theme subdued, marked: . = ¢.66 “apathy motif”
“Atmospheric, Sustained”
mm. 13-18 transition section changes the tempo to D=c.144
“Intense, Articulate”
mm. 19-32 second theme repetitive machine-like rhythmic “machine motif”
figures and contrapuntal lines
mm. 33-52 codetta section builds towards a climax with double
stops & glissandi at f—ff# dynamic,
marked:) = ¢. 132
“Broader, Aggressive”
mm. 53-117 Development Section
mm. 53-72 first episode process-based rhythmic augmentation = “malfunctioning
of the second theme machines” episode
mm. 73-87 second episode pizz., Bartdk pizz., nat., sul pont. “clockwork” episode
rhythmic figures in 9/8, no melodic
material
mm. 88-117 third episode process-based rhythmic diminution of = “overloading
the second theme machines” episode
mm. 118-72 Recapitulation intervallic inversion/ “mirror-image”
of the exposition
mm. 118-29 first theme mirror image of mm. 1-12 mirror “apathy motif”
mm. 130-5 transition section mirror image of mm. 13-18
mm. 136-49 second theme mirror image of mm. 19-32 mirror “machine motif”
2-note bowed figures replace
rhythmic pedal-points
mm. 150-72 extended coda section | mirror image of mm. 33-52

expanded natural harmonics section
and aggressive final cadence added

A harmonic/polymodal progression model for the first theme is shown overleaf (Fig. 5.1.1):

Fig. 5.1.1: harmonic/polymodal model for mm. 1-12 of Apathetic Machines

76

D major pentatonic

24

F# major pentatonic
press. #'

282y,

galll| & o 0
S
BE o| L
c =
|| 1)
a S| LD
m \ £ 1Tl
s © o uunm
8« .
E ' 0
A — ILvi u
RO RONH RONH
L L 8
S N\
= =)
W S & >
SS

stacked E/D/G Lydian

i i IR NS
g
o @
< 8 E
e —Hal | |22
7||M ||||||| [A A 44+
</ nnge Anmxv <0
oo A ¢ 11l
A N
= <
S 2\
8 =
ml - Ly
Wl B
s =1
LDWN
]
o/
Ll F
.___5 o 0
= “
S 1 1 I 7 WO A 1L
Al \ /
il :
| o
= >
[-
sl = =
=R @
S| 18 o =
i 5 H
el &2 2
xIxf | 3 Y4
s all |8
w |h.VHH EI.N wn
ol
\
8 8
IR i =
AT AN Nunyl
NLe N W
- N oy
= = S
£ - >
£
> >>

-j-.------ ---------- ---
i
ST, <
-3 iy [N
i
..M...f] HMM\ MW.
EE3
ki
Eik W e
T M
o ™NO®
A
Fl@s TTONGS LK Y
- HHDWWI* LDMR
i
K1 S
N
i e) = Te[|2
- °© H'»ﬂ“u °© ik
ESY
v
m S Y I
e
Aﬁ—u
[od |0 {1
B =
U *Z | o
X
||
: . a unﬂ
4 iy,
Al |
A |
| I
e ¥ i~ []
=
10y [1y [1y
NBe NDe N
- D O oy
= = J
S S & >
S>>

GIC/Bb
Lydian

F/BbIA» A/D/C
pentatonic/ Lydian Lydian

altered

E/D Lydian D/Bb Dorian D major

stacked E/D Lydian

scale on Dy

stacked C/F/Eb Lydian

gl
. > .>. . > ..
cngll) CAH98 |\ € B
eony) N eony)

ML <L) S
!
ik, Maeae— | TAN
S
n
Sl
uw\}
[/} i
N DN N
AR v

Vin. |

Vin. 11/

Vla.

Vec.

E/AIG F/Bb/Ab B/E/D Ab/Ct/B
Locrian Lydian Lydian Lydian

F#/E Dorian

E/D Lydian

The “machine motif” first occurs at the start of the second theme in mm. 19-20 as shown below:

Bartok's ‘nucleus’ hexachord in vin I [E,Fz,G,B,C4,D#)
belonging to E lonian or E Lydian [— e P
W : — - F-)
19 s P s espress. 4 [=
= machine motif’ 0| e 4, e P |, . B
vin1 [(A8=—= Pl et | LA L F
Ve messsss
compound 2+ 1¢-cell trichord mp fﬂ i.? polymodal
= = crossing . = =
Vin. I/ Do te o o o o o o olo o o o o o o & e ol @ o o o 2 e|le o o o ° eI o
. F - T T T 1 T 1 T T 1 T T T T T T T T T 1 &L T
'y — —— e —— e o o o o o = 1
Via m - st - | st | A — | s | A A S S -
I . f —
ve. [= : r . L
T T K3 1P r i
o = B s =
"p stacked A/G/F Lydian stacked F2/A Dorian

Fig. 5.1.2

Here, there is an example of a polymodal crossing between the Gy pedal-point in the viola line and the
first melodic Gg in the first violin line in m. 20, however, once the first violin line reaches its upper
register the music returns to a more common stacked polymodal orientation. The violin line in m. 20
consists of pitch-classes from the hexachord E-F¢—G#-B-C#-D#, which, interestingly, is a transposition

of the hexachord seen at the start of the nucleus section in Bartdk’s fourth quartet. From the perspective
of rhythmic tension and articulation, the second theme (i.e. the “machine motif”) includes accentuation on
off-beats, a juxtaposition of 8/8 time signatures with 9/8 and repeated rhythmic repetition which is at
times reminiscent of some of Stravinsky’s strata-based writing in The Rite of Spring (1913).

A harmonic/polymodal model for the climax of the first codetta section in mm. 42°-51 (J beat) is

shown overleaf (Fig. 5.1.3).

Both the “malfunctioning machines” and the “overloading machines” episodes are intended to
symbolise the “Moloch!” scene in Metropolis (named after the Ammonite god of sacrifice), where Freder
(one the film’s central characters played by Gustav Frohlich) is horrified to discover a shift worker
collapsing from exhaustion whilst handling machinery, leading to an explosion, which kills other
workers. The “malfunctioning machines” episode symbolises the exhausted, collapsing workers, whilst
the “overloaded machines” episode symbolises the exploding machine.

The “malfunctioning machines” episode includes a process-based rhythmic augmentation of
material from the second theme in mm. 58-72, where the repeated pedal-points mutate from [regular
semiquavers]—[triplet quavers]—[regular quavers]—[crotchet triplets]-[regular crotchets]. By the time they
become crotchets in m. 71 the “machine motif” has effectively mutated into the “apathy motif”, with
corresponding melodic material in the first violin line.

The “overloading machines” episode includes a process based rhythmic diminution of material
from the second theme in mm. 94-116. This time around the rhythmicly repeating pedal-points mutate

from regular semiquavers—quintuplets—sextuplets—septuplets—32"-notes, using slurred figures across

78

Vin. |

Vin. 1l

Vla.

Vec.

Vin. |

Vin. Il

Vla.

Vec.

Vin. |

Vin. 1l

Vla.

Vec.

Fig. 5.1.3: harmonic/polymodal model for mm. 423-51 of Apathetic Machines

Broader, Aggressive

D=c132
42 (b. 3) h ’ 43 : h-?ﬁ gliss
' (A, Lydian 27 - - - '
[fan L7
\.j/ T
f C¢ Locrian -?7% .

b | s - s ss g I
"}V“ |g_lr7=— a1 IQ_ID’£ B ﬁ—' ﬁy
D

f Gb Lydian ~§fZ

9 e e Ze te gliss.
© 2 T P o * gt =

) r " " g
$): e

\, bed = e -
f b he e he—gliss.
sfz .
stacked stacked G lonian E Dorian
Ab/Gb Lydian GIC Lydian
45 sul pont.
44 .
gliss. iz te He fe
Z = & & & & - &
D 4
I s S
sul pont.

) fig e |fSoeiifnetis

P 4 5@ 5@ 5@

Yl f sfz S

sul pont.

0 hué‘ - o o o o o
’{ ﬁ’ ﬁ qa & ¥ ¥V v v
D+ie # -

I f ge - ;% gliss. Nid

sfz gliss. sul pont.
\‘,"3 = te : e : T — ,:r.'é . fe e te = fe (e
f G Lydian -ﬁ
A lonian D Lydian
46 2 !
by fe ##z th. 47 51= |
@ ﬁ”! E:
Q) 1
S ;
1

p b Hi8 nat. ;
A A N 4
& 8 s |
D) i

S i

Q g - - o nat. .
@ Iﬁl E‘
D) 0e | - '

S :
1

N nat. |

CIID ﬂ’ ﬂe ? I[)! },E:
- Vi

stacked Eb/Ab Lydian

modal tri/tetrachords before a climax and then a diminuendo using harmonic 2-note tremolos in mm. 108—
116.

The “clockwork” episode is intended to symbolise the machine-controlled humans, as well as the
machinery itself, ‘running like clockwork’ in a repetitive, mechanical fashion. Hence the lack of any
melodic or musically expressive material in this section.

The recapitulation is a “mirror image” of the exposition, for example, the harmonies in the lowest
three parts in m. 1 (with the lowest-pitch voices sounding first), are moved to the upper three parts in m.
118 (with the highest-pitched voices sounding first). The soloistic melody is also moved from the first
violin (i.e. the highest pitched voice) to the cello (i.e. the lowest pitch voice) and the musical intervals are
inverted (resulting in ascending runs from the exposition being transformed into descending runs in the
recapitulation and vice versa). It should, however, be noted that the music is not always an exact
intervallic inversion of material in the exposition because | decided that it was often more effective (from
either a pragmatic musical or scoring perspective) to occasionally deviate from using exact intervallic
inversions throughout. A harmonic/polymodal progression model for the recurrence of the first theme in
the recapitulation section is shown overleaf (Fig. 5.1.4).

Utopian Mirror (the second movement of Urban Wilderness) is a representation of a utopian
‘virtual reality” or ‘false reality’ from within the type of dystopian/futuristic world portrayed in films such
as Metropolis and The Matrix as well as in real-life modern urban existence. This is a concept which is
very well conveyed in The Matrix, where machine-controlled humans in a distant future world are
unwittingly put into a semi-conscious state by machines and then sent into a software-based virtual
reality, which mimics New York in the year 1999. Due to the harsh reality of the futuristic dystopia in
which the exiled underground human communities live, New York in the year 1999 represents a utopia,
from a comparative perspective. As a consequence of this, some humans who have escaped the false
reality are tempted by the Matrix to re-join it as machine-controlled humans (with added benefits), in
exchange for some kind of betrayal of the human community.

I also view this as something of a metaphor for the individuals in real-life modern cities who
engage in some form of a harmful pleasurable activity, either to provide an escape from a harsh way of
life (such as through drug, alcohol or gambling addiction), or through their own personal greed (such as
engaging in some form of corruption for the purposes of some form of personal, financial, corporate or
political gain).

Utopian Mirror (vol. 1, pp. 72-99) is an experimental étude in the use of harmonics on bowed
string instruments, but also juxtaposes the timbral extended techniques employed in this vein with a form
of mature chromatic polymodality (having been completed in 2014, it is one of my most recent works),

which is predominantly stacked, but also quite often bringing elements of crossed polymodality into play

79

stacked Db/B/E Lydian

Lydian

Lydian

lonian

Lydian

lonian

c.66

Atmospheric, Sustained

J

lonian

Fig. 5.1.4: harmonic/polymodal model for mm. 118-29 of Apathetic Machines

80

s £
N [z £ 2| M= T it A== === FA3 M= 7" I
o 1 s
i <) EsE Y] [\ @S
— EFE - Inhuﬁn 1 52
K FE3 At e ©S ! ! o
=® e L - LS
[& bl T EE
c 2 SE r
a E M = Aug
o 1 S wm s i Ul
(\\| ¢ — @ / . il il /| —] AR a5 3
N g N 7T~ 17 i BT | el HEE vy %]
m — ' el Eey .
o 3 3 . Ll =
S\ 19— 1---- a AN ol IS g
1 XX o =
| ! = W (Es5
L= : . L TR o 28
][]l | © | 2 - vt i ¥ JeEe
M.uu =] m . mv B2 <o m.
O = EEEE.
- = N L[]
[] - & ..m m ﬁ.lLDﬂ nﬂfn =— m . . K
b 5 Ll \ 0 S CAglllI~ CllogHd S Cn
. N sl sea ST (33 1
ﬂ‘ﬂ o m Esl A
]) @ 0N o
] : . |l SHL e 8 @A ﬂ
wllm = 2 3 3 We (25
N /5§ U E W s ME (58 Pl .
il LRt T Il 2
B = T ~ =
sl e » N M7 L 1] Huw —TeNY 3 g
£ e Y R = X Jnmmw sl
= [<5) B (19|l u
Pmu H @ HL 1T AL b |
2 & L g " A T mill e
g 5, [bR} oo o]l g . . o
o 8 /5 - © ront 2 ny 2= =T s °
S = o~ S | - ¢y W R . |
2 e 4 ofoles -0 = 3 4‘ ==
m = 2 ~) - I
= 15} 41— = —4Af-q4---1F---1 -4 Y | .
8 s 2| [= T™NO® - & - i = S
i 3 c 2 T \ | [Tllas SN S
iy g .M 8 % m | PNT S - S Yy ri|
3Bl \y 3 2 s - _ = Giil)
5| 4 el SRR g w18 3 @ A A
= <] S a 11 =
=R A M1 uils a e | o |) 5 = ol n LR T =
S] ST T = " — a | [e _t
ik L Y € |E i) W , 5 =
(L 3 e e " a i (el (YRR «
dilll Sllll] £ SIS g bl e || ill] I |«
L . = . d4 — 1a V E .vr\\\\ [W
B v 1 . [ARA % 4 = XS It ey E
R N — N
e 1 Sl : qilllE = :
= L]
Han_ & \ m \ 1] m m m m] _xxi
: £l Zana ! LI m 0
eIl W ! e E ==l < > S + 1 <
> huny N Niny Gas
SN NG N SN e N SN NG N BN NG
—\ / =\ / =\ / =\
= = S = = S = = S = =
< = > £ = . > S o > £ cd
> Ss >SS > 5s > Ss

in quite an explicit fashion. Normal stopped pitches are often called for on the lowest string of each
respective instrument, exploring some of the deepest musical sonorities available for a string quartet
configuration. The sections with normal stopped pitch material represent the underlying dystopian reality
which exists alongside the virtual/false reality, which is represented by colouristic, calm and ethereal
string harmonics.

Utopian Mirror has a very long structure; the recordings of this piece (across two separate
workshops with Carducci quartet totalled a playing time of the movement at approximately 22 minutes).
It is largely through-composed, however, some aspects of it do appear to resemble something which
resides in the territory between a long extended ternary form and an extended sonata form. One thing
which is certain is that there is a recapitulation of the movement’s A; section (mm. 1-31) in the A,
section which occurs in mm. 169-201 (albeit at a slower tempo, with more notes and halved rhythmic
time vales from that seen in A;). The A section mostly consists of low-pitched stopped pitches, whilst the
section which follows it in mm. 32-46 (which | would class as a B section) uses harmonics throughout. |
would then class mm. 47-110 as an extended development section (C section) which contains both
contrapuntal material on normal stopped pitches and material using harmonics. The section from mm.
111-168 is the movement’s climax (D section), marked “Radiant & Very Colouristic”, which features
repeated glissandi up and down the natural harmonic nodes on each instrument and is symbolically a
representation of false utopian bliss. The final section in mm. 202-230 is a coda which features further
glissandi along the harmonic nodes, a viola solo and harmonics tremolos as well as double-stopped
harmonics in the closing measures. One further point to make is that there are instances in both the C and
D sections where fragments of material in the B section recur, consequently, the C and D sections can
potentially be divided into smaller subsections for the purposes of analysis.

For further insight into some of the extended techniques employed in Utopian Mirror there is also
an informative notation guide at the at start of the score for Urban Wilderness (vol. 1, pp. 38-51). There
is also a copy of the extensive hand-written sketch which | put together for Utopian Mirror in Appendix
4 (vol. 2, pp. 109-21).

| previously discussed how much of the string writing in Apathetic Machines was influenced by
Bartdk’s string quartets, as well as the film scores of Miklds R6zsa and Bernard Herrmann. Utopian
Mirror is, however stylistically different to Apathetic Machines and has more specific influences, which
continue to include Bartok, as well as string writing by Hungarian contemporaries of Bartdk, including
the string quartets of Gyorgy Ligeti and Gyorgy Kurtag. George Crumb’s use of string glissando
techniques along the harmonic nodes in works such as Vox Balaenae (1971) is also an influence which is
discussed in the notation guide, as well as some of the string glissando techniques seen in works by lannis

Xenakis, such as Nomos Alpha for solo cello (1965). German composers who have specialised in the use

81

82

of extended string techniques using harmonics include Helmut Lachenmann and Wolfgang Rihm as well
as the Italian composers Salvatore Sciarrino and Franco Donatoni. Sciarrino’s Six Caprices (1976) for
solo violin includes many extended techniques using harmonics and the sound of some the effects in
Utopian Mirror reminded me of some of the string effects in his chamber opera Luci mie traditrici (Oh
My Betraying Eyes, also known as The Killing Flower, 1996-8). Another contemporary solo string piece
which inspired me was Kajia Saariaho’s Sept Papillons (Seven Butterflies) for solo cello (2000), which
shares some of its natural/organic and bird/insect-related subjectivity with other works in my portfolio
including lar fach yr haf (““The Butterfly”), Y Gwylanod (“The Seagulls™) and Eternal Owl Call.

CHAPTER 6
Style, Influence & Context

84

Style, Influence & Context

Ynys Afallon for SSAATTBB is the one piece within the portfolio which can properly be classed
as being composed in modal style (i.e. non-polymodal) throughout, albeit with subtle hints at
polymodality, as discussed in the previous chapter on modality. Some of the choral writing in this piece
does bear a similarity to the modern, modal, a cappella choral writing of popular/crossover composers
such as James MacMillan, Eric Whitacre and Paul Maelor; Some aspects of the harmonisation in Ynys
Afallon bear a similarity to that seen in works such as MacMillan’s Tenebrae Responsories and The
Gallant Weaver (both for SSAATTBB a cappella; 2006 and 1997 respectively), whilst some aspects of its
madrigal-like polyphony bears a similarity to some of the writing seen in MacMillian’s Mairi for mixed
16-part choir a cappella (1995). The influence of mainstream contemporary choral music on Ynys Afallon
can be extended to the work of European minimalist composers, including Arvo Part and Henryck
Goérecki, with some of its atmospheric harmonic layers bearing a resemblance to that seen in some of the
string and soprano-voice layering in Gérecki’s Symphony No. 3: Symphony of Sorrowful Songs (1976).

However, the individual harmonic and modal layers in Ynys Afallon are, on the whole, richer and
denser than that which is present in the above mentioned works and there are more frequent chromatic
modal changes which bring some aspects the style closer to that seen in late-period choral works of
French impressionists such as Debussy and Ravel as well as incorporating a harmonic language which is
closely related to modern modal jazz harmony. In addition, Celtic mythology (rather than religion) forms
the subject-matter of the text-setting for this piece.

In truth, the modal compositional style of Ynys Afallon for SSAATTBB is not true to my
progressive aims as a composer and has, instead, been composed for an incidental purpose and for its
suitability to be performed by amateur or semi-professional level singers (as discussed in the previous
chapter on modality). From an ideological artistic standpoint, | would have preferred to set such a choral
work in a style which is polymodal and with greater chromatic complexity than that which is present in
this particular arrangement (aiming towards a choral work which would be suitable for performance by a
contemporary professional-level choir) and this could form the basis for a future re-composition of a
choral setting to the same text by T. Gwynn Jones (and/or my English-language translation of this text,
perhaps set for a mixed 16-part choir).

The settings of works for solo voice to the Welsh-language poetry of Sir John Morris-Jones
(namely lar fach yr haf & Y Gwylanod for soprano, flute/piccolo and piano and the version of Cwyn y
Gwynt for contralto, vibraphone and cello) possess the sort of (poly)modal/impressionistic organicism
and nature-related musical symbolism present the works of composers along the axis of Debussy-

Messiaen—Takemitsu, right through to living contemporaries such as Kajia Saariaho and Oliver Knussen,

with the harmonic style of the piano writing also bearing a similarity to the syntax which is present in the
modal jazz harmonisations of contemporary jazz/improvisatory pianist-composers such as Bill Evans,
Keith Jarrett, Chick Corea and Joe Zawinul.

In addition, the Morris-Jones settings look to transcend the sort of conventional tonal or modal
song-writing approach which has typically been seen in musical settings of Welsh-language poetry over
the last few decades, moving towards a style which possesses touches of abstract modern
modal/chromatic impressionism, such as that which is heard towards the end of Pwyll ap Sion’s Merch
(Lady, 1998) for baritone and piano and explores contemporary chromatic or serial pitch territory, as is
seen in the songs settings of Guto Pryderi Puw, including Blodeuwedd and Dawns y Sér (2000 and 2001
respectively) both set for baritone and piano to poetry by Nesta Wyn Jones.

The atmospheric/modal harp writing in the re-composition of Cwyn y Gwynt for flute and harp
also bears a resemblance to some of the writing in Christopher Painter’s Syniadau’r Serch (Thoughts on
Love), set to words from the old verses for baritone, violin and harp (a work which incidentally also won
the composer’s medal at the Welsh National Eisteddfod in Ebbw Vale in 2010). The flute and harp re-
composition of Cwyn y Gwynt demonstrates a clear influence of Debussy, Ravel, Messiaen and moves
towards the type of post-impressionism evident in some of Toru Takemitsu’s chamber works for flute (or
other woodwind instruments, including the Japanese shakuhachi) and one accompanying plucked stringed
instrument (such as harp, guitar or the Japanese koto or biwa). One Takemitsu work with a similar
instrumental configuration which influenced my re-composition of Cwyn y Gwynt (The Wind’s Lament)
for flute and harp was Takemitsu’s And then | knew ‘twas Wind, for flute, viola and harp (1992), which
shares conceptual and programmatic similarities with my piece, as well as sharing clear similarities in
relation to instrumentation and compositional style.

The early works of Takemitsu were also influenced by the work of composers of the Second
Viennese School® and this type of chromatic or serial expressionism becomes more evident in Breuddwyd
(the final movement of both versions of Cwyn y Gwynt), in particular in the version for contralto,
vibraphone and cello, where the pitch material is entirely constructed around semi-modal twelve-tone

serial techniques and the type of ‘heptachordal rotation’ illustrated in Figures 1.3.1-11 in the first

chapter; which brings this movement closer, from a stylistic standpoint, to the post-tonal or modal twelve-
tone serial works of Alban Berg, late Stravinsky, Messiaen, Ernest Kerenk and Oliver Knussen.

The piano writing in both Twilight Impulse (for clarinet, cello and pianoforte) and the original
version of Ynys Afallon (for SATB choir and pianoforte) is highly idiomatic and moves towards a greater

level of maturity than that which has been seen in the piano accompaniments for 1ar fach yr haf and Y

! Timothy Koozin, ‘Octatonicism in Recent Solo Piano Works of Toru Takemitsu’, Perspectives of New Music, Vol.
29, No. 1 (Winter 1991), 124.

85

86

Gwylanod. The highly chromatic, post-impressionistic and polymodal style of such piano writing owes
itself, in part, to the type of writing seen in the work of French composers in the middle period of the
twentieth century, including Messiaen’s Vingt regard sur I’enfant-Jésus (1944) and Catalogue d’oiseaux
(1956-8) and the pre-serial works of Henri Dutilleux (such as Piano Sonata No. 1, 1947-8). The elements
of serialism in some my piano writing are also closely related to the atmospheric hexachordal rotation-
based piano writing of composers such as Witold Lutostawski and Oliver Knussen. Such atmospheric
serialism is present in solo works such as Knussen’s Sonya’s Lulluaby Op. 16 (1978-9) and a recent cycle
of twelve solo piano pieces by British composer Kenneth Hesketh (a protégé of both Dutilleux and
Knussen) called Horae (2012), inspired by the twelve goddesses in Greek mythology who personified the
hours between sunrise and sunset; a work which | recently heard part of premiered by pianist Claire
Hammond at Cardiff University on 12 March 2013.

The influence of Messiaen and Takemitsu continues to be evident in Human Visions:
Civilisations for symphony orchestra, with the etherealism of Messiaen’s Turangalila-Symphony for
piano solo, ondes Martenot solo and orchestra (1946-8) and the ambient organicism of works such as
Takemitsu’s November Steps for Japanese biwa, shakuhatchi and orchestra (1967) being influential on my
orchestral writing. My style also bears a resemblance to the orchestral writing of contemporary British
serialists who adopt hexachoral rotation techniques, such as Knussen and Julian Anderson, with Human
Visions: Civilisations incorporating some of the fantasy-like ambiance which is heard in works such as
Anderson’s Fantasias (2009).

In fact Human Visions: Civilisations also possesses many scoring characteristics which would
more often be associated with a work for chamber orchestra or large chamber ensemble, rather than a
work for full orchestra. In this respect, some of the atmospheric orchestral textures bear a resemblance to
those seen in Lutostawski’s Novelette for orchestra (1978-9, which is constructed using aleatoric
rhythmic techniques) and Kenneth Hesketh’s Ein Lichtspiel for large chamber ensemble (2006), whilst
some of its colouristic and atmospheric use of resonant/metallic percussion instruments is reminiscent of
that seen in George Crumb’s Ancient Voices of Children for soprano, boy soprano, oboe, mandolin, harp,
electric piano and percussion (set to texts by Garcia Lorca, 1970). In addition, the use of irregular tuplets
and changing time signatures in Human Visions: Civilisations adopts a rhythmic syntax which is not
dissimilar from that seen in the chamber works of post-serial composers such as Pierre Boulez and
Lutostawski.

On reflection, some aspects of the rhythmic scoring in Human Visions: Civilisations did actually
prove be somewhat problematic during rehearsal and performance of the piece with the BBC National

Orchestra of Wales in the 2012 Welsh Composers’ Showcase (in particular things like the 11:8 J tuplets

in the crotales and celesta in m. 4 and m. 9; the 7 . tuplets in the wind and string lines in m. 43 [J beat],

along with the 14:8 D tuplet in the xylophone on the same beat; and the 5:4 J tuplets in the celesta and

strings in m. 55 — especially in view of the fact that these tuplets ratios [with mathematically irrational
divisions] are often offset against other musical lines, which simultaneously use regular rhythm in other
sections of the orchestra).

During rehearsal, it was necessary for conductor Jac Van Steen to ‘think outside of the box” and
solve these rhythmic problems ‘on the fly’ in order for all sections of the orchestra to stay in time with
one another correctly; that said, his solutions in this respect did also prove that the rhythms, as | have
written then, are achievable with adequate rehearsal time. For future reference it might be wiser for me to
construct or dissect similar rhythmic ideas in a more pragmatic fashion when scoring for full orchestra. |
feel that this type of rhythmic scoring can work well in pieces for chamber orchestra or large chamber
ensemble in sections where it is not absolutely necessary for the musicians to remain one hundred percent
in time with one another (introducing an element of rhythmic indeterminacy, so long as individual
musicians don’t lose sight of the pulse!), similarly this approach can work well when scoring for
independent elements of a full orchestra (i.e. instrumental lines which are not being doubled elsewhere in
the orchestra, such as independent wind or percussion lines or string solos) but might be best avoided on
string lines which require unison doubling or homophonic chordal passages where different instruments
need to remain totally in time with one another.

Amber on Black is an experimental work which explores a variety of extended vocal timbres and
techniques, including ‘Sprechgesang’ (pitched speech-song) and ‘Sprechstimme’ (relatively pitched
speech), as pioneered in expressionist vocal works such as Schoenberg’s Pierrot Lunaire (1912).2
Although chromatic polymodality and intervallic cells (as pertaining to Fig. 1.4.1 in the first chapter)
form a large part of the pitch organisation scheme in this piece, much of the pitch material has also been
generated through adopting some form of twelve-tone serial technique (in particular hexachordal or
heptachordal rotation techniques). In addition, it is quite clear that much of Amber on Black employs
unpitched vocal techniques which add a great deal of coloration and timbral variety to the music, often to
the point of removing the need for any sort of tonal pitch material altogether. Other works which combine

twelve-tone serialism with unpitched timbral sonority within the historical repertoire include

2 Schoenbergian “Sprechgesang’ and ‘Sprechstimme’ techniques are also called for in Cwyn y Gwynt for contralto,
vibraphone and cello and Sprechgesang is called for in the fourth verse of Ynys Afallon for SATB choir and
pianoforte (mm. 40-57). In both cases the conventional Schoenbergian method of notating this technique with
crosses through the stems (on Sprechgesang [pitched]) and crossed noteheads (on Sprechstimme [spoken]) is
employed. However, in Amber on Black this method of notation has been revised to correspond with that employed
in Ligeti’s Aventure (1964), where square noteheads are used to indicate pitched Sprechgesang, whilst the
Schoenbergian method of notating spoken Sprechstimme is retained but normally notated on a stave with a single
staff line — | found the Ligeti method more pragmatic and easier to read and will continue to adopt this system of
notation in future vocal scores.

&7

88

Schoenberg’s Psalm 130: De Profundis, Op. 50b for chorus (1950) and Luigi Dallopiccola’s Tempus
Destruendi & Tempus Aedificandi for chorus (1971).

Amber on Black also quite evidently moves into the realm of exploring phonetic syllables and
sonorities which do not necessarily relate to the construction of real words, as is seen in several of
Ligeti’s vocal works, including, Aventures & Nouvelles Aventures for three solo singers and seven
instrumentalists (1962-5).% Other avant-garde works of a similar genre which influenced my style include
Luciano Berio’s Circles for female voice, harp and two percussionists (1960), Sequenza 11l for woman’s
voice (1965) and Cries of London* for eight voices (1974), Ligeti’s Nonsense Madrigals for six male
voices (1988-93), as well as Karlheinz Stockhausen’s Mikrophonie Il for twelve voices, Hammond organ,
4 ring modulators and tape (Nr. 17, 1965) and Stimmung for six vocalists (Nr. 24, 1968). In
Stockhausen’s Stimmung, the conventional pitch material employed is relatively straightforward, being
based entirely on pitches relating to the harmonic series on Bb, however the quasi-electronic mutations of

vocal timbres on phonetic vowel syllables add much greater sonic complexity than first meets the eye and
similar timbral mutations on vowels and semi-vowels (such as [m], [m], [n], [n], [n]...) occur in Amber

on Black.

® Amber on Black adopts a very similar notation scheme to that seen in Ligeti’s Aventure & Nouvelles Aventure.
This is included as a pull-out at the back of the Litolff/Peters study score publication of both works (Edition Peters
4838 [London: 1964] and Edition Peters 5913 [London: 1966] respectively). However, the phonetic pronunciations
in Amber on Black adopt the 2005 International Phonetic Alphabet (IPA) spellings rather than the less standardised
phonetic spellings adopted by Ligeti in Aventure and Nouvelles Aventure.

* The rapidly repeated syllable combinations in mm. 120-58 of Amber on Black (also explained in the notation guide
on p. 261 of vol. 1) adopt a similar notation scheme to that seen in VI to Héléne Pousseur (“money, penny, come to
me...”) from Berio’s Cries of London for eight voices, UE 16828 (Milan: Universal Edition, 1976).

BIBLIOGRAPHY

90

Bibliography

Contemporary Music-Related Literature:

Adler, Samuel, The Study of Orchestration: Third Edition (New York: W. W. Norton & Co,
2002).

Anderson, Julian, “Harmonic Practices in Oliver Knussen's Music since 1988: Part I’, Tempo,
New Series, No. 221 (July 2002).

Anderson, Julian, “Harmonic Practices in Oliver Knussen's Music since 1988: Part I1’, Tempo,
New Series, No. 223 (Jan 2003).

Artaud, Pierre-Yves, Present Day Flutes (Paris: Gerard Billaudot, 1995).
Artaud, Pierre-Yves, The Multiphonic Flute (Paris: Gerard Billaudot, 1995).

Babbitt, Milton, Milton Babbitt: Words About Music edited by Stephen Dembski and Joseph
N. Strauss (Madison: Wisconsin, 1987).

Babbitt, Milton, ‘The String Quartets of Bartdk’, Musical Quarterly, vol. 35, no. 3 (July
1949).

Bartok, Bela, Bela Bartok Essays: selected and edited by Benjamin Suchoff (Lincoln;
London: University of Nebraska Press, 1992).

Bir6, Daniel Péter and Krebs, Harald, The String Quartets of Béla Bartok: Tradition and
Legacy in Analytical Perspective (New York: OUP, 2014).

Blatter, Alfred, Instrumentation & Orchestration (Belmont: Schrimer/Thompson Learning:
1997).

Boretz, Benjamin; Cone, Edward T., ed., Perpectives on Contemporary Music Theory (New
York: W. W. Norton & Co, 1972).

Boretz, Benjamin; Cone, Edward T., ed., Perspectives on Schoenberg and Stravinsky
(Princeton, N.J.: Princeton University Press, 1968).

Boulez, Pierre, Conversation with Deliege (California: Eulenburg Books, 1976).
Boulez, Pierre, Orientations (London: Faber and Faber, 1990).
Brindle, Reginald Smith, Contemporary Percussion (Oxford: OUP, 1991).

Cage, John, Silence (Connecticut: Wesleyan University Press, 1973).

91

Cage, John, John Cage: An Anthology edited by Richard Kostelanetz (New York: Da Capo,
1991).

Cope, David, Techniques of the Contemporary Composer (Belmont: Schrimer/Thompson
Learning, 1997).

Cross, Jonathan, Harrison Birtwistle: Man, Mind, Music (London: Faber and Faber, 2000).
Deleuze & Guttari, Anti-Oedipus (London: Athlone, 2000).
Deleuze & Guttari, A Thousand Plateaus (London: Continuum, 2002).

Dick, Robert, The Other Flute: A Performance Manual of Contemporary Techniques. 2nd
Edition (St Louis: Multiple Breath Music Company, 1989).

Dunsby, Jonathan, Schoenberg: Pierrot Lunaire (Cambridge: Cambridge University Press,
1992).

Gould, Elaine, Behind Bars (London: Faber Music, 2011).

Griffiths, Paul, Modern Music and After: Directions Since 1945 (Oxford: OUP, 1995).
Harvey, Jonathan, The Music of Stockhausen (London: Faber and Faber, 1975).

Hollington, Barnaby, ‘A Polychordal Approach to Serial Harmony — Part I’, Academia.edu (5
May 2014)

<www.academia.edu/7657483/A Polychordal Approach to Serial Harmony - Part 1>
[accessed 30 November 2014].

Karpéti, Janos, Bartdk’s String Quartets [translated from the Hungarian by Fred Macnical]
(Budapest: Corvina Press, 1975).

Koozin, Timothy, ‘Octatonicism in Recent Solo Piano Works of Toru Takemitsu’,
Perspectives of New Music, Vol. 29, No. 1 (Winter 1991).

Kurtz, Michael, Stockhausen: A Biography translated by Richard Toop (London: Faber and
Faber, 1992).

Lester, Joel, Analytic Approaches to Twentieth-Century Music (London: W. W. Norton & Co:
1989).

Lewin, David, Generalized Musical Intervals and Transformations (London: Yale University
Press, ¢.1987).

Losseff, Nicky; Doctor, Jenny, ed., Silence, Music, Silent Music (Aldershot: Ashgate, 2007).

Maddocks, Fiona, Harrison Birtwistle: Wild Tracks (London: Faber and Faber, 2014).

http://www.academia.edu/7657483/A_Polychordal_Approach_to_Serial_Harmony_-_Part_1

92

Messiaen, Olivier, The Technique of My Musical Language (Paris: Alphonse Leduc, 1956).

Messiaen, Olivier, Traité de rythme, de couleur, et d’ornithologie [Treatise on rhythm, colour
and ornithology] (Paris: Alphonse Leduc, ¢.1994-2002).

Messiaen, Olivier, Vingt Lecons d'Harmonie [Twenty Harmony Lessons] (Paris: Alphonse
Leduc, 1951).

Milstein, Silvina, Arnold Schoenberg: Notes, Sets, Forms (Cambridge: University of
Cambridge Press, 1992).

Nyman, Michael, Experimental Music: Cage and Beyond (Cambridge: University of
Cambridge Press, 1999).

Persichetti, Vincent, Twentieth Century Harmony (New York: W. W. Norton & Co, 1961).

Rees, Carla, ‘Developing a Repertoire of Extended Techniques for the Kingma System Alto
and Bass Flute’ (unpublished doctoral thesis, Royal College of Music, 2014).

Rees, Carla, ‘Kingma System Alto Flute: A Practical Guide for Composers and Performers’
< altoflute.co.uk > [accessed 27 July 2013].

Rees, Carla, ‘Kingma System Bass Flute: A Practical Guide for Composers and Performers’
< bassflute.co.uk > [accessed 27 July 2013].

Riog Francoli, Miguel A., Anthology of Post-Tonal Music (New York: McGraw-Hill, 2007).

Riog Francoli, Miguel A., Understanding Post-Tonal Music (New York: McGraw-Hill,
2007).

Rézsa, Miklos, Double Life: The Autobiography of Miklés Rézsa (New York: Hippocrene
Books, 1998).

Schoenberg, Arnold, Style and Idea: Selected Writings of Arnold Schoenberg, edited by
Leonard Stein; with translation [from the German] by Leo Black (California: University of

California Press, 2010).

Schoenberg, Arnold, Theory of Harmony, translated by Roy Carter (California: University of
California Press, 1978).

Stilwell, Robyn J.; Powrie, Phil, ed., Composing Music for the Screen in Germany and the
USSR (Bloomington, IN, USA: Indiana University Press, 2008).

Stockhausen, Karlheniz, Stockhausen on Music (London: Marion Boyars, 1991).

Straus, Joseph N., Introduction to Post-Tonal Theory, 3rd Edition (Harlow: Pearson, 2014).

http://www.altoflute.co.uk/
http://www.bassflute.co.uk/

Suchoff, Benjamin, Bartok's Mikrokosmos: Genesis, Pedagogy and Style (Lanham, Md:
Scarecrow Press, 2002).

Tannenbaum, Mya, Conversations with Stockhausen (Oxford: Clarendon Press, 1987).
Vagra, Balint, Converstion with Xenakis (London: Faber and Faber, 1996).

Vincent, John, The Diatonic Modes in Modern Music (Berkeley: University of California
Press, 1951).

Warfield, Gerald, ‘The Notation of Harmonics for Bowed String Instruments’, Perspectives of
New Music, Vol. 12, No. 1/2 (1973/4).

Whittal, Arnold, ‘Bitonality’, The New Grove Dictionary of Music and Musicians, second
edition, edited by Stanley Sadie and John Tyrrell (2001).

Whittal, Arnold, The Cambridge Companion to Serialism. Cambridge Introductions to Music
(Cambridge: Cambridge University Press, 2008).

Zukofsky, Paul, ‘On Violin Harmonics’, Perspectives of New Music, Vol. 6, No. 2 (1968).

Welsh-Lanqguage Poetry, Prose & Celtic Mythology:

Davies, Sioned, The Mabinogion translated with an introduction and notes (Oxford: OUP,
2008).

Evans, J Gwenogvryn, White Book Mabinogion: Welsh tales and romances reproduced from
the Peniarth manuscripts (Pwllheli: Issued to Subscribers Only, 1907).

Guest, Lady Charlotte, The Mabinogion translated into English (London: J. M. Dent, 1910).

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Cymru Casnewydd 2004: Cyfansoddiadau a
Beirniadaethau [The Welsh National Eisteddfod in the Newport 2004: Compositions and
Adjudications] (Llandysul: Gomer, 2004).

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Cymru Bala 2009: Cyfansoddiadau a
Beirniadaethau [The Welsh National Eisteddfod in the Bala 2009: Compositions and
Adjudications] (Llandysul: Gomer, 2009).

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Cymru Blaenau Gwent a Blaenau'r Cymoedd
2010: Cyfansoddiadau a Beirniadaethau [The Welsh National Eisteddfod in Blaenau Gwent
and the Fronts of the Valleys 2010: Compositions and Adjudications] (Llandysul: Gomer,
2010).

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Cymru Wrecsam a'r Fro 2011:
Cyfansoddiadau a Beirniadaethau [The Welsh National Eisteddfod in Wrexam and the Vale
2011: Compositions and Adjudications] (Llandysul: Gomer, 2011).

93

94

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Cymru Bro Morgannwg 2012:
Cyfansoddiadau a Beirniadaethau [The Welsh National Eisteddfod in the Vale of Glamorgan
2012: Compositions and Adjudications] (Llandysul: Gomer, 2012).

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Cymru Sir Ddinbych a'r Cyffiniau 2013:
Cyfansoddiadau a Beirniadaethau [The Welsh National Eisteddfod in Denbighshire and the
Borders 2013: Compositions and Adjudications] (Llandysul: Gomer, 2013).

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Cymru Sir Gar 2014: Cyfansoddiadau a
Beirniadaethau [The Welsh National Eisteddfod in Carmarthenshire 2014: Compositions and
Adjudications] (Llandysul: Gomer, 2014).

Hughes, J. Elwyn, ed., Eisteddfod Genedlaethol Maldwyn a’r Gororau 2015: Cyfansoddiadau
a Beirniadaethau [The Welsh National Eisteddfod in Montgomeryshire 2015: Compositions
and Adjudications] (Llandysul: Gomer, 2015).

Ifans, Dafydd & Rhiannon, Y Mabinogion Diweddariad [The Revised Mabinogion]
(LIandysul: Gomer, 1995).

Jones, John-Morris, Beirniadaeth John Morris-Jones [A Critique of John Morris-Jones]
edited by Dafydd Glyn-Jones (Bangor: Dalen Newydd, 2013).

Jones, John-Morris, Caniadau (Oxford: Fox Jones & Co., 1907).

Jones, Nesta Wyn, Dawns y Sér [The Stars’ Dance] (Llandysul: Gomer, 1999).

Jones, T. Gwynn, Caniadau (Cardiff: Hughes a’i Fab, 1992).

Jones, Tegwyn, Y Mabinogion: Hud yr Hen Chwedlau Celtaidd [Y Mabinogion: The Magic of
the Celtic Tales]/ Yn Seiliedig ar Ddiweddariad Dafydd Ifans a Rhiannon Ifans (Llanrwst:
Gwasg Carreg Gwalch, 2000).

Kinney, Phyllis, Welsh Traditional Music (Cardiff: Gwasg Prifysgol Cymru, 2011).

Lewis, Saunders, Dramau Saunders Lewis: Y Casgliad Cyflawn. Cyfrol 1/2 [Saunders Lewis'
Dramas: The Complete Set. Volumes 1/2] (Cardiff: Gwasg Prifysgol Cymru, 1996).

Parry, Thomas, John Morris-Jones, 1864-1929 (Cardiff: Gwasg Prifysgol Cymru, 2011).

Tolstoy, Nikolai, The Oldest British Prose Literature: The Compilation of the Four Branches
of the Mabinogi (Lampeter: Mellen, 2009).

Williams, Ifor, Pedair Keinc y Mabinogion: Allan o Lyfr Gwyn Rhydderch [Four Branches of
the Mabinogi: Out of the White Book of Rhydderch] (Cardiff: Gwasg Prifysgol Cymru, 1978).

Audio Engineering & Computer Programming:

Christiansen, Tom, Perl Cookbook, (California: O'Reilly Media, 2003).

Deitel, H.M. & Deitel, P.J., C++: How to Program (New Jersey: Prentice Hall, 1994).
DeVoe, Jiva, Objective-C (California: O'Reilly Media, 2011).

Horstmann, Cay, Big Java: for Java 7 and 8 (New Jersey: John Wiley & Sons, 2010).

Fedora Project Contributors, Fedora 18 Musicians’ Guide: Audio Creation and Music
Software in Fedora Linux

<http://docs.fedoraproject.org/en-US/Fedora/18/html/Musicians Guide/index.html>
[accessed 27 May 2013].

Koutsomichalis, Marinos, Mapping and Visualization with SuperCollider (Birmingham:
Packt Publishing, 2013).

Maden, Charles, Fractals in Music: Introductory Mathematics for Musical Analysis (Salt
Lake City: High Art Press, 2007).

Manning, Peter, Electronic & Computer Music (Oxford: Clarendon Press, 1994).

Puckette, Miller, The Theory and Technique of Electronic Music (London: World Scientific
Publishing Co., ¢.2007).

Wilson, Scott; Cottle, David; Collins, Nick, The SuperCollider Book (Massachusetts: MIT
Press, 2011).

Xenakis, lannis, Formalized Music: Thought and Mathematics in Composition (New York:
Pendragon Press, 1992).

Music Scores

Bach J. S., The Art of Fugue BVW 1080, edited and annotated by Richard Jones, ISBN:
1854728709 (London: ABRSM, 2002).

Bartok, Bela, 4th String Quartet, Hawkes Pocket Scores no. 77 (London: Boosey & Hawkes,
1939).

Bartdk, Bela, Mikrokosmos: Progressive Piano Pieces Volumes 1-6 (London: Boosey &
Hawkes, 1940).

Berio, Luciano, Circles for female voice, harp, 2 percussion players, from E. E. Cummings:
Poems 1923-54, UE 13231 (London: Universal Edition, 1961).

95

http://docs.fedoraproject.org/en-US/Fedora/18/html/Musicians_Guide/index.html

96

Berio, Luciano, Cries of London for eight voices, UE 16828 (Milan: Universal Edition, 1976).

Berio, Luciano, Folk Songs for mezzo-soprano and seven instruments, UE 34112 (London:
Universal Edition, 1968).

Berio, Luciano, Sequenza Ill per voce femminile, UE 13723 (London: Universal Edition,
1968).

Birtwistle, Harrison, Earth Dances for orchestra (London: Universal Edition, ¢.1986).

Birtwistle, Harrison, Gawain: An Opera in Two Acts Volumes 1-2 (London: Universal
Edition, ¢.1990).

Crumb, George, Ancient Voices of Children a cycle of songs on texts by Garcia Lorca, for
soprano, boy soprano, oboe, mandolin, harp, electric piano, percussion, Edition Peters 66303

(London: Peters, ¢.1970).

Crumb, George, Vox Balaenae for three masked players; electric flute, electric cello, electric
piano, Edition Peters 66466 (London: Peters, ¢.1972).

Harvey, Jonathan, Wagner Dream: An Opera in Nine Scenes, vocal score (Harlow: Faber
Music, 2012).

Knussen, Oliver, Whitman Settings for soprano and orchestra, op 25a, 1991-2, ISBN:
0571514103 (London: Faber Music, 1995).

Ligeti, Gyorgy, Atmosphéres for symphony orchestra, UE11418 (Vienna: Universal Edition,
€.1963).

Ligeti, Gyorgy, Aventure for three solo singers and seven instrumentalists, study score,
Edition Peters 4838 (London: Litolff/Peters, 1964).

Ligeti, Gyorgy, Nonsense Madrigals fiir sechs Mannerstimmen, 46 750 (Mainz: Schott,
1994).

Ligeti, Gyorgy, Nouvelles Aventure for three solo singers and seven instrumentalists, study
score, Edition Peters 5913 (London: Litolff/Peters, 1966).

Ligeti, Gyorgy, String Quartet No.1: Métamorphoses Nocturnes 1953-4, ED6476 (Mainz:
Scott, 1972).

Ligeti, Gyorgy, String Quartet No.2 1968, ED6639 (Mainz: Scott, 1971).

Messiaen, Olivier, Catalogue d'Oiseaux, pour piano Volumes 1-7 (Paris: Alphonse Leduc:
.1964).

Messiaen, Olivier, Vingt Regard Sur I'Enfant-Jesus, pour piano, D. & F. 13,230 (Paris:
Durand, 1947).

97

Puw, Guto Pryderi, Conerto ar Gyfer Obo [Concerto for Oboe] (s.l.: the author, ¢.2006).

Puw, Guto Pryderi, Portffolio Cyfansoddi [Composition Portfolio] (unpublished doctoral
thesis: University of Wales, Bangor, 2002).

Puw, Guto Pryderi, Reservoirs ar gyfer cerddorfa lawn [for full orchestra] (s.l.: the author,
€.2004).

Takemitsu, Toru, Air for flute, SJ 1096 (Tokyo: Schott Japan Company Ltd., 1996).

Takemitsu, Toru, And the | knew 'twas Wind for flute, viola and harp, SJ 1071 (Tokyo: Schott
Japan Company Ltd., 1992).

Takemitsu, Toru, Itinerant—In Memory of Isamu Noguchi for flute, SJ 1055 (Tokyo: Schott
Japan Company Ltd., 1989).

Takemitsu, Toru, Voice pour flte solo, MC 551 (Paris: Salabert Editions, 2001).

Thomas, Mansel, Cwyn y Gwynt (The Wind's Lament), MT137 (York: Banks Music
Publications, 1986).

Thomas, Mansel, Y Gwylanod (The Seagulls), MT194 (York: Banks Music Publications,
1986).

Audio & Video Recordings:

Anderson, Julian, Fantasias, CD, Schott promotional release (2010).

Harrison, Jonty, Evidence Matérielle, CD, empreintes DIGTALes IMED 0052 (2000).

Jones, Heather, Enaid, CD, Sain SCD 2442 (2006).

Kraftwerk, Computer World, CD, EMI 0777 7460402 4 (1981).

Kraftwerk, Man Machine, CD, Capitol 0777 7 46039 2 8 (1978).

Kraftwerk, Trans Europe Express, rec. 1977, CD, Capitol CDP 7 46473 2 (1987).

Lang, Fritz, Metropolis, rec. 1927, DVD, Eureka EKA40321 (2010).

Macmillan, James, The Sacrifice, CD, chan10572 (2008).

Puw, Guto Pryderi, Reservoirs: Orchestral Works by Guto Pryderi Puw, BBC National

Orchestra of Wales; David Cowley, oboe; Jac Van Steen, conductor, CD, Signum Classics
SIGCD 378 (2014).

98

Thomas, Mansel, Caneuon Mansel Thomas [The Songs of Mansel Thomas], Jeremy Huw
Williams, baritone; Nigel Foster, piano, CD, Sain SCD 2208 (1999).

Walton, Ireland and Guto Puw, Great Proms Premieres, BBC National Orchestra of Wales,
CD, BBC Music Magazine, v. 16, no. 12 (2008).

Williams, Jeremy Huw, Caneuon Jeremy [Songs for Jeremy], Jeremy Huw Williams,
baritone; Nigel Foster, piano, CD, Sain SCD 2266 (2000).

APPENDIX 1

Table of Diatonic Modes Referred to in the Academic Commentary

99

100

Table of Diatonic Modes Referred to in the Academic Commentary

Modes taken from the standard major scale (on C):

_9 lonian Dorian Phrygian Lydian
"’\“ : T P T
> @
Mixolydian Aeolian Locrian
= ._._!—'—'_'_! ' -—'—'_'_' =
[Y)

Modes taken from the melodic minor scale (on C):

melodic minor Phrygian (#6) Lydian (85) Lydian (b7) |
[an] o I Ih‘ e

- i

Mixolydian (»6) Aeolian (b5) altered scale

Modes taken from the harmonic minor scale (on C):

_9 harmonic minor Locrian (46) lonian (85) Dorian (#4) |
y aim | | o : I ! = I *—

‘ 14

Phrygian (#3) Lydian (2) altered scale (v7)
—9 ’ — !_‘_!—O—EL!_‘_. | i e
G obe o "=""" 5 oo ¢
[Y)

Modes taken from the major (b6) scale (on C):

_9 lonian (b6) Dorian (b5) Phrygian (b4) Lydian (»3)

o\
[an

R gl

Mixolydian (b2) Lydian (42,45) Locrian (b7)

—9 ,:’:,!_'_!_,_1—'—':3-_,_!—'—'b'

Modes of the pentatonic scale (on C):

C major pentatonic C minor pentatonic

J .

]
Y 4] 1 29
P&

&) o [® ' o
¢ o o ° P

101

APPENDIX 2

A Chart of Natural Harmonics on the Contrabass

Compiled alongside corresponding charts for the violin, viola and violoncello provided in the notation
guide for #2: “Utopian Mirror”” from *“Urban Wilderness™ for string quartet (vol. 1, pp. 41-43)

102
NATURAL HARMONICS ABOVE THE CONTRABASS C-STRING (with low C extension open)

[The series of natural harmonics on this string may also be transposed upwards by fixing the mechanical locks at the bottom of the string to Db, Dy, Eb and Ej respectively]

(Practical Natural Harmonics up to the 9" partial)

U

e be be Ge) b G e
)" T T } T (h.) T IﬂQ T (h‘.)l ufh T (qt)l qF T T hE T h‘\'% T = T :P\QI } n T = T :K } T = T :hf } lAlI
Cb. 2 Pl e D e L L g
R i i g = e = R
Resultant pitches shown
at sounding pitch [6] [9]
(Natural Harmonics Arpeggio/Glissando up to the 12" partial) ‘ e e Ge G G2 @
9] (6] e T
p :\ te b b T N i n nbf b | %
v — R e R . B
NATURAL HARMONICS ABOVE THE CONTRABASS A-STRING
(Practical Natural Harmonics up to the 9" partial)
6] 9]
te) b e he e b Ge be
H}e T T T (hg\ b!" T (ql) T hﬁ T (#5) T #4\’%% I T T ﬁ T = T :hﬂé‘iﬂ } T T = T :EO { T = T :h\ﬁl_ }]
X (Iqr)l * il T * G * }w;ﬁou * ho‘\l * \'L?orqowl 1Hh4| * }—Iio‘qd‘-ﬁjl
Resul itches shi
atsoundingpicn [6] 9
(Natural Harmonics Arpeggio/Glissando up to the 12" partial) e Ge Go G 2 =
(9] (6] [4] o
D Iq% i# HF hf h? l:‘llu'Q s gy | T c\-h!" T | | | i i i i i %
l;)my T T | } i ﬂi go‘ qh} > } '\i HT %b‘ QG le‘ t‘|~‘ u/\l E'AI (‘ly (l‘AI
NATURAL HARMONICS ABOVE THE CONTRABASS D-STRING
(Practical Natural Harmonics up to the 9" partial)
4] 6] 9]
G b g VT S
e ¢ = = E e Ge) be 'k
H}e T (Iﬁ.) T Iﬁbl (q‘)l hf T qE T h% } T = T n:#\ L 1 } T = T - } T (q£) T q‘\’% q‘\’%bl\ et i T hE T h% h?l T = T % ﬁb!v‘h i 1
is—— s —— =~ s B N e
Resulta(rj]j(pitc_hers1 shown
(Natural Harmonics Arpeggio/Glissando up to the 12 partial) at sounding pite 7 0 1 12
8w e w YYD
@ év‘ e [6/C) e 4= - :
ot 4 B T U
9 = = #: h‘\'% h‘\’% HF hj\e. ﬁ!" 2] } Ay b!" Iﬁ r.J ‘h 2] 1) 1 T I lAl
lg)ﬂl) T T L T } 1 Q‘O‘ hJ I } '1 1 vi 'Ii 'Ii '1i i i Ig
NATURAL HARMONICS ABOVE THE CONTRABASS G-STRING
(Practical Natural Harmonics up to the 9" partial) .
@ ¢ - e
Q T T T gy | A T (b\.\ T b\\'Q T (h‘)l q’f y I(n‘) T h‘\’% T T %h!"} I 4 T = T %L ¥ T = T :hf. } I]
?y (h;) | Y b o T } Iq@‘ T T q-e‘Ll ii q/\lqﬂll bﬂll T i %0\? ‘Bg T i b/\lhz\t T T | qugn;‘»]
Resultag_t pitc_hers] shown @
. . .) at sounding pitcl
(Natural Harmonics Arpeggio/Glissando up to the 12" partial) \ o 4o
. . b e et =
9 g g e
guammTTTmmmmmm s 1B e o e
g fe e 4 EE i e g R e .. be b _
SEESS e P

103

APPENDIX 3

Handwritten sketches for Human Visions: “Civilisations” for symphony orchestra

104

e "Bl wis]

[ogte yheabs T b e 00 H 2 ~T¥:§'h' : :
e — : ¥ e T :
3 . I L ‘
R | - ‘ i >
¥ b Mt _}‘L. '&t&——% =
— . #- 3 ; - X : -bi.‘ b : ‘
LT I e o

105

Q\m-—-\ 3\rq-—-|
‘. |5-——‘\ qz##]Ob/ﬂ/hcc U 2 /0”“’ . ‘iC ?_\# ']M 7L,
;,] ##;—_‘] ek ,,f Gk ,' g | = o
- 1& e e
RS B S = EXe= & e
; ‘ | Bsn / (7)
)_ by f'*q . TotTelds e zp":' Ly | [Cbsa.\-
— e e
N (=T [5] / 1 { ##:_;' Haman #ﬁ-/rd;,l
&*T? Bo s Jodf Kok il sk inelie
— = o=y T . =
O LN I A A S T
T #‘* G-la-r/ﬁq. b"ﬁ].“*z._. #Ix 3
r — — Fﬁ-‘] : '[, | t‘,; F[o :" X MJ-;SM
= S-tmasbl' 7 : .l H’;:tr" : 2‘:1: ,BwX
§ iyl j;;a-‘ e
=T : = s —— =3 T
:— =1 C. P : i
=S o8 ff b ;”'
N BT e 1’
-3

thes,|

obfc[Bsn

gﬂ“ ===

e el
\ﬁ#‘; e] Tha / Thes I fla- 284

=

107

n

127

1k,

b%

/+'-"'"--._.

z

N

;‘T

=

frc

MUIEES e o . .
SHU] S
— e e B S
BN N[11 |
N nIBELEE
£ |
m NN\
shiel MR REER! .
.r_ nr.u 1 :_#... !
N
+_._.M+“,bu ...ﬂ. .:_..m"
\ WUy .
o—-/ﬁ/h- *\n-_._ » \\
2R | S| [
luni * —_n_n-u//n
g LinP ALK
| A "
o || Sall1 P
-8 3* :n_.w
.__l.l -_— o] L) |.|Lﬂl_ll.l|l_
_ m:thv (PANRT
-0
41 A b4l
ﬁ# _ v - ||
_ J
_ +—0n - &, of o
=X ,VH S]]
k oﬂ.fo -#.** "4
| il
| e
/LU D & % n_l‘l./ r _

= ¢el. 151
| e

134

Ba [
L
4

e

.
b SRS
L2
nﬁ“:.
+...b+. TW ,..Ig
slae| Pl st [T1F 3o
o ## = —b
Y +=* 2.5
1 i O~
: LIRS - ~]
h PR E \ & 3| T
B-_ # | lnw,
f \ bl +i+ i
Bl o — wm dunl lad e L N Om e e
i
,_ {11 [
S
Lo
3 e - e ;l
L) bl il r

3
B

el i+11+
MFL =+ o

S
- Yu /Tl

13)

108

109

APPENDIX 4

Handwritten sketches for #2: ““Utopian Mirror”
from ““Urban Wilderness™ for string quartet

110

W[’]

w.}\ﬂn: \ 3 0N\ Semzn 50"‘. | ”e-,, FM—) 3’4/55 eM{)/ (M)
hab” Vg L) Mn'[iitﬁq.] = hprwmeiics -—) st’rmyﬂs@mwm)-’ dab e ‘wwwm[]
ldW[egQJ m_ l -=C 3"%\ \l

B“”f) badk ALl L&pM ol ‘f{""l" Va[‘r’]
Sedtionl] - M L (17 5 T - 77m) g —— -

—3LnI—>hmm~ SxLOIQ

— T . 5: hamm: w"ly
- Via I = hamm. M\;ﬂm '“'maﬂh.aut

- Va = ham.

= AUl harm. Hawm - = low com sod.-

-~ VI = low o sod- Sx ¢« 0:)2

- Va o low wn sond- Twrv-‘oase sn@k/smhr

= Vi I low con sord- ls«mwnﬁ w hormenics whh a
- Ve = low con sodd- cokimucits homaic progiess i

in Be, low .
')’W] 1] Colourishic | Sustaimed. (Fhid ©) e low.com s
Y Subdued bt Exprésswt — pato a poo allargande
3] Radiant & Vory Colotistic — Tempo frimeo
U.Se_ o'F Hama@ g

VLn s% . S@ﬁd s%aw) Secion 3 (Coda)
5 o - o 3

Natmeal 4a F“/GIPM :fia # ;M ::’ro :M as §2 M%Ffdfw\

VC u'p‘lo G”’FMM w,o‘fo 8% parhiah, F uf,'fg 12{‘{&;&;4}(from

Aftfﬁaal Hammanies 3"1/4“ Paaimi 5“/6“ FM L“—G“ fws*"—w(' H-c? podral.

IVaULI 3= ’ | —5— gI/}__IL | ?+‘2‘[/;{L_3T:§
i 1M bammi)| 3 TTT) 347 1 e 440034113 4 4 42500
dhe..) T b Vo g0, 4,0 0 N

! d, dsdd. 9 T a¢s o 1!
230 p “F F P ISPp |
Extid buy 1 bk - I”“,V,I//"(, SLLLS LLUlI_T%LLIJT?_C;t(:; HLL LU
=] o -3 6 ' s 15 WL
0 / [m o bfc;_ Jgﬁgt f ’L{.{fg_jffcs 533‘?:
44 2! I ¢-= By,Eb
WaI> [TTT JTT1 TTI€TTI 7 3‘——; A S X s B
Ag—p Lj js {iJ ‘5 ;.n. o . J }L_‘f',f__l)—-)Vd lEJ 4]—) Uc-:Z
: -J V/‘: s L i L" ! IVL’\H z:d :"Wh.[

Ve.- chame Lo Cebipd o s b

111

swww “’M\M' U{G'PPM Not% (2)

2
USQ 0{ %Ij] T ll:-,\%hjl"ag-

Section 2] m-l—*{m I VI 2 Vla +5__W[4+5]
rm JIT] VLnI[o‘:Vc l
m2 VL"I TEeT -3 = Semgnont, agments
- b Unx — %SMM%M 37 (o = E3)
G :.5 Un T = o —-)a#sat K3 }ur)
m-6 Wq — s iy ahbtj }
nt Vo o = e btl = 7:CF o g6F 7] (,m;t As)

B W T —3 debla maawm
m-10 Vla of.
|24 é]_i‘m I Veea /
4 T me2 ﬁ’ﬁﬂ» WMIWI% + Via (Io’cs))
[2+2+BJ 8L m- l?) /s T @t2)+ V. (t:.’f[].
[3 Y m:s]";;xzs 2 o Ve et in 5
H [mﬂﬁxgp mﬁﬁmvm@—»zwma
131!_") ULHI"""IC 35 ys-bes ehe...
C-—l 5 c
2 (7 ,;b.m. T in Ve — |+ F| v Y/ Via
SW (m% ;zsfuﬂseﬁm Van[] |

ArP'ﬂjM) "" 2 5 :
S Rl ot T 2 e Ao plon o 1

-
sy a9 b - (o
[4-5] ’ ¢/ m- 6~ LVV Wm (Sﬁlﬁ‘y‘?M + upper rebtph ’wrm«wa,) {7]

I
) 5<————|@ VL.,\I l,.f—-)fz noiiAqJ{D%\Aa Paﬁ?/manm WM&J
M- 8 qu = SenVig Sa'n‘ll s Jﬂ‘ﬁ
Vo = ham. i }p y ﬂmﬁ Mf Vs- P

5(3+2 .H er hatm- 117 o T Ve.
.[2(2] A bkt e
@ lP /e pighy 1 L o k]

1l J—«m&f | iERe
D e FPET

a Hl

112

mw‘b[‘*] ‘o Vopiag” Netis (3)
S&(){/LM?)] [Qx] as peor prefious sadl/m Bw{f (EM/G“PM‘“"PPW MWM%/&

w11/ - aml (Wgh«f,k) Ve- = G sbing | wa Cstw@
mm-l"c' m2->T = Vc 4 Ce
[] {m23-> I/VL[V: =/ ; Ejl;ﬂs s Jw'j

The m bowes e,'fo Yy amd cmbing Uppor fa»dm(é with dombrol efkdy

WL”%
Sedtion 3 g-—,JJ/'JHH»
Ch‘maér or 06—
() Hommonic Glinsamdi Strims Ordler : wf/f[msp — mst]
G‘}*? |] Sgoge]\)/.nl— ; glmﬂ' Via Vc glss[rom = p.
(€1 C
;*\J%::{: 0'\13{: 2 A ;5?:53 H(Sq I V‘MI 5345 QM m D
12dbd) 3 v(3k)| Deo | Geof * Vi [Vl ~seanull eflect om G/C
T E A 1D | «)lt- 3L,4+m,,,x VL.H/VL. seal] el on
I/Vc 'II/Wq 5 T (3”6) 6o G Ge) (Ve s M
EtD [A+G | 6 |E(bem:) A9l D 6o {T-ghssfhon o A, Ula/uc SWMQMWD/G
2 [ECham) Aka) A Ve ool ket on DV seapd bl on
hertase g | E(bam) A(hm.. DGd)| Alhen) |Vla seagull efect on D
rede of 9 " z)16(hm.) AGe) |l swg)w elled oA
dmﬁe 10 | - D(hm\—'l_)[ﬂ
[2J+3J] v 7-,
Seckim “ md T-Ve-Via-T [[11]] Fdowbletime!
(Harmonics)| [2] m2 - 111 |(very high Pm)
m-3 % gy - No panse [?]
mle Sxdin JIT] I-Ve'sVig -I
#me5_ 5xd iw FID Vla I- L/Ve.
H m6 Tr5- I/Ve- = T/ la
it 2 15 [2] Tompo P Melamchaby, Colouristic, Sustained
Laihian i -3 [] Jazqoee s |)
JJ) 1= M
(Low Sim:j/ STITI 2 F1o8F 4 some nested tr»ple/ﬁ
RM) F'zz : 5w’-pm‘f detwncls ’ I+_I\TV¢.
Section b | Wia sobo: — H[J [xf]F ; 31 stopped trom. = &)
(i) o st [3)2 J b"’ e LT
(odat) 3:” pJ:; e /aj:qE’LL,‘:] '3J m [sul pait]
S P 3
%ﬂdﬂ 54’\5 eg{ 3J [
sempre | 6/ - 3 Jogbh #PS(:ZZJ cHfz [7] il
10°8F x2 [1nested 37+ Ftm] | harm- douible. s1op [flaa] dable Jops
%k dahle stops

113

Eb Lydian

Dovian

' D Meledic Mimor

“Ianer Utopian” Sketh(1)

)—-

D+A+E ngb.d/n [EC_,(J

1)

#

=ae
- V{AI

b

—
‘e

l;f)#

#==7*
N
Via T

Ve

L S .

Vo *
' | | |

Ve

(
Va

Ve

— 1

Via XL

Futdf
Via

r

12- adte Ve

+0

-_—

q9-

-

g
75
gy

b

m-13

T

|
Via

I |~ ongul J-ade

-
Fhr+
[|

b

Ve

Va
M Via T

L pd
=5
T BN
il .uru el B4 I I 8
T+ ¢
iad M‘ Fk
Pas NN
o
4 | = =
T o TR
-t M BEIER
JHE B Y -.n._ Inind

J
A
1

/

T
I S

L
PN
J TS+ <+

b

\1J

v/

If

™=

T~ —-b

p I
i~ Qe

- N "W

[aY
21

U=

Rebivgrads ‘

Va V(' +
Ve. 1 i) Va w;\

i
b
i

¥
b

3 (b

0o
I

kol
e i |

iR

b..._._‘.._._]
trefitr
- f

Ve

I._.qo L

=] > of ma.

L]
‘hl.a. ’

o
~

.
‘ jr
2
.

=
=2

(LI

L4

| 7.2

—
-

WOODSTOCK

114

: TT SRR
| o | S % . _ _ _ o o 11| 4 e !
ey L -uw w | ” “ T e e
V A ﬂ' L] ™ i 1 LT T ’ o I
-0
7’ IOREA N) ey —ef |20
o am i B[™% T s ™
2~ f TN N A 42 ﬁs Wl _ < ..JHI i
bl UL ~ ol o I T\ M LR
Lﬂnﬁm +4 AV/r n Q".AN;I.J. __-I.J.n i4__. Jda ll_’l' D.. m I__D L . v T n u “-w .I A”’. &ar Nl.l.l.
N \ =N N[< | e W Y =B {) f 0n| — I e ﬂﬂ de 1T AN
{ = — J
gl 3 . |~ | R e N T A JrLive LALLM R = TR 4
/. g | (A % N-T° o= AT O 44 W SEE ﬁ.ﬂ; B I ool
ﬁ—x b &x.mfi..-l.]..l‘rﬂf.lk [i |..IJ ” o - B 1
ety 1 —id, T iy s LYY Y o
+: &ﬂ __o nC.Wu < ﬂwril \JJ ..Ill”\ y |l‘_. m” .r . 1+ -~ %ﬂ
T ~— } -0 y Dl | I ! b l~ hl -
. iy iR i il 1 ;
O Tl|Lkho oML e H-m -L.. sl el 7 2B ol), m%_ -Jl_.wﬂ. K N
f— il ® - b——| | L
=~ I 9 Ly - ™ E hd &1 = | LE -%l o T v : W, 2
— S -mi- AN S N = |0 o i ol i~ F 10k
Sy By A 3= b 3 <a T ann
s .Nfi: = | ['TT = ‘, Yt 6;::” i & wichall \\\~ [N N 5 Ln..w,v grit IM 1Y
A’ e DJ_ i A1 T PE — Iy oS e | - 2 N
1] —<bii - : 3 /| b o« . i P I w 4
d WIS =S CH, ST T S gy
fb/ -M..”?“ [-, - A 11 %n TTI|e | Q Nk — E v 13 v ...r”v K A’ w
\ = it ™ - .Mmlmm i 2 5.... * ™ - v mhe| (] .me: “ . KV&WJ
oI N Bl =t |11 4 M =~ 7] G R = |
#}IJ RN of oL V hERY [aa] T o= -t ol .\\ rﬂ. N | A m
e~ | [a .l w = = Hm— E —4 |47 N L rIU (==
- ™ T r @ e T - e
,..MLWJWH o] I S B S 8 g v Y Yy tH v -
el | T4 I | ha [T o : i BRI JaHF
S = T \ [- N P rerEN R J u
oyt] P& - e i =] | =
f&f:{r |+ 1 - e i s o o -
Figey e Biw /i ,M,.mwnaj % MH r4+ 4 R ,M...,m uMJ -.u._ﬂfm3
. N (o YL e It =] B m
2 sl g () | (FREEE TR] H S| il
1 hoteand B -l i » et
~ — wn # L * " = \ =
§ y ppas h 11 lA i i) Y
S tept [~ %1 P . oD ;\. ,.M.Eiu_dntlli B L & v) Lm:.v: il
s " S 19 | (L&Y H =™ R = v #f b T “
J PN | oo L — i e O TP I T S]
D S| Pl NS LT T ATNTT - T « - T
7 gt | TR ||| G2 T L = et Wil emiE T
= —T$ 1 B o o Al [+ g
¢ 3) e Ittt ==t < S) (I A
. v ~ 1T .L.H | mmﬁ.//o T ap siuﬂfufr v - 4 Pl _ [w.v
I,TW A T " n,tc..fﬁﬁ B’ 6 -0 = o Flg T\WJ..J.@.[I! . .0’ ~ole{[* r- & L
= | ,w}#)i W AN _.AH K e N gl IR « . m
; - — - e “u i 1 - Y B
3 P T e D SEas P ﬁnw/n\v&LJ ™ /ntv;x.w./ 7 \ nv.ﬁ_u N T
, W L SR = -0 4.
= —
—_—
- -
s

K

WOODSTOC

115

M E L

Bl 13

M|

H) @3

Ir~€
)g-(s)\u-‘

=

b

- ‘ ’.'
i |
a2
| e
3
lﬁ’?ﬁ[

L)

"I

B3 f

g:CF (

[?] ¥l KaN] Suap!

p—
9

]

I _he T

7)

> w

¥

elim b

=

8us [?]

a4

i

l!] S f
I[jr

Pe

J

J

| 1

mn;

|

q bt,—]—«-"""

3
Bb

.

i

5

£

g:

3

73 W
==

Ihzh T 7

5

<3

A D

&

/

“Juner (Aopias” Skebdh (3)

{5

- s
.
. —]
P 5
B 13 | D AT I
K 4
AN e I =i
,U..... a 2 pA u.m[u W ||l
1 ped —a sl T = =, L,
e E=Al A ol 5L e . I
. T v s — P LAY 1 ™ r_ur....anql
- Vv b 3 1
=4 | M Rl = .ﬂfw N -
] =57 F f..H..n.w_ § - r ” -W
TN T\ ST b 1 STt
T > ko, | ks =) 7 !
=~) .— Ly .TJ Jﬂ i Uk - ™1 nM.. [e-] —_ OOI_J#..,I
1 ﬂ 41 =, \V Lo~ == [T i L “ + .’_....n.“
- i e =
\”: lr._h .\W.ﬂ.lll.ﬂ”lgytﬂ AL .Lw-. u nmsl..r t“____—
+=| .) A 11 [« B gl _fqn_,_#
1 T 1 g .& TS 14
a - 5 r el...nd | sh ¢ .,w e ﬁw.
-~ IR - o j |
u 1 |+ T3 (o A) .@: i
g =T = n.# e ._ + N Ab =
a I R o =
I.Tm e -y é —
¥ : s 5= | Jo] =
Py - .
| — | e == o airait
€ i 3m4 N.,as o &1
| =1 T 1=
L = %.l / { r!.\ r o 1.
E 4 i
.Irm.VI qu -/ h lﬂ ﬂr ¥ Hm..f
- tn et 1 0
ﬁ - ™~ L w“I“xI HEM oy = e . -
9 L b T ..__.l .| : J w bl Mw . -
r A \v s h.ful P h] -] oo - % F.l.mv b:
E _ | = - -
¥ plle e Y ed T T *Lw g n ="
- 3 Ll | < — ﬂXnmw.J T+in N
oA YRS Am!. = £ Y
" B DM_HL. i -= - ..P.r..
: M-n i t,,l 15 7 3 | i iﬂ:. 1
INNRE g T Jo+ - ™ » 1] 1T
au
=+ Juth, 3 ,.L.u <0 Jﬁ... h..\ m nu 5
i Rmpr? 1] -
_t.w.nJ:. EW 5 3l iz RS ERE . - #ﬂ it
(L I~ ™% - et
P e A
aqHenpl T | o+ B ly
Py = | b
it LU o [L P Tl *
~NK " E 4a o) S 0 i
o 3
e I_ ~1] ~t | .w H...l... Y
7]] Ly 41— ‘m by ™ T «@
i “ Ld ~ i P .
A ._ Al IL, rl.ll .UH { .—_..mL TN |
4= -y ML W M
L /u_.r - == n < -
. T, < il S M H
4o

iAS
o

Ve
W basie—
Tf’%{ws

116

trhvm/r U{opidb” Sl?.vw\ (l"')
Qm s

¢
. c
/) Ffl VinT /. AnnIEARD N *M_ F'ﬁ A

| Il g o
LI B} o
W‘b ‘é ‘iJr{Eﬂ h -4 i_‘i‘ Teh ¢ q'o
i TS T 75,00 Ly] 4
= #Eﬁ: ’[E[E %6 #ﬁ*:f:ﬁ;-.u
6 5 * 5 6 5 5
i;g 2 5
(A% Vi ye—=—7 -
J ' T - “'b-iitl-[-- -
Y gm 5 3 £ 6 kL? ¥ 7TAT LL__:‘[_J ‘1&_{'1.};
———y 13 + r 3 £
s I SO T ‘g #nS 26 C nf 2F s
& Bt —— e ! 7
RR N I 4 Prerirt A ; A o T 8
kdfi 1Y L!liizj!'q—“ -]'. Tid T T z = i M) .Ir._o
v K T P [errvews [.= F
5 f =11 13 6‘ { 5
& & [& #:€ bacs I |
S E=E l 5 ‘ - - : l
07 S D8 e B A W A, e i 7 2 I #(-: t J T 7
G 2 Th i R = L Ff T F T —s
&3 — g+ S — F——1—%1/ |3
R #E LD asm "’L,g,_c"b*{gr b3 FT 57V b7z 155 2 R
va = e = LI:H:HJ c € « € 5o PR
* be :

@

1k
0
e
b
3
g
(

|
1 l [2028] ©c | ¢ !
n. J Ik — 1 i W | L -
. _ I — o— 54 5
o) i ik i et # = %) u*;a—‘ﬂ—‘-‘f—gzg:t;_—}—tﬁs
ik o F.28% 5122 bz P
At 25 Gl BT ”*[,ﬂ\ FIT g1 Jzef v _!z.ver% =
_/r ¢t . ¢k 5F cf a7 cf<>2 M T Bl 1 1T [D
3 s ' o P 5 R £ i e s e rma s R
Tt bt oy ak P 25N I N LS AP B L N LA AL Y L
S T R Rl L 3l 1 LT WA PR S T T Tk 1
o 2 Tersz ¥y, W ogpt -1 ? * ks 5 . gy
8F (1B el 57 ‘i* st h ke s 6 s | Gﬁogfsf o
ef, R | 52V er S |12V Sy) a0 HTR
B e 2 v e R T A o . i U b e 3 e 732
l Q9 B n [1T] . V7 ! T £ i - r 5 ¢
L —— A I (Y 347 S L8 I | T I ok i
' 47 F e [st l 107 o) |1 f, t LT *OC 1T
"‘j::r ° € ., ° o > 19 e, ° & ot } il : [
Ve bk bass, UnTS A dp pth PVl €% e PV L TR 3
Arpeppmda 52 P e e e L P
I e e
- 2 3e L o 7‘"{_ » ° ® 9 o
' . Lovist 84 /6t Mikck
o W"T‘”J‘j [3+2] 1 Vel hamanic on] . 0 8T Ve be sbE PM:
top 3_y— > b DorAshima | Pasit e Do —" i O i S
s’»’wﬁs \(\j} A ”2 $a &—__Jl l":-l'l 4 Trmﬁ?ﬂﬁt‘wn pa ré’b-p' LTI I 1
10 L nlf, = 5] o 126f VaPZ-M-m-I-lrp 2:4F o s
BRI T [T eriamr a7 bl I3 LT
ﬁlJ'F# U 1} 17 7, pamai’ Sinir - \“_’X ad r' !f-/‘_
F ey d

-3
P N
D

: —Hé‘#]
o o ;1 3 | \.%- : -ﬁ
o] , ,
gL RITIN S, (1.8, e) ,zl::; r-,-'ff{f;-_
55 i it " = I]
! :

o M,
[-F#JB qoosiock>” Gb Ep [Fq,c,h,m,
G,y l?? Ve. 5 senzqg sord-

>
£
‘N
3
:I
— [|
s‘i
-
é
S
£
Ll 1] 4
"')\(‘-'-F .
[l
]
N

L_#J >

. a——
b"[b_:_: » |

117

ﬂw.u 5 NW_ + T
T lr T %253 X \\ i
| . 2 e L. TTT1]
- m, BN Cw vl M CTC.?:.: o e
3 T R s T e e
O e e i .
+ wry L i i
& | LT nuﬂ g ¢ * | 1n]a v e ca o1
& — Xy oitho e R DR iy el ; W lell =
- g ° -l iy _o #1177 T e | fw apas ™ & NP m“_: ™ preyabs
o ~ 2 -
g T HRL |2 Carpsl 8 at/nz S A)
GgHe .
2 o N_ | [, [9= —kiiu
folld bl T =i N
bV 4 - Ml s W =
= oo I g bd
q a ok d dﬂa f L] 'ﬂb&-ﬂ_ 1] 7]
s > il -
S . _..#.fi.. b 3 p. 2 2 je T ® —p 1y MJ}»IJ
= =¥ 1 | i M| s Uy -ore Hd. e A0 1 = %
nMMT I » meﬂJ vus Pl ~ __“HWa L JLM nmn
o o i JL N wﬁ -U o -.IBL L ﬂ.[e o0 wa.nv A Po == |11 —_—
S G M S vl o ||] *
= (% i e : 2 LTS
| D CN _..wnu-. N @ \ﬁ&.h. IW L] .M.‘: My Uleq e ao...mﬂ "
" — N4y ™ Y 4 I T RE R
3 \\IF. l“i.*“sv T W\I- @ fq 8-'-“1—._- — ! =7
. \\fwn o M-) d ,.m b 3 b L ’ I ST . bl =
\\m g) L N b Pt ah o 2
+4 T T 8 : A -] = LY 8 i o
st TR T2 P e o el 1119
= \GIE LA s ([= il [l e, LS TS ST 8
S v iy e) Bl e T
29 EUANGS SN - Jaf +#* iKi ¥l |17 —
L s el] | LM | bl A 4 Js| et il T LT M B
= et { = N |~ #eo.v dy W oy L
— ﬁ by
= N e [N uEy H % e 4 / / B30T
e T ﬂ o T == Jo
<<~ SRR] = & | e et L |0 @ i b, ’._ulaa.ava.. Awul... " x
\.N;: H. v =T b | ..%L!ll. b R M_’ / ' L‘J.:: L T T i
N Fe REpE« PARNNI ﬂ i A ERRE vo e Tl b S =St -
a IR \j T i deE w0 - L H- a3 = |7
- [eteq = [Vil / / s It} -
=5 i i 1 "™ " T tﬁi' o ;™ Ly e e =, ..ﬂ. LA
S YIS e LA gf N =+ 207
oy ri pl e Jr *)4 Yol T =i s |
Wy + oo + | e JTANER . av L e “
=t a & Rl . S ST w = =
w ﬂl p = - ols 0 i e‘llm..:.
llv " l.\.ll r|.|.|
- .J./I.V ﬂ«l- N > T+ /JII — Avrl../e aa..lu.__..n:_ 4 .Lwa. i J
2 " P I - Qb < ||+~ &
-3 = I .M R Py °
=], R le ~ =3 W IR
; T | l—He = F5 3 e T 01 [*rreH s ¥ [T |-
¥ il ML) e TP & T S ¢ @ L]
, P i 00| - ° m r :l“.-ii ™M
== T m_ﬁ [Toe Pyl A T 2T
= = b R =
‘W)“nvm) HYMMJ\ 4 anW&\ SEON N ﬂuuuM_ m&uv wd nvmtd\
= | B S5 5 - Sy -
“ L LA i 5 o] — =S o
- ¥ B R > SHE L3 *B
“mmw)) |quMw +H - 2y = =3 == o
= milis (VIS x I &F V=1 =g RN

i VL

= £

LN

.m $3
™ TH
= PR
|~
et
h 2
bl
RS
$
B
H
-
£
—
L.-_../
LIIN]]
:-‘

4

i
) m_
Afp
m —ll{\
g
=
Ly
« ﬁﬂ.
I
]
I~
.ni._.
-
N N
1_:
ho .£.|v_
=
i
B =1
=
E e
— U]
s =
> -
My
N +i 1
_\V M\.
e N
™N il
1 A -\\\.
o
oD Auyu

WOODSTOCK

Ve- 1y

118

|Sma I5ma
[s2)# 2370 wiug-1 [53] (ﬁ&] : 71 [s3] /\mvm

.'..#- <
e

BL’J CLJJ
Eb, F4

3]
L]
= T
a ﬁf‘ # | 05
t Ve A\ f 4 }9‘ o
Ammm ‘1’]‘3_ —— 1 . J fi #4‘/,-“ er "h"ﬂ"f:
vV _1h it I e 3 t 1 . —
(i 4 Z B 4] 4 A [& -
3’ - !r..‘. #P H: h"- h “-—"1’]‘ V_V’ =3 . 7
(T T T ORCIT
g e : S
ma, L R ey he
Y=< N i W ; | ca—
e i geks B ST
gml_j_,;—;—’-_‘v é‘ Yo Sa Lg’F | 5 l ’ 5 __;
e —
‘ of S R e o4
TR R T
e e e : — P g
SR | = 7

WOODSTOCK)

119

___“,4:"

e

bzfij

3

Pi J —

Sut Vo L iw

4 9=

this

s

'T'D_b#

N1/ TN
1o:gF

' <L) W I

H#) 7

q

—Ay—6—

H‘erfﬁi“

#“FIO:SF

6

JL:T)

4\

#1

brbzhebs

4

e

-ﬁ -
10:8
10:8

rl

TR]

L

Ld

—

¢l 7

i

¥
LU

4

bt
=%

-~

b

T

2l |
4
s
5

7 W "7l

#5104

4
€=

b

f

> S

L7 A

—

ERSL/E|

k79

e

A

X
T_\J

¥

’-

|

-.#;.‘ D
YA -
T 8
S -TRdi

Er

\

m-)8?3'

cresd-

tough [

e
v fo
VAV A

P]

- XT
10:8

el

; T

=

il

o |
L

B 4
Y.

7

-f

3

|

. 3
AP

e
i

¥

A /R
—3d

10:8 F

W

-

>

IR LI

—
==
o

£ L2,

LY

| 3 T =

..I’

0]

’"ﬁ
4 <

e

2.

i]
ti
Vg Ve—=7-
I
71
Vi1t =
r8)

S

————10:8} —————

°
i\ h<

[

~y

TXXF

—]

ESRY
5

Vi

N

w
34

I

Fa MY

5

Dt

AT

(8]

0

7

i

-y
&
hiia
NV
F $he
HF
Lt
- >
1
Lot z
(o
c
=
)
Ay
i
g L
% ¥
-l
4.
Hl—ta
ME
iy
wir
[t
-h
9 a
\!

Il ../
A I9-e T
m] i ‘ a— vo {] |
3 i j H f .T.[/ ' ™~ i ..W.l.,rr,r.u_
/ g Leh | | \ e N 3T H
-l0y) - nd
IS - TR i S aRAE
] vl (K b N A T =~ M 4] 8
BT e o B ik it
it | 1L (| . N
Tuctfl 33 tﬁ Ik Gl _M_J, F 2o ¢ T) b
W[7 L4 — U
O n.‘,_# oy /N — ; \,M_ . \VJ sl
—o N s g L |
4 IR be -3 35 = mf;
1 I mW/ 2 -+ L L@
10 ol | BN TR % MT
il oy b [\.Wv § i ? > ..I \ﬁ L \w /f.l.
:H...y L [l 7| ﬂ T \ EN W/. /
o llonv L i \IU -
I_P ~ .«W..tl f’ —_ -~ G RS % D -
] I + i # | om || ARK
.. \ il iy | ey— D b Lo —ia ﬂ”_ ./.l %W!f
U ie b CN| ¢ N ﬁ. JL’ m.m_ L]
L (4]] — ey, B S\ AT TTo
— | RO o | oNeyH H | — T L L
| [” . N -
1 | R) e Gl T 4 Lm!...u v
— IW oy _O IJ bt
s L. e B \ i
.“.m_...ﬁ Juﬁ = Tv.. ~b yy 2 a® ——E
el | =t | S ..ﬂ..l_ == e S
Sy v rle H _.||+_:_ WM 1 \h .“h..lt
i N ~T fl.la o] v fo) |pl|l.....
e .M |] b o, | (L NERN R W L]
|.._-..i1”n_1~ L1 = -y 4 +1 H”w. .Jl - o o =~
it ¥] MR P Oo#wv T M) N W m /
.Ilﬂl. ,H L .l&. L..B % .-LT
By ﬁ ;.'... 19 —fat _”_l_i— h....u.... 5 n
T L [t S| S [t
...c] o i £, of ..Im o
X - ..w,u..ﬂl.,. A w:l w0 Ln__J] SE W A ,l
. = _ ﬁm " ™| 2 —s | o HEL 1=
L = .—u.. B i pd \ . r m _ il
_Lv =3 Jat- 4 /] = TP, ™= N
a . M — el L Igo 3 + + U
J" -ll-l 3 el | 1 o mel I..lrld
“ ™ Y TN V = \\.ul- —Aulm. - | h..:ﬂ\
o] A .- | = T] .
o3BG ol A NG

E 71

N

Polk-

by: sé”’:f

WOODSTOCK

A

?or‘t} "

5

*

A 2

Lj/:o:af—J ~

+ #:

—_ bL'bs IIL‘,

Ll |

]~ Vfi-.

@)
4™
n-

AN

120

“lner Utopias” Sketch (8)

Vla

solo

121

% O
S i S
i ,_Juw = b - ’
ST+ TS | |
T+ &5 ’
e IR
<= =W = N
4+ ekl M= 9 | P,
T 2 = ¢
EQ‘J/I\&&WV \.ﬂr—V » Im N .
e e s SET TN
ey S & _
Yain ot oo A llll}l.lf.llll _..lr.\
: 5 HICTH o 7]
oS I SITIT i | ful)
..MIL.J . L."_Pv = TR 1] 1 o [P
L B N ~E £~ m - =or
o =
8 S gl .”
o~ |um =T > | Hrp H lw SARE
x T ../_#\L\.V.Mw. H(.\.... o w
= - o
2.4. a vy uluvm SLrre Y B ...mw 1 ol P
(e 3 Q—”I_\ ﬁ-lp o
qrd| omel Fapl-ad | E o HE e el
AV a o w
= | A ..H CITN
Py il S~
l-nulﬁ. = Lstr—t> IIHMJW
U .mm..l ~Hib & 44 = MG
A) d | = = |4
L -
o & L~ rala.ﬁlllu..“ =
Tt =F T [= =~ T
I H/M. A = - TRA
T /H £ TP
4 =\ 5 & R TP CIIN
. % DI I N ﬂ” dld
_I.Lv = d : b i \
O 4. oy Lo AU.rl -
of oy -
) A o J =iy psn| e — | | o)
Z ° L”v S_W - r . o N p \
| I o XH — A3
' nd Q |D
= =S\ C (BHD—
~= T 5 k3 \C \
v b B, 4 i @l - = L Hidkell b _
- — & I A o+ H M =+,
.; ~ 4] 1Y Pl s P
_ :_ = ¥ =TT |2 g ~ » ™ 9|
= [el = N .IM.U#.W b
S B L R s WK).
o - = g - - N o') q
=] & = W 1.4::0 L AR
= o<y Py = Y niid T ¥ | |)
W ED N, D N P I e A
— =
o =- = 33 = ¥
w - =FE, T) >

WOODSTOCK

122

123

APPENDIX 5

Handwritten sketches for ““Amber on Black” for solo SATB singers

124

Mff?‘ “Awbor an Black” Nelos (l) |
Pelude - #1- lotedde #] ~ '#Z - bk #2- #3 - Posllne
Probude:| A Chamaioy pilches
1@[%%%-_- Micdite] = Somc i, /WIEWMW
l%h;ﬂ’"% L{ELMM tstitind = Queybion /ﬁ%wﬁr ﬁﬁmé‘m ”ibi WM T,m,y]
1-3] Stady Gl ’“W = fowe % el b

Iﬂ[mru)ﬂws?hmg] —3 speed c’\»ﬂ-{)!{, ~ Q%‘L‘tﬁh dt the 2

m.)c 3_ = 8) ‘“
Paludy -] Ax‘{wn]/mgr] mbbe] [o] Almdeh el

lek Hﬂ kov(, w ﬂ\bHZth U((.' rr")’
lak alb

M,)O/f IﬂSpﬂdvsw /Sfe%l" N M,,f) & rht_)[ﬁm (hﬂv\o so bbbl biw “hLK” [N)”)&“)

(I:f) ove.l«q, - %.bé%e

f 1-2] Spach = conwstat %ﬂ% E + [g x2]+[§x2]~[§: [bjw]xz]a[z(ﬁ“H
r cotrsst wld £ (solibles feom 1.2)
p-f 13 ot tk ey il
ait {1k 3n cezld pilched il stz hamomaes)\jh%,‘
Gy = Syt = Sprathg” (QI7]) el [akicdde v, Laps

mf|#p |

/ '2-]] 5003 /5?&(1«43 /:)L’)s — Sﬂf"f‘iﬂﬂz WMJ,{,
_m] —7 sprechs-

I} 22] Wfﬁbpbf ~ Mot — S(Z@Jn/—; Mwewieer = Ubiypa-

R

125

V‘”‘d Lqﬂdb\ W"é’ Led LY+ Ambor om Blﬂdi’” M’f% (2)
“:*: S. | 1T B-y]]
" whfd af Lu
Aitlibion'] Son 30 : “"j* wse It o “emdtion” & “faibion” |
, G] i
Deriled, alhss.) o 2 syllablgs!
.& le (UM,%W&) Reez M
J.{ = [ﬂ.{M ! {Fef@.
7_ J/G (Wv[Q T,M]G ' | B”M]“" _z:rers] unpilched
Yorse3 Li Dgach il treze) b
“Trk”: ok trac teax fmgf] ; trer 3 J 7‘
13] B Bl bl syl iy ol sl l]
Micddion:| 1- Gl yod, oihddal arbionliles
§ Gmc!ulbp }mf;/ie; :O »Jja Mf w {he v o
WA ang it A VJ,J 4 —> mvx speech ¥ sptdpinm
[f\léﬂ-/“ o I ugfmm) ,”V Zr”L P\ Wi~ N P
« 7 -
Defcu,la\j LE As Jymrﬁ Meh’:m -7]
] 6 Thllor o P et [r1] e[|
Cliwon m“ 31» M 4 ‘pfh’ﬁ;ﬂ A gud +dnblp bivlig
13:)] a:-— {Ih-)v’- ’e1~f3r\ [4_*’3 J‘LJ A”
S ai -tak - j4i - (aI - [an Jas -
A 23 -’{:E‘k‘J'e;'..[eI ~f€n fgf-m
Tlia =txh - i) = Uz - f1A Jiv =9 qj-
o a3 - e Tar CR T
: > — 3= l 2
"‘ f I] J X
2-1] Abb, (sf- [mdaked Q: Temor (nat-) t/,he:
B ((pred MJM)) A Auo (Ed(.) ,%b') oy
akhs M dp SPML' + mops ma a'
5‘«]: (M(+ ﬁwb,b.ua) J A Bar. (S?M!;)j +"»€[~,M) : 13
kav {u: 55{ 8§ Ma?rfla)n In 'maarf(a)n
T,jhezr tel set edamove fen g mav- [€an
A- hn‘,xi £° Sot OI‘M01-3°" 0n Mo:-\?on
S-thavw 'Lq: sat al-Mav-z8a AN mav- zan
B_.J 1131 ‘[i: s1t 1Y~ ML =520 74 mI1- SIa

126

E Dbor on Black” Nobs (3) T g
‘ : "f ﬂsj%hj
Srr(’z("‘j' 5‘01—(’,(}15 S@Jw}\ i l
= - |
- S -: el — - ’ R
,.{?.:A..___w-...:w_____,_#___—_ﬁf = Y R
E-m-..m_f” l —)}\T 1 \/\/\/\/
L on - s l
- | spechl7]) o ‘W(sfw!wj
P PR o Sl et
Wafaw(ﬂ’) Some - ' ﬂwmw(ﬁy) S - a1y 'sple’ [J , (s(.al\g.
4, o o - erf .‘ (L U (oK
; b1 R
1 1
(77) n——a: ;t QXM.L-% 4$nw| ql/—a saMme (77?)
/ L,
- TS (Hoo) 5 AT (A2
[A-] [ﬂ E B (Lcu)] ” I-(JJ
¥ pad Sedim ovk
W ":otum d“ﬁv;
Zm‘l)‘l’wlﬁ an l‘x
M@‘% Mustnsn, Huﬁf@r [l | Exhaly I’;‘;‘f ,«Jé E:";M(‘\K dgm‘ji
S [Vovamy| = | — [vnekd] [kl | —
(-)EQ‘)PA v [V'3]+[';3 g o T =i — e
__T; v [V-3]+L.3 e e o ‘r-/ﬁ.[g] L
B T S = « g — j e

o 1Y
ﬁ% vz b2 n V /3m<4-«%

or [T} s
2 G dled [i

127

AL o om Black” Netes (&) “Rhathmic, Mechanical , Machine-Like”
J‘Wsuww'—ewm 3,32, 33
Verse 3 "XWA\-LI% d{AJLVIr\ on '}/ra(kﬂ w allk VoLces / \L

mTL”df 'L?A’{ S WS&}I YP] ¢ l‘taw—- es)*5
Ir]B%Z_mﬁ;;[(mm?* Prechg-12S 1 speelg. (L) = specg. (5

!T;?Do 3
St [ehoolotfo: + mdisma on “Spades” 53k ,\am;jj‘”
rhg“m Mk epalition oler = B.sA. = 5. > T. esture = mm.90

f’“""’[ﬁm&r T W‘O 5-A-mdusma, B-4B-A-T.] rtpelitions im [4/4]44(‘ %/A],,,/g,,;,a;_“',;”s
Aond:BTIIT] 2 | Tliminadion e 1B sht > .91 €27)

no d!}Se B. ham«:wues-) H

41]->Iuwmm > ol bobuc G/ﬁv{ue]g i+ holf time > /3 [1x7] £ 5/5

F[Q‘u‘ C, aw natiiral .SJM L—_\L_ Unwoice .
L_‘ A Clok=19-]~ -[i7-E]-[3]- [f] [s} f]—s [Uet...

" ks vsing B+ B1)
Gl e] || el it > 22411 7]

¢ m)fa)ng, or |5
9[0{%% 8](— SL""’*"F‘MG; 2][?] L_][?J
—— n [also 1, j’] [n3aly, (Mi) g][n]
(54in —95 : / J }/
(sprcly) & 12

' 1 IeJ[:]ﬁﬂ[fnJ
I)
[cJAAJBJA”Cz 1] wa]
Bhineos (ot A, ¢ 00:1)
VmeLImMRhﬂfM—a 5!77 lﬁf.’f HJ\//J 7/

8111%”.‘.'-{\4 8.& b,{ p'u -* 2T
'ﬁcl!aﬂe Me‘int&m@ cdmmﬂ s Nth

T o :Atmswﬁz 4@@]/5.(‘;1.1 bbb 2T oE

8 or 455 8 N4 -Tyon
Sanl314[3] (2949 m?swxﬂ M : jvm)—*zrmv}-» @1-»[J)
——————————————— — 1 qst Iy 134
Verse 3[pait2 M"? sl [sj Le[a zﬂ-'tm[tu] f3"’[f
Lelimon] ™qb1-2 = 31, b - 2-3-4 7(+Jj><),)>-==:‘ <.77=<m‘" .f
pait 1 climax? ' 31iudes: 3"lf,ne[mxn] 2415

Ajsi A7 I 3PP Eps|
i R ST w-azauB,][1]—>M—-[tu5—->M-»(J-[fn]f
BI3d . 1 BIE3d - 133 | homophaic

[4_]+[2]]\ ;_ 2" !‘4'{_1‘ P ;3"‘WL‘4-:£Q1LC [,]—)[U]L'[nxn]-{e]q[l [fan]f
4] 2] =pp, 8}—-2# 4'.! mm- 7= 8 "WMP Lw[ceﬂﬁjws 455‘?[@“35/(3]{0](0:45 2A4T

sJ3 5] 33 PE 55 BfG L1t 4 —;[wu.A][I]+[U] + [e1]+/[i]f4[n3

128

o D Bl Nes(®) “Ceuchily Debicate” |
AMLW awn {mabomfaiv- ['-'e. (av._a)____) (gv-:t)
T oslow—""1-/Fast/- a—(as-18) Z —— 7 olso [P] +]1]
4] a:,ofs 2//;;’:{//_ g__((gj-'tE‘))ﬁ / e
: 3. [Slovi/— a~ (av-a)/ —— —> abso
bi’df rh?é? —G%F [,.-slav-é'-—gav-s)'/-—-—-—- —> also [PJ?]
ol sty cbe.. o 6% eqular F [66"-cles] or 20 x quinbuglet f [E-sctes]

7 el Ly or 10:8F

Berio “monen, I%mj F }
S RS - Fa o« s [SDE]]
ﬁ%ﬂw Beaws: Use J-¢o for rsma‘tp,mpo’ secdiows [i-e- 1x Jhedt = 15%:]

j |
2-4-6-8 — edsioro e each new beat!
é}frfﬁjgﬂd‘&*&g%ﬁ-ﬂ% [2—2—4—4--—6—5—8—3]

Paom #2] ¥ [Tempo]
14) Damp mist” — rasal [breaty , biah pikched +faks ko }Fa‘"/mﬁmt,]
15] “@ midnicl” —> nasl. [brabhy, deop Lo~ pitched

- “clrestlights” — nete-valies , harmanic cownterpowk
Zb; o i iakv?/m to rpresont light N]
1T “heed™ s .
homaphosic,famgelic clestial , sustaimed |] J"f"‘_"““
3}{7 ”W“g”’)’—) (W‘Lﬁk@% VJMFW%}A-]};?“EQJTW
Tl 1 : M AN LOZIN R
L Blmiaho? > Tt Sdion ([{335 P2 Lol 25
18 4ime> 5] [I]—[s]-fa]—fs]%[zj-l‘ ﬂ]—[e:];[i?]’;; fef]-;fsJ y :+Lﬁwm}.um,§«ai .
nfe A)e R G-g [L1Je) o | 4 e e
P 1l ¢ [u:]-[\,{"r[o:]-[:ﬂ-[q’-]—[/\]—'r[Qﬂ'*[ﬂ-'] y! 3% fime B}Ej
B]& & ¢ [m];[’ﬂ]"[”]’ff]’[OJT[J)]'_[A} d | Bags Lime: [sprecha]
| " EY IS 7[
24 4ine> §] IIJ-[EJ-[H]—[‘:}J*[iij-fb?—[el]-léf]'r'faf"‘[”:] 7'| b 11-Lu-mi +S na-taam
Aﬂce]_ﬁ,]_[u:]_][] Evol Jebhss) GEwl 2 | gy) o Jd
T]END’ u:= ALto : " ; I= S0P 7 ‘[::':_p)’)’
8] typp-Gi-L -~ B =PI TE =0 7

129

“Unber om Black” Notes (€) [215 -F, TH , AB =T, anzﬂo‘fsﬁi%ﬁ][?j

crra’b_tm’sw 9(I 639,] -Fa,b": a/LL‘F‘>3 lepeat it i m([z/g]xﬁ,)
wah Sedn (st 12] OB spchy. for L st i ol] HE [zf;]

”/- SL; m S5'T.8 [3(45] So in A fsfﬂchﬂ]-)‘?

i g g e ik oAl
imto the fimal 13 b -%.% I62‘fll ﬁ[(,l:ﬁ ' ? [A+r]32]‘<-—-ﬂ —]
Lmeaf‘lh&%o\ []—r+0+ -+ > 5 4 +5
v ot Tt e OFLCE A FL g FLI0BL [5-+B]~ 7 FFast” [oRL2] €
”" - ld'wﬂ
Hs,emfb-;hzw 415 C 3’9 N
“ (W)] LFTQF;} ﬁuoﬁ*gﬁ Cﬁﬁgﬁiﬁ [s]
mhm’ [], nff-saa N 8]_ﬁ T IrS N3N, 'lj CFL8EL10f [A}
section F=126 or J=42 9 [SLad— T e]t: 43
compovnd fime! I~ , y [sLEaT2]>B 2 y
""""""" SIb>|11 213415 !¢
”_> lOﬁ-«—IOF-"rgﬁ:g f-rﬁ-ﬁ-‘-f‘-——)ﬁ]
gt it ol
§:=o- 3 b2}
Y[ORLz]-—>[T r/ “slow | “Slow”
O G ol i L iher
R -+ . = i = S- @
(2) [16‘}'9 Y [Flre, d721— A Y (91-a)
J;[Eéll-_ra]mw——a T(Mff) de... ; Ly(@v-£)
2 t
71| §.> Tast @ (3s-43)~> (€s-1&) 72]['y
A= slaw 1 (ov-1)» (av- P)[S 7] 3 le uhs{a‘ur:jaut?
T2 x5t 1 Gs-tr) - (Ps-17) FIFT 1
B slew g (ov-a)> (av-¢) how [vas it jforym]?

Tui Se(iwn

Basic Order| p—Ube Co imsted [7]
[c] sdi] _ Fosb-or - slow — nommal [dbviews qrder
2] Fast - or - slow 23 cambindhion o Fast” | eMlonsions on “or+ “shou”

[cRi] s

CR2]>55@1£3] aﬂ,faﬁb WM/MWW vl PéaF an ‘st SJMIQ WLMW%LIF@*{W’@
mflset] Hwo pandss “fast £ Slod” cowbimalioy, |[S-+T-
[J?S ; L 8 elible, “slou mckabio e o%w: Mfa«?{b MMHM!I;}M[J]

L] it siki Fontemn s and D ot o v
setsj] SgUAHafnr maﬁwrmbs-?:'wg&astoeed/ avW/Ldﬁwmﬂ obx@«‘}mﬂ—;“’q
deads + 8 syllable mulation i hor doce [Ix'skot” + 2 xfoef |

S{’*G_IE ra\t Wﬂldt
s3] no secionmatoral , bl include “how wasid fast[slow” yee

([ACM]@-{)C MM sudder, cWefa}g‘b dyrami,C) + “fast(slow for 501%?
MLM Seis[lr&-?] putala| [3%3/g [31[> semiguar dissions on glissandi limes!

bJl
[3x%s171] mudatel ¢ 98- C-9K > 14y offsel, in qlissamds limes
st 3 =5 s—[acdl: [dece).

also matate. in ga%bm (i-e mfake for [2041H] beaks x2)

vt f

130

Pabor on Bok” kA (D) %th?nd[@ﬁﬂ)
prec s = 5
N J#J f;bjg e (T A,B,c cL6,F
S Y ¢ = — 13 = _ui ;l L
ARG e ELSNT
Work buf—fd-ed wod- Wok ||T T K bl
T . L e }7 #7 851
B I‘ 2 - " — — = ﬂ# :" #- - * & 7 ,'" .
T | < e
R A
}.I-_'ﬂ % FRr—— S{:‘r“}{j,ﬂ.
L f—pecetl |
— &7 3 il 3 5 My >
fisc. 2 > 4 - :
e %Af,s m 2 > ‘T#!F) 1 ;[,_ ;—; //: _1} _j- .
- - - 714 ¥ Yy X :

7 dsl-:! “i;r 7 ,":r if_'_ L .’J____},:{ I 1 - Ky 4’
= e z Ay de - rilsd 4 r el
+b.. B > B i j :b/f‘T\ >

BT T o | b L p F b2 e i
_ —F 7] 7] J'#b'f- Y [4—
i 1 A — S - - S
N\ L £ suned ! — === - 14
- ke b lotio 2 “f
- — —& i
i
= '}' r—s , f e

4 ____,[e —C— >l_ / ?.: J/r—-\

(nt" X P | # Jhas. rm—T711 ’f\ \5,“.

\V, 7 X !}' P \\ h] PG 3- n ? Y, %\

- T X 7 i ?b ; —— ~C%

£ o\ > " prd v "\" P

Th R el T gk, ek | ke FES
B — —_—m

,}: - - . - (l’.\} - -'|- L-"\\\ #-‘- _ _:__..

et g - z T .f] ? I /‘;/"

o ' L > glas. > 44l

0 et S
fla- JOL_—',ﬁe—-M:i\ [qff\k/
L, . g I}—
(o o 5o T . oderou] 8= 5. - w150
E=aemms

s.._/:
— f D

bF [,?(IF) +° b= #'g b=

ifu

(WOODSTOCK)

Y - 5
L 4
NI Eor
2wl [17 [B, i”]

0 s

(y.} ® _g. =
\

131

-
]

—
1

-
1

oral. Tdachads for T lmination”

1
gL -
rr

!
I
1 N

W WL IW
=)
L=}
— i wl
el N1 R A
o - e
3 inns ANl
e 10
& & ™
WZ (]
~= o~k L] .
e ﬂ_zln of .
T RS
- o
]| . o~
7N ~ - -
q ™7 =]
N :
gk ..m
% u . l..—
P

!
(242)

4

[

Ll

it
| = i 2

“Uber om Block” Sketch(2)

™

ekl o)]

1T o o
| f MLl L p:n e * —-l%’_
- i [r—
A T . T = <
S SENE GRS Qe g 41>,
.“..lu- A /a 'M " I & urva i ~
HE dlf ™ = IN(D & Yk
L By o o= S7p) e A e g2, b
Pl TIT — = + |+ |4 = 4 h
f!:\.ﬂv.... N . “r.w._ n@ ? S L O 11_1“1...
— | [l 23| [T TN O B
9, T N # 1
L M R + =l i)
T T He 3
» i a4 . H—
< IR - o T T T
Do ./ « d m ‘ _
- i d . b N N
- e |1 (][R ﬂ
— HITTSy wlk| [E || 145
3 ™NT == » GRL TR B | e
I_M A\.. * .AW b h
19 ek nﬂ _. "
(e
\\N/ “lo - - L =, N
= Top= ! N
. L=
S[tllE dE 5 [
1 L ABn TERD o B
Lo | oo M d <o
7 e ~— rnu........lu., N
e 2™ —— N %) — mU/ ©
._ o | oo _IIIL\‘\\.. -.T-—J - / _.-l—nl
L » ='ca} —
(I : TR A || ||| =
[A zp
EIERA B B e
q
vy Pl. lv = \W % L (l.l \\Jl
. N
= . T 0
- 4 vy - T 4l
wlm @ ey llﬂr..
_.J« A Ak d. 1
¥ 1IN " .
: _1 m.:r..f,t N // A%] B\\
- AT Ven \I.J =y | +\
Qe - + + b ..m.f...r. 1o
o €| Jar i E RS e] T
Nt [Nl ek | M — // L] i
IR =380 =TT ST
- =N L
S =S A R AN 3P < 41
il 1 — ﬁ...hnmu...,u,mulhﬁunw._ =
e 5 - N ﬁ.l.pbu 1T -~ MT1r
ot £y v | 2
o | |- &% :%_nfv. N
v
S BE U2 e h -]
YD T D N
2R N
S 0
B

1/

WOODSTOCK

132

L)
116 :”j}”ﬂi{"j}w PP——ppp | E—
) | | | J | o 1 I !
s. il—F— — i —
! —py——pe—pi— ey I—— f—tpa— pa—»
|
A I !] I 5 | I g | ! | ! |
Mo ——— 8 W
f——pZ—p3— 5[>s >l P S S — \J
)
ppp, [ummced.
T. M; s F e —= 7 !
D ! ! i B ! == ' f :
¥ 00—) ——Pp QP A———— 33— U I) J' (MML {Q
i ¢
|
}ﬂg}){fzf}ﬂ? i
ﬁ_p 73
B IE==]‘ | —
N : : T

] f_//}
| [f:f:c-ll({,ﬁzc-[,ﬂ] 120

119 = PP——— PPP—k pp — ppp———pp rppp [DEILJ‘]\(#J
v {) & I W | i |]
S %jb‘_—i y l‘t@ - jr:r' M rs 18 Fl\
i >y » el »al > > U) -
. Whis «
] yrr el LM%J dil,ﬂhdsl'j-r —i-ﬁ ——}‘FS} | q_.scg
b - : rep MY, ! ! f E s
A %y!___,'j i ¢ 14 r_: = :U ' i — X! 4% ég
" (oumur) | ORLy , <3S
y r b SFe——F——rs, P [yt £
or I b4 Voo
: fast J g}[“} Slow [_F- G#]
>m<1?:=’-m-=::1?}m<:139 m’]? 33903
\ n] »n ;>3 »[>z >n /I\ Il - lu - mi -

133

i [)mﬂSGMSW’” i ENWT
h")

gr-‘ r]zz raspmkfmﬂol Pdc CdLO‘WM IRM] (f C€3)
‘;‘ s. |8 ﬂ
B el i
gécA ﬁﬁ_\‘? S?, _ (ml’)dpéﬁfw%vc ” .
J:Jr’“’ Gl Ea
Q — g — T = E
E——— — -
e
[3][1

TEN. END —> vhisper (umviced)
ALTO END = eraﬂxgmhmi whisportd. (wiced) 71

sop. END—> spesch (Umaiced) fi_l)
Bl = flar st
BAsS END— Smaying oice (ovd M}W"" /it wnwoiced syllable

[‘F] [q] [S]xz *H]f ——}(FO'SSllDEL r&p[m [a]wﬂ[???l tawle MPd!MApng'J rﬁf;l []
El- [0~ -] | (ool ik b)) obms: 1o g L) o
6]~ wl~[a] - i)~ [[0 1] Tad) 2y bk s
Fosslu.g ¥r@m@]2 [5] [4:] [L] [3] Ig:] [o:]— v “Slow” EFLZUY' 1]
“r ﬂ [Fa s] E 5,,,‘3&_ syllables —-—>Ltadxfwl waa(wmij
“Cor” = [o] ORo t @ a (;Mew(+ %MMJZUM Speeo{ / L) urwdownj
“slow”— [slav]Se| Speakimg sp sigllal exparhins
> [ty Sreetng wﬁm | abso Te], /FIE], dhc..

{M{ Msfe%l over Q/# bors = ﬂ/F WS L repres oud hawlw
“Tast” stcloting owr 3y bas = £ Fy smw wlus! il
“Tost” decelorating over 2. bars = Fsffe | ! fg]—[v J—-[rﬁ(pw ol)= [08L]
) Msre%(_ " .5‘,/5*2 (“ [“ov (le[}wﬂ [i]
y 5’3/51’_ [9]) For” OT["]W!I% [HJ
e 1 - 53] i~ [e]-DI-[]-103 - [orLy
5lcw’ "‘F E) Wﬁﬂ I} = 5*f3/_§-f4 \""-.. (Z;l 3] Zk]?)
“Fast”— “Slow” MM " = F‘SS‘/’F"’JQ
“Fast "+ Slow” [combined | full speed = COM, | COM,

/ atelorating = COM3 [COMy,
v o J&odbmjwﬂ 3 COM_;/COMG

T e e e T W e

“or”—> 3or S s “abb.f"mmjuc
SRpansions, ;-ngimﬁaf*wﬂ

134

APPENDIX 6

A User Guide for
Eternal Owl Call’s
Electronic Performance Interface

136

Contents

Page 138
Page 139

Page 140
Pages 141-53

Adding the Z Library to SuperCollider’s Core Class Library

Running Eternal Owl Call’s Performance Interface
A Screenshot of the GUI
Using the GUI

Pages 141-3
Pages 141-2
Page 142
Pages 142-3
Pages 143-5
Page 143

Page 144

Page 145

Page 146
Pages 146-7
Pages 147-8
Page 147
Page 148

Pages 148-50
Page 149

Page 150

The Left-Hand Columns (Patches & Subpatches)
The “Next Subpatch” Button
The “Start” and “Free” Buttons
The “Info...” Buttons

The Central Columns (Top Area)
The “Free All Synths” Button
The “Exit GUI” Button
The “Reboot Program” Button
The Mode of Operation
Testing Mode
Performance Mode
Record Mode
The Last Recorded Session

The Audio Sample Auditioning Panel

The Doppler Effect Auditioning Panel

The Microphone Bus Routing Panel
The Modulation Routine Settings Panel
The “Further Info...” Button
The “Set” and “Free” Buttons
The Top-Right Corner
The Full Screen Toggle Button
The Help Button
The Post Window
The “ Clear Post Window” Button
The “Patch # 2 Debug Data” Button
The “Memory Size” Button
The “Number of Audio Bus Channels” Button

The Master, Scope & Analyzer Panels

The Frequency Analyzer Panel

Closing and Destroying the GUI Window

Killing the Program Using CmdPeriod

Pages 150-1
Page 151 The Master Panel
The Oscilloscope Panel
The Server Levels Panel
Page 152
Pages 152-3 The User Directory
Page 154 Shortcut Keys...
Pages 155-8 Example Run Script

137

138

Adding the Z Library to SuperCollider’s
Core Class Library

The files required to run the performance interface for Eternal Owl Call are included in the
Z_Library — a library of class definitions that | have coded and added as extension’s to SuperCollider’s
core class library. To compile the Z_Library, you must copy the ‘Z_Library.d” directory (and all of its
subdirectories) from the data CD, included with this PhD thesis, to one of the two SuperCollider class
extension directories; returned by evaluating the two following lines of code in SuperCollider IDE:

Platform.userExtensionDir // user extension directory
Platform.systemExtensionDir // system extension directory

Once the Z_Library has been successfully copied to one of these directories, recompile SuperCollider’s
class library by selecting the relevant option from the interpreter’s pop-up menu at the bottom of
SuperCollider IDE as shown below (shortcut key: Ctri+Shift+L [on Linux or Windows] or
Cmd+Shift+L [on Mac OSX]):

Untitled = SuperCollider IDE
File Session Edit View Language Help

Untitled = Post window Auto Scroll

Quit Interpreter

Interpreter: B

http://doc.sccode.org/Classes/Platform.html
http://doc.sccode.org/Classes/Platform.html

139

Running Eternal Owl Call’s
Performance Interface

To run Eternal Owl Call’s performance interface and graphical user interface (GUI), the
following line of code should be evaluated in SuperCollider IDE:

z = CZ EternalOwlCall() // this boots the program and opens the GUI

/*
if you close and destroy the GUI window while audio synths are still
running you can reopen the GUI window with one of the two following
commands. . .

*/

z.reopenGUI

CZ_EternalOwlCall.class_zpi_pointer._reopenGUl

To evaluate a line of code in SuperCollider IDE, simply move the cursor to the relevant line and
press either Ctrl+Enter or Shift+Enter (on Linux or Windows), or either Cmd+Enter or Shift+Enter
(on Mac OSX).

Don’t worry too much if you don’t fully understand some of the computer programming jargon
that occurs in these lines of code; once you have run the program the GUI is actually very user friendly
and easy to use!

Next Subpatch = 1.01
Patch#1 .. | Free All Synths] | Exit GUI | | Reboot Program |
1.01 | [Free Mode of Operation | TESTING | Server Sample Rate = 48000Hz

Server Process ID = 2869
1.02 | [Free Record Mode ([on] _ _ "
Directory path for reading/writing =

1.03] | Free J Last Recorded Session: [Stop J Jhome/sgarethhs . local /share/SuperCollider/Extensions/Z_Library.d/Classes.d/Comp

ositions.d/Blodyn-Tylluan.d/Mr3_Eternal_Owl_Call.d/CZ EternalOwlCall.d

J J Free Record mode enabled!...

Initializing effects processors...
Tawny Owl Sample: Stop Program initialized!

Post Window data will be displayed here...

] | Free

Pigmy Owl Sample: Stop

] | Free

Otter Sample: Stop

] | Free Frog (Amazon) Sample: Stop | Patch # 2 Debug Data | | Memory Size | |Number of Audio Bus Channels |

Frog (Peru) Sample: Stop MASTER SETTINGS SCOPE SETTINGS
Mosquito Sample: Stop Inputs

] | Free

] | Free

2
]
g

] | Free L+]

] | Free Mosquito Sample Doppler: Stop

] | Free

Otter Formant Doppler: Stop AMNALYZER SETTINGS

Mosquito Formant Doppler: Stop | | | | |

] | Free

] | Free

J
J
J
J
J
] | Free | Otter Sample Doppler: Stop
J
J
J
J
J

] | Free Direct Microphone Signal Only: | Off

Microphone to Reverb Channel: :]

] | Free Mic to Reverb + 7 Tap Delay: | off

Mic to Reverb + 12 Tap Delay: | off R

J
J
| [Free | Reverb + 12 Tap Delay + Comb Filter: | Off |
J
J
J

] | Free

] | Free

Further Info?...

Frequency Modulation: []| Free]

17:09:26 Server: 3.12% 3.10%

] | Free

| [Free Pan Modulation: | | [Free |

Using the GUI

The figure on the previous page shows Eternal Owl Call’s main GUI window in full screen mode
(the default loading view for this window). There are three discernable control areas on the GUI’s main
window as follows:

1. The left-hand columns, which have buttons allocated for starting and freeing each subpatch
required for the performance of Eternal Owl Call.

2. The central columns, which have buttons allocated for performing general system operations, as
well as testing some of the audio samples and effects processors used by the program.

3. The right-hand columns, which have analysis panels in place for displaying information messages
posted by the program, musical amplitude/frequency levels and the power consumption levels of
SuperCollider’s server.

This easy-to-use GUI is designed for the purposes of performing and rehearsing Eternal Owl Call’s
electronics section (as indicated in the score, vol. 1, pp. 294-7), as well as testing some of the sounds and
effects that have been used with the piece.

Eternal Owl Call’s electronics section is made up of three separate patches, which are each
divided into a number of smaller subpatches (as outlined in vol. 1, pp. 298-300). The rising numerical
values on the GUI’s leftmost column (i.e. 1.01, 1.02, 1.03 etc...) correspond to the equivalent numerical
values which appear on the electronics part in the score. Whenever such an indication occurs in the score,
the corresponding subpatch should be started on the GUI.

The Left-Hand Columns (Patches & Subpatches)

The left-hand columns have buttons allocated for starting and freeing each subpatch, as shown in
the figure below, which shows the top-left area of the main window (descending to the end of Patch # 1):

The “Next Subpatch” Button

The “Next Subpatch” button (shortcut key: Spacebar) starts each subpatch in sequential order. In
theory, during a live performance of Eternal Owl Call, the electronics performer should only need to
press this button, or the spacebar, to perform the entire piece from start to finish.

141

142

The display panel underneath this button indicates which subpatch is next in the sequence. This
value is determined by referencing the last subpatch to have been started or freed by the program. When
the final subpatch is reached the panel will display ‘Next Subpatch = END”.

In addition, a useful shortcut key to free the last subpatch performed is Ctrl+Backspace.

The “Start” and “Free” Buttons

These buttons start or free each subpatch in the program. The “Start” button will create audio
synths used by that by the corresponding subpatch or change values on existing synths. Once a subpatch
has been started, the button’s background colour turns black and its label changes to “Restart”. If you
press it again (i.e. ‘restart’ the subpatch) any synths already created by that subpatch will be silenced,
freed and overwritten to avoid any loss of computer memory.

The “Free” buttons will silence and free any synths created by the corresponding subpatch and
restore any changed synth values to their previous settings. The “Free” button will also restore any other
settings which have been changed by the corresponding subpatch (e.g. if the subpatch triggers a crossfade
the source audio signal is restored; or if the microphone bus effects setting is changed, the previous
setting is restored).

In theory, you should not need to “Restart” or “Free” any subpatches during a live performance;
however, these buttons are very useful during rehearsals and might be required should anything go wrong
during a live performance.

The “Info?...” Buttons

The “Info?...” buttons open a separate window (the “Subpatch Info...” window; shortcut key:
Alt+l1), as shown below:

Subpatch Info... x

This window provides succinct information that explains which actions are performed by the “Start” and
“Free” button for each subpatch. This is a useful guide for the electronics performer and should be
consulted as a reference where necessary.

When this window is in focus, pressing Return or Esc will close it.

The Central Columns (Top Area)

The top area of the columns in the centre of the GUI contains buttons allocated for performing
general system and recording operations as follows:

The “Free All Synths” Button

The “Free All Synths” button (shortcut key: Ctri+Esc) will silence and free all active audio
synths created by the program, including anything scheduled on the SystemClock, TempoClock or
AppClock. It will also reset the next subpatch value to the first subpatch (i.e. “Next Subpatch = 1.01”).

The “Exit GUI” Button

The “Exit GUI” button (shortcut key: Esc) will minimise the GUI window in order for the user to
be able to easily exit the GUI screen and access other programs and windows that are active on the
operating system.

The “Reboot Program” Button

If the “Reboot Program” button is pressed (shortcut key: Ctri+B), you will first be presented with
a confirmation dialog window as follows:

Are you sure that you want
to reboot the program?...

If you confirm, all windows created by the program will first be closed and destroyed, SuperCollider’s
server will then be rebooted and a fresh GUI window will reopen with all values reset.

143

http://doc.sccode.org/Classes/SystemClock.html
http://doc.sccode.org/Classes/TempoClock.html
http://doc.sccode.org/Classes/AppClock.html

144

The Mode of Operation

There are two modes of operation: “Testing” and “Performance” (an explanation of each is
provided below). If you press on the button to change this setting, you will first be presented with a
confirmation dialog window as follows:

Change the mode setting to "Performance”?...

If you confirm, the mode of operation will toggle between both of these settings.

Testing Mode

Testing mode is the default mode of operation. This mode allows most buttons in program to
perform an action immediately after only being pressed once. Testing mode is ideal for testing the
program and for use during rehearsals. Many users will also find it to be practical during a live
performance; however, performance mode is a slightly safer mode to use during a live performance (as
explained below) and the electronics performer should consider which of the two modes of operation they
would prefer to use in such circumstances.

Performance Mode

Some users of the GUI may prefer to set the mode of operation to performance mode during a
live performance of Eternal Owl Call. Performance mode will allow the user to start each subpatch in the
correct order only without issuing a warning. However, if the user attempts to press any other button
which generates or frees a synth, or changes the effects processor settings (e.g. starting a subpatch in the
wrong order, freeing a subpatch, freeing all subpatches, auditioning a sample or effect, changing the
effects that the microphone channel is sent to, etc...) the user will first be presented with a confirmation
dialog window. As an example of this, here is the message which is displayed if the user attempts to start
a subpatch in the wrong order:

——

You are attempting to start a subpatch in the wrong sequential order!
Are you sure that you wish to start subpatch $#1.027..,

n
|
|
I

Record Mode

Record mode will allow the user to save the current session to disk as a 48 kHz, 16-bit AIFF file.
This will record all audio synths generated on SuperCollider’s RootNode, including the microphone
channel, to a single file. The file will be saved in the “recordings.dir” directory, which is located in the
program’s User Directory (described later on in this user guide).

Record mode can be switched on or off with the blue toggle button in top area of the central
columns. Record mode is switched on by default and a new file is automatically saved to disk when
record mode is switched off. In addition, a file will automatically be saved to disk if the node for
recording the session to disk is freed (e.g. following a call to CmdPeriod) or if the SuperCollider server
is quit.

The Last Recorded Session

If a session has been recorded at some point since the program was first run, the “Last Recorded
Session” buttons will allow the user to audition the last recorded session from within the program.

The “Play” and “Stop” buttons are self-explanatory; when “Play” is pressed, the button’s
background colour turns black and its label changes to “Replay”. If you press it again (i.e. ‘replay’ the
audio file) the synth already created to play the file will be silenced, freed and overwritten to avoid any
loss of computer memory.

The Audio Sample Auditioning Panel

The “Audio Sample Auditioning” panel, in the columns at the centre of the GUI, contains buttons
allocated for auditioning six audio samples as follows:

Mosquito Sample:

All six of these samples are pre-recorded sounds of natural wildlife, which are used as source
material for some of the program’s subpatches.

The “Play” and “Stop” buttons are self-explanatory; when “Play” is pressed, the button’s
background colour turns black and its label changes to “Replay”. If you press it again (i.e. ‘replay’ the
audio file) the synth already created to play the file will be silenced, freed and overwritten to avoid any
loss of computer memory.

145

http://doc.sccode.org/Classes/RootNode.html
http://doc.sccode.org/Classes/CmdPeriod.html

146

The Doppler Effect Auditioning Panel

The “Doppler Effect Auditioning” panel, in the columns at the centre of the GUI, contains
buttons allocated for auditioning four examples of the doppler-based effects processing synths, which are
used with some of the program’s subpatches as follows:

These doppler effects simulate the sensation of an audio signal (with the corresponding audio
sample as its source) circulating around the listener, falling in pitch as it moves behind the listener and
rising in pitch as it moves in front of the listener.

The “Sample Doppler” modifies the sample’s pitch (or ‘frequency’) by changing its sample rate
(i.e. changing its playback ‘speed’), as a result, the lower frequencies have a longer playback length than
the higher frequencies.

The “Formant Doppler” modifies the sample’s frequency by applying a grain-based formant
pitch-shift, as a result, a time-correction is applied to the pitch-shift and all frequencies within a specific
range will be of the same length as the original sample.

The “Play” and “Stop” buttons are self-explanatory; when “Play” is pressed, the button’s
background colour turns black and its label changes to “Replay”. If you press it again (i.e. ‘replay’ the
effect) the synth already created to play the effect will be silenced, freed and overwritten to avoid any loss
of computer memory.

The Microphone Bus Routing Panel

The “Microphone Bus Routing” panel, towards the bottom of the columns at the centre of the
GUI, contains buttons allocated for changing the effects processors that the microphone channel is sent to
as follows:

Direct Microphone Sig

Mi

verb + 12 Tap

Reverb + 12 Tap Delay + Comb Filter:

This panel will allow the musicians to audition each individual microphone effects setting during
a test or a rehearsal.

The panel is set to “Microphone to Reverb Channel” by default, because this is the effects setting
that is called for at the start of the score for Eternal Owl Call. If this setting is changed during a rehearsal,

147

the electronics performer must remember to change it back prior to beginning a performance of the piece,
unless the musicians have decided in advance that they would prefer a different effects setting at the
beginning of the piece (e.g. certain electronics performers might prefer to have a ‘dry’ flute signal at the
start of the piece by changing the initial setting to “Direct Microphone Signal Only™).

Several subpatches in the program will automatically change the microphone bus routing setting
(to correspond with Eternal Owl Call’s score) as follows:

Subpatch # Automatic Microphone Bus Routing Modification:

1.05 Changes to “Mic to Reverb + 7 Tap Delay”

2.11 Changes to “Direct Microphone Signal Only”

3.01 Changes to “Reverb + 12 Tap Delay + Comb Filter”, with
the comb filter’s amplitude value set to zero (i.e. ‘silent’)

3.03 Triggers the comb filter

3.04 Fades the comb filter to silence over 60 seconds

The Modulation Routine Settings Panel

The “Modulation Routine Settings” panel, at the bottom of the columns in the centre of the GUI,
contains buttons allocated for changing the modulation routine settings used with subpatches #1.02, #1.03
& #3.04 as follows:

The “Further Info?...” Button

The “Further Info?...” button opens a separate window (the “Modulation Info...” window), which
provides further information about these buttons as shown below:

Modulation Info... x

These buttons randomly set or free the
values sent to the frequency & panoramic
medulation routines used with subpatches

#1.02, #1.03 & #3.04...

When this window is in focus, pressing Return or Esc will close it.

148

The “Set” and “Free” Buttons

These buttons set or free the modulation values that are sent to the corresponding subpatches. The
“Set” button will randomly generate values sent to the frequency or panoramic modulation routines used.

When “Set” is pressed, the button’s background colour turns black and its label changes to
“Reset”. If you press it again (i.e. ‘reset’ the modulation values) new modulation values are randomly
generated and resent.

The “Free” buttons will set the frequency or panoramic modulation values to zero — effectively
removing any modulation.

The Top-Right Corner

The top-right corner of the GUI contains the following two utility buttons:

| EXIT Full Screen (F11) |

The Full Screen Toggle Button
This exits/enters full screen mode (shortcut key: F11).
The Help Button

This opens the help file (containing this user guide in PDF format; shortcut key: F1) in a separate
window.

The Post Window

The post window displays user information and debug messages which have been sent by the
program (e.g. when a button is pressed and an action performed etc...). The initial boot messages sent to
the post window are shown below:

Clear Post Window

Post Window data will be displayed here...

| Patch # 2 Debug Data | [Memory Size | Number of Audio Bus Channels |

The post window is modelled on the post window in SuperCollider IDE and the messages sent to the
GUI’s post window will also show up on SuperCollider IDE’s own post window. The user should
however bear in mind that general system-based exception, error or warning messages will not show up
on the GUIs post window and if a problem of this nature is being tested for then the user should monitor
SuperCollider’s own IDE in the usual way.

If the data shown in the post window exceeds the boundaries of its visual area a scrollbar will
occur on the right-hand side, allowing the user to navigate vertically.

The “Clear Post Window’ Button

The “Clear Post Window” button allows the user to clear any data which is visible in the post
window (shortcut key: Ctrl+Shift+P).

The *“Patch # 2 Debug Data” Button

The “Patch # 2 Debug Data” button will display data for helping with debugging the second
patch, which creates arrays of bell-like additive synths based on frequencies of the natural harmonic
series, as well as other bell-modelling synths.

The default debug data displayed by this button (i.e. prior to the creation of any synths) is
displayed below:

[Clear Post Window

B |'|i'|:
, nil, nil, nil]

, nil, nil, nil]

| Patch # 2 Debug Data | | Memory Size | |Number of Audio Bus Channels |

Subpatches #2.01-07 and #2.09 each contain either 3, 4 or 6 arrays of additive synths. The single value
attributed to subpatch #2.08 refers to a Routine, which loops a bass line of deep bell-modelled
synthesizer frequencies, created using the Klank class.

This debug button was useful during the software development process and will also be useful
should the second patch be further developed further.

149

http://doc.sccode.org/Classes/Routine.html
http://doc.sccode.org/Classes/Klank.html

150

The “Memory Size” Button

The “Memory Size” button displays the number of kilobytes of real-time memory allocated to the
server. This memory is used to allocate synths and any memory that unit generators themselves allocate
(for instance in the case of delay ugens which do not use buffers, such as CombN), and is separate from
the memory used for buffers. Setting this too low is a common cause of ‘exception in real time: alloc
failed” errors (SuperCollider’s default value is 8,192 kB).!

The default value can be modified from within SuperCollider IDE. As an example, evaluating the
follow line of code will double the default value:

s.options.memSize = 16384 // where s = the default server

The “Number of Audio Bus Channels” Button

The “Number of Audio Bus Channels” button displays the number of audio rate busses, which
includes input and output busses (SuperCollider’s defaut value is 128).

The default value can be modified from within SuperCollider IDE. As an example, evaluating the
follow line of code will double the default value:

s.options.numAudioBusChannels = 256 // where s = the default server

The Master, Scope & Analyzer Panels

Directly underneath the post window there are a number of panels for monitoring the musical
amplitude and frequency levels that are sent to the input and output channels as follows:

ANALYZER SETTINGS

[
| [}Ih' h|f l"l']

! As defined in the documentation for the ‘memSize’ instance method in SuperCollider 3.7alpha’s ServerOptions
class.
2 Ibid., for the ‘numAudioBusChannels’ instance method.

http://doc.sccode.org/Classes/CombN.html
http://doc.sccode.org/Classes/ServerOptions.html

The Master Panel

The master panel displays SuperCollider’s input/output meter levels. The “MASTER
SETTINGS” button has not yet been implemented. Once implemented, it will open an additional window
that will allow the user to modify dynamics processing levels on the master channels.

The Oscilloscope Panel

The oscilloscope panel displays an amplitude scope for both the left and right output channels.
The “SCOPE SETTINGS” button has not yet been implemented. Once implemented, it will open an
additional window that will allow the user to modify visual analysis parameters on the oscilloscope.

The Frequency Analyzer

The frequency analyzer panel displays an amplitude against frequency scope, ranging from -96 to
0 dB and 0-24,000 Hz respectively. The “L” and “R” buttons will switch between the analysis data on the
left and right-hand sides separately.

The “ANALYZER SETTINGS” button has not yet been implemented. Once implemented, it will
open an additional window that will allow the user to modify visual analysis parameters on the frequency
analyzer.

The Server Levels Panel

The server levels panel at the bottom right-hand side of the GUI displays data relating to
SuperCollider’s server levels as follows:

17:09:26

The leftmost value displays the current time in hour:minutes:seconds format. The server values display
the following data (respectively from left to right):

o Peak CPU usage

o Average CPU usage

e Number of running UGens

e Number of running Synths

e Number of Groups

o Number of loaded SynthDefinitions

151

http://doc.sccode.org/Classes/UGen.html
http://doc.sccode.org/Classes/Synth.html
http://doc.sccode.org/Classes/Group.html
http://doc.sccode.org/Classes/SynthDef.html

152

Closing and Destroying the GUI Window

The shortcut key Ctrl+Q will open a confirmation dialog window that allows the user to
permanently close and destroy the main GUI window. Confirming this action will also close and destroy
any other GUI windows that have been created by the program.

The GUI window can also be closed in the same way by exiting full screen mode and closing the
window by clicking on the cross in the top right-hand corner of the window (shortcut key: Alt+F4).

The user should bear in mind that when the GUI window is closed in this way, the synths created
by the program will still be running in the background. In such circumstances, if the user needs to re-
access GUI functionality then the GUI should be reopened, as described in the Running Eternal Owl
Call’s Performance Interface section at the start of this user guide.

Killing the Program Using CmdPeriod

The shortcut key Ctrl+. (on Linux or Windows) or Cmd+. (on Mac OSX), which calls
SuperCollider’s commonly used CmdPeriod function(s), will close all GUI windows and kill all synths
created by the program. This is the best way to fully quit the program.

When CmdPeriod is called in this way, the following warning message will show in
SuperCollider IDE’s post window:

Post window Auto Scroll

The User Directory

The user directory is located at the path shown in the post window when the program is first
booted as follows:

Directory path for reading/writing =

fhome/garethhs . local re/SuperCollider/Extensions ses.d/Comp
ositions.d/Bl: uan,d/Nr3 Eternal_oOwl_call,

http://doc.sccode.org/Classes/CmdPeriod.html
http://doc.sccode.org/Classes/CmdPeriod.html

153

An example of this directory opened in a graphical OS environment is shown below:

Activities i Tue 19:16 (= I
< > < Compositions.d Blodyn-Tylluan.d Nr3_Eternal_Owl_Call.d CZ_EternalOwlCall.d recordings.dir Q| = v 2E x
.

@ Recent L . —

audio.dir help.dir info.dir recordings.dir CZ_EternalOwlCall_ test_00.scd
™ Home
151.sc
[Desktop

[Documents
< Downloads
dd Music

[Pictures

H Videos

‘lE Trash
Devices

Vista
Computer
Network

27 Browse Network

E Connect to Server

e The *audio.dir” directory is used for storing the audio files that are used by the program

e The “help.dir” directory is for storing the user documentation files

e The “info.dir” directory is for storing information files (e.g. the file that is opened when the
“Subpatch Info...” window is opened)

e The “recordings.dir” directory is the location where the program’s recording sessions are saved
(as described in the previous section on Record Mode)

e The .sc file contains the SuperCollider library class required for running this program

e The .scd file contains a SuperCollider document that was used for testing the library class

154

Shortcut Keys for Real-Time Performance Interface GUI

Main Window

Spacebar - Plays the next subpatch

Ctrl+Backspace - Frees the last subpatch

Esc - Exits the GUI screen (i.e. minimises the window)

Ctrl+Esc - Frees all active audio synthesizers, including anything
registered on the SystemClock, TempoClock or AppClock

Ctrl+B - Reboots the program

Ctrl+Shift+P - Clears the post window

F1 - Opens the help PDF file

F11 - Exits/enters full screen mode

Ctrl+Q - Closes and destroys the GUI window(s)

Ctrl+. - Kills all active SuperCollider synths and routines and

closes/destroys the GUI window(s)

Additional Windows

Alt+I - Opens the Subpatch Information Window
[internal: Return or Esc to close]

(no shortcut key) - Modulation Information Window
[internal: Return or Esc to close]

(activated by other commands) - Confirmation Dialog Window
[internal: Return/Esc to confirm/cancel]

Generic Qt-Language Commands Inherited By Each Window
[in Linux Fedora Version 20]

Alt+F4 - Closes and destroys the GUI window(s)
Alt+Tab - Changes the window via a toggle screen
Alt+Esc - Returns to the last active window

Alt+Spacebar - Opens the window menu Llist

Super+H - Minimizes the window
Super+Up - Maximizes the window
Super+Down - Unmaximizes the window
Alt+F7 - Moves the window

Alt+F8 - Resizes the window

http://doc.sccode.org/Classes/SystemClock.html
http://doc.sccode.org/Classes/TempoClock.html
http://doc.sccode.org/Classes/AppClock.html

Example Run Script

The following SuperCollider code is an example of a script that can be used for running Eternal
Owl Call’s performance interface and GUI. The commented-out text that follows the initial script
provides technical information and other background information relating to the development of the
program and the composition of the piece:

z = CZ EternalOwlCall() // this boots the program and opens the GUI

/*
if you close and destroy the GUlI window while audio synths are still
running you can reopen the GUI window with one of the two following
commands. . .

*/

z.reopenGUI

CZ_EternalOwlCall.class_zpi_pointer.reopenGUI

/**

To run this program and load the GUI move the cursor to the first line of this script and press either
Ctrl+Enter or Shift+Enter (Linux or Windows) or either Cmd+Enter or Shift+Enter (Mac OSX).
A written summary of the program is provided in the comments below...

Author of this Application: Mr Gareth Olubunmi Hughes (1 July 2014 - Present)
Copyright (c) : Mr Gareth Olubunmi Hughes (1 July 2014 - Present)
Date of Completion: 11 January 2016

This application has been created with the SuperCollider programming language for use with a musical
composition for bass flute with live electronic processing, written for performance/recording by avant-
garde flautist Carla Rees and the Rarescale contemporary music ensemble. The composition is called
“Eternal Owl Call” and depicts the Celtic mythological fable of Blodeuwedd, a beautiful maiden who is
conjured from flowers and oak to marry a prince but flees and is eventually transformed into an owl for
all eternity as punishment for her sin.

The application contains three large patches (which are each divided into respective sub-patches), which
generate electronic sounds/effects, read audio files through buffers and process/modify the live flute
sound via a microphone signal. Each respective sub-patch should be triggered at a given point in time as
indicated in the score.

Students are welcome to perform this piece and to experiment with the source code below; however, if
this material is used for the purposes of either a professional performance/recording or the source code is
used or modified in any professional capacity then please consult Gareth Hughes (currently a PhD
candidate @ The School of Music, Cardiff University, Wales, UK), who is both the composer of the
corresponding piece and the author of this computer code.

155

156

The code was originally generated and tested using a computer with the following specification...
SuperCollider version 3.7alpha0

OS: Linux Fedora version 20 (with Planet CCRMA + real-time kernel modification)

Hardware: Gateway MATY laptop with 15.4” screen, Intel 1.73GHz dual-core processor, 2GB RAM,
150GB (5,400 rpm) hard-drive, Focusrite Scarlett 2i2 USB audio interface, Audio Technica AT4040
condenser microphone.

The application has also been tested on an iMac running Mac OSX and SuperCollider version 3.66

However, a workstation or laptop with a higher specification than above is recommended by the author
for the purposes of a professional performance or recording as follows...

Recommended System Requirements:

Supercollider version 3.6 or higher.

OS: Linux Fedora/Ubuntu (or any other suitable Linux or UNIX distribution which is supported by
SuperCollider), any version of Mac OSX which is supported by SuperCollider. The application has not
been tested on MS Windows at the time of writing.

CPU: Intel or AMD dual-core or quad-core processor (including the Intel i3, i5 & i7 series) with a base
clock-speed of at least 2.0 GHz.

Memory: 4GB RAM or higher.

Hard Drive: 7,200 rpm or SSD hard-drives are recommended (even on a laptop if possible). Hard drives
with 5,400 rpm transfer speed are reasonable but not ideal.

Audio Interface: Any professional-grade soundcard which supports 24-bit audio.

Microphone: Any professional-grade condenser microphone that is suitable for recording a woodwind
instrument.

Rarescale recommend the Neumann KM184 (or similar 180 series cardiod mic) fixed on a stand and/or a
Sony ECM77B microphone attached to the headjoint of the flute (as recommended by Michael Oliva and
specified on Carla Rees” www.bassflute.co.uk website).

Generally, a normal recording position attached to or near the bass flute is fine; no special or unorthodox
microphone placement is required for this piece.

In addition to the electronically generated sounds and signal processors created by this application, the
script also requires six specifically named audio files to run correctly. These files must be saved in a
directory named “audio.dir”, which must be located in the same directory as the application’s class script.

The audio files are sound recordings of wildlife, which have been obtained from the Macaulay Library at
the Cornell Laboratory of Ornithology (CLO), Ithaca, New York, USA (via the recommendation of Dr
Avrlene Sierra, who also recently utilised birdsong recordings from this exhaustive audio/video file archive
in her composition “Urban Birds” for three pianos and live electronics). A copyright agreement has been
reached between Gareth Hughes and CLO for the use of these audio files in the corresponding piece.

All six sound recordings are 16-bit, 48,000 Hz AIFF files. Caution must be taken to ensure that
SuperCollider is running at the correct sample rate when this application runs, otherwise the playback rate
on the files will not be at the correct speed.

http://www.bassflute.co.uk/

Each respective audio file has the following attributes...

Filename: TawnyOwl_Germany_04.aiff

Author(s) of the Original Sound Recording: Claus Konig

Location of the Original Sound Recording: Baden-Wurttemberg, Germany
Time & Date of the Original Sound Recording: No information

Length of the Original Sound Recording: 01:21

Common Name(s) of Species Recorded: Tawny Owl

Latin/Scientific Name(s) of Species: Strix Aluco

Macaulay Library Catalog #: 4539

Sound Recording Edited By: Gareth Olubunmi Hughes

Length of the Edited Sound Recording: 01:18

Filename: Otter_Peru_PigmyOwl_03.aiff

Author(s) of the Original Sound Recording: NPR/NGS Radio Expeditions; Charles Munn;
Walter Mancilla Huaman

Location of the Original Sound Recording: Madre de Dios, Peru

Time & Date of the Original Sound Recording: 14:20, 23 October 1999

Length of the Original Sound Recording: 01:43:51

Common Name(s) of Species Recorded: Undulated Tinamou; Giant Otter; Pigmy Owl

Latin/Scientific Name(s) of Species: Crypturellus undulatus; Pteronura Brasiliensis; Glaucidium

Macaulay Library Catalog #: 141271

Sound Recording Edited By: Gareth Olubunmi Hughes

Length of the Edited Sound Recording: 03:35

Filename: Otter_CostaRica_Streams&Birdsong_01.aiff

Author(s) of the Original Sound Recording: David L. Ross, Jr.
Location of the Original Sound Recording: Heredia, Costa Rica
Time & Date of the Original Sound Recording: 00:00, 3 March 1991
Length of the Original Sound Recording: 12:10

Common Name(s) Species Recorded: Long-Tailed Otter
Latin/Scientific Name(s) of Species: Lontra Longicaudis

Macaulay Library Catalog #: 72667

Sound Recording Edited By: Gareth Olubunmi Hughes

Length of the Edited Sound Recording: 06:05

Filename: NeotropicalFrog_Amazon_Brasil_01.aiff

Author(s) of the Original Sound Recording: Richard Bierregaard
Location of the Original Sound Recording: Amazonas, Brazil

Time & Date of the Original Sound Recording: 19:45, 18 February 1989
Length of the Original Sound Recording: 02:39

Common Name(s) of Species Recorded: Neotropical Frog
Latin/Scientific Name(s) of Species: Leptodactylus Rhodomystax
Macaulay Library Catalog #: 43749

Sound Recording Edited By: Gareth Olubunmi Hughes

Length of the Edited Sound Recording: 01:56

157

158

Filename: NeotropicalFrog_Peru2_01.aiff

Author(s) of the Original Sound Recording: Madre de Dios, Peru
Location of the Original Sound Recording: Curtis Marantz

Time & Date of the Original Sound Recording: 16:47, 9 August 1994
Length of the Original Sound Recording: 02:48

Common Name(s) of Species Recorded: Neotropical Frog
Latin/Scientific Name(s) of Species: Leptodactylus Pentadactylus
Macaulay Library Catalog #: 76075

Sound Recording Edited By: Gareth Olubunmi Hughes

Length of the Edited Sound Recording: 02:18

Filename: Mosquito_CostaRica_01.aiff

Author(s) of the Original Sound Recording: David L. Ross, Jr.
Location of the Original Sound Recording: Heredia, Costa Rica
Time & Date of the Original Sound Recording: 10:30, 19 May 1996
Length of the Original Sound Recording: 02:39

Common Name(s) of Species Recorded: Mosquitos

Latin/Scientific Name(s) of Species: Culicidae

Macaulay Library Catalog #: 184738

Sound Recording Edited By: Gareth Olubunmi Hughes

Length of the Edited Sound Recording: 01:13

*/

159

APPENDIX 7

SuperCollider Documentation & Source Code for the Z Library:

A class extension library added and used for the creation of
Eternal Owl Call’s electronic performance interface

160

Contents

Pages 163-219

SuperCollider Class Extension Library Documentation:

Pages 163-5
Pages 166-77

Pages 178-82

Pages 183-5
Pages 186-93
Pages 194-7
Pages 198-9
Pages 2004
Pages 206-7
Pages 208-12
Pages 214-5

Pages 216-9

Introduction to the Z_Library

CZ_EternalOwlCall A performance interface for use with Hughes's
“Eternal Owl Call”” composition

QCZ _EternalOwlCall_GUI A GUI front-end for use with Hughes's
“Eternal Owl Call”” composition

QZ_Analyzer A 2-channel frequency analysis window

QZ_AnalyzerView A 2-channel frequency analysis view

Qz_ConfirmDialog A customizable dialog window utility with user options

QZ_Meter A stereo i/o amplitude meter window

QZ_MeterView A stereo i/o amplitude meter view

QZ_Scope A stereo oscilloscope window

QZ_ScopeView A stereo buffer plotting view

QZ_ServerLevelsPanel A window indicating the current time and the
CPU usage levels on a SuperCollider server

QZ_ServerLevelsPanelView A view indicating the current time and the
CPU usage levels on a SuperCollider server

Pages 220-308

SuperCollider Class Extension Library Source Code:

Pages 220-62
Pages 264-87
Pages 288-94
Page 294

Pages 296-7
Pages 298-301

CZ EternalOwlCall

QCZz EternalOwlCall GUI

QZ AnalyzerView

QZ_Analyzer [same file as QZ_ AnalyzerView]
Qz ConfirmDialog

QZ MeterView

Pages 301-2
Pages 303-5
Page 305

Pages 306-7
Pages 307-8

QZ_Meter [same file as QZ MeterView]

QZ_ScopeView
QZ_Scope [same file as QZ ScopeView]

QZ ServerlLevelsPanelView

QZ_ServerLevelsPanel [same file as QZ_ServerLevelsPanelView]

161

162

Z_Library

Introduction to the Z_Library

An Introduction to the Z Library Class Extension Library

See also: Using Extensions, Using Quarks, Writing Classes

The Z_Library is a SuperCollider class extension library, which has been added by composer and software
developer Gareth Olubunmi Hughes, primarily to support the performance of live electroacoustic music. The
extension library includes additional class definitions that can be used for data handling, sound generation or
analysis, building GUIs and interfaces that are designed to be used for the creation and performance of a

particular musical composition or related item of creative work.

Class Name Semantics

The respective class hames of generic Z_Library classes have the "Z_" prefix (i.e. "Zed Underscore" [British
English] or "Zee Underscore" [American English]). Additional letters are also often added to the start of this

prefix to represent further specifics relating to that particular class as follows:

e "Z" hy itself represents a generic Z Library class (typically used for data handling, algorithms,

controlling values and sound generation or analysis),

® "Q" represents a GUI-based class that has been constructed by interfacing the C++ Qt-language API

with SuperCollider (i.e. 'QtCollider"),

e "J" represents a GUI-based class that has been constructed by interfacing the Java Swing Toolkit API

with SuperCaollider (i.e. 'JCollider"),
® "C"represents a class relating to a particular item of compositional work.

At the time of writing, the following class extensions have been added to the Z_Library:

CZ_EternalOwlCall

QCZ_EternalOwlCall_GUI
QZ_Analyzer
QZ_AnalyzerView
QZ_ConfirmDialog
QZ_Meter

QZ_MeterView
QZ_Scope
QZ_ScopeView

QZ_ServerLevelsPanel

QZ_ServerLevelsPanelView

A performance interface for use with Hughes's "Eternal Owl Call"
composition

A GUI front-end for use with Hughes's "Eternal Owl Call" composition
A 2-channel frequency analysis window

A 2-channel frequency analysis view

A customizable dialog window utility with user options

A stereo i/o amplitude meter window

A stereo i/o amplitude meter view

A stereo oscilloscope window

A stereo buffer plotting view

A window indicating the current time and the CPU usage levels on a
SuperCollider server

A view indicating the current time and the CPU usage levels on a
SuperCollider server

163

http://doc.sccode.org/Guides/UsingExtensions.html
http://doc.sccode.org/Guides/UsingQuarks.html
http://doc.sccode.org/Guides/WritingClasses.html

164

Syntax Semantics on Variables and Methods

Class definitions which are added to the Z_Library tend to follow fairly rigorous naming conventions,
especially on variables and methods which have more than one word in them. As is explained in the above
section, class names typically start with a prefixed letter combination (in uppercase), followed by an
underscore, followed by a word combination written in UpperCamelCase.

Class Methods or Functions (i.e. anything within the class which can receive arguments or parameters) are
normally written in LowerCamelCase. As examples of this, within the CZ_EternalOwICall class, bellPitchSynth
is a method which can receive up to three arguments, whilst playSample is a getter pointing to a function
which can receive up to five arguments.

Class values which are written in words_separated by underscore format represent either conventional
variables (i.e. Integers, Floats, Booleans, Chars, Strings etc...), collections (i.e. Arrays, Lists etc...) or objects
(i.e. instances of any other more specific class, which is not a conventional variable or collection). As
examples of this, within the QZ_ ServerLevelsPanelView class, hour_stamp, is a getter which points to a
string (i.e. a conventional variable), time_label and server_label are both getter/setters which point to
instances of the QStaticText class (i.e. they are both objects) whilst level l|abel is a getter/setter which points
to an Array containing six separate instances of the QStaticText class (i.e. a collection).

These naming conventions are applied predominantly; however, there will be some exceptions, in particular
where it is sensible to retain historical SuperCollider conventions on certain variable names.

Directory Extension Semantics

Many of the directories within the Z_Library have extensions at the end of their respective names which
represent different meanings (i.e. ".d" or ".dir"). These unique directory extensions can be especially useful
when searching the library from within a command-line operating system terminal or writing batch scripts to
process files/directories within the library.

The ".d" extension represents a directory that has been added by a software developer, which generally
contains class, help or plug-in definition(s) or further subdirectories within it which also contain such
definition(s). As examples of this, "Z_Library.d" is the library's root directory, containing all of the library's
definitions whilst "Z_Libray.dIClasses/IGUIL.d" is one of its subdirectories, containing all of the library's
GUI-related class definitions.

The ".dir" extension represents a directory that is used by a class or a program for the purposes of
reading/writing data and may also represent a directory which has been automatically created from within the
class or from within a program running on that class. As example of this, if you go to the default user directory
for the CZ_EternalOwlCall class, returned by evaluating the following line of code:

CZ_EternalOwlCall. filenameSymbol.asString.dirname

you will notice that the directory includes a number of subdirectories with a ".dir" extension. The "audio.dir"
directory contains a number of audio files which are read and processed by the class whilst the
"recordings.dir" directory is reserved by the class as an area for writing audio files to disk. In addition, if a
"recordings.dir" directory does not already exist within the class's directory then a new directory with that
name is created by calling the File: *mkdir method.

These naming conventions are applied predominantly; however, there will be some exceptions, in particular
where it is sensible to retain historical SuperCollider conventions on certain directory names. As an example,
the Z_Library extension's root directory contains three immediate subdirectories named "Classes",
"HelpSource" and "Pluglns” (i.e. without a directory extension) as this adheres to convention within the root
directory of any SuperCollider class library or class extension library (see the Using Extensions: How
Extensions Folders Should be Organised guide section for further information on this).

http://doc.sccode.org/Guides/UsingExtensions.html#How Extensions Folders Should be Organised
http://doc.sccode.org/Guides/UsingExtensions.html#How Extensions Folders Should be Organised

165

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Guides/Z_Library-
Introduction.schelp

link::Guides/Z_Library-Introduction::

sc version: 3.7alpha0

166

Z_Library>Compositions

CZ EternalOwilCall

A performance interface for use with Hughes's "Eternal Owl Call" composition.

Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/Compositions.d/Blodyn-Tylluan.d/
Nr3_Eternal_Owl_Call.d/CZ_EternalOwlCall.d/CZ_EternalOwICall_155.sc
Inherits from: Object

See also: QCZ_EternalOwlCall_GUI

Description

CZ_EternalOwlCall is a performance interface for use with Gareth Olubunmi Hughes's mixed medium
composition "Eternal Owl Call", for bass flute & live electronics. Its commands and methods should be
controlled by an instance of the QCZ_EternalOwlICall_GUI GUI class, which is automatically created
when a new instance is called.

Example:

z = CZ_EternalOwlCall() // this boots the program and opens the GUI

/*
if you close and destroy the GUI window while audio synths are still running
you can reopen the GUI window with one of the two following commands. ..

*/

z.reopenGUI

CZ_EternalOwlCall.class zpi pointer.reopenGUI

Class Methods

* new

Creates a new CZ_EternalOwlCall instance. The method does not require any arguments.

* initSynthDefs

Initiates several SynthDefs used by this class at StartUp as follows:

// SynthDef to record the session and save to disk:
\recordSession

// SynthDefs & buses for effects processors:
\stereoReverbChannel

\combChannel

12.do{ arg i; "delayTap"++i } // 12 separate delay taps
\atmosphericReverbChannel

// SynthDefs for sample playback:
\stereoSamplePlayer
\monoToStereoSamplePlayer
\monoSamplePlayer

// SynthDefs for sample doppler effects:
\monoCircularSampleDoppler
\stereoTriangularSampleDoppler
\monoCircularFormantDoppler
\stereoTriangularFormantDoppler

// SynthDefs for sample pitch shifts & frequency modulation:
\monoSampleShift

\monoToStereoSampleShift

\monoToStereoFormantShift

// SynthDef for the bell modelling synth:
\grandfatherClockPitch

// SynthDefs for the modular synths:
\midModPulse

\lowModPulse

\bassPulse

* valid_instance_count

*

*

*

*

*

valid_instance_count = value

The count of valid instances to be created by this class. By default this cannot exceed 1. This is to
prevent the potentially problematic creation of multiple instances of this powerful, memory-
consuming interface. If the user attempts to create a second valid instance of this class a warning is
sent to the post window and the subsequent object is rendered invalid, meaning that it cannot be
used in any meaningful way.

Returns:

an Integer

invalid_instance_count

invalid_instance_count = value
The count of invalid instances to be created by this class. See above for further clarification.
Returns:

an Integer

allow_multiple_instances
allow_multiple_instances = value

WARNING: General SuperCollider users should avoid modifying this value!

A Boolean indicating whether multiple valid instances of this class can be created or not (as
explained above). The default value is false and this should only ever need to be modified for
advanced software development-related reasons.

Returns:

a Boolean

168
* class_zpi_pointer
* class_zpi_pointer = value

A pointer to the last valid instance to be created by this class.

Returns:

an object pointer to an instance of CZ_EternalOwlCall (i.e. this class!)

* server

The server which the performance interface is running on.

Returns:

an instance of Server

Inherited class methods

9 methods from Object » show

Instance Methods

Data Handling

- valid_instance
- valid_instance = value

A Boolean indicating whether the instance is valid or not. This is determined by evaluating the
*valid_instance_count and *allow_multiple_instances class variables. If the instance returns false
then it cannot be used in any meaningful way.

Returns:

a Boolean

- next_patch
- next_patch = value

The pch value for the next sequential subpatch (e.g. for subpatch # 1.05, pch = 1).

Returns:

an Integer

- next_subpatch
- next_subpatch = value

The sub value for the next sequential subpatch (e.g. for subpatch # 1.05, sub = 5).

169

Returns:

an Integer

- last_patch

- last_patch = value
The pch value for the last sequential subpatch (e.g. for subpatch # 1.05, pch = 1).
Returns:

an Integer

- last_subpatch

- last_subpatch = value
The sub value for the last sequential subpatch (e.g. for subpatch # 1.05, sub = 5).
Returns:

an Integer

- dpath

The root directory path which the program reads from and writes to. This value is set when the
-programStart method is called.

This normally returns CZ_EternalOwlCall. filenameSymbol.asString.dirname
Returns:

a String

Booting & Rebooting
- programStart (directory path)

Boots or reboots the program and loads the GUI.

Arguments:

directory_path The root directory path which the program reads from and writes to. This will
also be automatically written to the -dpath value.

Discussion:

Example:

z = CZ_EternalOwlCall() // this boots the program and opens the GUI
z.programStart(CZ_EternalOwlCall. filenameSymbol.asString.dirname) // reboots

170

Subpatches
- subpatch (pch: 1, sub: 1)
Starts or restarts a subpatch.

Arguments:
pch an Integer representing the patch value

sub an Integer representing the subpatch value

Discussion:

Example:

z = CZ_EternalOwlCall() // this boots the program and opens the GUI

// Start/Restart Each Subpatch ...
// Patch #1 ... Atmospheric reverb is sent to the microphone signal

z.subpatch(1,01) // Ambient neotropical nature sounds fade in
z.subpatch(1,02) // Harmonized owl call emerges and freq mod is added
z.subpatch(1,03) // Pan modulation is added to the owl & frog sounds
z.subpatch(1,04) // Audio signal fades out over 142.5 seconds
z.subpatch(1,05) // Adds 7 delay taps to the atmospheric reverb channel
// Patch #2 ... Additive Synths. ..

z.subpatch(2,01) // 2nd, 3rd & 5th partials of (3

z.subpatch(2,02) // 5th, 3rd & 2nd partials of D3

z.subpatch(2,03) // 2nd, 3rd, 5th & 7th partials of Db2

z.subpatch(2,04) // 7th, 5th, 3rd & 2nd partials of Eb2

z.subpatch(2,05) // 2nd, 5th, 3rd & 7th partials of F2

z.subpatch(2,06) // 2nd, 3rd, 5th & 7th partials of G2

z.subpatch(2,07) // 7th, 11th & 13th partials of both C3 & D3
z.subpatch(2,08) // Adds a looped bass line of deep bell-like pitches
z.subpatch(2,09) // 17th, 19th & 23rd partials of both (3 & D3
z.subpatch(2,10) // Silences each synth in patch #2 & owl call xfades in
z.subpatch(2,11) // Removes reverb/delay from the mic input... END OF SECTION
// Patch #3 ...

z.subpatch(3,01) // Adds reverb & 12 delay taps to the synths and mic input
z.subpatch(3,02) // Adds a bass pulse & modulated sine waves
z.subpatch(3,03) // Adds a comb filter

z.subpatch(3,04) // xfades reverberated synths & modulated nature sounds
z.subpatch(3,05) // xfades nature sounds & reverberated/delayed owl call
z.subpatch(3,06) // Fades out to silence... END OF SECTION

- freeSub (pch: 1, sub: 1)

Frees or reverses a subpatch.

Arguments:
pch an Integer representing the patch value

sub an Integer representing the subpatch value

Discussion:

Example:

z = CZ_EternalOwlCall() // this boots the program and opens the GUI

// Free or Reverse
// Patch #1 ...

z

N NNNNNXNNNNNNNINNNNNNINNNNNN

.freeSub(1,0
.freeSub(1,0
.freeSub(1,0
.freeSub(1,0
.freeSub(1,0

U WNRE

/ Patch #2 ...

.freeSub(2,01
.freeSub(2,02
.freeSub(2,03
.freeSub(2,04
.freeSub(2,05
.freeSub(2,
(
(
(
(

.freeSub

.freeSub

2
2
2
2
2
.freeSub(2

’
’
’
’
’

/ Patch #3 ...

.freeSub (3,01
.freeSub (3,02
.freeSub(3,03
.freeSub (3,04
.freeSub (

.freeSub(

— — — — ~— ~—

3,05
3,06

- freeAllSynths

Frees all active audio synths, including anything scheduled on the SystemClock, TempoClock or
AppClock. This also resets the microphone bus routing setting to "Microphone to Reverb

Channel".

Each Subpatch ...

| Frees PlayBuf synths from corresponding subpatch. ..

Stops pan modulation and restores original pan values
Restarts all previous subpatches in patch #1
Removes 7-tap delay from the reverb channel

I
I
I
| Frees additive synths from corresponding subpatch. ..
I
I

Stops owl call and clears routine to free additive synt
Adds 7-tap delay and reverb back onto the mic signal

I
I
I
I
I
I
I
I
I
hs

Restores 7-tap delay/reverb with only a direct mic signal

Frees modular synths
Silences the comb filter

Restores ReverbGroupChannel & restarts modular synths...

Restarts the modulated nature sounds fade-in
Restarts all previous subpatches in patch #3

Modulation Routines

setFreqModulation

Returns a Function which sets or resets the randomly generated frequency modulation values sent to

subpatch #1.02, #1.03 & #3.04.

setPanModulation

Returns a Function which sets or resets the randomly generated panoramic modulation values sent

to subpatch #1.02, #1.03 & #3.04.

freeFreqModulation

Returns a Function which frees the frequency modulation values sent to subpatch #1.02, #1.03 &

#3.04.

freePanModulation

Returns a Function which frees the panoramic modulation values sent to subpatch #1.02, #1.03 &

#3.04.

171

172

Microphone Effects Bus Routing

- directMicrophoneSignal

Returns a Function which sets the microphone bus routing setting to "Direct Microphone Signal
Only".

- sendMicToBus_Reverb

Returns a Function which sets the microphone bus routing setting to "Microphone to Reverb
Channel".

- sendMicToBus_Reverb 7TapDelay

Returns a Function which sets the microphone bus routing setting to "Mic to Reverb + 7 Tap
Delay".

- sendMicToBus_Reverb_12TapDelay

Returns a Function which sets the microphone bus routing setting to "Mic to Reverb + 12 Tap
Delay".

- sendMicToBus_Reverb_12TapDelay_Comb

Returns a Function which sets the microphone bus routing setting to "Reverb + 12 Tap Delay +
Comb Filter".

Dynamics Processing

- masterChannel

Sets the values of a low-cut filter and a peak limiter on the RootNode.

Recording & Playback

- startRecording

Returns a Function which starts recording the RootNode's audio signal to a 16-bit, 48kHz AIFF file.
The file is saved in the "recordings.dir" directory, which is a subdirectory of the path returned by
the -dpath method.

- stopRecording

Returns a Function which stops recording the RootNode's audio signal and saves the session to a
16-bit, 48kHz AIFF file.

- playLastRecordedSession

Returns a Function which plays the last recorded session, providing that at least one session has
been recorded since the program was first started.

Audio Sample & Effetcs Auditioning

- playSample

Returns a Function which allows the user to play and audition any one of the six audio samples,

which are used as source material for some of the program's subpatches.

Arguments:

(symbol)

(channels)

(rate)

(start_pos_secs)

(loop)

Discussion:

Example:

The symbolic name of the audio file to be played. This directs the function to
the buffer index of the corresponding audio file.

Number of audio channels that the buffer will be (i.e. mono = 1, stereo = 2).
This must be a fixed integer. The architecture of the SynthDef cannot
change after it is compiled.

The ratio of the sample playback speed: 1.0 is the server's sample rate, 2.0
is one octave up, 0.5 is one octave down -1.0 is backwards normal rate...
etc. Interpolation is cubic.

The start position of the audio file in seconds.

An Integer indicating whether the audio sample will loop or not (off = 0, on =
1). This is modulateable.

z = CZ_EternalOwlCall() // this boots the program and opens the GUI

// Audio file auditioning commands ...

z.playSample. (symbol:"TawnyOwl" ,channels:1, rate:1, start pos secs:0, loop:1)
z.playSample. (symbol: "PigmyOwl" ,channels:2, rate:1, start pos secs:0, loop:1)
// start pos secs:285, to get 'colourful splashes' at end of otter file...

z.playSample. (symbol:"Otter" ,channels:1, rate:1, start pos secs:0, loop:1)
z.playSample. (symbol:"FrogAmazon",channels:1, rate:1, start pos secs:0, loop:1)
z.playSample. (symbol:"FrogPeru2" ,channels:1, rate:1, start pos secs:0, loop:1)
z (:2, rate:1, start pos secs:0, loop:1)

.playSample. (symbol:"Mosquito" ,channels

// free audition playback. ..

z.freeAudition. ()

- playDoppler

Returns a Function which allows the user to play and audition four examples of the doppler-based

processing synths, which are used with some of the program's subpatches.

Arguments:

(symbol) The symbolic name of the audio file which the effect is applied to. This directs the

function

to the buffer index of the corresponding audio file and also indicates the type

of doppler effect required (i.e. sample or formant-based).

Discussion:

Example:

z = CZ_EternalOwlCall() // this boots the program and opens the GUI

// Doppler auditioning commands ...
z.playDoppler. (symbol:"OtterSampleDoppler")
z.playDoppler. (symbol: "MosquitoSampleDoppler")

173

174

z.playDoppler. (symbol:"OtterFormantDoppler")
z.playDoppler. (symbol: "MosquitoFormantDoppler")

// free audition playback. ..
z.freeAudition. ()

- freeAudition

Returns a Function which frees any audio sample that is being auditioned in the program.

Bell Modelling (Patch # 2)

- bellPitchSynth (semitone offset: 0, pan: 0, amp: 0.0875)

Plays a bell synth pitch, generated using the Klank class and the \grandfatherClockPitch
SynthDef (a definition added by this class at StartUp via the *initSynthDefs class method). The synth
created will automatically be freed following its release using a doneAction value of 2 on its
envelope.

Arguments:

semitone_offset The offset, in semitones, from the default pitch of C3 (130.81Hz or
48.midicps).

pan The panoramic value.
amp The amplitude ratio.
Returns:

an instance of Synth

Discussion:
Example:

z = CZ_EternalOwlCall() // this boots the program and opens the GUI

48.midicps // returns the bell's default frequency
.bellPitchSynth() // plays (3
.bellPitchSynth(semitone offset: 2) // plays D3

E

.bellPitchSynth(semitone offset: -2) // plays Bb2
.bellPitchSynth(semitone offset: 0.5) // plays (3 + a quartertone

N N N N

- additiveSynth (midi value: 48, input partial: 2, input gain: 1, pan: 0,
isynth: 0, jsynth: 0, bell: true, fade in: 0.02, gate: 1, release time: 8)

Plays an array of bell-like additive synth pitches based on partials of the natural harmonic series. The
array contains a maximum of 11 elements, however any partial frequencies above 20kHz will be
rejected and not added to the array. Each additive synth element plays a SinOsc (i.e. sine wave)
synth modulated by a Pulse (i.e. square wave) amplitude filter.

Arguments:

midi_value The midi value of the lowest pitch which is heard when the input_partials arg = 2
(i.e. its default value). The fundamental pitch of the natural harmonics heard is
actually an octave lower than this (i.e. 36.midicps on the default).

175

input_partial The input partial of the harmonic series, which acts as the base (i.e. lowest
pitched) frequency value heard on the array of additive synths.

input_gain The input amplitude ratio.

pan The panoramic value.

isynth The p2[i] index of the 2-dimensional array where the synth is stored in memory.
jsynth The p2[j] index of the 2-dimensional array where the synth is stored in memory.
bell A Boolean indicating whether or not a \grandfatherClockPitch synth (called

via the -bellPitchSynth method) is heard on input frequency when the additive
synth is first started.

fade_in Not yet implemented.
gate The release gate (not yet implemented).

release_time Not yet implemented, however, the individual additive synth array elements can
be released by calling the Node: -release method and supplying a releaseTime
arg.
Returns:

an Array of additive synths

Discussion:

Example:

z = CZ_EternalOwlCall() // this boots the program and opens the GUI

z.additiveSynth(input _gain: 6) // plays partials of (3
z.additiveSynth(input _gain: 6, midi value: 50) // plays partials of D3

a.free // frees synth 'a
b.size.do{ arg i; b[i].release(10) } // releases synth 'b' over 10 seconds

- p2_DebugData

Dumps debug data for the bell-modelling arrays in patch # 2.

GUI
- gui
- gui = value

A pointer to the performance interface's corresponding GUI window.

Returns:

an object pointer to an instance of QCZ_EternalOwlCall_GUI

- reopenGUI

This method allows the user to reopen the GUI window if it has already been closed/destroyed while
the program's synths are still running.

176

Inherited instance methods

314 methods from Object » show

Undocumented instance methods
- addTaps (taps: 7, new at start: true)

- bus_Reverb (new at start: true, delay bus exists: false,
comb bus exists: false)

- bus_Reverb_12TapDelay

- bus_Reverb_12TapDelay_Comb (start comb: true)
- bus_Reverb__7TapDelay

- directMicSignal

- freeAdditiveSub (i)

- freeEffects

- freeFreqgMod

- freeNeotropicalAmbience

- freeOwlHarmonizer

- freePanMod

- freeSynths p2 (i min, i max, j min, j max, sum, interval)
- freqModLoop (wait before: 30, wait after: 0)
- initBuses

- initProgram (directory path)

- initSubpatchFlags

- init_p2

- invalidSubpatch (pch, sub)

- neotropicalAmbience (fade in: 15, target)

- owlHarmonizer (mod at start: true, wait before: 30, wait after: 0, target)
- panModLoop

- setLastSubpatchValue (pch, sub)

- setNextSubpatchValue (pch, sub)

- validSubpatch (pch, sub, symbol: "started")

177

- validateSubpatch (flag, pch, sub)

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes
/CZ_EternalOwICall.schelp

link::Classes/CZ_EternalOwlCall::

sc version: 3.7alpha0

178

Z_Library>Compositions, Z_Library>GUI>Interfaces

QCZ_EternalOwlCall_GUI

A GUI front-end for use with Hughes's "Eternal Owl Call" composition.
Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/Compositions.d/Blodyn-Tylluan.d/
Nr3_Eternal_Owl_Call.d/QCZ_EternalOwlICall_GUI.d/QCZ_EternalOwlCall_GUI_92.sc
Inherits from: QWindow : Object

See also: CZ_EternalOwlCall

Description

QCZ _EternalOwlCall_GUI is a GUI front-end for use with Gareth Olubunmi Hughes's mixed medium
composition "Eternal Owl Call", for bass flute & live electronics. Its functionality controls an instance of the
CZ_EternalOwlCall performance interface class.

A new instance of QCZ_EternalOwlCall GUI is automatically created when a new instance
CZ_EternalOwlCall is called - this is the most logical way to instantiate this class and users should refer to
the coding example at the start of the documentation for the CZ_EternalOwlCall class for guidance on
how this should be done.

It is also possible to link the two classes by instantiating the QCZ_EternalOwlCall_GUI class and
supplying a corresponding CZ_EternalOwlCall instance as an argument. However, this method of running
the program is not recommended because it will cause the SuperCollider server to be booted twice.

Example:

/*
WARNING: This is not the recommended method to run the program because
it will cause the SuperCollider server to be booted twice...

*/
g = QCZ_EternalOwlCall_GUI(CZ_EternalOwlCall.new) // boots and opens the GUI

/*
if you close and destroy the GUI window while audio synths are still running
you can reopen the GUI window with one of the two following commands. ..

*/

g.zpi.reopenGUI

CZ_EternalOwlCall.class zpi pointer.reopenGUI

Class Methods

* new (zpi pointer,

name: "Eternal Owl Call : Real-Time Performance Interface", bounds,
resizable: true, border: true, server, scroll: true)

Creates a new QCZ_EternalOwlCall_GUI instance.
Arguments:

zpi_pointer A pointer to the GUI's corresponding instance of CZ_EternalOwlICall (the
performance interface which handles data, as well as the allocation and freeing of
audio-rate and control-rate ugens and synths).

name A String for the text that will be displayed in the title bar. The defaultis "Eternal
Owl Call : Real-Time Performance Interface".

179

bounds A Rect specifying position and size of the window. The size does not include the
border and title bar. Position is measured from the bottom-left corner of the screen
(this is different than View: -bounds).

resizable A Boolean indicating whether this window is resizable by the user. The default is
true.

border A Boolean indicating whether this window has a border. Borderless windows have
no title bar and thus can only be closed in code. The default is true.

server This is a dummy argument which is here to provide compatibility with SwingOSC
and has no effect.

scroll A Boolean indicating whether this window will add scrollbars if its contents exceed
its bounds. If this is set to true, then View: -resize settings will be ignored for
contained views. The default is true.

* class_gui_pointer
* class_gui_pointer = value

A pointer to the last valid instance to be created by this class.

Returns:

an object pointer to an instance of QCZ_EternalOwlCall_GUI (i.e. this class!)

* server

The server which the performance interface is running on.

Returns:

an instance of Server

Inherited class methods

9 methods from QWindow » show
9 methods from Object » show
Instance Methods

- post_window

- post_window = value

The text view for the post window, which is contained within the main GUI window.

Returns:

an instance of TextView

180
- z_meter_view
- z_meter_view = value

The amplitude meter view which is contained within the main GUI window.
Returns:

an instance of QZ_MeterView

- z_scope_view
- z_scope_view = value
The oscilloscope view which is contained within the main GUI window.

Returns:

an instance of QZ_ScopeView

- z_analyzer_view
- z_analyzer_view = value

The frequency analyzer view which is contained within the main GUI window.
Returns:

an instance of QZ_AnalyzerView

- z_server_levels_panel_view
- z_server_levels_panel_view = value

The server levels panel view which is contained within the main GUI window.
Returns:

an instance of QZ_ServerLevelsPanelView

- zpi
- zpi = value

A pointer to the GUI's corresponding performance interface (which handles data, as well as the
allocation and freeing of audio-rate and control-rate ugens and synths).

Returns:

an object pointer to an instance of CZ_EternalOwlICall

181

- postMsg (value, line feed: true)

Posts a value as a string on the post window.

Arguments:

value The value to be posted below any text which already exists on the post window. If the
value supplied is not a string, then the method will convert it into one.

line_feed A Boolean to indicate whether or not a "\n" character (i.e. a 'line feed') is
automatically added to the end of the string. The default value is true

Returns:

the String which is returned by the post window's TextView

- setNextLabel

Sends the correct information to the "Next Subpatch” label.

- setMode (value)

Sets the program's mode of operation.

Arguments:

value An Integer, where 0 = Testing Mode and 1 = Performance Mode

- setRecordModeButton (mode: 'on')

Sets the value on the record mode button. This will not perform the value action, it will simply change
the button's value.

Arguments:

mode This must be either \on or \off

- freeRecPlayButton

Resets the default play value on the "Last Recorded Session" button. This will not perform the value
action, it will simply change the button's value.

- freePlayButtons

Resets the default play values on the "Last Recorded Session", "Audio Sample Auditioning" and
"Doppler Effect Auditioning"” buttons. This will not perform any value actions, it will simply change the
buttons' values.

182

- setMicBusButton (i)

Sets a value on the "Microphone Bus Routing" button and resets all the other buttons to their
respective default values (as only one setting can exist at any given time). This will not perform any
value actions, it will simply change the buttons' values.

Arguments:

i The index of the "Microphone Bus Routing" panel's button array, where:

® [0] = "Direct Microphone Signal Only"

® [1] = "Microphone to Reverb Channel"

® [2] = "Mic to Reverb + 7 Tap Delay"

® [3] = "Mic to Reverb + 12 Tap Delay"

® [4] = "Reverb + 12 Tap Delay + Comb Filter"

- closeOtherWindows

Closes all windows in the GUI, except for the main window (namely the confirmation dialog window,
the subpatch information window and the modulation information window).

Inherited instance methods

37 methods from QWindow » show
315 methods from Object » show

Undocumented instance methods

- openDialog (bounds: 'default', message: 'default',
button strings: 'default', completion function)

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes
/QCZ_EternalOwlCall_GUl.schelp

link::Classes/QCZ_EternalOwlCall_GUI::

sc version: 3.7alpha0

183

Z_Library>GUI>Interfaces, GUI>Interfaces

QZ_Analyzer

A 2-channel frequency analysis window.

Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUls.d/QtCollider.d/Signal_Analysi
s.d/QZ_Analyzer.d/QZ_Analyzer_028.sc
Inherits from: QWindow : Object

See also: QZ_AnalyzerView, FreqScopeView, FreqScope

Description

QZ_Analyzer displays a QWindow containing a QZ_ AnalyzerView, which is a 2-channel (stereo)
frequency analyzer showing the frequency spectrum of two separate audio busses.

Example:
s.boot // boot the server first!
w = QZ_Analyzer() // opens the frequency analysis window
w.close // closes the window

Class Methods

* new (name: "Z Analyzer", bounds, resizable: false, border: true, server,
scroll: false)

Creates a new QZ_Analyzer instance.

Arguments:
name A String for the text that will be displayed in the title bar. The default is "Z_Analyzer".

bounds A Rect specifying position and size of the window. The size does not include the
border and title bar. Position is measured from the bottom-left corner of the screen
(this is different than View: -bounds).

resizable A Boolean indicating whether this window is resizable by the user. The default is
false.

border A Boolean indicating whether this window has a border. Borderless windows have no
title bar and thus can only be closed in code. The default is true.

server This is a dummy argument which is here to provide compatibility with SwingOSC and
has no effect.

scroll A Boolean indicating whether this window will add scrollbars if its contents exceed its
bounds. If this is set to true, then View: -resize settings will be ignored for contained
views. The default is false.

Inherited class methods

9 methods from QWindow » show
9 methods from Object » show

Instance Methods

184
- z_analyzer_view
- z_analyzer_view = value
The frequency analysis view which is contained within the QWindow

Returns:

an instance of QZ_AnalyzerView

Inherited instance methods

37 methods from QWindow » show
315 methods from Object » show

Examples

s.boot // boot the server first!

w = QZ_Analyzer() // opens the frequency analysis window

p4

w.z_analyzer view // creates a pointer to the window's QZ AnalyzerView() instance

// play sounds...
(
a { SinOsc.ar(freq:330, mul:0.35) }.play;

b { Pan2.ar(SinOsc.ar(freq:220), pos:1, level:0.35) }.play;
)

// change the button colors...

z.freqscope settings button.states = [["ANALYZER SETTINGS", Color.white, Color.blue]]
// change the title label color...

z.freqscope label.stringColor = Color.white

// change the "L" button properties...

z.left button.states = [["0", Color.cyan, Color.magenta.alpha (0.25)]]

// change the "R" button properties...

z.right button.states = [["1", Color.yellow, Color.magenta.alpha (0.25)]]

// change the scope display colors...

(

z.wave color left

z.wave color right
)

// change the color of the grid readings...
z.readings color = Color.white

// change the gridline colors...

(

z.grid color left

z.grid color_right
)

// resize the window and view bounds and increase the number of readings...

[Color.cyan];
[Color.yellow];

Color.green;
Color.red;

(

w.bounds = Rect(200,500,835,492);
.freq_readings width = 700;
.db_readings height = 400;
.number_of freq readings = 18;
.number _of db readings = 17;

N

~ N N N

// free sounds...
(

a.free; a = nil;

b.free; b nil;

)

w.close // close the window

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes/QZ_Analyzer.schelp

link::Classes/QZ_Analyzer::
sc version: 3.7alpha0

185

186

Z_Library>GUI>Views, GUI>Views

QZ_AnalyzerView

A 2-channel frequency analysis view.
Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUls.d/QtCollider.d/Signal_Analysi

s.d/QZ_Analyzer.d/QZ_Analyzer_029.sc
Inherits from: QView : QObject : Object

See also: QZ_Analyzer, FreqScopeView, FreqScope

Description

QZ_AnalyzerView is a 2-channel (stereo) frequency analyzer which shows the frequency spectrum of two
separate audio busses. The class extends QView and can be added as a cell into a QWindow or one of
the window's child views. QZ_AnalyzerView also supports the implementation of QZ_Analyzer.

Class Methods

* new (parent, bounds)

Creates a new instance of QZ_AnalyzerView that can be passed as a child view to a QView or a
QWindow, effectively placing it within the parent's visual space. If there is a decorator installed on the
parent, it will manage the position of the new QZ_AnalyzerView.

NOTE: Qt GUI:

The 'parent’ argument may be omitted, in which case the view will be displayed as a window on its
own, when shown.

The 'bounds' argument may be omitted, in which case the view will be created with its preferred
size at position (0,0).

If a parent is given and there is a layout installed on it, the layout will manage the position and size
of this view and the 'bounds' argument will have no effect.

Arguments:

parent The instance of QView or QWindow that the new view will become a child of.

bounds A Rect or a Point describing the size and position of the new QZ_AnalyzerView. If a
Point is given, its coordinates will denote the view's size, while the view's position will
be (0,0). Position is measured relative to the parent's top-left corner.

Returns:

a new instance of QZ_AnalyzerView

* server

The server from which the analyer is reading.

Returns:

an instance of Server

187

* sample_rate

The sample rate which the server is running at.
Returns:

a sample rate value

Inherited class methods

15 methods from QView » show
16 methods from QObject » show
9 methods from Object » show

Instance Methods

- freqscope_label
- freqscope_label = value

The title label.
Returns:

an instance of QStaticText

- freqscope_settings_button
- freqscope_settings_button = value

The "ANALYZER SETTINGS" button.
Returns:

an instance of QButton

- left_button
- left_button = value

The "L" button.

Returns:

an instance of QButton

- right_button
- right_button = value

The "R" button.
Returns:

an instance of QButton

188

- readings_color
- readings_color = color

The string color of the numerical readings on the grid.
Returns:

an instance of Color

- grid_color_left
- grid_color_left = color

The color of the gridlines and the border for the left channel display.
Returns:

an instance of Color

- grid_color_right

- grid_color_right = color
The color of the gridlines and the border for the right channel display.
Returns:

an instance of Color

- wave_color_left
- wave_color_left = color

The color of the waveform on the left channel display. This must be wrapped inside an array to work
correctly (i.e. [color]).

Returns:

an Array containing a single instance of Color

- wave_color_right
- wave_color_right = color

The color of the waveform on the right channel display. This must be wrapped inside an array to work
correctly (i.e. [color]).

Returns:

an Array containing a single instance of Color

- number_of freq_readings

- number_of freq_readings = n

189
The number of individual frequency readings displayed.

Returns:

an Integer

- freq_readings_width
- freq_readings_width = width

The width of the frequency readings area.

Returns:

an Integer

- freq_readings_height
- freq_readings_height = height

The height of the frequency readings area.

Returns:

an Integer

- number_of_db_readings
number_of_db_readings = n

The number of individual decibel readings displayed.

Returns:

an Integer

db_readings_width
db_readings_width = width

The width of the decibel readings area.

Returns:

an Integer

db_readings_height
db_readings_height = height

The height of the decibel readings area.

Returns:

an Integer

190

- freqscope_left
- freqscope_left = value

The frequency analyzer for the left channel.
Returns:

an instance of FreqScopeView

- freqscope_right
- freqscope_right = value

The frequency analyzer for the right channel.
Returns:

an instance of FreqScopeView

- freqscope_left_view
- freqscope_left_view = value

A panel to which the frequency analyzer for the left channel is added. This also provides the color for
the border behind the view.

Returns:

an instance of QView

- freqscope_right_view
- freqscope_right_view = value

A panel to which the frequency analyzer for the right channel is added. This also provides the color
for the border behind the view

Returns:

an instance of QView

191

- drawReadings (view, width, height, number of readings: 5, unit suffix: "",
last _string: true, min_reading: 0, max reading: 100,
direction: 'horizontal', shape: 'lin', reading position: 'tail', line color)

Adds a horizontal or vertical grid readings panel.

Arguments:
view an instance of QUserView.
width The view's width.
height The view's height.
number_of_readings The number of numerical readings.
unit_suffix The unit suffix (i.e. "Hz" or "dB").
last_string A boolean indicating whether the last reading needs to be wrapped
inside the visual area or not.
min_reading The minimum reading.
max_reading The maximum reading.
direction The readings direction (i.e. \horizontal or \vertical).
shape The shape of the increment values (i.e. \lin, \log or \exp).
reading_position The position where the readings values occur (i.e. \head or \tail).
line_color The Color of the gridlines.
Returns:

an instance of QUserView
Discussion:
Example:
s.boot // boot first!
// create a new UserView()
QZ_AnalyzerView(); // allocate memory
QUserView() .alwaysOnTop (true).background (Color.black);

.bounds = Rect(200,200,200,40);
.front;

~ C C C N —

// add readings to the user view...
(
z.drawReadings (
view:u,
width:150,
height:25,
last string:false,
line color:Color.white
) .refresh
)

u.close // close the user view
z.close // free memory

192

- formatFreqValue (float, unit suffix: "", suffix: false)

Formats a musical frequency value.

Arguments:
float A float value receiver
unit_suffix The unit suffix (e.g. "Hz" for frequency).

suffix A boolean indicating whether the suffix is added to the string or not.

Returns:

A formatted String

Discussion:
Example:
s.boot // boot first!
z = QZ_AnalyzerView() // allocate memory
z.formatFreqValue(float:6821.359174, unit suffix:"Hz", suffix:true) // returns "6.8kHz
z.close // free memory

- refreshReadings (index: 0)

Refreshes the analysis grid, implementing any new colors or dimension values that have been
modified.

Arguments:

index The index of the channel to be displayed following a refresh (i.e. [0] = left, [1] = right).

Inherited instance methods

138 methods from QView » show
25 methods from QObject » show
315 methods from Object » show

Examples

s.boot // boot the server first!

// configure the window. ..

(
w = QWindow (
"My Analyzer", Rect(400,200,550,235)
) .alwaysOnTop_ (true).background (Color.black);

z = QZ_AnalyzerView(w.asView);

w.onClose = { z.close }; // frees the synth memory allocated
w.front;

)

// play sounds...

(

{ SinOsc.ar(freq:330, mul:0.35) }.play;

{ Pan2.ar(SinOsc.ar(freq:220), pos:1, level:0.35) }.play;

a
b
)

// change the button colors...

z.freqscope settings button.states = [["ANALYZER SETTINGS", Color.white, Color.blue]]
// change the title label color...

z.freqscope label.stringColor = Color.white

// change the "L" button properties...

z.left button.states = [["0", Color.cyan, Color.magenta.alpha (0.25)]]

// change the "R" button properties...

z.right button.states = [["1", Color.yellow, Color.magenta.alpha (0.25)]]

// change the scope display colors...

(

z.wave color left
z.wave color right
)

// change the color of the grid readings...
z.readings color = Color.white

// change the gridline colors...

(

z.grid color left
z.grid color_right
)

// resize the window and view bounds and increase the number of readings...

[Color.cyan];
[Color.yellow];

Color.green;
Color.red;

.bounds = Rect(200,500,835,492);
.freq_readings width = 700;
.db_readings height = 400;
.number_of freq readings = 18;
.number _of db readings = 17;

—~ N N NN 5 —~

// free sounds...
(
a.free; a
b.free; b
)

nil;
nil;

w.close // close the window

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes
/QZ_AnalyzerView.schelp

link::Classes/QZ_AnalyzerView::

sc version: 3.7alpha0

193

194

Z_Library>GUI>Accessories, Libraries>crucial>GUI, GUI>Accessories

QZ_ConfirmDialog

A customizable dialog window utility with user options.

Source: /Thome/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUIs.d/QtCollider.d/Dialogs.d/QZ_

See also: ModalDialog, Sheet

Description

ConfirmDialog.d/QZ_ConfirmDialog_13.sc
Inherits from: QWindow : Object

QZ_ConfirmDialog displays a borderless QWindow which acts as a customizable dialog window utility. A
variable number of buttons can be added to the dialog, along with corresponding action functions.

Example:

d = QZ_ConfirmDialog() // opens the dialog window
d.close // closes the dialog window

Class Methods

* new (button strings, button string colors, name: "Confirm Dialog...",
bounds, resizable: true, border: false, server, scroll: false)

Creates a new QZ_ConfirmDialog instance.

Arguments:

button_strings

button_string_colors

name

bounds

resizable

border

server

scroll

An array of strings (i.e. one for each respective option button). The
number of buttons created on the dialog window is determined by the
size of this array.

An array of string colors (i.e. one for each respective option button).

A String for the text that will be displayed in the title bar. The default is
"Confirm Dialog...", however because the window has no border, the
title bar is invisible in any case.

A Rect specifying the position and size of the window. The size does not
include the border and title bar. Position is measured from the
bottom-left corner of the screen (this is different than View: -bounds).

A Boolean indicating whether this window is resizable by the user. The
default is true.

A Boolean indicating whether this window has a border. Borderless
windows have no title bar and thus can only be closed in code. The
default is false.

This is a dummy argument which is here to provide compatibility with
SwingOSC and has no effect.

A Boolean indicating whether this window will add scrollbars if its
contents exceed its bounds. If this is set to true, then View: -resize
settings will be ignored for contained views. The default is false.

195

* server

The server which the GUI is running on.
Returns:

an instance of Server

Inherited class methods

9 methods from QWindow » show
9 methods from Object » show

Instance Methods

- message
- message = value

A panel containing the option message to the user.
Returns:

an instance of QStaticText

purple
The default string color of the option message.
Returns:

an instance of Color

button_string_array

button_string_array = value

An array of strings (i.e. one for each respective option button). Setting this value will not modify the
button strings displayed on the dialog window; however, this can be done by setting the button string
properties on the array of QButtons returned by the button method.

Returns:

an Array containing a variable number of instances of the String class

- string_color_array
- string_color_array = value

An array of string colors (i.e. one for each respective option button). Setting this value will not modify
the button string colors displayed on the dialog window; however, this can be done by setting the
button color properties on the array of QButtons returned by the button method.

Returns:

an Array containing a variable number of instances of the Color class

196

- button

- button = value
The array of option buttons on the dialog window.
Returns:

an Array containing a variable number of instances of the QButton class

- completion_function
- completion_function = value

An array of completion functions (i.e. one for each respective option button). If no action is required
on a particular button then the corresponding function value should be set to nil.

The default completion function for each respective option button sends a message to the post
window explaining how to configure the function and its args.

Returns:

an Array containing a variable number of instances of the Function class

- args
- args = value

An array of argument sets (i.e. one for each respective completion function). If no arguments are
required on a particular completion function then the corresponding args value should be set to []
(i.e. an empty array).

Returns:

a 2-dimensional Array containing the sets of arguments that are passed to the completion
function array specified above (i.e. [argl, arg2, arg3, etc..])

Inherited instance methods

37 methods from QWindow » show
315 methods from Object » show

Examples

// default...
QZ_ConfirmDialog()

// example with 1 button...
(

d = QZ_ConfirmDialog(["Done"], bounds:Rect(500,300,250,125));
d.message.string = "The action has been performed!...";

’
n_n

)

// example with 3 buttons...
QZ_ConfirmDialog(["Yes", "No", "Cancel"], bounds:Rect(500,300,280,150))

// example with 5 buttons...
(
d = QZ_ConfirmDialog(
button strings:["Yes", "No", "Cancel", "Reboot",

"Quit"],

button string colors:[Color.blue, Color.magenta, Color.grey,

Color.red, Color.green]);
d.message.align = \center;

)

// example with a completion function array...
(

d = QZ_ConfirmDialog(["Post", "Cancel"], bounds:Rect(500,300,250,125));

d.message.string = "Send a post window message?...";

// example of a completion function array with args..

(

d.completion function = [{ "A message has been sent!".postln }, nil 1;
)

d = QZ_Confirmbialog(["Fruit", "Veg", "Salad"], bounds:Rect(500,300,280,125));
d.message.string ("Choose an item type...").align_ (\center);

d.args = [
/* Fruit args... */ ["Apple","Orange","Banana"l],
/* Veg args... */ ["Carrot","Parsnip"],

/* Salad args... */ ["Lettuce","Tomato", "Cucumber","Celery"]

1;

3.do{ arg i;
d.completion function[i] = { |w,X,y,Z|

("" ++ d.args[i].size ++ " \"" ++ d.button string array[i]

++ "\" args were supplied... ").postln;
d.args[i].size.do{ arg j;
d.args[i]l[j].postln

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes

/QZ_ConfirmDialog.schelp
link::Classes/QZ_ConfirmDialog::
sc version: 3.7alpha0

197

198

Z_Library>GUI>Interfaces, GUI>Interfaces

QZ_Meter

A stereo i/o amplitude meter window.

Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUls.d/QtCollider.d/Signal_Analysi

s.d/QZ_Meter.d/QZ_Meter 28.sc
Inherits from: QWindow : Object

See also: QZ_MeterView, ServerMeterView, ServerMeter

Description

QZ_Meter displays a QWindow containing a QZ_MeterView stereo input/output amplitude meter.

Example:

s.boot
w = QZ_Meter (
w.close

// boot the server first!
) // opens the meter window
// closes the window

Class Methods

* new (name: "Z Meter", bounds, resizable: false, border: true, server,

scroll: true)

Creates a new QZ_Meter instance.

Arguments:

name

bounds

resizable

border

server

scroll

A String for the text that will be displayed in the title bar. The default is "Z_Meter".

A Rect specifying position and size of the window. The size does not include the
border and title bar. Position is measured from the bottom-left corner of the screen
(this is different than View: -bounds).

A Boolean indicating whether this window is resizable by the user. The default is
false.

A Boolean indicating whether this window has a border. Borderless windows have no
title bar and thus can only be closed in code. The default is true.

This is a dummy argument which is here to provide compatibility with SwingOSC and
has no effect.

A Boolean indicating whether this window will add scrollbars if its contents exceed its
bounds. If this is set to true, then View: -resize settings will be ignored for contained
views. The default is true.

Inherited class methods

9 methods from QWindow » show

9 methods from Object » show

Instance Methods

- z_meter_view

- z_meter_view = value
The i/o amplitude meter view which is contained within the QWindow
Returns:

an instance of QZ_MeterView

Inherited instance methods

37 methods from QWindow » show
315 methods from Object » show

Examples

s.boot // boot the server first!

QZ_Meter() // opens the meter window
ounds = Rect(600,250,150,150)
w.z meter view // creates a pointer to the window's QZ MeterView() instance

ol

w
W.
z

// change the background color

z.background = Color.white;

// change the button properties...

z.master settings button.states = [["MASTER SETTINGS", Color.yellow, Color.black]]
// change the input label properties...

z.in label.string ("IN").stringColor (Color.red).background (Color.white);
// change the output label properties...

z.out label.string ("OUT").stringColor (Color.red).background (Color.white);
// change the max label colors...

z.max_label.stringColor (Color.blue).background (Color.white);

// change the min label colors. ..

z.min_ label.stringColor (Color.blue).background (Color.white);

// change the separator line color...

z.separator_line.background = Color.magenta

// play sounds...
(
a
b
)
// free sounds. ..
(

a.free; a
b.free; b
)

{ SinOsc.ar(freq:330, mul:0.35) }.play;
{ Pan2.ar(SinOsc.ar(freq:220), pos:1, level:0.35) }.play;

nil;
nil;

w.close // close the window

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes/QZ_Meter.schelp
link::Classes/QZ_Meter::
sc version: 3.7alpha0

199

200

Z_Library>GUI>Views, GUI>Views

QZ_MeterView

A stereo i/o amplitude meter view.
Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUIs.d/QtCollider.d/Signal_Analysis.d/Q
Z_Meter.d/QZ_Meter_28.sc
Inherits from: QView : QObject : Object

See also: QZ_Meter, ServerMeterView, ServerMeter

Description

QZ_MeterView is a stereo input/output amplitude meter which extends QView and can be added as a cell into
a QWindow or one of the window's child views. QZ_MeterView also supports the implementation of QZ_Meter.

Class Methods

* new (parent, bounds)

Creates a new instance of QZ_MeterView that can be passed as a child view to a QView or a QWindow,
effectively placing it within the parent's visual space. If there is a decorator installed on the parent, it will
manage the position of the new QZ_MeterView.

NOTE: Qt GUI:

The 'parent' argument may be omitted, in which case the view will be displayed as a window on its own,
when shown.

The 'bounds' argument may be omitted, in which case the view will be created with its preferred size at
position (0,0).

If a parent is given and there is a layout installed on it, the layout will manage the position and size of
this view and the 'bounds' argument will have no effect.

Arguments:
parent The instance of QView or QWindow that the new view will become a child of.

bounds A Rect or a Point describing the size and position of the new QZ_MeterView. If a Point is
given, its coordinates will denote the view's size, while the view's position will be (0,0).
Position is measured relative to the parent's top-left corner.

Returns:

a new instance of QZ_MeterView

* server

The server from which the meter synths are reading.
Returns:

an instance of Server

* initSynthDefs

Initiates a SynthDef used by this class at StartUp as follows:

201

/*
outputs a control-rate ugen from an input signal
to a bus so that the signal's value can be read...
*/
SynthDef (\monoOutput, { |bus, channel]
Out.kr(bus, Amplitude.kr(In.ar(channel)))
}) .add;

Inherited class methods

15 methods from QView » show
16 methods from QObject » show
9 methods from Object » show

Instance Methods

input_bus

- input_bus = value

The busses which read the data values of the input channels.
Returns:

an Array containing two separate instances of Bus (i.e. [0] = left, [1] = right)

output_bus

output_bus = value
The busses which read the data values of the output channels.
Returns:

an Array containing two separate instances of Bus (i.e. [0] = left, [1] = right)

input_signal

input_signal = value

The synths which represent the data values of the input channels. These are control-rate synths which
represent the audio-rate signal being sent to the Soundin class.

Returns:

an Array containing two control-rate synths (i.e. [0] = left, [1] = right)

- output_signal
- output_signal = value

The synths which represent the data values of the output channels. The synths are generated via the
\monoOutput SynthDef (a definition added by this class at StartUp via the initSynthDefs class method).

Returns:

an Array containing two instances of Synth (i.e. [0] = left, [1] = right)

202

input_level
input_level = value

The GUI views showing the input signals.
Returns:

an Array containing two separate instances of QLevellndicator (i.e. [0] = left, [1] = right)

output_level
output_level = value

The GUI views showing the output signals.

Returns:

an Array containing two separate instances of QLevellndicator (i.e. [0] = left, [1] = right)

input_level routine
input_level routine = value

The routines for updating the input signal levels displayed by the GUI.

Returns:

an Array containing two separate instances of Routine (i.e. [0] = left, [1] = right)

output_level_routine
output_level_routine = value

The routines for updating the output signal levels displayed by the GUI.

Returns:

an Array containing two separate instances of Routine (i.e. [0] = left, [1] = right)

master_settings_button
master_settings_button = value

The "MASTER SETTINGS" button.

Returns:

an instance of QButton

in_label
in_label = value

The "Input” label.

Returns:

an instance of QStaticText

out_label
out_label = value

The "Output” label.

Returns:

an instance of QStaticText

max_label

max_label = value

The label for the maximum amplitude level.

Returns:

an instance of QStaticText

min_label
min_label = value

The label for the minimum amplitude level.

Returns:

an instance of QStaticText

separator_line

separator_line = value

The vertical bar which separates the input and output meters.

Returns:

an instance of QView

freeUGens

Frees the level indicator routines and ugens that have been created by the program. The signal synths will
only be freed if they are playing at the point when this method is called (verified via a call to the Node: -

isPlaying method).

freeSynths

Frees the signal synths, regardless of whether they are playing or not.

Inherited instance methods

138 methods from QView » show
25 methods from QObject » show
315 methods from Object » show

203

204

Examples

s.boot // boot the server first!

// configure the window. ..
(
w = QWindow (
"My Meter", Rect(600,250,150,350)
) .alwaysOnTop (true).background (Color.grey);

z = QZ_MeterView(w.asView);

w.onClose = { // free the synth memory allocated...
z.close;
z.freeSynths;

b

w.front;

)

// change the background color

w.background = Color.white;

// change the button properties...

z.master_settings button.states = [["MASTER SETTINGS", Color.yellow, Color.blackl]]
// change the input label properties..

z.in label.string ("INPUT").stringColor_ (Color.red).background (Color.white);
// change the output label properties...

z.out label.string ("OUTPUT").stringColor_ (Color.red).background (Color.white);
// change the max label colors...

z.max_label.stringColor (Color.blue).background (Color.white);

// change the min label colors...

z.min_label.stringColor (Color.blue).background (Color.white);

// change the separator line color..

z.separator_line.background = Color.magenta

// play sounds. ..
(
a
b
)
// free sounds...
(

a.free; a
b.free; b
)

{ SinOsc.ar(freq:330, mul:0.35) }.play;
{ Pan2.ar(SinOsc.ar(freq:220), pos:1, level:0.35) }.play;

nil;
nil;

w.close // close the window

source: /Thome/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes/QZ_MeterView.schelp
link::Classes/QZ_MeterView::
sc version: 3.7alpha0

205

206

Z_Library>GUI>Interfaces, GUI>Interfaces

QZ_Scope

A stereo oscilloscope window.

Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUls.d/QtCollider.d/Signal_Analysi

s.d/QZ_Scope.d/QZ_Scope_015.sc
Inherits from: QWindow : Object

See also: QZ_ScopeView, ScopeView, QScope2, Stethoscope, QStethoscope2

Description

QZ_Scope displays a QWindow containing a QZ_ScopeView stereo oscilloscope.

Example:

s.boot
w = QZ_Scope(
w.close

// boot the server first!
) // opens the oscilloscope window
// closes the window

Class Methods

* new (name: "Z Scope", bounds, resizable: true, border: true, server,

scroll: false

)

Creates a new QZ_Scope instance.

Arguments:

name

bounds

resizable

border

server

scroll

A String for the text that will be displayed in the title bar. The default is "Z_Scope".

A Rect specifying position and size of the window. The size does not include the
border and title bar. Position is measured from the bottom-left corner of the screen
(this is different than View: -bounds).

A Boolean indicating whether this window is resizable by the user. The default is
true.

A Boolean indicating whether this window has a border. Borderless windows have no
title bar and thus can only be closed in code. The default is true.

This is a dummy argument which is here to provide compatibility with SwingOSC and
has no effect.

A Boolean indicating whether this window will add scrollbars if its contents exceed its
bounds. If this is set to true, then View: -resize settings will be ignored for contained
views. The default is false.

Inherited class methods

9 methods from QWindow » show

9 methods from Object » show

Instance Methods

- Zz_scope_view

- z_scope_view = value
The oscilloscope view which is contained within the QWindow

Returns:

an instance of QZ_ScopeView

Inherited instance methods

37 methods from QWindow » show
315 methods from Object » show

Examples

s.boot // boot the server first!

w QZ_Scope() // opens the oscilloscope window

Z = w.z_scope_view // creates a pointer to the window's QZ ScopeView() instance
// change the button colors...

z.scope_settings button.states = [["SCOPE SETTINGS", Color.white, Color.blue]]
// change the title label color...

z.scope_label.stringColor = Color.white

// change the "L" label color..

z.left label .stringColor = Color.magenta

// change the "R" label color..

z.right label.stringColor = Color.green

// change the scope display colors...

z.scope_display.waveColors = [Color.magenta, Color.green |

// play sounds...
(
a
b
)
// free sounds...
(

a.free; a
b.free; b
)

{ SinOsc.ar(freq:330, mul:0.35) }.play;
{ Pan2.ar(SinOsc.ar(freq:220), pos:1, level:0.35) }.play;

nil;
nil;

w.close // close the window

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes/QZ_Scope.schelp
link::Classes/QZ_Scope::
sc version: 3.7alpha0

207

208

Z_Library>GUI>Views, GUI>Views

QZ_ScopeView

A stereo buffer plotting view.

Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUls.d/QtCollider.d/Signal_Analysi
s.d/QZ_Scope.d/QZ_Scope_015.sc
Inherits from: QView : QObject : Object

See also: QZ_Scope, Stethoscope, QStethoscope2, ScopeView, QScope2

Description

QZ_ScopeView is a stereo oscilloscope which extends QView and can be added as a cell into a
QWindow or one of the window's child views. QZ_ScopeView also supports the implementation of
QZ_Scope.

Class Methods

* new (parent, bounds)

Creates a new instance of QZ_ScopeView that can be passed as a child view to a QView or a
QWindow, effectively placing it within the parent's visual space. If there is a decorator installed on the
parent, it will manage the position of the new QZ_ScopeView.

NOTE: Qt GUI:

The 'parent’ argument may be omitted, in which case the view will be displayed as a window on its
own, when shown.

The 'bounds' argument may be omitted, in which case the view will be created with its preferred
size at position (0,0).

If a parent is given and there is a layout installed on it, the layout will manage the position and size
of this view and the 'bounds' argument will have no effect.

Arguments:
parent The instance of QView or QWindow that the new view will become a child of.

bounds A Rect or a Point describing the size and position of the new QZ_ScopeView. If a Point
is given, its coordinates will denote the view's size, while the view's position will be
(0,0). Position is measured relative to the parent's top-left corner.

Returns:

a new instance of QZ_ScopeView

* server
The server from which the scope synths are reading.
Returns:

an instance of Server

* initSynthDefs

Initiates a SynthDef used by this class at StartUp as follows:

/*
reads values from an audio bus, using ScopeOut2
to write it to a ScopeBuffer...

*/
SynthDef (\monoscope, { arg bus = 0, bufnum, zoom = 1.0;
var input;
input = In.ar(bus, 2);
// ScopeOut2 writes the audio to the buffer
ScopeOut2.ar(input, bufnum, 4096, 1024.0/zoom)
}).add

Inherited class methods
15 methods from QView » show
16 methods from QObject » show
9 methods from Object » show
Instance Methods

- scope_synth

- scope_synth = value

The scope synth which reads the data values. The synth is generated via the \monoscope SynthDef

(a definition added by this class at StartUp via the initSynthDefs class method)
Returns:

an instance of Synth

- scope_buffer
- scope_buffer = value

The scope buffer used by the \monoscope synth.
Returns:

an instance of ScopeBuffer

- scope_settings button
- scope_settings button = value

The "SCOPE SETTINGS" button
Returns:

an instance of QButton

- scope_label

209

210

- scope_label = value

The title label
Returns:

an instance of QStaticText

- left_label
- left_label = value

The "L" label
Returns:

an instance of QStaticText

- right_label
- right_label = value

The "R" label
Returns:

an instance of QStaticText

- scope_display
- scope_display = value
A 2-channel Qt-language oscilloscope display. Its wave colors can be modified by evaluating ...

scope_display.waveColors = [colorl, color2]

Returns:

an instance of QScope2

- XxZoom
- xZoom = float: 1

Gets or sets the scaling factor on the horizontal axis.
Returns:

a Float

- yZoom
- yZoom = float: 1

Gets or sets the scaling factor on the vertical axis.

211

Returns:

a Float

- freeScopeSynth

Frees the scope synth, regardless of whether it is playing or not.

Inherited instance methods

138 methods from QView » show
25 methods from QObject » show
315 methods from Object » show

Examples

s.boot // boot the server first!

// configure the window. ..
(
w = QWindow (
"My Scope", Rect(600,250,300,300)
) .alwaysOnTop (true).background (Color.black);

z = QZ_ScopeView(w.asView);

w.onClose = { // free the synth memory allocated...
z.close;
z.freeScopeSynth;

b

w.front;

)

// change the button colors...

z.scope_settings button.states = [["SCOPE SETTINGS", Color.white, Color.blue]]
// change the title label color...

z.scope_label.stringColor = Color.white

// change the "L" label color...

z.left label .stringColor = Color.magenta

// change the "R" label color..

z.right label.stringColor = Color.green

// change the scope display colors...

z.scope_display.waveColors = [Color.magenta, Color.green]

// play sounds. ..
(
a
b
)
// free sounds. ..
(

a.free; a
b.free; b
)

{ SinOsc.ar(freq:330, mul:0.35) }.play;
{ Pan2.ar(SinOsc.ar(freq:220), pos:1, level:0.35) }.play;

nil;
nil;

w.close // close the window

212

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes/QZ_ScopeView.schelp
link::Classes/QZ_ScopeView::
sc version: 3.7alpha0

213

214

Z_Library>GUI>Interfaces, GUI>Interfaces, Libraries>crucial>GUI

QZ_ServerLevelsPanel

A window indicating the current time and the CPU usage levels on a SuperCollider server.

Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUIs.d/QtCollider.d/Server.d/QZ_

ServerLevelsPanel.d/QZ_ServerLevelsPanel _16.sc
Inherits from: QWindow : Object

See also: QZ_ServerLevelsPanelView, Server

Description

Example:
s.boot // boot the server first!
w = QZ_ServerLevelsPanel() // opens the server levels window
w.close // closes the window

Class Methods

* new (name: "Z ServerLevelsPanel", bounds, resizable: false, border:
server, scroll: false)

Creates a new QZ_ServerLevelsPanel instance.

Arguments:

name A String for the text that will be displayed in the title bar. The default is
"Z_ServerLevelsPanel".

QZ_ServerLevelsPanel displays a QWindow containing a QZ_ServerLevelsPanelView, which indicates
the current time and the CPU usage levels on a SuperCollider Server.

true,

bounds A Rect specifying position and size of the window. The size does not include the
border and title bar. Position is measured from the bottom-left corner of the screen

(this is different than View: -bounds).

resizable A Boolean indicating whether this window is resizable by the user. The default is

false.

border A Boolean indicating whether this window has a border. Borderless windows have no

title bar and thus can only be closed in code. The default is true.

server This is a dummy argument which is here to provide compatibility with SwingOSC and

has no effect.

scroll A Boolean indicating whether this window will add scrollbars if its contents exceed its
bounds. If this is set to true, then View: -resize settings will be ignored for contained

views. The default is false.

Inherited class methods

9 methods from QWindow » show
9 methods from Object » show

Instance Methods

215
- z_server_levels_panel_view
- z_server_levels_panel_view = value

The server levels panel view which is contained within the QWindow

Returns:

an instance of QZ_ServerLevelsPanelView

Inherited instance methods

37 methods from QWindow » show
315 methods from Object » show

Examples
s.boot // boot the server first!
w = QZ_ServerLevelsPanel() // opens the server levels window

// create a pointer to the window's QZ ServerLevelsPanelView() instance...
z = w.z_server levels panel view

// change the background color. .

w.background = Color.green

// change the time stamp color...

z.time label.stringColor = Color.red

// change the "server" label colors...
z.server_label.background (Color.blue).stringColor_ (Color.white)
// change the server levels string color...

(

1 = z.level label;

l.size.do { arg i; 1[i].stringColor = Color.magenta }
)

w.close // close the window

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes
/QZ_ServerLevelsPanel.schelp

link::Classes/QZ_ServerLevelsPanel::

sc version: 3.7alpha0

216

Z_Library>GUI>Views, GUI>Views, Libraries>crucial>GUI

QZ_ServerLevelsPanelView

A view indicating the current time and the CPU usage levels on a SuperCollider server.
Source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/Classes/GUIs.d/QtCollider.d/Server.d/QZ_ServerLevelsP
anel.d/QZ_ServerLevelsPanel_16.sc
Inherits from: QView : QObject : Object

See also: QZ_ServerLevelsPanel, Server

Description

QZ_ServerLevelsPanelView is a view indicating the current time and the CPU usage levels on a SuperCollider
Server. The class extends QView and can be added as a cell into a QWindow or one of the window's child views.
QZ_ServerLevelsPanelView also supports the implementation of QZ_ServerLevelsPanel.

Class Methods

* new (parent, bounds)

Creates a new instance of QZ_ServerLevelsPanelView that can be passed as a child view to a QView or a
QWindow, effectively placing it within the parent's visual space. If there is a decorator installed on the parent, it
will manage the position of the new QZ_ServerLevelsPanelView.

NOTE: Qt GUI:

The 'parent' argument may be omitted, in which case the view will be displayed as a window on its own, when
shown.

The 'bounds' argument may be omitted, in which case the view will be created with its preferred size at position
(0,0).

If a parent is given and there is a layout installed on it, the layout will manage the position and size of this view
and the 'bounds' argument will have no effect.

Arguments:
parent The instance of QView or QWindow that the new view will become a child of.

bounds A Rect or a Point describing the size and position of the new QZ_ServerLevelsPanelView. If a
Point is given, its coordinates will denote the view's size, while the view's position will be (0,0).
Position is measured relative to the parent's top-left corner.

Returns:

a new instance of QZ_ServerLevelsPanelView

* server
The server from which the GUI is reading.
Returns:

an instance of Server

Inherited class methods

15 methods from QView » show
16 methods from QObject » show
9 methods from Object » show

Instance Methods

hour_stamp

Returns the current time in "hh:mm:ss" format.
Returns:

a String

- time_label
- time_label = value

The label displaying the current time.
Returns:

an instance of QStaticText

- server_label
- server_label = value

The "Server" label.
Returns:

an instance of QStaticText

- level_label
- level_label = value

The labels displaying the server values.

Returns:

an Array containing six separate instances of QStaticText as follows:

e [0] = Peak CPU usage

® [1] = Average CPU usage

[2] = Number of running UGens
[3] = Number of running Synths
[4] = Number of Groups

[5] = Number of loaded SynthDefs

- routine
- routine = value

The routine used for updating the server values.
Returns:

an instance of Routine

- tempo_clock

217

218

- tempo_clock = value
The scheduler used for running the routine which updates the server values.
Returns:

an instance of TempoClock

- setTimeUnit (value)
Adds a leading zero to any positive Integer which is >= 0 && < 10
Returns:

an instance of String

Discussion:

Example:
s.boot // boot the server first!
z = QZ_ServerLevelsPanelView().front // allocate memory
z.setTimeUnit (3) // returns "03"
z.close // free the memory

- setFloatUnit (float)
Adds following zeros to any Float value which rounds with less than two decimal places.
Returns:

an instance of String

Discussion:

Example:
s.boot // boot the server first!
z = QZ_ServerLevelsPanelView().front // allocate memory
z.setFloatUnit(27) // returns "27.00"
z.close // free the memory

Inherited instance methods

138 methods from QView » show
25 methods from QObject » show
315 methods from Object » show

Examples

s.boot // boot the server first!

// configure the window. . .
(

w = QWindow(
"My Server Panel", Rect(600,425,580,60)
) .alwaysOnTop_(true).background (Color.black);

z = QZ_ServerLevelsPanelView(w.asView);

w.onClose = { z.close }; // frees the routine memory allocated
w.front;

)

219

// change the time stamp color...

z.time label.stringColor = Color.yellow

// change the "server" label colors...

z.server_ label.background (Color.blue).stringColor (Color.white)
// change the server levels string color...

(

1 = z.level label;

l.size.do { arg i; 1[i].stringColor = Color.magenta }

)

w.close // close the window

source: /home/garethh/.local/share/SuperCollider/Extensions/Z_Library.d/HelpSource/Classes/QZ_ServerLevelsPanelView.schelp
link::Classes/QZ_ServerlLevelsPanelView::
sc version: 3.7alpha0

220

CZ_EternalowlCall {
classvar <server, <>class_zpi_pointer;
classvar <>valid_instance_count, <>invalid_instance_count;
classvar <>allow_multiple_instances;

/*¥**** GENERAL PRIVATE INSTANCE VARIABLES, OBJECTS & FUNCTIONS *****/

var number_of_subs; // number of subpatches in each patch

var mode; // can be set to "Performance" or "Testing"

var subpatch_flag; // 2D Array to store a flag for each subpatch
// 2D Arrays to store functions which start or free each subpatch...
var subpatchAction, freeSubpatch;

var tempo_clock;

// Variables to Enable Automatic Disk Recording:

var record, record_start_value; // either both true or both false
var already_recording;

var diskout_node, diskin_node;

var record_dpath; // references the session recording directory
var record_path; // references the current session recording
var diskout_buffer, diskin_buffer; // allocate disk i/o buffers
// Group Nodes:

var pl_NSG_group_node, p3_RG_group_node, p3_NSG_group_node;

var p2; // 2D Array to store all synths in patch #2

// Microphone Input Signal Synths:

var audio_direct, audio_reverb;

// Effects Processing Synths:

var s_reverb, reverb, comb, tap;

// Effects Processing Buses:

var s_reverb_bus, reverb_bus, comb_bus, tap_bus;

// Effects Processing Ints, Floats & Arrays:

var pan_array;

/*¥**** PRIVATE VARIABLES FOR PATCH #1 & #3 (NatureSoundsGroupChannel) *****/

var audio_dpath; // References the directory containing the audio files

// Buffers to reference the hard-disk location of the audio files:

var tawny_owl, pigmy_owl, otter_CostaRica, frog_ Amazon, frog Peru2, mosquito;
// pigmy_owl = stereo & mosquito = stereo, all other files are mono

// PlayBuf Synths for the audio files:

var audition_node, tawny_owl_player, pigmy_owl player, otter_CostaRica_player;
var frog_Amazon_player, frog_Peru2_player, mosquito_player;

// Synths for doppler effects:

var otter_CostaRica_s_doppler, mosquito_s_doppler;

var otter_CostaRica_f_doppler, mosquito_f_ doppler;

// Owl Harmonizer Variables:

var fundamental_shift_rate;

// Synth Arrays for owl harmonizer:

var owl_sample_shifter, owl_formant_shifter;

// Float Value Arrays for owl harmonizer:

var formant_shift_rate_array, sampler_pan_array, formant_pan_array;

// Infintie loop/schedule routines for the owl harmonizer:

var owl_harmonizer_routine, freq_modulation_routine, pan_modulation_routine;
// Fade-out routines:

var pl_release_routine, p3_NSG_xfade_routine;

J*x**xkkxkk PRIVATE VARIABLES FOR PATCH #3 (ReverbGroupChannel) #ixksissx/
var mid_mod_pulse, low_mod_pulse, bass_pulse;

/*¥**** GENERAL PUBLIC INSTANCE VARIABLES, OBJECTS & FUNCTIONS *****/

var <>valid_instance;

// GUI Objects...

var <>gui, gui_meter, gui_scope;

// Public variables for sending values to other classes:

var <>next_patch, <>next_subpatch, <>last_patch, <>last_subpatch;
var <dpath; // root path of the file directories

// Public functions to be sent as values by other classes:

// Recording functions:

var <startRecording, <stopRecording, <playLastRecordedSession;

// Functions for changing the effects sent to the microphone channel:
var <directMicrophoneSignal, <sendMicToBus_Reverb;

var <sendMicToBus_Reverb__7TapDelay, <sendMicToBus_Reverb_12TapDelay;
var <sendMicToBus_Reverb_12TapDelay_Comb;

// Sample & effect auditioning functions:

var <playSample, <playDoppler, <freeAudition;

// Modulation setting functions:

var <setFregModulation, <setPanModulation;

var <freeFregModulation, <freePanModulation;

*initClass {
StartUp.add {
server = Server.default;
valid_instance_count = 0;
invalid_instance_count = 9;
allow_multiple_instances =
this.initSynthDefs;

false;

}

*new { “~super.new.initCZ_EternalOwlCall }

*initSynthDefs {

// allocate functions which are used to the create the synthdefs first...

/¥***¥kx%k% GENERAL LOCAL EFFECTS PROCESSING FUNCTIONS *¥kkik/

var stereoReverbChannel = {
arg out_bus = @, in_bus, amp = 1;
var input = In.ar(bus:in_bus, numChannels:2);

input = AllpassC.ar(
in:input,
maxdelaytime:0.04,
delaytime:0.1,
decaytime:3);

Out.ar(out_bus, input * amp);

1

// Sustains audio input signal using a long atmospheric reverb algorithm:

var atmosphericReverbChannel = {
arg out_bus = @, in_bus, delay bus, comb_bus,
fade_in = @, gate = 1, // passed gate=0 value will fade out
release_time = 8, delaytime, pan = 0, time_offset = 0,
next_tap = 0, next_comb = 0;

var input = In.ar(bus:in_bus, numChannels:1);
var env;

input = AllpassC.ar(in:AllpassC.ar(input,

221

222

1

maxdelaytime:0.2, delaytime:delaytime, decaytime:50),
maxdelaytime:0.2, delaytime:delaytime, decaytime:1000);

// Add compresser/gate to balance & sustain the signal:
input = CompanderD.ar(input, input,

thresh: /*0.1175*%/ 0.8,

slopeBelow: 0.8,

slopeAbove: 1,

clampTime: 0.01,

relaxTime: 0.01) * 0.1;

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

Out.ar(out_bus, Pan2.ar(input, pos:pan, level:1.25) * env);
Out.ar(delay _bus, input * env * next_tap);
Out.ar(comb_bus, input * env * next_comb);

// Adds a chain of delay taps:

var

1

var

delayTap = {
arg out_bus = @, in_bus, tap_bus, comb_bus, delaytime, pan,
level = 0.5, next_tap = 0;

var input = In.ar(bus:in_bus, numChannels:1);

input = DelayC.ar(in:input,
maxdelaytime:delaytime, delaytime:delaytime);

Out.ar(out_bus , Pan2.ar(input, pos:pan, level:level /*0.25%/));
Out.ar(tap_bus, input * next_tap);
// Out.ar(comb_bus, input);

combChannel = {

arg out_bus = @, in_bus, reverb_bus, delay bus,

fade_in = @, gate = 1, // passed gate=0 value will fade out
release_time = 8, delaytime = 1,

control_freq = 0, control_mul = ©0.00249, control_add = 0.0025,
pan = 0;

var input = In.ar(bus:in_bus, numChannels:1);
var env;

delaytime = Saw.kr(freq:control_freq, /*iphase:0,*/
mul:control mul, add:control_add);

input = CombC.ar(in:input, maxdelaytime:@.01,
delaytime: delaytime,
decaytime:4, mul:/*0.0325%/ 0.0625);
input = BHiPass.ar(in:input, freq:250, rq:0.65);
input = input * Line.kr(o@, 1, fade_in);

env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

// comb channel is sent back to the reverb channel

// to create a feedback loop:

Out.ar(out_bus, Pan2.ar(input, pos:pan, level:0.65) * env);
Out.ar(reverb_bus, input * env);

223

}s
/*¥*¥*¥*¥* | OCAL FUNCTIONS FOR PATCH #1 & #3 (NatureSoundsGroupChannel) *****/

var monoSamplePlayer = {
arg out_bus = @, bufnum = @, amp = 1, pan = @, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
reverb_bus, direct = 0;
var env;
var input = PlayBuf.ar(numChannels:1, bufnum:bufnum, loop:1);

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

// Out.ar(out_bus, input * amp * direct * env);
Out.ar(reverb_bus, input * amp * (1-direct) * env);

1

var monoToStereoSamplePlayer = {
arg out_bus = 0, bufnum = @, start_pos = 0,
amp = 1, pan = @, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
reverb_bus, direct = 0.5;
var env;
var input = PlayBuf.ar(numChannels:1, bufnum:bufnum,
startPos:start_pos, loop:1);

input = Pan2.ar(input, pos:pan, level:1);

input = input * Line.kr(o@, 1, fade_in);

env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

Out.ar(out_bus, input * amp * direct * env);
Out.ar(reverb_bus, input * amp * (1-direct) * env);

1

var stereoSamplePlayer = {
arg out = @, bufnum = @, amp = 1, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8;
var env;
var input = PlayBuf.ar(numChannels:2, bufnum:bufnum, loop:1);

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

Out.ar(out, input * amp * env)

1

var monoCircularSampleDoppler = {
arg out = @, bufnum = @, amp = 1, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
rate = 1;
var input, env;

input = Pan2.ar(in:PlayBuf.ar(
numChannels:1, // mono audio input
bufnum:bufnum,
rate:LFTri.kr(rate, mul:1/3, add:1), // sample rate
loop:1),

224

pos: SinOsc.kr(rate, phase:1.5pi, mul:1, add:9)); // clockwise rotation

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

Out.ar(out, input * amp * env)

1

var stereoTriangularSampleDoppler = {
arg out = @, bufnum = @, amp = 1, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
rate = 1;
var input, env;

input = PlayBuf.ar(
numChannels:2, // stereo audio input
bufnum:bufnum,
rate:LFTri.kr(/*rate*/ SinOsc.kr(rate, mul:4, add:4),
mul:/*1.9*%/ @.25, add:/*2.1*/ 1), // sample rate
loop:1);
Balance2.ar(input[@], input[1],
pos: LFTri.kr(
rate, iphase:3, mul:1, add:0) * -1, // anticlockwise rotation
level:0.75);
input = BHiPass.ar(in:input, freq:80, rq:0.8);

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

Out.ar(out, input * amp * env)

1

var monoCircularFormantDoppler = {
arg out = @, bufnum = @, amp = 1, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
rate = 1;
var input, env;

input = Pan2.ar(in: PitchShift.ar(
in:PlayBuf.ar(numChannels:1, bufnum:bufnum, loop:1);,
windowSize:0.2, // grain size
pitchRatio:LFTri.kr(rate, mul:1/3, add:1), // pitch shift ratio
pitchDispersion:0.1,
timeDispersion:0.004),

pos: SinOsc.kr(rate, phase:1.5pi, mul:1, add:9)); // clockwise rotation

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

Out.ar(out, input * amp * env)

1

var stereoTriangularFormantDoppler = {
arg out = @, bufnum = @, amp = 1, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
rate = 1;
var input, env;

1

var

1

var

input = PitchShift.ar(
in:PlayBuf.ar(numChannels:2, bufnum:bufnum, loop:1);,
windowSize:0.1, // grain size

pitchRatio:LFTri.kr(rate, mul:1.9, add:2.1), // pitch shift ratio

pitchDispersion:0,
timeDispersion:0.004);
input = Balance2.ar(input[@], input[1],
pos: LFTri.kr(rate, iphase:3, mul:1, add:@) * -1,
/* anticlockwise rotation */ level:2);
input = BHiPass.ar(in:input, freq:80, rq:0.8);

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

Out.ar(out, input * amp * env)

monoSampleShift = {
arg out_bus = @, bufnum = @, amp = 1, pan = @, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
pitch_variation_freq = 0, pitch_variation_amp = 0,
pitch_rate = 1, amp_mod_cycle freq = 0,
direction = 1, /*-1 to reverse*/ lowcut = 60, rq = 1,
reverb_bus, direct = 0.5, done_action = 2;
var env;
var input = PlayBuf.ar(numChannels:1, bufnum:bufnum,
rate:LFTri.kr(
freq:pitch_variation_freq,
mul:LFTri.kr(
freq:amp_mod_cycle freq,
iphase:3,
mul:pitch_variation_amp/2,
add:pitch_variation_amp/2),
add:pitch_rate * direction),
loop:1);

input = BHiPass.ar(in:input, freq:lowcut, rq:rq);

input = input * Line.kr(o@, 1, fade_in);

env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:done_action);

// Out.ar(out_bus, input * amp * direct * env);
Out.ar(reverb_bus, input * amp * (1-direct) * env);

monoToStereoSampleShift = {

arg out_bus = @, bufnum = @, amp = 1, pan = @, fade_in = 0,

gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
pitch_variation_freq = 0, pitch_variation_amp = 0,

pitch_rate = 1, amp_mod_cycle freq = 0,

pan_variation_freq = @, pan_variation_iphase = @, pan_variation_amp
direction = 1, /*-1 to reverse*/ lowcut = 60, rq = 1,

reverb_bus, direct = 0.5, done_action = 2;

var env;
var input = PlayBuf.ar(numChannels:1, bufnum:bufnum,
rate:LFTri.kr(
freq:pitch_variation_freq,
mul:LFTri.kr(

225

226

freq:amp_mod_cycle freq,
iphase:3,
mul:pitch_variation_amp/2,
add:pitch_variation_amp/2),
add:pitch_rate * direction),
loop:1);

input = Pan2.ar(
in:input,
pos:LFTri.kr(
freq: pan_variation_freq,
iphase:pan_variation_iphase,

mul: pan_variation_amp,
add: pan),
level:1);

input = BHiPass.ar(in:input, freq:lowcut, rq:rq);

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:done_action);

Out.ar(out_bus, input * amp * direct * env);
Out.ar(reverb_bus, input * amp * (1-direct) * env);

1

var monoToStereoFormantShift = {
arg out_bus = @, bufnum = @, amp = 1, pan = @, fade_in = 0,
gate = 1, /*passed gate=0 value will fade out*/ release_time = 8,
sample_rate = 1, pitch_variation_freq = 0, pitch_variation_amp =
pitch_rate = 1, amp_mod_cycle freq = 0,
pan_variation_freq = @, pan_variation_iphase = @, pan_variation_amp
direction = 1, /*-1 to reverse*/ lowcut = 60, rq = 1,
reverb_bus, direct = 0.5, done_action = 2;

9,

var env;
var input = PlayBuf.ar(numChannels:1, bufnum:bufnum,
rate:LFSaw.kr(
freq:pitch_variation_freq,
mul:LFTri.kr(
freq:amp_mod_cycle freq,
iphase:3,
mul:pitch_variation_amp/2,
add:pitch_variation_amp/2),
add:sample_rate * direction),
loop:1);

input = PitchShift.ar(in:input,
windowSize:0.2, // grain size
pitchRatio:pitch_rate, // pitch shift ratio
pitchDispersion:90,
timeDispersion:0.004);

input = Pan2.ar(
in:input,
pos:LFTri.kr(
freq: pan_variation_freq,
iphase:pan_variation_iphase,

mul: pan_variation_amp,
add: pan),
level:1);

input = BHiPass.ar(in:input, freq:lowcut, rq:rq);

input = input * Line.kr(o@, 1, fade_in);
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:done_action);

Out.ar(out_bus, input * amp * direct * env);
// Out.ar(reverb_bus, input * amp * (1 - direct) * env);

1
JFxHHRARRE | OCAL FUNCTIONS FOR PATCH #2 ki)

// GH Bell Pitch Generation Function with
// Fixed Random Seed Harmonic Definitions
// Fundamental Pitch = C3 (130.81 Hz or 48.midicps)
var grandfatherClockPitch = {
arg semitone_offset = @, amp = 0.0875, pan = 0.0, out = 0;
var env = EnvGen.kr(Env(#[1, 1, 0], #[1, 1]), doneAction:2);
var input = Decay.ar(Impulse.ar(0.45),1 , BrownNoise.ar(0.01));
// get fundamental frequency of the bell (i.e. C3 = 130.81 Hz)
var midi_value = 48;
var fundamental = midi_value.midicps;
var bell = Klank.ar([
/* freqs */[
1122, 4554, 6205, fundamental, 6978, 4307, 4596, 5346,
2095, 9542, (fundamental * 2), 1347
] * 2.pow(semitone_offset/12),
amp,
/* rings */ [5, 10, 8, 10, 4, 8, 3, 4, 8, 7, 3, 10]
1, input:input);

bell = BHiPass.ar(in:bell, freq:40, rq:0.8);

Out.ar(out, Pan2.ar(bell*env, pan));
}s

/¥*¥*%kx%%% | OCAL FUNCTIONS FOR PATCH #3 (ReverbGroupChannel) *¥kkikxx/

var midModPulse =

{ arg out_bus, reverb_bus,
fade_in = @, gate = 1, // passed gate=0 value will fade out
release_time = 8,
direct = @; // controls proportion of direct/processed sound
var pulse, env;

// Decaying sine wave pulses with modulation

pulse = Decay2.ar(in:Impulse.ar(freq:0.3, phase:0.25),
attackTime:0.15,
decayTime:1,
mul:SinOsc.ar(freq:SinOsc.kr(freq:0.2,

mul:44.midicps, add:51.midicps)));

// Fundamental of mid_mod_pulse is on Eb4

pulse = pulse * 1.5;

pulse = pulse * Line.kr(@, 1, fade_in);

env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

// Out.ar(out_bus, (pulse*direct) * 0.3); // signal output
Out.ar(reverb_bus, (pulse*(1-direct)) * env); // reverb output

1

227

228

var

{

1

var

1

lowModPulse =

arg out_bus, reverb_bus, mul = 1, partial = 1, gain_division = 1,
fade_in = @, gate = 1, // passed gate=0 value will fade out
release_time = 8,

direct = @; // controls proportion of direct/processed sound

var pulse, env;

var freq = 32.midicps; // Fundamental of low_mod_pulse is on Ab2

// Decaying sine wave pulses with modulation
// The optional array adds a harmonizer on partials 3, 5, 7 etc...
pulse =
Array.fill(1, { arg i;
Decay2.ar(in:Impulse.ar(freq:0.3, phase:0.5),

attackTime:0.2,

decayTime:1,

mul:SinOsc.ar(freq:Sin0Osc.kr(freq:0.2,

mul: (freq)*mul, add:freqg*partial))) * gain_division;

1
pulse = Pan2.ar(pulse, 9, 0.5);
pulse = BHiPass.ar(in:pulse, freq:60, rq:0.6);

pulse = pulse * Line.kr(@, 1, fade_in);

env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

// Out.ar(out_bus, (pulse*direct) * 0.5); // signal output
Out.ar(reverb_bus, (pulse*(1-direct)) * env); // reverb output

bassPulse =

arg out_bus, reverb_bus,

fade_in = @, gate = 1, // passed gate=0 value will fade out
release_time = 8,

direct = @; // controls proportion of direct/processed sound
var pulse, env;

var freq = 32.midicps; // Fundamental of bass_pulse is on Abl

// Decaying sine wave pulses with a slight modulation
// The optional array adds a harmonizer on partials 3, 5, 7 etc...
pulse =
Array.fill(1, { arg i;
Decay2.ar(in:Impulse.ar(freq:0.3, phase:0.125),

attackTime:0.2,

decayTime:1,

mul:SinOsc.ar(freq:SinOsc.kr(freq:0.2,

mul:/*(freq)*(i+1)*/ @, add:freq*(i*2+1)))) * 1/(i+1);

1

pulse = Pan2.ar(pulse, 9, /*3.5%/ 1.5);

pulse = BHiPass.ar(in:pulse, freq:60, rq:0.6);
pulse = pulse * Line.kr(@, 1, fade_in);

env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

// Out.ar(out_bus, (pulse*direct) * 0.5); // signal output
Out.ar(reverb_bus, (pulse*(1-direct)) * env); // reverb output

// SynthDef to record the session and save to disk:
SynthDef(\recordSession, { arg buffer;

DiskOut.ar(buffer, In.ar(0,2))

}

229

}).add;

// SynthDefs & buses for effects processors:

SynthDef (\stereoReverbChannel, stereoReverbChannel).add;

SynthDef (\combChannel, combChannel).add;

12.do{ arg i; SynthDef("delayTap"++i, delayTap).add; };

SynthDef (\atmosphericReverbChannel, atmosphericReverbChannel).add;

// SynthDefs for sample playback:

SynthDef (\stereoSamplePlayer, stereoSamplePlayer).add;

SynthDef (\monoToStereoSamplePlayer, monoToStereoSamplePlayer).add;
SynthDef (\monoSamplePlayer, monoSamplePlayer).add;

// SynthDefs for sample doppler effects:
SynthDef (\monoCircularSampleDoppler,
monoCircularSampleDoppler).add;
SynthDef(\stereoTriangularSampleDoppler,
stereoTriangularSampleDoppler).add;
SynthDef (\monoCircularFormantDoppler,
monoCircularFormantDoppler).add;
SynthDef (\stereoTriangularFormantDoppler,
stereoTriangularFormantDoppler).add;

// SynthDefs for sample pitch shifts & frequency modulation:
SynthDef (\monoSampleShift , monoSampleShift).add;

SynthDef (\monoToStereoSampleShift , monoToStereoSampleShift).add;
SynthDef (\monoToStereoFormantShift, monoToStereoFormantShift).add;

// SynthDef for the bell modelling synth:
SynthDef (\grandfatherClockPitch, grandfatherClockPitch).add;

// SynthDefs for the modular synths:
SynthDef (\midModPulse, midModPulse).add;
SynthDef (\lowModPulse, lowModPulse).add;
SynthDef (\bassPulse, bassPulse).add;

/¥***%kx%k% GENERAL INSTANCE METHODS FOR DYNAMICS PROCESSING **¥kkiksx/

masterChannel {

{

ReplaceOut.ar(@, Limiter.ar(
BHiPass.ar(in:In.ar(bus:0, numChannels:2), freq:40, rq:90.6),
level:0.99, dur:0.01))

}.play(RootNode(server), addAction:\addToTail);

/¥***¥kx%x% GENERAL INSTANCE METHODS FOR EFFECTS PROCESSING *¥*¥kkik/

freeEffects {

}

// free effects channels first so that input buses can be reconfigured...
if(comb.isPlaying) { comb.free; comb = nil };

12.do{ arg i; if(tap[i].isPlaying) { tap[i].free; tap[i] = nil } };
if(reverb.isPlaying) { reverb.free; reverb = nil };

initBuses {

reverb_bus.free;
reverb_bus = Bus.audio(server);

230

12.do{ arg i;
tap_bus[i].free;
tap_bus[i] = Bus.audio(server)
s
comb_bus.free;
comb_bus = Bus.audio(server);

}

directMicSignal {

audio_reverb.free ;
audio_reverb = nil;
gui.setMicBusButton(0);

A"Direct microphone signal only!"

}

bus_Reverb {
arg new_at_start = true, delay bus_exists = false, comb_bus_exists = false;

var msg = "Reverb bus/microphone send added!";
var reverb_arg = [\in_bus, reverb_bus];
var end_args = [\delaytime, 1/4, \pan, 0, \next_tap, 0, \next_comb, 0];

var args = [], delay_arg = [], comb_arg = [];

if(delay bus_exists) {
delay_arg [\delay bus, tap_bus[@]];
end_args[5] 1; // opens gate for delay taps

}s

if(comb_bus_exists) { comb_arg = [\comb_bus, comb_bus] };
args = reverb_arg++delay_arg++comb_arg++end_args;

// args.postln; // debug

// reset atmospheric reverb channel:

if(new_at_start)

{ reverb = Synth.new(\atmosphericReverbChannel, args,
target:p3_RG_group_node) }

// else...

{ reverb = Synth.before(tap[0], \atmosphericReverbChannel, args) };

NodeWatcher.register(reverb);

if(audio_reverb == nil) {
audio_reverb = { Out.ar(reverb_bus, SoundIn.ar(bus:0,mul:1)) }.play
}s
gui.setMicBusButton(1);
‘msg
}
addTaps {

arg taps = 7, new_at_start = true;

var delaytime = 19/7, n = taps-1;

var args = [\in_bus, tap_bus[n], \delaytime, delaytime,
\pan, pan_array[n], \next_tap, 0];

// sets a specified number of delay tap channels:

if(new_at_start)

{ tap[n] = Synth.new("delayTap"++n, args, target:p3_RG_group_node) }
// else...

{ tap[n] = Synth.before(comb, "delayTap"++n, args) };
NodeWatcher.register(tap[n]);

}

bus_|

bus_|

bus_|

}

for(n - 1, @) {arg i;
tap[i] = Synth.before(tap[i+1], "delayTap"++i,

[\in_bus, tap bus[i], \tap_bus, tap bus[i+1], \delaytime, delaytime,

\pan, pan_array[i], \next_tap, 1]);
NodeWatcher.register(tap[i]);

Reverb__ 7TapDelay {
var msg = "Reverb & 7-tap delay bus/microphone send added!";

// set 7 delay tap channels (sent from reverb channel):
this.addTaps(7);

// reset atmospheric reverb channel:
this.bus_Reverb(new_at_start:false, delay bus_exists:true);
gui.setMicBusButton(2);

‘msg

Reverb_12TapDelay {
var msg = "Reverb & 12-tap delay bus/microphone send added!";

// set 12 delay tap channels (sent from reverb channel):
this.addTaps(12);

// reset atmospheric reverb channel:
this.bus_Reverb(new_at_start:false, delay bus_exists:true);
gui.setMicBusButton(3);

msg

Reverb_12TapDelay Comb {
arg start_comb = true;

var msg = "Reverb & 12-tap delay & comb filter bus/microphone send added!";

// set comb filter channel:

comb = Synth.new(\combChannel, [\in_bus, comb_bus, \pan, 0],
target: p3_RG_group_node);

NodeWatcher.register(comb);

// set 12 delay tap channels (sent from reverb channel):

this.addTaps(12, new_at_start:false);

// reset atmospheric reverb channel:

this.bus_Reverb(new_at_start:false, delay bus_exists:true,
comb_bus_exists:true);

Routine

{
0.1.wait; // wait for comb filter to be sent
if(start_comb) { subpatchAction[2][2].(); } // starts comb filter

}-play;

gui.setMicBusButton(4);

‘msg

/*¥*¥*¥** INSTANCE METHODS FOR PATCH #1 & #3 (NatureSoundsGroupChannel) *****/

neotropicalAmbience {

arg fade_in = 15, target;

// free any synths which are already active:

231

232

}

this.freeNeotropicalAmbience;

pigmy owl player = Synth.new(\stereoSamplePlayer,
[\bufnum, pigmy owl, \amp, 1.625, \fade_in, fade_in],
target:target /* pl NSG_group _node */);

NodeWatcher.register(pigmy_owl player);

frog_Amazon_player = Synth.new(\monoToStereoSampleShift,
[\bufnum, frog_Amazon, \amp, 0.8, \pan, 1, \fade_in, fade_in,
\reverb_bus, s_reverb_bus, \direct, 0.8],
target:target /*pl NSG_group_node*/);
NodeWatcher.register(frog_Amazon_player);

frog_Peru2_player = Synth.new(\monoToStereoSampleShift,
[\bufnum, frog_ Peru2, \amp, ©.45, \pan, -1, \fade_in, fade_in,
\reverb_bus, s_reverb_bus, \direct, 0.8],
target:target /*pl NSG_group_node*/);
NodeWatcher.register(frog_Peru2_player);

freeNeotropicalAmbience {

}

if(pigmy_owl player .isPlaying) { pigmy_owl player.free };
if(frog_Amazon_player.isPlaying) { frog_Amazon_player.free };
if(frog_Peru2_player .isPlaying) { frog_Peru2_player.free };
pigmy_owl player = nil;
frog_Amazon_player = nil;
frog_Peru2_player nil;

owlHarmonizer {

arg mod_at_start = true, wait_before = 30, wait_after = 0, target;
// avoid two zero wait args else the infinite loop will crash the program!

this.freeOwlHarmonizer;

if(mod_at_start == false) {
freq_modulation_routine.stop; // clear any freq mod calls to the synths
pan_modulation_routine.stop; // clear any pan mod calls to the synths

1

owl_harmonizer_routine = Routine

{
var sum = @, interval = 2, s_amp = 1, f_amp = 1.25 /*0.625%/;
var pan_array = Array.newClear(8);

for(8, 4) { arg i;
sampler_pan_array[i] rand2(1.0);
formant_pan_array[i] = rand2(1.9);
formant_shift_rate_array[i] = fundamental shift_rate * (i+l1) * (4/9);
tempo_clock[©].sched(sum) {
owl sample_shifter [i] = Synth.new(\monoToStereoSampleShift,
[\bufnum, tawny owl, \amp, s_amp/(i+1),
\pan, sampler_pan_array[i], \fade_in, 10,
\pitch_rate, fundamental_shift_rate * (i+1),
\lowcut, 1500, \rq, 8,
\reverb_bus, s_reverb_bus, \direct, 1, \done_action, 13],
target:target);
NodeWatcher.register(owl_sample_shifter[i]);
// Change sample rate to 9/4 = 2.25 to allow
// max PitchShift rate up to the 9th harmonic
owl formant_shifter[i] = Synth.new(\monoToStereoFormantShift,

233

[\bufnum, tawny owl, \amp, f_amp/(i+1),
\pan, formant_pan_array[i],
\fade_in, 10, \sample_rate, 9/4,
\pitch_rate, formant_shift_rate_array[i],
\lowcut, 1125, \rq, 8, \done_action, 13], target:target);
NodeWatcher.register(owl_formant_shifter[i]);
if(mod_at_start)
{ this.fregModLoop(wait_before, wait_after) }
}s
sum = sum + interval;

1

for(3, 1) { arg i;
sampler_pan_array[i] rand2(1.0);
formant_pan_array[i] = rand2(1.9);
formant_shift_rate_array[i] = fundamental shift_ rate * (i+1);
tempo_clock[©].sched(sum) {
owl sample_shifter [i] = Synth.new(\monoToStereoSampleShift,
[\bufnum, tawny owl, \amp, s_amp/(i+1),
\pan, sampler_pan_array[i], \fade_in, 10,
\pitch_rate, fundamental_shift_rate * (i+1),
\lowcut, 1000, \rq, 6.5,
\reverb_bus, s_reverb_bus, \direct, 1, \done_action, 13],
target:target);
NodeWatcher.register(owl_sample_shifter[i]);
owl formant_shifter[i] = Synth.new(\monoToStereoFormantShift,
[\bufnum, tawny owl, \amp, f_amp/(i+1),
\pan, formant_pan_array[i], \fade_in, 10,
\pitch_rate, formant_shift_rate_array[i],
\lowcut, 750, \rq, 6.5, \done_action, 13],
target:target);
NodeWatcher.register(owl formant_shifter[i]);
if(mod_at_start)
{ this.fregModLoop(wait_before, wait_after) }

3
sum = sum + interval;

1

tempo_clock[©].sched(sum) {
sampler_pan_array[0] = ©;
formant_pan_array[@] = 0;
formant_shift_rate_array[@] = fundamental_shift_rate;
owl sample_shifter[@] = Synth.new(\monoToStereoSampleShift,
[\bufnum, tawny owl, \amp, s_amp/3, \pan, @, \fade_in, 10,
\pitch_rate, fundamental_shift_rate,
\lowcut, 80, \rq, 0.6,
\reverb_bus, s_reverb_bus, \direct, 1, \done_action, 13],
target:target);
NodeWatcher.register(owl_sample_shifter[0]);
owl formant_shifter[@] = Synth.new(\monoToStereoFormantShift,
[\bufnum, tawny owl, \amp, f_amp/3, \pan, 0, \fade_in, 10,
\pitch_rate, fundamental_shift_rate,
// reverse owl call on fundamental formant shift:
\direction, -1, \lowcut, 80, \rq, 0.6, \done_action, 13],
target:target);
NodeWatcher.register(owl formant_shifter[0]);
this.fregModLoop(wait_before, wait_after);
// debug...
// ("sampler_pan_array ="+sampler_pan_array).postln;
// ("formant_pan_array ="+formant_pan_array).postln;
// ("formant_shift_rate_array ="+formant_shift_rate_array).postln;

234

}s
}.play
}

freeOwlHarmonizer {

// free any synths which are already active...
9.do{ arg i;

if(

1
if(

1
1

owl sample_shifter[i].isPlaying) {
owl_sample_shifter[i].free;
owl_sample_shifter[i] = nil;

owl formant_shifter[i].isPlaying) {
owl_formant_shifter[i].free;
owl_formant_shifter[i] = nil;

tempo_clock[@].clear; // clear previously scheduled owl harmonizer events
owl_harmonizer_routine.stop; // stop if the routine is already running!

}

fregModLoop {
arg wait_before = 30, wait_after = 0;
// avoid two zero wait args else the infinite loop will crash the program!

freq_modulation_routine.stop; // stop if the routine is already running!
freg_modulation_routine = Routine

{

// Infinite loop resets the random freq mod values perpetually...

{

0.1.wait;
wait_before.wait;
// "freq loop! ".post; // debug
// cancel direction change on the fundamental formant pitch:
if(owl_formant_shifter[0].isPlaying) {
owl formant_shifter[0].set(\direction, 1);
¥

if(frog_Amazon_player.isPlaying) {
frog_Amazon_player.set(\pitch_variation_freq, rand(13) + 6,
\pitch_variation_amp, rand(1.9),
\amp_mod_cycle freq, 1/24);
}s
if(frog_Peru2_player.isPlaying) {
frog_Peru2_player.set(\pitch_variation_freq, rand(13) + 6,
\pitch_variation_amp, rand(1.9),
\amp_mod_cycle freq, 1/24);
}s

for(8, @) { arg i;
// frequency modulation variables:
var s_pv_freq, s_pv_amp, f_pv_freq, f_pv_amp, f_p_rate;
// reverse playback modulation variables:
var s_direction, f_direction;

/* Randomly generate modulation parameters
for the sample shifts: */

s_pv_freq = rand(12) + 1;

S_pv_amp = rand(1.90);

// s_direction = [1,-1].choose;

/* Randomly generate modulation parameters

235

for the formant shifts: */
f pv_freq = rand(5.0) + 1;
// positive f_pv_amp value for ascending LFSaw,
// negative for descending...
f pv_amp = rand2(1.0);
// f_direction = [1,-1].choose;

if(owl_sample_shifter [i].isPlaying) {
owl sample_shifter [i].set(
\pitch_variation_freq, s_pv_freq,
\pitch_variation_amp, s_pv_amp * (i+l),
\amp_mod_cycle freq, 1/24);

if(owl_formant_shifter[i].isPlaying) {
owl formant_shifter[i].set(
\pitch_variation_freq, f_pv_freq,
\pitch_variation_amp, f_pv_amp * (i+l),
\amp_mod_cycle freq, 1/24);

}s
}s
wait_after.wait
}.loop

}.play
}

freeFregMod {
freq_modulation_routine.stop;

// reset reverse direction on the fundamental formant pitch:
if(owl_formant_shifter[0].isPlaying) {

owl formant_shifter[@].set(\direction, -1);
}s

if(frog_Amazon_player.isPlaying) {
frog_Amazon_player.set(
\pitch_variation_freq, 0,
\pitch_variation_amp, 0,
\amp_mod_cycle_freq, 9)
}s
if(frog_Peru2_player.isPlaying) {
frog_Peru2_player.set(
\pitch_variation_freq, 0,
\pitch_variation_amp, 0,
\amp_mod_cycle_freq, 9)
}s

9.do{ arg i;
if(owl_sample_shifter [i].isPlaying) {
owl sample_shifter [i].set(
\pitch_variation_freq, 0,
\pitch_variation_amp, 0,
\amp_mod_cycle_freq, 9)
}s
if(owl_formant_shifter[i].isPlaying) {
owl_formant_shifter[i].set(
\pitch_variation_freq, 0,
\pitch_variation_amp, 0,
\amp_mod_cycle_freq, 9);

236

}

panModLoop {

pan_modulation_routine.stop;
pan_modulation_routine = Routine

{
// Infinite loop resets the random pan mod values perpetually...
{
// "pan loop! ".post; // debug
if(frog_Amazon_player.isPlaying) {
frog_Amazon_player.set(\pan, 0,
\pan_variation_freq, 1/(rand(4.9)),
\pan_variation_iphase, rand(4.90),
\pan_variation_amp, rand2(1.90));
}s
if(frog_Peru2_player.isPlaying) {
frog_Peru2_player.set(\pan, 0,
\pan_variation_freq, 1/(rand(4.9)),
\pan_variation_iphase, rand(4.90),
\pan_variation_amp, rand2(1.90));
}s
sampler_pan_array[@0] = rand2(1.0);
formant_pan_array[0] = rand2(1.9);
for(8, 0) { arg i;
if(owl_sample_shifter [i].isPlaying) {
owl sample_shifter [i].set(\pan, O,
\pan_variation_freq, 1/(rand(4.9)),
\pan_variation_iphase, rand(4.0),
\pan_variation_amp, sampler_pan_array[i]);
}s
if(owl_formant_shifter[i].isPlaying) {
owl formant_shifter[i].set(\pan, O,
\pan_variation_freq, 1/(rand(4.9)),
\pan_variation_iphase, rand(4.0),
\pan_variation_amp, formant_pan_array[i]);
}s
}s
15.wait
}.loop
}.play

freePanMod {
pan_modulation_routine.stop;
// clear pan modulation and reset original pan values...

if(frog_Amazon_player.isPlaying, {
frog_Amazon_player.set(\pan, 1,

\pan_variation_freq, 9,
\pan_variation_iphase, 9,
\pan_variation_amp, 9)

1
if(frog_Peru2_player.isPlaying) {
frog_Peru2_player.set(\pan, -1,

\pan_variation_freq, 9,
\pan_variation_iphase, 9,
\pan_variation_amp, 9)

1

237

9.do{ arg i;
if(owl_sample_shifter [i].isPlaying) {
owl sample_shifter [i].set(
\pan, if(i == 0, {0}, { sampler_pan_array[i] }),
\pan_variation_freq, 9,
\pan_variation_iphase, 0,
\pan_variation_amp, 9)
}s
if(owl_formant_shifter[i].isPlaying) {
owl formant_shifter[i].set(
\pan, if(i == 0, {0}, { formant_pan_array[i] }),
\pan_variation_freq, 9,
\pan_variation_iphase, 0,
\pan_variation_amp, 9)

}

J¥***%kx%6% INSTANCE METHODS FOR PATCH #2 ¥¥kktkxsk/

// GH Additive Synthesizer with sine wave input and pulse wave filter
// on up to the first 12 harmonic partials of the input frequency
additiveSynth {
arg midi_value = 48, input_partial = 2, input_gain = 1, pan = @, isynth = 0,
jsynth = @, /* 2D synth indices to free memory */ bell = true,
fade_in = 0.02, gate = 1, release_time = 8;
var input_frequency = midi_value.midicps * input_partial;
var partial, partial_gain_division, filter_input_level, semitone_offset;
var input = nil, out = @, i = @, partial_list = List.new;
var env;

semitone_offset = (input_frequency.cpsmidi - 48);
if(bell)
{
this.bellPitchSynth(semitone_offset:semitone_offset,
pan:pan, amp:1/25);
}s

/* A loop to reject any inaudible frequencies above 20,000 Hz
This will make the program more efficient, reduce lost
speaker power and save computer memory...

*/
// 1= 0;
while{ i < 12 }
{
partial_list.add;
partial list[i] = (i+1) * input_frequency;
if(partial_list[i] > 20000)
{
partial_list.pop;
i =12 // breaks the loop
}
// else...
{i=1+11};
3

// env value in case a synthdef is required at a later stage:
env = EnvGen.kr(Env.cutoff(releaseTime:release_time),
gate:gate, doneAction:2);

238

p2[isynth][jsynth] = Array.fill((partial_list.size - 1), {
arg count;
// Avoid distorted filter on fundamental pitches:
// filter_input_level = if (count == 0, 0, {input_gain});
filter_input_level = input_gain;
// Reduce excessive gain-level on upper partials:
partial gain_division = 1/(count + 2);

input = { (SinOsc.ar(partial_list[count + 1],
mul: max(® , Pulse.kr(count + 2/32, mul: filter_input_level))
)*partial_gain_division) };
// input = input * Line.kr(®@, 1, fade_in);
// input = input * env;
{ Pan2.ar(input, pan, 0.03) }.play
// NodeWatcher.register(p2[isynth][jsynth][count])
1

Ap2[isynth][jsynth]

bellPitchSynth {
arg semitone_offset = @, pan = 9, amp = 0.0875;
var synth;
// arg semitone_offset allows pitch transpositions

// 0.1.wait;
synth = Synth(\grandfatherClockPitch,
[\semitone_offset, semitone_offset, \amp, amp, \pan, pan]

)s
~synth
}
init_p2 {
// Initialize 2D Array so that all synths
// & routines in patch #2 can be stored:
2.do{ arg i; p2[i] = Array.newClear(3); };
4.do{ arg i; p2[i+2] = Array.newClear(4); };
p2[6] = Array.newClear(6);
p2[7] = nil; // reserved for bell synth bassline routine
p2[8] = Array.newClear(6);
}
freeAdditiveSub {
arg i;
// Free each additive synth 3D array element...
p2[i].size.do{ arg j;
p2[i][j].size.do{ arg k;
/1 if(p2[@][j1[K].isPlaying)
p2[1][J][k].free;
p2[1][J][k] = nil;
}
s
tempo_clock[1][i].clear; // clears all scheduled events
tempo_clock[1][9].clear; // clear routine to free other additive synths
}

freeSynths_p2 {
arg i_min, i_max, j_min, j_max, sum, interval;

239

Routine
¢ for(i_min,i _max) {arg i;
for(j_min,j_max) {arg j;
tempo_clock[1][9].sched(sum) {
if(p2[i][]] !'= nil) {
p2[i][j].size.do{ arg k;
if(p2[i][j1[Kk] !'= nil) {
p2[i][j]1[k].release(interval);
p2[i][j][k].onFree{ p2[i][j][k] = nil; }

1

sum = sum + interval;

tempo_clock[1][9].sched(sum) {
if(?Z[i][j] I=nil) {

gui.postMsg("p2["++i++"]["++j++"] free! ",
line_feed:false).post
}.defer; // debug data

p2[1][3] = nil;

}
}.play;

Asum; // sum returned by the method

}

/**xkxkxkxk INSTANCE METHODS FOR PATCH #3 (ReverbGroupChannel) *#kkkkx/
// [nothing to include at present!]

/***kxkxkxk GENERAL INSTANCE METHODS FOR DATA HANDLING **kkktk/
initSubpatchFlags {

number_of_subs.size.do{ arg i;
// set subpatch flags for each patch...
subpatch_flag[i] = Array.newClear(number_of subs[i]);
number_of_subs[i].do{ arg j; subpatch_flag[i][j] = false };
}s
}

// function creates a validation string when a subpatch is started
validSubpatch {
|pch, sub, symbol = "started"|

var unit = ;
if(sub < 10) { unit = "@" };

~A("subpatch #"++pch++"."++unit++sub++" "++symbol++"!")

}

invalidSubpatch {
|pch, sub]|
var unit = "";

if(sub < 10) { unit = "@" };

240

}

A("Error: subpatch #"++pch++"."++unit++sub++" already started!")

setNextSubpatchValue {

}

|pch, sub]|
var match = false;
var i = 0;

while { i < (number_of subs.size - 1) }

{
if(pch == (i + 1) & & sub == number_of_subs[i])
next_patch = i + 2;
next_subpatch = 1;
match = true;
i = (number_of_subs.size - 1); // breaks the loop
}
// else...
{i=1+1}
}s
if(match.not) {
next_patch = pch;
next_subpatch = sub + 1;
}s

// debug...
/*("last pch =" + last_patch + "last sub =" + last_subpatch).postln;

("next pch =" + next_patch + "next sub =" + next_subpatch).postln;*/

setlLastSubpatchValue {

}

|pch, sub]|
var match = false;
var i = 1;

while { i < number_of_subs.size }

{
if(pch == (i + 1) & & sub == 1)
{
last_patch = i;
last_subpatch = number_of _subs[i - 1];
match = true;
i = number_of _subs.size; // breaks the loop
}
// else...
{i=1+1}
}s
if(match.not) {
last_patch = pch;
last_subpatch = sub - 1;
}s

// debug...
/*("last pch =" + last_patch + "last sub =" + last_subpatch).postln;

("next pch =" + next_patch + "next sub =" + next_subpatch).postln;*/

validateSubpatch {

241

| flag, pch, sub]|

var msg;
if((flag == false) || (mode == "Testing"))
{
if((next_patch == pch) && (next_subpatch == sub)
|| (mode == "Testing"))
{
subpatchAction[pch-1][sub-11.();
msg = this.validSubpatch(pch, sub);
// if(mode == "Performance")
/1 A
flag = true;
last_patch = pch;
last_subpatch = sub;
this.setNextSubpatchValue(pch, sub)
//}
}
// else
{ msg = "Error: patches must be started in adjacent order!" }
}
// else

{ msg = this.invalidSubpatch(pch, sub) };
gui.postMsg(msg.post, line_feed:false); // posts a validation message

~flag // method returns a boolean variable

}

J¥***¥kx%k% GENERAL PUBLIC INSTANCE METHODS *¥kkkkxx/

subpatch {
|[pch = 1, sub = @1]
var exists = true;

if(pch.isInteger && sub.isInteger) {
// check that the subpatch value exists...
// size of number_of_subs array = number of patches in the program
if((pch <= 0) || (pch > number_of_subs.size)) { exists = false };
number_of_subs.size.do{ arg i;
if((pch == (i+1)) && ((sub <= @) || (sub > number_of_subs[i])))
{ exists = false };

}s
if(exists)
{
subpatch_flag[pch-1][sub-1] = this.validateSubpatch(
subpatch_flag[pch-1][sub-1], pch, sub);
}
// else...
{ ~""Error: invalid subpatch value!" };
}
// else...
{ ~"Invalid input: you must supply two integers as arguments..." }
}
freeSub {

|[pch = 1, sub = @1]
var exists = true;

if(exists)

242

{
next_patch = pch;
next_subpatch = sub;
this.setLastSubpatchvalue(pch, sub);
freeSubpatch[pch-1][sub-1].();
~this.validSubpatch(pch, sub, "freed")
}
// else...

{ ""Error: invalid subpatch value!" }

}

freeAllSynths {

// Free patch #1 synths, routines & scheduled events...

2.do{ arg i; freeSubpatch[0][i].() };

pl_release_routine.stop;

// Free patch #2 synths, routines & scheduled events...

10.do{ arg i; freeSubpatch[1][i].() };

// Free patch #3 synths, routines & scheduled events...

// (if not already freed by the above funtion calls)
freeSubpatch[2][1].(); // free modular synths
if(otter_CostaRica_player.isPlaying) { otter_CostaRica_player.free };

if(mosquito_s_doppler.isPlaying) { mosquito_s_doppler.free };
otter_CostaRica_player = nil;
mosquito_s_doppler = nil;

p3_NSG_xfade_routine.stop;

// Free audition node...
if(audition_node.isPlaying) { audition_node.free };
audition_node = nil;

// Reset the subpatch directors...
next_patch = 1; next_subpatch = 1;
last_patch = 1; last_subpatch = 0;
gui.setNextLabel;

// Silence any ReverbGroupChannel delay/predelay signals...
p3_RG_group_node.set(\gate, 0, \release_time, 0);

// Free/reset effects channels...

this.freeEffects;

gui.postMsg("\nAll synths freed!".postln);

~this.bus_Reverb;

}

reopenGUI {
if(gui == nil)

if(valid_instance_count != 0)
{
if(valid_instance)
{
/*
free any redundant analysis synths
before opening a new GUI window...
*/
gui_meter.freeSynths;
gui_scope.freeScopeSynth;

gui = QCZ_EternalOwlCall_GUI(this);

243

rgui
}
// else...
{
var msg =
"\nYou have attempted to reopen a GUI window on an invalid "
++ "instance of the performance interface class!";
msg.error;
}
}
// else...
{
var msg =
"\nUnable to reopen the GUI window because the program "
++ "was forcefully crashed using a Cmd+Period call!\n"
++ "To reopen the GUI try running the program again...";
msg.warn;
}
}
// else...
{
~gui.postMsg(
"A GUI window is already open!\n"
++ "This may have been minimized by the user...\n");
}

}

/¥***%kx%%% DEBUG METHODS FOR PATCH #2 *¥kkkxsk/

// Debug function posts data about synths stored in the 2D Array p2:
p2_DebugData {

var msg = "\n";

msg = msg ++ "p2 is a 2-dimensional Array containing "
++ "all synths & routines in patch #2:\n";
9.do{ arg i;
msg = msg ++
("patch_2 0" ++ (1 + 1) ++ " = p2[" ++ 1 ++ "] = " ++ p2[i] ++ "\n")
}s

‘msg

}

J¥***%kx%6% INSTANCE METHODS FOR INITIALIZATION **¥kkiksx/

initProgram {

arg directory_path;

/*
The directory path is generally either
= this.class.filenameSymbol.asString.dirname
or...
= thisProcess.nowExecutingPath.dirname

*/

[FRFFFHRHRHHRERR GENERAL INITIALIZATION CODE ********x/

244

dpath = directory_path;
"".postln;
// open a GUI window, sending the current object as a pointer...
if(QCZ_EternalOwlCall GUI.class_gui_pointer == nil)
{
gui = QCZ_EternalOwlCall GUI(this);
gui_meter = gui.z_meter_view;
gui_scope = gui.z_scope_view;
}
// else...
{
/* If a correspoding GUI window already exists, close/overwrite
it and reboot the program to ensure full stability.. */
var msg =
"A GUI window is already open!\n"
++ "Rebooting and overwriting the exisitng
++ "GUI window to ensure full stability...";

gui = QCZ_EternalOwlCall GUI.class_gui_pointer;
gui.close;
msg.inform;
~this.programStart(dpath);
}s
gui.postMsg(
("Directory path for reading/writing =

++ dpath ++ "\n").postln);

this.masterChannel; // processes dynamics on the RootNode
record = record_start_value;
record_dpath = dpath +/+ "recordings.dir";

// make a "recordings.dir" directory if it doesn't already exist...
if(File.type(record_dpath) == \not_found)
{ File.mkdir(record_dpath) }
// else...
{
// if "recordings.dir" file is not a directory
// delete it and create a new directory...
if(File.type(record_dpath) != \directory)
{
File.delete(record_dpath);
File.mkdir (record_dpath);

}
}s
if(record) {
startRecording.();
gui.postMsg("Record mode enabled!...".postln);

1

this.initSubpatchFlags;

pl_NSG_group_node
p3_RG_group_node
p3_NSG_group_node

Group.new; NodeWatcher.register(pl_NSG_group_node);
Group.new; NodeWatcher.register(p3_RG_group_node);
Group.new; NodeWatcher.register(p3_NSG_group_node);

tempo_clock[@] = TempoClock.new(11/15); // Sets 1st tempo clock to 44 BPM
tempo_clock[1] = Array.newClear(10); // Array of tempo clocks for patch #2
// Sets 2nd set of tempo clocks to 50 BPM...

10.do{ arg i; tempo_clock[1][i] = TempoClock.new(5/6); };

tempo_clock[2] = TempoClock.new(23/30); // Sets 3rd tempo clock to 46 BPM

// Add direct microphone signal, left + right pair from a mono input:

245

audio_direct = {
Out.ar(bus:0, channelsArray:SoundIn.ar(bus:[0,0],mul:0.1))
}.play;

/** INITIALIZATION CODE FOR PATCH #1 & #3 (NatureSoundsGroupChannel) **/

/* Read .aiff files from the audio.dir directory (located
in the same directory as the program script)...

*/

audio_dpath = dpath +/+ "audio.dir";

tawny_owl = Buffer.read(server, (audio_dpath
+/+ "TawnyOwl Germany_04.aiff"));
pigmy owl = Buffer.read(server, (audio_dpath

+/+ "Otter_Peru_PigmyOwl 03.aiff"));
otter_CostaRica = Buffer.read(server, (audio_dpath
+/+ "Otter_CostaRica_Streams&Birdsong 01.aiff"));
frog_Amazon = Buffer.read(server, (audio_dpath
+/+ "NeotropicalFrog_Amazon_ Brasil ©01.aiff"));
frog_Peru2 = Buffer.read(server, (audio_dpath
+/+ "NeotropicalFrog Peru2 01.aiff"));
mosquito = Buffer.read(server, (audio_dpath
+/+ "Mosquito_CostaRica_01.aiff"));

freq_modulation_routine.stop;
pan_modulation_routine.stop;

J**xkxkxkak INITIALIZATION CODE FOR PATCH #2 **ktkkkx/
this.init_p2; // initalize 2D Array for patch #2
JX*¥*¥*xx INITIALIZATION CODE FOR EFFECTS PROCESSORS *****x*/

{ gui.postMsg("Initializing effects processors...".postln) }.defer;
// 4.wait; // wait for synthdefs to be sent to the server
s_reverb = Synth.new(\stereoReverbChannel,

[\in_bus, s_reverb_bus, \amp, 1]);

reverb = Synth.new(\atmosphericReverbChannel,
[\in_bus, reverb_bus, \delaytime, 1/4, \pan, O,
\next_tap, 0, \next_comb, 0], target:p3_RG_group_node);

audio_reverb = { Out.ar(reverb_bus, SoundIn.ar(bus:0,mul:1)) }.play;

{
gui.postMsg(("Program initialized!\n"
++ "Post Window data will be displayed here...\n").postln)
}.defer;

}

// Main Function:
programStart {
arg directory_path;

Routine
{
Buffer.freeAll(server); // frees buffers already stored in memory
// reboot the server to clear memory...
"".postln;
server.quit;
0.1.wait;

246

"The program is booting, please wait!...\n".postln;
server.waitForBoot(
onComplete:{ this.initProgram(directory path) },
onFailure: {
var msg;

if(valid_instance_count > 0)

{ valid_instance_count = valid_instance_count - 1 };
"".postln;

msg = "\nThe server failed to boot!"

++ "\nTry running the program again...\n";
msg.error

}

)
}.play(AppClock);

}

initCZ_EternalOwlCall {
// varify that the instance is valid...
if(valid_instance_count == || allow_multiple_ instances)
{
valid_instance = true;
valid_instance_count = valid_instance_count + 1;
class_zpi_pointer = this;

}
// else
{
var msg;
valid_instance = false;
invalid_instance_count = invalid_instance_count + 1;
msg = "\nThis performance interface class has "
++ "already been instantiated once!\n"
++ "For safety reasons the class' default valid "
++ "instance count cannot exceed 1.\n"
++ "Cmd+Period will reset the 'valid_instance_count' "
++ "classvar to zero\n"
++ "If a software developer requires multiple "
++ "valid instances the 'allow_multiple_instances' "
++ "classvar should be set to true.\n"
++ "This should only be required in exceptional circumstances!\n";
msg.error;
~this
s

// variable, object & function initializations for 'this' instance:
/¥**** GENERAL PRIVATE INSTANCE VARIABLES, OBJECTS & FUNCTIONS *****/

number_of_subs = [5,11,6]; // number of subpatches in each patch

mode = "Testing"; // can be set to "Performance" or "Testing"
// 2D Array to store a flag for each subpatch...
subpatch_flag = Array.newClear(number_of_subs.size);

// 2D Arrays to store functions which start or free each subpatch...
subpatchAction = Array.newClear(number_of_subs.size);

247

freeSubpatch = Array.newClear(number_of_ subs.size);
tempo_clock = [nil,nil,nil];

// Variables to Enable Automatic Disk Recording:

record=true; record_start_value=true; // either both true or both false
already_recording = false;

record_path = nil; // references the current session recording

p2 = Array.newClear(9); // 2D Array to store all synths in patch #2

// Microphone Input Signal Synths:
audio_direct = nil;
audio_reverb = nil;

// Allocate Delay Channel Synth Array:
tap = Array.newClear(12);

// Effects Processing Buses:
s_reverb_bus = Bus.audio(server, numChannels:2);
reverb_bus = Bus.audio(server, numChannels:1);
comb_bus = Bus.audio(server, numChannels:1);
tap_bus = Array.newClear(12);
12.do{ arg i; tap_bus[i] = Bus.audio(server) };

// Effects Processing Ints, Floats & Arrays:
pan_array = [0, -1/3, 1/3, -2/3, 2/3, -1, 1, -2/3, 2/3, -1/3, 1/3, @];

// GUI Object...
gui = nil;

/*¥**** PRIVATE VARIABLES FOR PATCH #1 & #3 (NatureSoundsGroupChannel) *****/

// Owl Harmonizer Variables:
fundamental_shift_rate = 0.9;

// Synth Arrays for owl harmonizer:

owl sample_shifter = Array.newClear(9);
owl formant_shifter = Array.newClear(9);
// Float Value Arrays for owl harmonizer:
formant_shift_rate_array = Array.newClear(9);
sampler_pan_array Array.newClear(9);
formant_pan_array Array.newClear(9);

/¥***¥kx%k% PRIVATE VARIABLES FOR PATCH #3 (ReverbGroupChannel) *¥kkikx/

mid_mod_pulse
low_mod_pulse
bass_pulse

Array.newClear(5);
Array.newClear(5);
Array.newClear(5);

/*¥**** SET PRIVATE SUBPATCH ACTION & FREE FUNCTIONS FOR EACH PATCH *****/

number_of_subs.size.do{ arg i;
subpatchAction[i] = Array.newClear(number_of subs[i]);
freeSubpatch [i] = Array.newClear(number_of_subs[i]);

}s
/*¥xxkxkxkk PRIVATE SUBPATCH FUNCTIONS FOR PATCH #1 *otkxkotiskx/
// Subpatch #1.01...

subpatchAction[@][@] =

{
// ©0.2.wait; // wait for synthdefs to be sent to the server

248

this.neotropicalAmbience(target:pl_NSG_group_node);

// free synth if already active

if(otter_CostaRica_f doppler.isPlaying)

{ otter_CostaRica_f_doppler.free };

otter_CostaRica_f doppler = Synth.new(\monoCircularFormantDoppler,
[\bufnum, otter_CostaRica, \amp, 0.65, \fade_in, 45, \rate, 1/16],
target:pl_NSG_group_node);

NodeWatcher.register(otter_CostaRica_f doppler);

}s

// Subpatch #1.02...
subpatchAction[@][1] =
{ this.owlHarmonizer(mod_at_start:false, target:pl _NSG_group_node) };

// Subpatch #1.03...
subpatchAction[0][2]

{ this.panModLoop; };

// Subpatch #1.04...
subpatchAction[0][3]

{

pl_release_routine.stop;
pl_release_routine = Routine

{
tempo_clock[@].clear; // clear events previously scheduled
if(pl1_NSG_group_node.isPlaying) {
pl_NSG_group_node.set(\gate, 0, \release_time, 142.5)
}s
140.wait; // free infinite loops before the end of the fade-out...
freq_modulation_routine.stop;
pan_modulation_routine .stop;
{ gui.postMsg("modulation routines free!".postln) }.defer
}.play
}s
// Subpatch #1.05...
subpatchAction[0][4] =
{
// free effects channels first so that input buses can be reconfigured...
this.freeEffects;
this.bus_Reverb__7TapDelay;
}s

/¥***%kx%%% PRIVATE SUBPATCH FUNCTIONS FOR PATCH #2 *¥kkkixk/

// Subpatch #2.01...
// Additive synth on 2nd, 3rd & 5th partials of C3 (48.midicps = 130.81 Hz)

subpatchAction[1][@] =
{

Routine

{

this.freeAdditiveSub(0);

this.additiveSynth(pan:-2/3, isynth:0, jsynth:0);

tempo_clock[1][@].sched(5) { this.additiveSynth(input_partial:3,
pan:-2/3, isynth:0, jsynth:1)

}s

tempo_clock[1][@].sched(9) { this.additiveSynth(input_partial:5,
pan:-2/3, isynth:0, jsynth:2)

}s

}.play

249

1

// Subpatch #2.02...
// Additive synth on 5th, 3rd & 2nd partials of D3 (50.midicps = 146.83 Hz)

subpatchAction[1][1] =
{

Routine

{

this.freeAdditiveSub(1);

this.additiveSynth(midi_value:50, input_partial:5,
pan:2/3, isynth:1, jsynth:0);

tempo_clock[1][1].sched(8/3) { this.additiveSynth(50, 3, pan:2/3,
isynth:1, jsynth:1) };

tempo_clock[1][1].sched(16/3) { this.additiveSynth(50, 2, pan:2/3,
isynth:1, jsynth:2) };

}.play
s

// Subpatch #2.03...
/* Additive synth on 2nd, 3rd, 5th & 7th
partials of Db2 (37.midicps = 69.30 Hz) */

subpatchAction[1][2] =
{

Routine

{

this.freeAdditiveSub(2);
this.additiveSynth(midi_value:37, input_partial:2,
input_gain:1/3, pan:1, isynth:2, jsynth:0);
tempo_clock[1][2].sched(2) {
this.additiveSynth(37, 3, 1/3, 1, 2, 1) };
tempo_clock[1][2].sched(4) {
this.additiveSynth(37, 5,
tempo_clock[1][2].sched(7) {
this.additiveSynth(37, 7,

1/3, 1, 2, 2) };

1/3J 1: 2: 3) };
}.play
}s

// Subpatch #2.04...
/* Additive synth on 7th, 5th, 3rd & 2nd
partials of Eb2 (39.midicps = 77.78 Hz) */

subpatchAction[1][3] =
{

Routine

{

this.freeAdditiveSub(3);
this.additiveSynth(midi_value:39, input_partial:7, input_gain:1/3,
pan:-1, isynth:3, jsynth:0);
tempo_clock[1][3].sched(4/3)
{ this.additiveSynth(39, 5, 1/3, -1, 3, 1) };
tempo_clock[1][3].sched(4)
{ this.additiveSynth(39, 3, 1/3, -1, 3, 2) };
tempo_clock[1][3].sched(20/3)
{ this.additiveSynth(39, 2, 1/3, -1, 3, 3) };
}.play
s

// Subpatch #2.05...

/* Additive synth on 2nd, 5th, 3rd & 7th
partials of F2 (41.midicps = 87.31 Hz) */

subpatchAction[1][4] =

{

250

Routine

{
this.freeAdditiveSub(4);
this.additiveSynth(midi_value:41, input_partial:2, input_gain:1/3,

pan:1/3, isynth:4, jsynth:0);

tempo_clock[1][4].sched(8/5)
{ this.additiveSynth(41, 5, 1/3, 1/3, 4, 1) };
tempo_clock[1][4].sched(16/5)
{ this.additiveSynth(41, 3, 1/3, 1/3, 4, 2) };
tempo_clock[1][4].sched(28/5)
{ this.additiveSynth(41, 7, 1/3, 1/3, 4, 3) };

}.play

}s

// Subpatch #2.06...
/* Additive synth on 2nd, 3rd, 5th & 7th
partials of G2 (43.midicps = 98.00 Hz) */

subpatchAction[1][5] =
{

Routine

{

this.freeAdditiveSub(5);
this.additiveSynth(midi_value:43, input_partial:2, input_gain:1/3,
pan:-1/3, isynth:5, jsynth:0);
tempo_clock[1][5].sched(4/5)
{ this.additiveSynth(43, 3, 1/3, -1/3, 5, 1) };
tempo_clock[1][5].sched(12/5)
{ this.additiveSynth(43, 5, 1/3, -1/3, 5, 2) };
tempo_clock[1][5].sched(24/5)
{ this.additiveSynth(43, 7, 1/3, -1/3, 5, 3) };
}.play
}s

// Subpatch #2.07...
// Additive synth on 7th, 11th & 13th partials of both C3 & D3

subpatchAction[1][6] =
{

Routine

{

this.freeAdditiveSub(6);
this.additiveSynth(midi_value:48, input_partial:7, input_gain:1,
pan:-2/3, isynth:6, jsynth:0);
tempo_clock[1][6].sched(5/2)
{ this.additiveSynth(48, 11, 1, -2/3, 6, 1) };
tempo_clock[1][6].sched(9/2)
{ this.additiveSynth(48, 13, 1, -2/3, 6, 2) };
tempo_clock[1][6].sched(6)
{ this.additiveSynth(50, 13, 1, 2/3, 6, 3) };
tempo_clock[1][6].sched(22/3)
{ this.additiveSynth(50, 11, 1, 2/3, 6, 4) };
tempo_clock[1][6].sched(26/3)
{ this.additiveSynth(50, 7, 1, 2/3, 6, 5) };
}.play
}s

// Subpatch #2.08...
// Adds a looped bass line of deep bell-like pitches
subpatchAction[1][7] =
{
var i = @, sum = @, speed = 1.25;
// bell _array values are supplied as semitone_offset args to the

251

// bellPitch function containing the following pitches offset from C3:

var pitch_string = ["C3","D3","Db2","Ab2","Eb2","Bb2","F2","Gb1", "G2"];
var bell_array [9, 2, ~-11, -4, -9, -2, -7, -18, -5]1;
var pan_array [-1/4, 1/4, -1, 3/4, 1, -3/4, 1/2, 0, -1/2];

p2[7].stop; // stop any bell-loop routines already in memory
p2[7] = Routine

{
{
9.dof{arg i;
// lower pitches are exponentially longer:
this.bellPitchSynth(bell array[i] /*- 13*/,
pan_array[i], /*amp:0.4%/);
// this.bellPitchSynth(bell_array[i]+12, pan_array[i]);
((1/speed) * 2.pow((bell array[i] * -1)/12)).wait;
}s
}.1oop
}.play

1

// Subpatch #2.09...
// Additive synth on 17th, 19th & 23rd partials of both C3 & D3

subpatchAction[1][8] =
{

Routine

{

this.freeAdditiveSub(8);
this.additiveSynth(midi_value:48, input_partial:17, input_gain:1,
pan:-2/3, isynth:8, jsynth:0);
tempo_clock[1][8].sched(1)
{ this.additiveSynth(48, 19, 1, -2/3, 8, 1) };
tempo_clock[1][8].sched(2)
{ this.additiveSynth(48, 23, 1, -2/3, 8, 2) };
tempo_clock[1][8].sched(7/2)
{ this.additiveSynth(50, 23, 1, 2/3, 8, 3) };
tempo_clock[1][8].sched(25/6)
{ this.additiveSynth(50, 19, 1, 2/3, 8, 4) };
tempo_clock[1][8].sched(41/6)
{ this.additiveSynth(50, 17, 1, 2/3, 8, 5) };
}.play
}s

// Subpatch #2.10...
/* Gradually sliences each synth in patch #2
and frees related computer memory */

subpatchAction[1][9] =
{

Routine

{

var interval = /*15/7*/ 11/7, loop_start = [0,0,0,0];
var message_time = 0;

tempo_clock[1][9].clear;
// clears any previously scheduled free routine

loop_start[@] = 0;

loop_start[1l] = interval * 16;
loop_start[2] = interval * 22;
loop_start[3] = interval * 28;
message_time = (interval * 34) + 0.01;

// i.e. just after the process

252

p2[7].stop;
p2[7] = nil;
{ gui.postMsg("p2[7] free! ", line_feed:false).post }.defer;
// free [2] to [5] (4 synths each)...
this.freeSynths_p2(2,5,0,3, loop_start[@], interval);
// free [0] to [1] (3 synths each)...
this.freeSynths_p2(0,1,0,2, loop_start[1], interval);
// free [6] (6 synths)...
this.freeSynths_p2(6,6,0,5, loop_start[2], interval);
// free [8] (6 synths)...
this.freeSynths_p2(8,8,0,5, loop_start[3], interval);
tempo_clock[1][9].sched(message_time) {

{ gui.postMsg("\nAll p2 synths freed!".postln) }.defer;

1

if(tawny_owl player.isPlaying) { tawny owl player.free };
tawny_owl_player = Synth.before(
s_reverb, \monoToStereoSamplePlayer,
[\bufnum, tawny owl, \amp, ©.6875,
\pan, 0, \fade_in, message_time,
\reverb_bus, s _reverb_bus, \direct, 1]);
NodeWatcher.register(tawny_owl player);
}.play
}s

subpatchAction[1][10] = { this.directMicSignal };

/¥***%kx%%% PRIVATE SUBPATCH FUNCTIONS FOR PATCH #3 *¥kkkixk/

// Subpatch #3.01...
// Sends audio input to the atmospheric reverb algorithm:
subpatchAction[2][@] =
{
if(tawny_owl player.isPlaying)
{ tawny_owl player.set(\gate, 0, \release_time, 60) };

/* free effects channels first so that

input buses can be reconfigured... */
this.freeEffects;
this.bus_Reverb_12TapDelay Comb(start_comb:false)

1

// Subpatch #3.02...
// Sends generator pulses to the atmospheric reverb algorithm:
subpatchAction[2][1] =

{
// ©0.2.wait; // wait for synthdef to be sent to the server

// set mid mod pulse signal:
if(mid_mod_pulse[@].isPlaying) { mid_mod_pulse[©].free };
mid_mod_pulse[@] = Synth.new(\midModPulse,
[\out_bus, [0,1], \reverb_bus, reverb_bus],
target:p3_RG_group_node);
NodeWatcher.register(mid_mod_pulse[9]);

// set low mod pulse signal, harmonized up to the 5th partial:
5.do{ arg i,
if(low_mod_pulse[i].isPlaying) { low_mod_pulse[i].free };
low_mod_pulse[i] = Synth.new(\lowModPulse,
[\out_bus, [0,1], \reverb_bus, reverb_bus, \mul, (i+1),

\partial, (i*2+1), \gain_division, (1/(i+1))],
target:p3_RG_group_node);
NodeWatcher.register(low_mod_pulse[i]);

1

// set bass pulse signal:
if(bass_pulse[0@].isPlaying) { bass_pulse[@].free };
bass_pulse[@] = Synth.new(\bassPulse,
[\out_bus, [0,1], \reverb_bus, reverb_bus],
target:p3_RG_group_node);
NodeWatcher.register(bass_pulse[0]);
}s

// Subpatch #3.03...
// Adds comb filters to the atmospheric reverb channel:
subpatchAction[2][2] =
{
// Array used with previous settings...
var kr_array = [1/17 ,1/3, 1/23, 1/5, 1/13] * 2;

if(reverb.isPlaying) { reverb.set(\next_comb, 1) };
if(comb.isPlaying) {comb.set(
\control_freq, 6/5,
\control_mul, ©.00249 /* 0.003875 */,
\control_add, ©0.0025)

1

// Subpatch #3.04...
// Xfades reverberated synths with modulated neotropical nature sounds:
subpatchAction[2][3] =
{
// ReverbGroupChannel Xfades Out, leaving just the bass pulse:
if(mid_mod_pulse[@].isPlaying) {
mid_mod_pulse[@].set(\gate, ©, \release_ time, 60)

}s
if(comb.isPlaying) { comb.set(\gate, 0, \release_time, 60) };
5.do{ arg i,
if(low_mod_pulse[i].isPlaying) {
low_mod_pulse[i].set(\gate, 0, \release time, 60);
}
}s

// NatureSoundsGroupChannel Xfades In:
if(otter_CostaRica_player.isPlaying) { otter_CostaRica_player.free };
if(mosquito_s_doppler.isPlaying) { mosquito_s_doppler.free }s

this.neotropicalAmbience(fade_in:60, target:p3_NSG_group_node);

this.owlHarmonizer(mod_at_start:true, wait_before:0, wait_after:30,
target:p3_NSG_group_node);
this.panModLoop;

// startPos offset so that the otter recording fades-in to the
// 'colourful splashes' towards the end of the audio file...
otter_CostaRica_player = Synth.new(\monoToStereoSamplePlayer,
[\bufnum, otter_CostaRica, \start_pos, 48000 * 225,
\amp, 0.675, \pan, 0, \fade_in, 60,
\direct, 1], target:p3_NSG_group_node);
NodeWatcher.register(otter_CostaRica_player);

253

254

// ©0.1l.wait; // wait for synthdef to be sent to the server

mosquito_s_doppler = Synth.new(\stereoTriangularSampleDoppler,
[\bufnum, mosquito, \amp, ©.5625, \fade_in, 60, \rate, 1/32],
target:p3_NSG_group_node);

NodeWatcher.register(mosquito_s_doppler);

1

// Subpatch #3.05...

// Xfades modulated neotropical nature sounds
// with reverberated/delayed tawny owl call:
subpatchAction[2][4] =

{
if(tawny_owl player.isPlaying) { tawny_owl player.free };

9.do{ arg i;
if(owl_sample_shifter [i].isPlaying) {
owl sample_shifter [i].set(\gate, O,
\release_time, 60, \done_action, 2)
s
if(owl_formant_shifter[i].isPlaying) {
owl formant_shifter[i].set(\gate, O,
\release_time, 60, \done_action, 2)
s
s
if(mosquito_s_doppler.isPlaying) {
mosquito_s_doppler.set(\gate, 0, \release_time, 60)
}s
if(frog_Amazon_player.isPlaying) {
frog_Amazon_player.set(\gate, 0, \release_time, 60)
}s
if(frog_Peru2_player.isPlaying) {
frog_Peru2_player .set(\gate, 0, \release_time, 60)

1

tawny_owl player = Synth.new(\monoSampleShift,

[\bufnum, tawny owl, \amp, 2.25, \pan, @, \fade_in, 60,
\pitch_variation_freq, 2/7, \pitch_variation_amp, 1/4,
\amp_mod_cycle_freq, 1/31, \lowcut, 500, \rq, 1,
\reverb_bus, reverb_bus, \direct, 0],

target:p3_NSG_group_node);

NodeWatcher.register(tawny_owl player);

p3_NSG_xfade_routine.stop;
p3_NSG_xfade_routine = Routine

{
57.5.wait; // free infinite loops before the end of the xfade...
freq_modulation_routine.stop;
pan_modulation_routine .stop;
{ gui.postMsg("modulation routines free!".postln) }.defer
}.play

1

// Subpatch #3.06...
// Fade out synths:
subpatchAction[2][5] =
{
tempo_clock[@].clear; // clear events previously scheduled
if(p3_RG_group_node .isPlaying) {
p3_RG_group_node .set(\gate, 0, \release_time, 30)
}s
if(p3_NSG_group_node.isPlaying) {

p3_NSG_group_node.set(\gate, 0, \release_time, 30)
}s
}s

[XFFFHRHRHRRARX PRIVATE FREE SUBPATCH FUNCTIONS FOR PATCH #1 *¥*¥¥*xxxx/

freeSubpatch[@][@Q] =

{
this.freeNeotropicalAmbience;
if(otter_CostaRica_f _doppler.isPlaying)
{ otter_CostaRica_f_doppler.free };
otter_CostaRica_f _doppler = nil;

}s
freeSubpatch[@][1] =
{
this.freeOwlHarmonizer;
freq_modulation_routine.stop; // clear any freq mod calls to the synths
pan_modulation_routine.stop; // clear any pan mod calls to the synths
}s
freeSubpatch[@][2] = { this.freePanMod };
freeSubpatch[@][3] =
{
pl_release_routine.stop;
// restart all previous subpatches in patch #1...
3.do{ arg i; subpatchAction[@][i].() }
}s

freeSubpatch[0][4] = { this.freeEffects; this.bus_Reverb };
JXFFF*x*x%%%x pPRTIVATE FREE SUBPATCH FUNCTIONS FOR PATCH #2 *x¥¥**xkkxxx/

7.do{ arg i; freeSubpatch[1][i] = { this.freeAdditiveSub(i) } };

freeSubpatch[1][7] = { p2[7].stop };
freeSubpatch[1][8] = { this.freeAdditiveSub(8) };
freeSubpatch[1][9] =

{

tempo_clock[1][9].clear; // clear events previously scheduled
if(tawny_owl player.isPlaying) { tawny owl player.free };
tawny_owl_player = nil;

}s
freeSubpatch[1][10] = { this.freeEffects; this.bus_Reverb__7TapDelay };
JXFFF*xxx0%%%x pPRTIVATE FREE SUBPATCH FUNCTIONS FOR PATCH #3 *¥¥**xkkxx/

freeSubpatch[2][@] =
{ this.freeEffects; this.bus_Reverb__7TapDelay; this.directMicSignal };

freeSubpatch[2][1] =
{
if(mid_mod_pulse[@].isPlaying) { mid_mod_pulse[©].free };
mid_mod_pulse[@] = nil;
5.do{ arg i,
if(low_mod_pulse[i].isPlaying) { low_mod_pulse[i].free };
low_mod_pulse[i] = nil

255

256

}s
if(bass_pulse[@].isPlaying) { bass_pulse[@].free };
bass_pulse[@] = nil

s
freeSubpatch[2][2] =
{
if(reverb.isPlaying) { reverb.set(\next_comb, 90) };
if(comb.isPlaying) { comb.set(
\control_freq, 0,
\control_mul, ©.00249,
\control_add, ©0.0025)
}
}s
freeSubpatch[2][3] =
{
{
subpatchAction[2][@].(); // restores ReverbGroupChannel
subpatchAction[2][1].(); // restarts modular synths
}.defer;
// ©0.3.wait; // wait for synthdefs to be sent
{ subpatchAction[2][2].(); }.defer; // restarts comb filter
if(otter_CostaRica_player.isPlaying) { otter_CostaRica_player.free };
if(mosquito_s_doppler.isPlaying) { mosquito_s_doppler.free };
otter_CostaRica_player = nil;
mosquito_s_doppler = nil;
this.freeNeotropicalAmbience;
freeSubpatch[0][1].() // frees owl harmonizer
}s
freeSubpatch[2][4] =
{
p3_NSG_xfade_routine.stop;
subpatchAction[2][3].(); // restarts nature sounds from subpatch # 3.04
if(tawny_owl player.isPlaying) { tawny_owl player.free };
tawny_owl_player = nil;
s
freeSubpatch[2][5] =
{
{
subpatchAction[2][@].(); // restores ReverbGroupChannel
subpatchAction[2][1].(); // restarts modular synths
}.defer;
// ©0.3.wait; // wait for synthdefs to be sent
{
// restarts comb filter & nature sounds xfades...
3.do{ arg i; subpatchAction[2][i + 2].() }
}.defer;
}s

/*¥**** GENERAL PUBLIC INSTANCE VARIABLES, OBJECTS & FUNCTIONS *****/

// Public variables for sending values to other classes...
next_patch = 1; next_subpatch = 1;

last_patch = 1; last_subpatch = 0;

dpath = nil;

257

startRecording = {

if(already_recording.not)

{

}

record = true;

// create an output file for this buffer, leave it open
record_path = record_dpath +/+ "EternalOwlCall "
++ Date.localtime.stamp ++ ".aiff";

diskout_buffer = Buffer.alloc(server, 2.pow(16), 2);
diskout_buffer.write(record_path, "aiff", "inti6", -1, @, true);

// 2.wait;
// create the diskout node, making sure it comes after the source
diskout_node = Synth.tail(nil, \recordSession,
[\buffer, diskout_ buffer]);
diskout_node.onFree
{
stopRecording.(); // also saves a file
diskout_buffer.free; // free the buffer
diskout_buffer = nil;
}s

already_recording = true;

{ gui.setRecordModeButton(\on) }.defer;
"Record mode enabled!"

// else...

{

1

{ gui.setRecordModeButton(\on) }.defer;
"The session is already recording!"”

stopRecording = {

if(already_recording)

{
diskout_buffer.close; // close the buffer/soundfile and save
{
var msg = "A file has been recorded to disk!";
if(gui != nil)
{
gui.setRecordModeButton(\off);
gui.postMsg(msg.postln);
}
// else...
{ msg.postln }
}.defer;
record = false;
already_recording = false;
}
// else...
{

var flag = if(record) { \on } /* else... */ { \off };
{ gui.setRecordModeButton(flag) }.defer;
"Unable to stop recording, please try again!"”

258

1

// Public functions to be sent as values by other classes...
playLastRecordedSession = {

if(record.not)

{
if(record_path != nil)
{
diskin_buffer.free;
diskin_buffer = Buffer.read(server,record_path);
playSample. (symbol:"Session", channels:2,
rate:1, start_pos_secs:0, loop:0);
// return...
record_path.basename
}
// else...
{
gui.freeRecPlayButton();
("No file has been recorded during the current session.”
++ "\nStart record mode to enable this...")
}
}
// else...
{
gui.freeRecPlayButton();
"Record mode must be stopped to play a file back!..."
}

1

// Microphone & bus routing commands ...
directMicrophoneSignal = {
gui.postMsg("".postln);
gui.postMsg(this.directMicSignal)
}s
sendMicToBus_Reverb = {
gui.postMsg("".postln);
this.freeEffects;
gui.postMsg(this.bus_Reverb)
}s
sendMicToBus_Reverb__7TapDelay = {
gui.postMsg("".postln);
this.freeEffects;
gui.postMsg(this.bus_Reverb__ 7TapDelay)
}s
sendMicToBus_Reverb_12TapDelay = {
gui.postMsg("".postln);
this.freeEffects;
gui.postMsg(this.bus_Reverb_12TapDelay)
}s
sendMicToBus_Reverb_12TapDelay_Comb = {
gui.postMsg("".postln);
this.freeEffects;
gui.postMsg(this.bus_Reverb_12TapDelay Comb)

1

// Function indexes a bufnum linked to a symbol and plays the audio file:
playSample = {
arg symbol, channels = 1, rate = 1, start_pos_secs = 0, loop = 1;

1

// Function indexes a SynthDef linked to a symbol and plays the Synth:

var bufnum = switch(symbol)

{ "Session" } { diskin_buffer }
{ "TawnyOwl" } { tawny_owl }
{ "PigmyOwl" } { pigmy_owl }
{ "Otter" } { otter_CostaRica }
{ "FrogAmazon" } { frog_Amazon }
{ "FrogPeru2" } { frog_Peru2 }
{ "Mosquito" }{ mosqu1to }
// Default function

{ nil };

if(bufnum != nil) {
if(audition_node.isPlaying) { audition_node.free };

}

// Pan2 will be ignored on stereo fi
audition_node = { Pan2.ar(PlayBuf.ar
numChannels:channels,
bufnum:bufnum,
rate:rate,
startPos:48000 * start_pos_secs,
loop:loop),
pos:0)}.play;
NodeWatcher.register(audition_node);

les...

(

bufnum.path.basename // returns the filename

// else...
{ "\""++symbol++"\" is not a valid symbo

playDoppler = {
arg symbol;

var valid_symbol = switch(symbol)

{
{
{
{

"OtterSampleDoppler” } { true }
"MosquitoSampleDoppler” } { true }
"OtterFormantDoppler" } { true }
"MosquitoFormantDoppler” } { true }

// Default function:
{ false };

if(valid_symbol) {
if(audition_node.isPlaying) { audition_node.free };

audition_node = switch(symbol)
{ "OtterSampleDoppler" }
Synth.new(\monoCircularSampleDoppl
[\bufnum, otter_CostaRica, \rate
"MosquitoSampleDoppler” }

11"}

er,

» 1/16]) }

Synth.new(\stereoTriangularSampleDoppler,

"OtterFormantDoppler" }
Synth.new(\monoCircularFormantDopp
[\bufnum, otter_CostaRica, \rate

{
{
{
[\bufnum, mosquito, \amp, ©.75,
{
{
{ "MosquitoFormantDoppler" }

\rate, 1/32]) }

ler,
» 1/16]) }

{ Synth.new(\stereoTriangularFormantDoppler,

[\bufnum, mosquito, \amp, ©.75,
// Default function:
{ "Software Error: invalid symbol!"
NodeWatcher.register(audition_node);
audition_node // returns the node ID

\rate, 1/32]) }

.postln };

259

260

}
// else...

{ "\"" ++ symbol ++ "\" is not a valid symbol!" }

1

freeAudition = {
var msg = nil;

if(audition_node.isPlaying) {
audition_node.free;
msg = "sample freed!"
}s
audition_node = nil;
gui.freePlayButtons();
gui.postMsg(msg.postln);

woon
~

1

setFregModulation = { this.fregModLoop(wait_before:0, wait_after:30);
"Frequency modulation set!" };

setPanModulation = { this.panModLoop; "Pan modulation set!" };
freeFregModulation = { this.freeFregMod; "Frequency modulation free!" };
freePanModulation = { this.freePanMod; "Pan modulation free!" };

this.programStart(this.class.filenameSymbol.asString.dirname)

}

J*¥*F*kxkx%* CLASS METHOD & FUNCTION CALLS [FOR TESTING PURPOSES]... *¥*kkkkx/
/%%
z = CZ_EternalOwlCall() // this boots the program and opens the GUI

// if you close and destroy the GUI window while audio synths are still running
// you can reopen the GUI window with one of the two following commands...

z.reopenGUI
CZ_EternalOwlCall.class_zpi_pointer.reopenGUI

z.programStart(CZ_EternalOwlCall.filenameSymbol.asString.dirname) // reboots
z.freeAllSynths

// Start/Restart Each Subpatch ...

// Patch #1 ... Atmospheric reverb is sent to the microphone signal
.subpatch(1,01) // Ambient neotropical nature sounds fade in
.subpatch(1,02) // Harmonized owl call emerges and freq mod is added
.subpatch(1,03) // Pan modulation is added to the owl & frog sounds
.subpatch(1,04) // Audio signal fades out over 142.5 seconds
.subpatch(1,05) // Adds 7 delay taps to the atmospheric reverb channel

N

N N N N

// Patch #2 ... Additive Synths...

.subpatch(2,01) // 2nd, 3rd & 5th partials of C3

.subpatch(2,02) // 5th, 3rd & 2nd partials of D3

.subpatch(2,03) // 2nd, 3rd, 5th & 7th partials of Db2
.subpatch(2,04) // 7th, 5th, 3rd & 2nd partials of Eb2
.subpatch(2,05) // 2nd, 5th, 3rd & 7th partials of F2
.subpatch(2,06) // 2nd, 3rd, 5th & 7th partials of G2
.subpatch(2,07) // 7th, 11th & 13th partials of both C3 & D3
.subpatch(2,08) // Adds a looped bass line of deep bell-like pitches
.subpatch(2,09) // 17th, 19th & 23rd partials of both C3 & D3

N N N N NNNNN

z.subpatch(2,10) // Silences each synth in patch #2 & owl call xfades in

z.subpatch(2,11) // Removes reverb/delay from the mic input... END OF SE
// Patch #3 ...

z.subpatch(3,01) // Adds reverb & 12 delay taps to the synths and mic in
z.subpatch(3,02) // Adds a bass pulse & modulated sine waves
z.subpatch(3,03) // Adds a comb filter

z.subpatch(3,04) // xfades reverberated synths & modulated nature sounds
z.subpatch(3,05) // xfades nature sounds & reverberated/delayed owl call
z.subpatch(3,06) // Fades out to silence... END OF SECTION

// Free or Reverse Each Subpatch ...
// Patch #1 ...

261

CTION

put

z.freeSub(1,01) // | Frees PlayBuf synths from corresponding subpatch...
.freeSub(1,02) // |

.freeSub(1,03) // Stops pan modulation and restores original pan values
.freeSub(1,04) // Restarts all previous subpatches in patch #1
.freeSub(1,05) // Removes 7-tap delay from the reverb channel

/ Patch #2 ...

.freeSub(2,01) // |
.freeSub(2,02) // |
.freeSub(2,03) // |
.freeSub(2,04) // |
.freeSub(2,05) // | Frees additive synths from corresponding subpatch..

|

|

|

.freeSub(2,06) //

.freeSub(2,08) //
.freeSub(2,09) // |

z
z

z

z

/

z

z

z

z

z

z

z.freeSub(2,07) //
z

z

z.freeSub(2,10) // Stops owl call and clears routine to free additive sy
z.freeSub(2,11) // Adds 7-tap delay and reverb back onto the mic signal
// Patch #3 ...

z.freeSub(3,01) // Restores 7-tap delay/reverb with only a direct mic si
z.freeSub(3,02) // Frees modular synths

z.freeSub(3,03) // Silences the comb filter

z.freeSub(3,04) // Restores ReverbGroupChannel & restarts modular synths
z.freeSub(3,05) // Restarts the modulated nature sounds fade-in
z.freeSub(3,06) // Restarts all previous subpatches in patch #3

// Free modulation routines (subpatch #1.02, #1.03 & #3.04)...
z.setFregModulation. ()

z.setPanModulation. ()

z.freeFregModulation. ()

z.freePanModulation. ()

// Microphone & bus routing commands ...
z.directMicrophoneSignal. ()
.sendMicToBus_Reverb. ()
.sendMicToBus_Reverb__7TapDelay. ()
.sendMicToBus_Reverb_12TapDelay. ()
.sendMicToBus_Reverb_12TapDelay_ Comb. ()

N N N N

// Playback & recording commands ...
z.playLastRecordedSession. ()
z.startRecording. ()
z.stopRecording. ()

// Audio file auditioning commands ...

z.playSample. (symbol:"TawnyOwl" ,channels:1, rate:1, start_pos_secs:0,
z.playSample. (symbol:"PigmyOwl" ,channels:2, rate:1, start_pos_secs:0,
// start_pos_secs:285, to get 'colourful splashes' at end of otter file.
z.playSample. (symbol:"Otter" ,channels:1, rate:1, start_pos_secs:90,

|
|
|
|
|
|
|
|
I
hs

nt
gnal

loop:1)
loop:1)

loop:1)

262

z.playSample. (symbol:"FrogAmazon",channels:1, rate:1, start_pos_secs:0, loop:1)
z.playSample. (symbol:"FrogPeru2" ,channels:1, rate:1, start_pos_secs:0, loop:1)
z.playSample. (symbol:"Mosquito" ,channels:2, rate:1, start_pos_secs:0, loop:1)
// Doppler auditioning commands ...
z.playDoppler. (symbol:"OtterSampleDoppler")
z.playDoppler. (symbol: "MosquitoSampleDoppler")
z.playDoppler. (symbol:"OtterFormantDoppler")
z.playDoppler. (symbol: "MosquitoFormantDoppler")
// free audition playback...

z.freeAudition. ()

// Debug command for patch #2 ...
z.p2_DebugData

// Commands to post ServerOptions data ...

s.options.memSize

s.options.numAudioBusChannels

// Set the memSize & numAudioBusChannels size to twice the default:
s.options.memSize = 16384,

s.options.numAudioBusChannels = 256;

*/
[HFxFFREERxxKk REDUNDANT/POTENTIALLY USEFUL CODE. .. #¥¥kkdxxsick/
/*

Routine
{ var message;

// this will play back the last recorded session...
SynthDef (\playSession, { arg buffer = 0;
Out.ar(@, DiskIn.ar(2, buffer)); }).send(s);

0.1.wait;

diskin_node = Synth.basicNew(\playSession);

message = { arg buffer;

diskin_node.addToHeadMsg(nil, [\buffer, buffer]) };
diskin_buffer = Buffer.cueSoundFile(s, record_path, 0, 2,
completionMessage: message);

}.play;

*/

263

264

QCZ_EternalOwlCall GUI : QWindow {
classvar <server, <>class_gui_pointer;

// Boolean Variables...

var full_screen_before_new_window, pmode;

// Integers...

var row, col;

// Main Window...

var master_grid, gui_columns; /* 2D Array */

var <>zpi; // points to the corresponding Z_PerformanceInterface()
// Non-Default Colors...

var sky_blue, violet, orange, mid_blue, dark_blue;

var light_purple, purple, dark_purple;

// Fonts...

var plain_font, bold_font;

// Labels...

var next_label, title_label, mode_label, rec_label, last_rec_label;
var audition_label, doppler_label, mic_bus_label, modulation_label;
var post_label, copyright_label;

// Buttons...

var next_button;

// Arrays of Labels...

var number_of_subs, patch_label, subpatch_label; /* 2D Array */
var sample_string, sample_label, doppler_name_string, doppler_name_label;
var mic_effect_string, mic_effect_label, mod_string, mod_label;

// Arrays of Button Object Pointers + Functions & Arguments...

var start_pointer; /* 2D Array */

var rec_play_pointer; /* Single Value */

var audio_play_pointer, audio_play_args;

var doppler_play_pointer, doppler_play_args;

var mic_bus_pointer, mic_bus_function;

var mod_set_pointer, mod_set_function, mod_free_function;

// Debug & Metering Views...

var <>post_window, <>z_meter_view, <>z_scope_view;

var <>z_analyzer_view, <>z_server_levels_panel_view;

// Confirm Dialog Window. ..

var dialog = nil;

// Sub Info Window...

var sub_info_window, sub_info_textview, sub_info_layout, info_path;
// Mod Info Window

var mod_info_window, mod_info_textview, mod_info_layout;

// Key Responders...

var space_ucr, esc_ucr, main_kres, main_ucr;

var dialog ucr, sub_info_ucr, mod_info_ucr;

// Functions to pass as args for confirming options...

var confirmPlayLastRecordedSession, confirmPlayAudition, confirmPlayEffect;
var confirmFreeAudition, confirmModSet, confirmModFree;

*initClass {
StartUp.add {
server = Server.default;
class_gui_pointer = nil;

}

*new { arg zpi_pointer,
name = "Eternal Owl Call : Real-Time Performance Interface",
bounds = Window.availableBounds, resizable = true, border = true,
server = this.server, scroll = true;

Asuper.new.initQCZ_EternalOwlCall GUI(

zpi_pointer, name, bounds, resizable, border, server, scroll

}

// Instance Methods...

addLabel { arg label = StaticText(), string = "Add String!",
string_color = Color.green, font_size = 18,
alignment = \center, bold = false;

label.string = "++ string ++" ;
label.background = Color.black;
label.stringColor = string_color;
label.align = alignment;

label.font = Font(Font.default, font_size, bold);

}

addPlaylLabels { arg label_array, string_array;

label _array.size.do{ arg i;
label array[i] = StaticText();
this.addLabel(label_array[i], string_array[i]++":",
Color.green, 14, \right);

}

addPlayButtons { arg label = StaticText(), column_offset = 0,

play_string = "Play", replay_string = "Replay", stop_string = "Stop",

pointer, play_function, play_args = [], stop_function,
mod_buttons = false;

var c¢ = column_offset;
gui_columns[c] = gui_columns[c].add(label);

gui_columns[c + 1] = gui_columns[c + 1].add(

Button().states_([[play_string , Color.blue, dark_purple],
[replay_string , Color.blue, Color.black]])

.font_(bold_font)

)s

pointer = gui_columns[c + 1][gui_columns[c + 1].size - 1];

pointer.action = { arg b;
// if(mod_buttons == false) { this.freePlayButtons() };
// b.value = 1;
this.postMsg(play_function.(*play_args).postln);

1

gui_columns[c + 2] = gui_columns[c + 2].add(
Button().states_([[stop_string , Color.gray, dark_blue]])
.font_(bold_font)

)s

gui_columns[c + 2][gui_columns[c + 2].size - 1].action = {
stop_function. (*play_args);
// pointer.value = 0;

1

// return...
Apointer

}

startAction { |button, i, j|

this.postMsg(zpi.subpatch((i + 1), (7 + 1)));

265

266

}

button.value = 1; // remains on "Restart"
"".postln;
this.setNextLabel;

freeStartAction { |button, i, j|

}

this.postMsg(zpi.freeSub((i + 1), (j + 1)).postln);
button.value = 9;
this.setNextLabel;

freeAllSynthsAction {

}

this.postMsg(zpi.freeAllSynths.postln);

// reset the start buttons for each subpatch...
start_pointer.size.do{ arg i,

start_pointer[i].size.do{ arg j;

start_pointer[i][j].value = ©0;

}
}s
this.freePlayButtons;
mod_set_pointer.size.do{ arg i; mod_set_pointer[i].value = @ };

setMode { arg value;

}

switch(value)
{e}{
pmode = false;
this.postMsg("Mode set to \"Testing\"".postln)

}
{1}A

pmode = true;

this.postMsg("Mode set to \"Performance\"".postln)
}

setFullScreenBeforeNewWindow {

}

case

{ gui_columns[8][@].value == 0 } {
{ gui_columns[8][@].value == 1 } {
gui_columns[8][@].valueAction = 1;

full_screen_before_new_window
full_screen_before_new_window =

—

openDialog { arg bounds = \default, message = \default,

button_strings = \default, completion_function = nil;
this.setFullScreenBeforeNewWindow;

if(bounds == \default) { bounds = Rect(500,300,205,150) };
if(message == \default) {

message = "Are you sure that you wish to confirm this action?...

}s
if(button_strings == \default) {
button_strings = ["Confirm", "Cancel"]

}s
if(dialog != nil) { dialog.close };

dialog = QZ_ConfirmDialog(button_strings);

true }
false };

267

dialog.bounds = bounds;
dialog.message.string = message;
dialog.completion_function = [completion_function, nil];
dialog.view.keyDownAction = dialog_ucr;
dialog.onClose = {
if(full_screen_before_new _window) { gui_columns[8][@].valueAction = @ };
}s
}

closeOtherWindows {

if(dialog != nil) { dialog.close; dialog = nil };

if(sub_info_window != nil) { sub_info _window.close; sub_info_window = nil };
if(mod_info_window != nil) { mod_info_window.close; mod_info_window = nil };
}
postMsg { arg value, line_feed = true;
var 1n = "\n";
if(line_feed == false) { 1ln = "" };

post_window.setString((value.asString ++ 1ln), post_window.string.size);
post_window.stringColor = Color.white;

// move the scrollbar to the end of the string...

post_window.select(post_window.string.size, 0);

post_window.refresh;

// return...
~value.asString

}

setRecordModeButton { arg mode = \on;
switch(mode)
{ \on } { gui_columns[5][4].value
{ \off } { gui_columns[5][4].value

n
R o®
—

}

setMicBusButton { arg i;
5.do{ arg j;
if(i != j) { mic_bus_pointer[j].value = 0 }
s

mic_bus_pointer[i].value = 1;

// function returns the button object pointer...
Amic_bus_pointer[i]

}

freeRecPlayButton { rec_play pointer.value = 0; }

freePlayButtons {
rec_play_pointer.value = 0;

audio_play pointer .size.do{ arg i; audio_play pointer [i].value = 0 };
doppler_play pointer.size.do{ arg i; doppler_play pointer[i].value = @ };
}
setNextLabel {

var unit = ;

if(zpi.next_subpatch < 10, { unit
next_label.string = "Next Subpatch
++ zpi.next_patch ++ "." ++ unit ++ zpi.next_subpatch;

0" });

268

if(zpi.next_patch == number_of subs.size

&& zpi.next_subpatch == (number_of_subs[number_of subs.size - 1] + 1))

{ next_label.string = "Next Subpatch = END" }

}

initQCZ_EternalOwlCall GUI {
arg zpi_pointer, name, bounds, resizable, border, server, scroll;

if(server.pid == nil)
{
("\nServer Process ID = nil\n"
++ "You may need to boot the server...\n").error;
~this
}s
if(zpi_pointer.isKindOf(CZ_EternalOwlCall).not)
{
var msg =
"\n'" ++ zpi_pointer ++ "' is an invalid zpi_pointer arg!\n"
++ "This must be an instance of the CZ_EternalOwlCall() class or a "
++ "similar compatible child class or Z_PerformancelInterafce() class.\n";
// this.close;
msg.error;
~this
}s

/* Create a publically accessible pointer to the

corresponding Z_PerformanceInterface() object... */

zpi = zpi_pointer;
if(zpi.valid_instance == false)
{
var msg =
"\nUnable to open the GUI window because the "
++ "corresponding 'zpi_pointer' arg is invalid!\n";
"".postln;
msg.error;
~this
}s
if(class_gui_pointer == nil)
{
// make the classvar point to the current QObject...
class_gui_pointer = this;
}
// else...
{
var msg =
"\nThe performance interface GUI window has already been opened!"
++ "\nYou cannot open multiple windows...\n";
// this.close;
"".postln;
class_gui_pointer.postMsg(msg.error);
~this
s

// variable, object & function initializations:

// Boolean Var
full_screen_be
pmode = false;

// Integers...
row = @; col =

iables...
fore_new_window = true;

9;

// Main Window...

master_grid
gui_columns =

// Non-Default
sky_blue =
violet =
orange =
mid_blue =
dark_blue =
light_purple =
purple =
dark_purple =

// Fonts...
plain_font
bold_font

F
F

// Labels...
next_label
title_label
mode_label
rec_label
last_rec_label
audition_label
doppler_label
mic_bus_label
modulation_lab
post_label
copyright_labe

// Buttons...
next_button =

GridLayout();
Array.newClear(9); // 2D Array

Colors...

Color(0.6, 0.8, 0.8);
Color.blue.blend(Color.magenta,
Color.red .blend(Color.yellow
Color().darken(Color.blue ,
Color().darken(Color.blue ,
Color().darken(Color.magenta,
Color().darken(Color.magenta,
Color().darken(Color.magenta,

OO0~

ont(Font.default, bold:false);
ont(Font.default, bold:true);

= StaticText();
= StaticText();
= StaticText();
= StaticText();
= StaticText();
= StaticText();
= StaticText();
= StaticText();
StaticText();
= StaticText();
StaticText();

el

1

Button().states_([["Next Subpatch (SPACEBAR)",

blend:0.5);
blend:0.5);

.25);
.75);
.25);
5);
.75);

Color.blue, dark_purple]]).font_(bold_font);

// Arrays of L
number_of_subs
patch_label
subpatch_label
sample_string
"Tawny Owl
"Pigmy Owl
"Otter Sam
"Frog (Ama
"Frog (Per
"Mosquito
15
sample_label
doppler_name_s
"Otter Sam
"Mosquito
"Otter For
"Mosquito

1;

abels...

= [5,11,6];

= Array.newClear(3);
Array.newClear(3); // 2D Array
= [

Sample",

Sample",

ple”,

zon) Sample",

u) Sample",
Sample”

= Array.newClear(6);
tring = [

ple Doppler" ,
Sample Doppler”,
mant Doppler",
Formant Doppler"

269

270

doppler_name_label = Array.newClear(4);
mic_effect_string = [
"Direct Microphone Signal Only",
"Microphone to Reverb Channel”,
"Mic to Reverb + 7 Tap Delay",
"Mic to Reverb + 12 Tap Delay",
"Reverb + 12 Tap Delay + Comb Filter"
15
mic_effect_label = Array.newClear(5);
mod_string = ["Frequency Modulation"”, "Pan Modulation"];
mod_label Array.newClear(2);

// Arrays of Button Object Pointers + Functions & Arguments...
start_pointer = Array.newClear(3); // 2D Array
rec_play_pointer = nil; // Single Value

audio_play_ pointer = Array.newClear(6);

audio_play_args = [
["TawnyOwl"” , 1, 1, o, 1],
["PigmyOwl"” , 2, 1, @, 1],
["Otter" , 1, 1, o, 11,
["FrogAmazon", 1, 1, o, 1],
["FrogPeru2" , 1, 1, o, 1],
["Mosquito" , 2, 1, @, 1]

1;

doppler_play_pointer = Array.newClear(4);

doppler_play_args = [
"OtterSampleDoppler” ,
"MosquitoSampleDoppler",
"OtterFormantDoppler",
"MosquitoFormantDoppler"

1;

mic_bus_pointer Array.newClear(5);

mic_bus_function = [
zpi.directMicrophoneSignal,
zpi.sendMicToBus_Reverb,
zpi.sendMicToBus_Reverb__7TapDelay,
zpi.sendMicToBus_Reverb_12TapDelay,
zpi.sendMicToBus_Reverb_12TapDelay_ Comb

1;

mod_set_pointer = Array.newClear(2);
mod_set_function [zpi.setFregModulation , zpi.setPanModulation 1];
mod_free_function [zpi.freeFregModulation, zpi.freePanModulation];

// Debug & Metering Views...

post_window = TextView();
z_meter_view = QZ_MeterView().maxWidth_(151);
z_scope_view = QZ_ScopeView();

z_analyzer_view = QZ_AnalyzerView();
z_server_levels panel view = QZ_ServerLevelsPanelView().minWidth_(470);

Z_scope_view.xZoom
Z_scope_view.yZoom

0.375;
4.0;

// Confirm Dialog Window. ..
dialog = nil;

// Sub Info Window...

sub_info
sub_info
sub_info

// Mod I
mod_info
mod_info
mod_info

// Key R
space_uc
esc_ucr

main_kre
main_ucr
dialog u
sub_info
mod_info

// Funct
confirmP
/]t

if(

}
// e

{

1
1

confirmP
/]t

if(

_window = nil;
_textview
_layout

nil;
nil;

nfo Window

_window = nil;
_textview
_layout

nil;
nil;

esponders...

r = UnicodeResponder();
= UnicodeResponder();

s = KeyResponder QO;
= UnicodeResponder();

UnicodeResponder();

UnicodeResponder();

UnicodeResponder();

cr
_ucr
_ucr

ions (to pass as arguments)...
laylLastRecordedSession = {
o send as a value, so must be a function and not a class method!

pmode) {

// reset the previous button value prior to user confrimation...
rec_play_pointer.value = switch(rec_play_pointer.value)
{e}r{1}

{1}r{e};

this.openDialog(
bounds: Rect(500,300,245,125),
message:"Play the last recorded session?...",
completion_function:{
this.freePlayButtons;
rec_play_pointer.value = 1;
this.postMsg(zpi.playLastRecordedSession.().postln)

}
)s
dialog.message.align = \center;

"Confirm?...
lse...

this.freePlayButtons;
rec_play_pointer.value = 1;
zpi.playLastRecordedSession. ()

layAudition = { arg i;
o send as a value, so must be a function and not a class method!

pmode) {

// reset the previous button value prior to user confrimation...
audio_play_pointer[i].value = switch(
audio_play_ pointer[i].value)
{e}r{1}
{1}r{e};

271

272

this.openDialog(
bounds: Rect(500,300,285,125),
message:"Audition the " ++ sample_string[i] ++ "?...",
completion_function:{
this.freePlayButtons;
audio_play pointer[i].value = 1;
this.postMsg(zpi.playSample. (*audio_play args[i]).postln)

}
)s
dialog.message.align = \center;
"Confirm?..."
}
// else...
{
this.freePlayButtons;
audio_play pointer[i].value = 1;
zpi.playSample. (*audio_play args[i])
}s

1

confirmPlayEffect = { arg i;
// to send as a value, so must be a function and not a class method!

if(pmode) {

// reset the previous button value prior to user confrimation...

doppler_play_pointer[i].value = switch(
doppler_play_pointer[i].value)

{e}r{1}

{1}r{e};

this.openDialog(

bounds: Rect(500,300,210,140),

message: "Audition the " ++ doppler_name_string[i]

++ " Effect?...",

completion_function:{
this.freePlayButtons;
doppler_play pointer[i].value = 1;
this.postMsg(zpi.playDoppler.(*doppler_play args[i]).postln)

}
)s
dialog.message.align = \center;
"Confirm?..."
}
// else...
{
this.freePlayButtons;
doppler_play pointer[i].value = 1;
zpi.playDoppler. (*doppler_play args[i])
}s

1

confirmFreeAudition = {
// to send as a value, so must be a function and not a class method!

if(pmode) {
this.openDialog(

bounds: Rect(500,300,210,125),
message:"Free the audition synth?...",

}

completion_function:{ zpi.freeAudition.() }
)s

dialog.message.align = \center;

"Confirm?...

// else...
{ zpi.freeAudition.() };

1

confirmModSet = { arg i;
// to send as a value, so must be a function and not a class method!

if(pmode) {

// reset the previous button value prior to user confrimation...
mod_set_pointer[i].value = switch(mod_set_pointer[i].value)
{e}r{1}

{1}r{e};

this.openDialog(
bounds: Rect(500,300,250,140),
message:"Set the " ++ mod_string[i]
++ " for Subpatches #1.0" ++ (i + 2) ++ " & #3.042...",
completion_function:{
mod_set_pointer[i].value = 1;
this.postMsg(mod_set_function[i].().postln)
}
)s
dialog.message.align = \center;

"Confirm?...

}

// else...

{
mod_set_pointer[i].value = 1;
mod_set_function[i]. ()

}s

1

confirmModFree = { arg i;
// to send as a value, so must be a function and not a class method!

if(pmode) {

}

this.openDialog(
bounds: Rect(500,300,255,140),
message:"Free the " ++ mod_string[i]
++ " for Subpatches #1.0" ++ (i + 2) ++ " & #3.042...",
completion_function:{
mod_set_pointer[i].value = 0;
this.postMsg(mod_free_function[i].().postln)
}
)s
dialog.message.align = \center;

"Confirm?...

// else...

{

mod_set_pointer[i].value = 0;

273

274

this.postMsg(mod_free_function[i].().postln)

}s

}s

/*
code realating to the extension of the class' QWindow instance
(i.e. the 'this' instance)...

*/

// Set Main Window (i.e. the 'this' instance)...
GUI.qt;
this.initQWindow(name, bounds, resizable, border, scroll);
// this.background = violet; // Light background useful for grid debugging
this.background = Color.black;
this.alwaysOnTop_(false);
this.bounds_(Window.availableBounds); /* set initial bounds before
calling full screen */
this.fullScreen;

// Set Path for Subpatch Info Window...
info_path = /* thisProcess.nowExecutingPath.dirname */
"" ++ zpi.dpath +/+ "info.dir" +/+ "subpatch.info";

// Reset the subpatch directors...
zpi.next_patch = 1; zpi.next_subpatch
zpi.last_patch = 1; zpi.last_subpatch

1;
0;

// Set Labels...
this.addLabel(next_label , "Next Subpatch = 1.01", Color.green, 17);
this.addLabel(title_label,
"Eternal Owl Call : Real-Time Performance Interface",
light_purple, 34, \topLeft);

this.addLabel(mode_label , "Mode of Operation =" |,
Color.green, 17, \right);
this.addLabel(rec_label , "Record Mode =" ,

Color.green, 17, \right);

this.addLabel(last_rec_label , "Last Recorded Session:",
Color.green, 14, \right);

this.addLabel(audition_label , "Audio Sample Auditioning ..." ,
Color.red , 17, bold:true);

this.addLabel(doppler_label , "Doppler Effect Auditioning ..." ,
Color.red , 17, bold:true);

this.addLabel(mic_bus_label ,» "Microphone Bus Routing ..." ,
Color.red , 17, bold:true);

this.addLabel(modulation_label, "Modulation Routine Settings ...",
Color.red , 17, bold:true);

this.addLabel(post_label , "Post Window & Debugging ..." ,
Color.blue, 17, bold:true);

this.addLabel(copyright_label , "Interface Copyright (c) : "
++ "Mr Gareth Olubunmi Hughes (1 July 2014 - Present)",
purple, 15, \right);

number_of_subs.size.do{ arg i;
subpatch_label[i] = Array.newClear(number_of subs[i]);
start_pointer [i] = Array.newClear(number_of subs[i]);

subpatch_label[i].size.do{ arg j;

var unit = ;

if(j <9, { unit = "0" });
subpatch_label[i][j] = StaticText();

this.addLabel(subpatch_label[i][]j],
("" 4+ (i+1) ++ "." 4+ unit ++ (j+1)),
Color.green, 15, \left);

1

this.addPlayLabels(sample_label, sample_string);
this.addPlayLabels(doppler_name_label, doppler_name_string);
this.addPlayLabels(mic_effect_label, mic_effect_string);
this.addPlayLabels(mod_label, mod_string);

// Set Debug & Metering Views...

post_window.string =

"Server Sample Rate = " ++ QZ_AnalyzerView.sample_rate ++ "Hz\n"
++ "Server Process ID = " ++ server.pid ++ "\n\n";
post_window.editable = false;

post_window.font = Font.monospace(1l, false);
post_window.stringColor = Color.white;

post_window.background = Color.black;

// post_window.string = "Post Window data will be displayed here
// post_window.focusColor = Color.green;
// post_window.canFocus = false;

// 1st Column...
gui_columns[@] = [nil,nil];
next_button.action = {
if(zpi.next_patch == number_of subs.size
&& zpi.next_subpatch ==
number_of_subs[number_of_subs.size - 1] + 1)

)
{ this.postMsg(

...\n\n";

"the piece has ended, there are no more subpatches!".postln)

}
// else...
{ start_pointer[zpi.next_patch - 1][zpi.next_subpatch - 1]
.valueAction =1
}
}s
// 2nd Column...
gui_columns[1] = [nil,nil,nil];
// 3rd Column...
gui_columns[2] = [nil,nil,Button().states_
([["Info?...", Color.red.alpha_(0.75), Color.grayl])
.font_(bold_font)
15
gui_columns[2][2].action = { arg b;
var combined_kdrg = KeyDownResponderGroup(
main_kres, main_ucr, sub_info_ucr, space_ucr
)s
if(sub_info_window == nil)
{
this.setFullScreenBeforeNewWindow;
sub_info_window = Window("Subpatch Info...", Rect(235,0,688,696),

resizable:true, scroll:true);
sub_info_textview = TextView();
sub_info_layout = StackLayout(sub_info_textview);

275

276

sub_info_textview.open(info_path);

sub_info_textview.font = Font.monospace(14, false);
sub_info_textview.background = Color.black;
sub_info_textview.stringColor = Color.magenta;
sub_info_textview.editable = false;

sub_info_textview.canFocus = false;

// sub_info_textview.syntaxColorize; // does not work in QtCollider!

sub_info_window.layout_(sub_info_layout);
sub_info_window.view.keyDownAction = combined_kdrg;
sub_info_window.alwaysOnTop_(true);
sub_info_window.visible = true;
sub_info_window.onClose = {

if(full_screen_before_new_window) {

gui_columns[8][@].valueAction = @

}s

sub_info_window nil;

sub_info_textview = nil;

sub_info_layout = nil;

}s
}
// else...
{

this.postMsg(

"the subpatch information window is already open!".inform)
}

1

// Columns 1, 2, 3 Mereged...
row = 3;
subpatch_label.size.do{ arg i;
patch_label[i] = StaticText();
this.addLabel(patch_label[i], ("Patch # " ++ (i+1) ++ " ..."),
Color.white, 17.5, bold:true);
gui_columns[@] = gui_columns[@].add(nil);
if(i>e, {
gui_columns[1] = gui_columns[1].add(nil);
gui_columns[2] = gui_columns[2].add(Button().states_
([["Info?...", Color.red.alpha_(0.75), Color.gray]l])
.font_(bold_font)

)s
1
subpatch_label[i].size.do{ arg j;
gui_columns[@] = gui_columns[@].add(subpatch_label[i][j]);

gui_columns[1] = gui_columns[1].add(Button().states_
([["Start" , Color.blue, dark_purple],
["Restart” , Color.blue, Color.black]]).font_(bold font)
)
gui_columns[1][row].maxWidth = 73;
gui_columns[1][row].action = { arg b;
var unit = if(j < 9) { "e" } { "" };
var suffix = "" ++ (1 + 1) ++ "." ++ unit ++ (J + 1) ++ "?...";
if((b.value == 0) && pmode)
{
b.value = 1;
this.openDialog(
bounds: Rect(500,300,210,125),

277

message:"Restart subpatch #" ++ suffix,
completion_function:{ this.startAction(b, i, j) }

)s
dialog.message.align = \center;
}
// else...
{
if((zpi.next_patch != (i+1) || zpi.next_subpatch != (j+1))
&& pmode
)
{
b.value = 0;
this.openDialog(
bounds: Rect(350,345,495,140),
message:"You are attempting to start a subpatch"
++ " in the wrong sequential order!\n"
++ "Are you sure that you wish to start subpatch #"
++ suffix,
completion_function:{ this.startAction(b, i, j) }
)s
dialog.message.align = \center;
}
// else...
{ this.startAction(b, i, j) }
}

1

gui_columns[2] = gui_columns[2].add(Button().states_
([["Free" , Color.gray, dark _blue]]).font_(bold font)

)s

gui_columns[2][row].maxWidth = 73;

start_pointer[i][j] = gui_columns[1][row];

gui_columns[2][row].action = { arg b;

if(pmode)

{
var unit = if(j < 9) { "@" } { "" };

b.value = 1;
this.openDialog(
bounds: Rect(500,300,210,125),
message:"Free subpatch #"
++ (1 + 1) ++ "." ++ unit ++ (J + 1) ++ "2...",
completion_function: {
this.freeStartAction(start_pointer[i][j], i, 3J)

}
)s
dialog.message.align = \center;
}
// else...
{ this.freeStartAction(start_pointer[i][j], i, J) }
}s
row = row + 1;
}s
row = row + 1;
}s
gui_columns[2][8] .action = { gui_columns[2][2].valueAction = @ };
gui_columns[2][20].action = { gui_columns[2][2].valueAction = @ };

// 4th Column...
gui_columns[3] = [nil,nil,

278

Button().states_([["Free All Synths", orange, dark_blue]])
.font_(bold_font),
nil, nil,
15
gui_columns[3][2].minWidth
gui_columns[3][2].action =

= 130;
{

if(pmode) {
this.openDialog(
bounds: Rect(500,300,210,125),
message:"Free all synths?...",
completion_function:{ this.freeAllSynthsAction() }
)s
dialog.message.align = \center;
}
{ this.freeAllSynthsAction() }

1

// 5th Column...

gui_columns[4] = [nil,nil,
Button().states_ ([["Exit GUI", orange, dark_blue]l])
.font_(bold_font),
nil, nil,

15

gui_columns[4][2].action = { this.minimize };

// 6th Column...
gui_columns[5] = [nil,nil,
Button().states_([["Reboot Program" , orange, dark_blue]])
.font_(bold_font),
Button().states_ ([["TESTING" , Color.yellow, dark_blue],
["PERFORMANCE" , Color.blue, dark_purple]])
.font_(bold_font),
Button().states_([["On" , Color.red, mid _blue],
["Off" , Color.gray, dark _bluell)
.font_(bold_font)

1;

gui_columns[5][2].maxWidth = 125;
gui_columns[5][2].action = { arg b;

this.openDialog(
bounds: Rect(500,300,210,150),
message:"Are you sure that you want to reboot the program?...",
completion_function:{
"Closing the GUI...".postln;
this.close;
zpi.programStart(zpi.dpath);

1

gui_columns[5][3].maxWidth = 125;
gui_columns[5][3].action = { arg b;
var string = switch(b.value)
{0} { "\"Testing\"" }
{17} { "\"Performance\"" };

var target = b.value;

// reset the previous button value prior to user confirmation...
b.value = switch(b.value)

1

gui_columns[5][4].maxWidth
gui_columns[5][4].action =

1

{e}r{1}
{1}r{e};
this.openDialog(
bounds: Rect(395,305,330,125),
message:"Change the mode setting to
completion_function:{
this.setMode(target);
b.value = target;

++ string ++ "?...",

}
)s

dialog.message.align = \center;

{ a rg b;
var flag;
var function = case
{ b.value == 0 } {
flag = "On";
zpi.startRecording

}

{ b.value == 1 } {
flag = "Off";
zpi.stopRecording

}s

// reset the previous button value prior to user confrimation...

b.value = switch(b.value)
{e}r{1}
{1}r{e};

if(pmode) {
this.openDialog(
bounds: Rect(SOO 300,210,125),
message:"Switch Record Mode " ++ flag ++ "?...

completion_function:{ this.postMsg(function.(). postln) }

)s

dialog.message.align = \center;
}
// else...

{ this.postMsg(function.().postln) };

// Columns 4, 5, 6 Mereged...
rec_play_pointer = this.addPlayButtons(last_rec_label, 3,

pointer: rec_play pointer,
play_function: confirmPlaylLastRecordedSession,
stop_function: confirmFreeAudition

)s
gui_columns[4][5].maxWidth = 73;
gui_columns[5][5].maxWidth = 73;

3.do{ arg i; gui_columns[i + 3] = gui_columns[i + 3].add(nil); };

sample_label.size.do{ arg i,

audio_play_pointer[i] = this.addPlayButtons(sample_label[i], 3

pointer: audio_play pointer[i],
play_function: confirmPlayAudition,
play_args: [i],

stop_function: confirmFreeAudition

)s

I

279

280

gui_columns[4][7 + i].maxWidth = 73;

73;

gui_columns[5][7 + i].maxWidth
}s

3.do{ arg i; gui_columns[i + 3] = gui_columns[i + 3].add(nil); };

doppler_name_label.size.do{ arg i;
doppler_play pointer[i] = this.addPlayButtons(doppler _name_label[i], 3,
pointer: doppler_play pointer[i],
play_function: confirmPlayEffect,
play_args: [i],
stop_function: confirmFreeAudition

)s
gui_columns[4][14 + i].maxWidth = 73;
gui_columns[5][14 + i].maxWidth = 73;

1

7.do{ 2.do{ arg i; gui_columns[i + 3] = gui_columns[i + 3].add(nil); } };
gui_columns[5] = gui_columns[5].add(nil);

5.do{ arg i;
gui_columns[5] = gui_columns[5].add(
Button().states_([["Off" , Color.gray, dark_blue],
["On" , Color.red, mid_blue]]).font_(bold font)
)s
mic_bus_pointer[i] = gui_columns[5][19 + i];
gui_columns[5][19 + i].action = { arg b;

// reset the previous button value prior to user confrimation...
mic_bus_pointer[i].value = switch(mic_bus_pointer[i].value)
{e}r{1}

{1}r{e};

if(pmode) {
this.openDialog(
bounds: Rect(500,300,315,140),
message:"Change the Send Setting to \n\""
++ mic_effect_string[i] ++ "\"?...",
completion_function:{
this.setMicBusButton(i);

mic_bus_function[i].().postln

}

)s

dialog.message.align = \center;
}
// else...
{

this.setMicBusButton(i);

mic_bus_function[i].().postln
}

s

gui_columns[5][19 + i].maxWidth = 73;
}s
gui_columns[5][20].value = 1;

gui_columns[5] = gui_columns[5].add(
Button().states_([["Further Info?..." ,
Color.red.alpha_(0.75), Color.gray]l])
.font_(bold_font)
)s
gui_columns[5][24].maxWidth = 110;
gui_columns[5][24].action = { arg b;

281

var combined_kdrg = KeyDownResponderGroup(
main_kres, main_ucr, mod_info_ucr, space_ucr

)s

if(mod_info_window == nil)

{

this.setFullScreenBeforeNewWindow();

mod_info _window = Window("Modulation Info...",
Rect(662,83,305,103), resizable:false, scroll:true
)
mod_info_textview
mod_info_layout

TextView();
StackLayout(mod_info_textview);

mod_info_textview.string =
"These buttons randomly set or free
++ "the values sent to the frequency & "
++ "panoramic modulation routines used "
++ "with subpatches #1.02, #1.03 & #3.04...";

mod_info_textview.font = Font(Font.default, size:15, bold:true);
// mod_info_textview.background = Color.black;
mod_info_textview.stringColor = purple;
mod_info_textview.editable = false;

mod_info_textview.canFocus = false;

mod_info_window.layout_ (mod_info_layout);
mod_info_window.view.keyDownAction = combined_kdrg;
mod_info_window.alwaysOnTop_(true);
mod_info_window.visible = true;
mod_info_window.onClose = {
if(full_screen_before_new_window)
gui_columns[8][@].valueAction

I~
()

}s

mod_info_window = nil;
mod_info_textview = nil;
mod_info_layout = nil;
combined_kdrg.free; combined_kdrg

nil;

1
}

// else...
{
this.postMsg(
"the modulation information window is already open!".inform)

1

mod_label.size.do{ arg i;
mod_set_pointer[i] = this.addPlayButtons(

mod_label[i], 3, "Set", "Reset", "Free",
pointer: mod_set_pointer[i],
play_function: confirmModSet,
play_args: [i],
stop_function: confirmModFree,
mod_buttons:true

)s
gui_columns[4][25 + i].maxWidth = 73;
gui_columns[5][25 + i].maxWidth = 73;

1

// 7th Column...

282

gui_columns[6] [nil,nil,nil];

// 8th Column...
gui_columns[7]

[nil,nil,nil];

// 9th Column...
gui_columns[8] = [
Button().states ([
["EXIT Full Screen (F11)" , Color.green, dark blue],
["ENTER Full Screen (F11)", Color.green, dark_blue] 1)
.font_(bold_font),
Button().states_ ([["Help (F1)", /*orange*/ Color.red,
dark_blue]]).font_(bold_font).minWidth_(95),
Button().states_([["Clear Post Window", /*orange*/ Color.white,
dark_blue]]).font_(bold font)

1;

gui_columns[8][@].action = { arg b;
case
{ b.value == 0 } {
this.bounds_(Rect(100,100,100,100));
/* ensures that any window bounds that have gone outside
of the viewable screen area are reduced */
this.bounds_(Window.availableBounds);
/* sets the bounds that will be required following
a window.endFullScreen call in advance */
this.fullScreen;

{ b.value == 1 } {
this.endFullScreen;
this.bounds_(Window.availableBounds);
/* not required, but wise to set the bounds to
this value again from a logic perspective */

1

gui_columns[8][1].action = {
this.postMsg("Opening the help PDF file...".postln);
(zpi.dpath
+/+ "help.dir"
+/+ "Eternal Owl Call User Guide_03.pdf"
) .open0S

1

gui_columns[8][2].action = {
post_window.string = "";
post_window.focus(true);
post_window.refresh;

1

// Columns 7, 8, 9 Mereged...
7.do{ 3.do{ arg i; gui_columns[i + 6] = gui_columns[i + 6].add(nil) } };

gui_columns[6] = gui_columns[6].add(Button().states_([
["Patch # 2 Debug Data", /*orange*/ Color.white, dark_blue]])
.font_(bold_font)
)s
gui_columns[6][10].action = {
this.postMsg(zpi.p2_DebugData.postln)
}s

gui_columns[7] = gui_columns[7].add(Button().states_([
["Memory Size", /*orange*/ Color.white, dark_bluel]])
.font_(bold_font)

)s

gui_columns

[7]1[1@].action = {

this.postMsg(server.options.memSize.postln)

1

gui_columns[8] = gui_columns[8].add(Button().states_ ([
["Number of Audio Bus Channels", /*orange*/ Color.white, dark_blue]])
.font_(bold_font)

)s

gui_columns

[8][1@].action = {

this.postMsg(server.options.numAudioBusChannels.postln)

1

gui_columns
gui_columns
gui_columns

[6][10].maxWidth
[7]1[10].maxWidth
[8][10].maxWidth

160;
100;
215;

// Add all cells manually according to the size of the gui grid array...

gui_columns

.size.do{ arg i;

// size

of each column

gui_columns[i].size.do{ arg j; // size of each row
master_grid.add(gui_columns[i][j],
if(gui_columns[i][j] != nil) { gui

1

// 1st Column (Spanned Cells)...
.addSpanning(next_button , ro
.addSpanning(next_label , ro

master_grid
master_grid
master_grid
master_grid
master_grid

.addSpanning(patch_
.addSpanning(patch_
.addSpanning(patch_

label[©@], ro
label[1], ro
label[2], ro

// 4th Column (Spanned Cells)...

master_grid
rowSpan

)s

master_grid.
master_grid.
master_grid.
master_grid.
master_grid.
master_grid.

.addSpanning(title_label, row:o,

:2, columnSpan:5

setAlignment(gui_columns[3][2],
addSpanning(mode_label , row:3,
addSpanning(rec_label
addSpanning(audition_label ,
addSpanning(doppler_label ,
addSpanning(mic_bus_label ,

, row:4

mic_effect_label.size.do{ arg i;
master_grid.addSpanning(mic_effect_label[i], row:19+i, column:3,
columnSpan:2

)s
1

master_grid.addSpanning(modulation_label, row:24, column:3, columnSpan:

// 7th Column (Spanned Cells)...
.setAlignment(gui_columns[8][1], \right);
.addSpanning(post_label , row:2, column:6, columnSpan:2);
.addSpanning(post_window, row:3, column:6,

master_grid
master_grid
master_grid

rowSpan

master_grid
master_grid

:7, columnSpan:3);

i, 1);

_columns[i][j].canFocus = false }
w:0 , column:9, columnSpan:3);
w:1l , column:9, columnSpan:3);
w:2 , column:9, columnSpan:2);
w:8 , column:9, columnSpan:2);
w:20, column:9, columnSpan:2);

column:3,

\right);

column:3, columnSpan:2);
, column:3, columnSpan:2);
row:6 , column:3, columnSpan
row:13, column:3, columnSpan
row:18, column:3, columnSpan

.addSpanning(z_meter_view, row:11, column:6, rowSpan:5);
.setAlignment(z_meter_view, \right);
z_meter_view.master_settings_button/*.states_

13);
13);
:3);

2);

283

284

([["MASTER SETTINGS", Color.green, dark blue]])*/.canFocus_(false);

master_grid.addSpanning(z_scope_view, row:11, column:7,
rowSpan:5, columnSpan:2
)s
z_scope_view.scope_label.stringColor_(Color.blue);
Z_scope_view.scope_settings_button/*.states_
([["SCOPE SETTINGS", Color.green, dark_blue]])*/.canFocus_(false);

master_grid.addSpanning(z_analyzer_view, row:16, column:6,

rowSpan:8, columnSpan:3
)s
z_analyzer_view.db_readings_height_ (142).freq_readings_width_(429);
z_analyzer_view.number_of_db_readings_(7);
z_analyzer_view.freqscope_label.align_ (\left);
z_analyzer_view.freqscope_settings_button/*.states_
([["ANALYZER SETTINGS", Color.green, dark blue]])*/.canFocus_(false);
z_analyzer_view.left_button .canFocus_(false);
z_analyzer_view.right_button.canFocus_(false);

master_grid.addSpanning(z_server_levels_panel_view, row:24, column:6,
rowSpan:2,columnSpan:3

)s

z_server_levels panel_view.server_label.background_(dark_blue)

.align_(\left);

master_grid.setAlignment(z_server_levels panel view, \right);

master_grid.addSpanning (copyright_label, row:26, column:6, columnSpan:3);

// Row & Column Stretching...

// master_grid.setRowStretch(1,1);
// master_grid.setColumnStretch(0,1);
master_grid.setColumnStretch(1,1);
master_grid.setColumnStretch(2,1);
master_grid.setColumnStretch(3,1);
master_grid.setColumnStretch(4,1);
master_grid.setColumnStretch(5,1);
master_grid.setColumnStretch(6,2);
master_grid.setColumnStretch(7,2);
master_grid.setColumnStretch(8,2);

// master_grid.setMinColumnWidth(3, 215);
master_grid.setMinColumnWidth(5, 150);
master_grid.setMinColumnWidth(6, 225);

// Set a UnicodeResponder for the main window:
// Ctrl+Backspace = Frees the last subpatch...
main_ucr.register(8, cntl:true, function:{
ar cell skip = switch(zpi.last_patch)

am e <
w N =
B e e ol
P N e
N 00 N
o

0 };
if((zpi.last_patch != 1) || (zpi.last_subpatch != @))
{ gui_columns[2][cell _skip + zpi.last_subpatch].valueAction = @ }
// else...
{ this.postMsg("There are no previous subpatches to restart!".postln) }
1
// Ctrl+Esc = "Free All Synths"...
main_ucr.register(27,cntl:true, function:{
gui_columns[3][2].valueAction = @

s

285

// Ctrl+Shift+P = Clears the post window...
main_ucr.register(16, shift:true, cntl:true, function:{
gui_columns[8][2].valueAction = @
1
// Ctrl+B = Reboots the program...
main_ucr.register(2, cntl:true, function:{
gui_columns[5][2].valueAction = @
1
// Ctrl+Q = Quits the program...
main_ucr.register(17, cntl:true, function:{
this.openDialog(
bounds: Rect(500,300,210,125),
message:"Quit the program?...",
completion_function:{ this.close }

)s

dialog.message.align = \center;
1
// Ctrl+. = Overrides the default Server.killAll command...
/*

main_ucr.register(46, cntl:true, function:{
this.postMsg("crashed!".postln)
})s
*/
CmdPeriod.removeAll;
CmdPeriod.add({

Z_scope_view.scope_synth.free;

z_scope_view.scope_synth = nil;

z_meter_view.freeUGens;

TempoClock.clear;

this.close;

if(CZ_EternalOwlCall.valid_instance_count > 0) {
CZ_EternalOwlCall.valid_instance_count =
CZ_EternalOwlCall.valid_instance_count - 1;

}s

zpi.valid_instance = false;

this.postMsg("".postln);

this.postMsg((
"\nThe Z_PerformancelInterface() and QZ_PerformanceInterface GUI()
++ "objects were forcefully crashed using a Cmd+Period call!...\n"
++ "All active application windows have been closed "

++ "and all active UGens have been freed.").warn);

s

// Alt+I = Opens the subpatch information window...
main_ucr.register (105, opt:true, function:{
gui_columns[2][2].valueAction = @
3
/*
Esc = Exits the GUI screen
(sent to separate variable without keyword args)...
*/
esc_ucr.register(27,false,false,false,false,{
gui_columns[4][2].valueAction = @

s

/*
Set the KeyResponder for the main window
(i.e. for function key commands not supported
by the UnicodeResponder class):

*/

286

// F1 = Opens the help .pdf file...

main_kres.register(67, function:{ gui_columns[8][1].valueAction = @ });
// F11 = Exits/enters full screen mode...

main_kres.register(95, function:{

var v = switch(gui_columns[8][@].value)
{e}r{1}
{1}r{e};
gui_columns[8][@].valueAction = v;

1

/*

Set a UnicodeResponder to override the
default spacebar functionality in Qt...
*/
// Spacebar = Plays the next subpatch...
space_ucr.register(32, function:{
next_button.focus(true);
next_button.valueAction = 9;

3

// Set a UnicodeResponder for the dialog window:
// Retrun = "Confirm"...

dialog ucr.register(13, function:{ dialog.button[©].valueAction = @ });
// Esc = "Cancel"...
dialog ucr.register(27, function:{ dialog.button[1].valueAction = @ });

// Set a UnicodeResponder for the subpatch & modulation information window:
// Return = Closes the window...

sub_info_ucr.register(13, function:{ sub_info_window.close });

// Esc = Closes the window, overrides the Esc key function in main_ucr...
sub_info_ucr.register(27, function:{ sub_info_window.close });

// Set an identical UnicodeResponder for the modulation information window:
mod_info_ucr.register(13, function:{ mod_info_window.close });
mod_info_ucr.register(27, function:{ mod_info_window.close });

this.layout (master_grid);
this.view.keyDownAction = KeyDownResponderGroup(
main_kres, main_ucr, space_ucr, esc_ucr
)s
post_window.keyDownAction = space_ucr;
this.onClose = {
this.closeOtherWindows;
CmdPeriod.removeAll;
CmdPeriod.add({
if(CZ_EternalOwlCall.valid_instance_count > 0) {
CZ_EternalOwlCall.valid_instance_count
CZ_EternalOwlCall.valid_instance_count

1
=
e

s
zpi.valid_instance = false;
1
if(zpi != nil) { zpi.gui = nil };
class_gui_pointer = nil;
}s
this.front;

~this

[HFFFREERxRK REDUNDANT/POTENTIALLY USEFUL CODE. .. *¥¥kkkxxsick/

/%%

// old reboot function...
completion_function:{

*/

{

Routine {

this.postMsg("The program is booting, please wait...
zpi.programStart(zpi.dpath);

}.defer;

// reset the metering & oscilloscope views...
7.wait;

{

z_meter_view = QZ_MeterView();

z_scope_view.close;
z_scope_view = QZ_ScopeView();
master_grid.addSpanning(z_scope_view,

row:11, column:7, rowSpan:5, columnSpan:2);
z_scope_view.scope_label.stringColor_(Color.blue);
z_scope_view.scope_settings_button.states_
([["SCOPE SETTINGS", Color.green, dark_blue]]);

this.postMsg("\nProgram initialized!".postln);

}.defer

}.play

")

287

288

QZ_AnalyzerView : QView {

classvar <server, <sample_rate;

var freqscope_grid, <>freqscope_label;

var freq_readings, <number_of_freq_readings;

var <freq_readings_width, <freq_readings_height;
var db_readings , <number_of_db_readings;

var <db_readings_width , <db_readings_height;
var <readings_color, nyquist_freq_limit;

// relating to the display of instances of the FreqScopeView class...
var freqscope_bounds;

var <>freqscope_left_view , <>freqscope_left , <grid_color_left;

var <>freqscope_right_view, <>freqscope_right, <grid_color_right;

var <wave_color_left, <wave_color_right;

var freqscope_stack, killFreqscopes;

// Buttons...

var <>freqscope_settings_button;
var <>left_button;

var <>right_button;

*initClass { StartUp.add { server = Server.default; } }

*new { arg parent = nil, bounds = Rect(750,450,160,300);
Asuper.new.initQZ_AnalyzerView(parent, bounds)

}

// printOn { arg stream; } // overrides unhelpful post window messages

setLabel { arg label = QStaticText(), string = "Add String!",
string_color = Color.green, font_size = 17.5, alignment = \center,
background_color = Color.black;

// label.string = " "++ string ++" ";
label.string = string;
label.background = background_color;

label.stringColor = string_color;
label.align = alignment;
label.font = Font(Font.default, font_size, bold:true);

Alabel
}

formatFreqValue { arg float, unit_suffix = , suffix = false;
var string, display_value;

if(float >= 1000)

{ display_value = float/1000 }
// else...

{ display_value = float };

display_value = case

{ float < 1000 } { display_value.round(1) }
{ (float >= 1000) && (float < 10000) } { display_value.round(©.1) }
{ float >= 10000 } { display_value.round(1l) };

// 1in case display_value has been rounded to 1000...
if (display_value == 1000) { string = "1k"; }

// else...

{

}

if(float >= 1000)

{ string = display_value.asString ++ "k" }
// else...

{ string = display_value.asString };

1

if(suffix) { string = string ++ unit_suffix };

Astring

unit_suffix =

drawReadings { arg view, width, height, number_of readings = 5,
, last_string = true, min_reading = 0, max_reading = 100,

direction = \horizontal, shape = \lin, reading_position = \tail,
line_color = grid_color_left;

view.drawFunc = { var last_string point;

QPen.fillColor = readings_color;
QPen.strokeColor = line_color;
QPen.font = Font(Font.default, 11, bold:true);

number_of_readings.do{ arg i;

var suffix = false;

var line_indent = @, h_string _indent = @, v_string indent = 0;
var reading, string point, line_pl, line_p2;

var factor = 1/(number_of readings - 1);

var fft_scaling points = 2.pow(10);

/* i.e. there are 2048 FFT buffer points with two (positive and
negative) used for scoping each indvidual frequency reading...
The readings are scaled logarithmically to 1023 (i.e. 2.pow(10)
- 1) in order for the range to be between zero and the Nyquist
frequency limit... */

reading = case
{ shape == \1lin } {
max_reading * i/(number_of readings - 1)
}
{ shape == \log } A
((fft_scaling_points.pow(i * factor) - 1)/
(fft_scaling_points - 1) * nyquist_freq_limit)

}s
if(i == 0) {
suffix = true;
line_indent = case
{ direction == \horizontal } { 1 }
{ direction == \vertical Y {23};
if(direction == \horizontal) { h_string indent = 1 };
v_string_indent = -2;
}s

if(i == (number_of_readings - 1)) {
line_indent = case
{ direction == \horizontal } { -1 }
{ direction == \vertical Y { o 1};
s

string_point = case
{ direction == \horizontal } {

Point(((width * i * factor) + 2) + h_string indent, height - 15)

}

{ direction == \vertical } A{

289

290

Point(width - 22 + h_string_indent,
((height * i * factor) - 2 - v_string indent))
}s

line_pl = case
{ direction == \horizontal } {
Point((width * i * factor) + line_indent, 0)

}
{ direction == \vertical } A

Point(@, (height * i * factor) - 1 + line_indent)
}s

line_p2 = case
{ direction == \horizontal } {
Point((width * i * factor) + line_indent, height)

}
{ direction == \vertical } A{

Point(width, (height * i * factor) - 1 + line_indent)
}s

last_string _point = case
{ direction == \horizontal } { Point(width - 22, height - 16) }
{ direction == \vertical } { Point(width - 22, height - 16) };

QPen.stringAtPoint(this.formatFreqValue
(reading, unit_suffix, suffix), string point);
QPen.line(line_p1, line_p2);
}s

if(last_string == true) {
QPen.stringAtPoint(this.formatFreqValue(max_reading),
last_string point);

}s
QPen.fillStroke;
s
Aview

}

setReadingsLineColor { arg line_color = grid_color_left;

freq_readings = this.drawReadings(
freq_readings,
width: freq_readings_width,
height:freq_readings_height,
number_of_readings:number_of_freq_readings,
unit_suffix:"Hz",
last_string:false,
max_reading:nyquist_freq_limit,
shape:\log,
line_color:line_color

)s

freq_readings.refresh;

db_readings = this.drawReadings(
db_readings,
width: db_readings_width,
height:db_readings_height,
number_of_readings:number_of_db_readings,
unit_suffix:"dB" ,
last_string:false,
max_reading:-96,

}

direction:\vertical,
line_color:1line_color

)s

db_readings.refresh;

~this

setFreqscopes { arg index = 0;

}

freqscope_left_view.background_(grid_color_left)
.maxWidth_(freq_readings_width + 1).maxHeight (db_readings_height + 1);
freqscope_left = FreqScopeView(freqscope left view , freqscope_bounds);
// freqscope_left.active = true;

freqscope_left.fregMode = 1;

freqscope_left.waveColors = wave_color_left;
freqscope_right_view.background_(grid_color_right)
.maxWidth_(freq_readings_width + 1).maxHeight (db_readings_height + 1);
freqscope_right = FreqScopeView(freqscope_right view, freqscope_bounds);
freqscope_right.inBus = 1;

// freqscope_right.active = true;

freqscope_right.fregMode = 1;

freqscope_right.waveColors = wave_color_right;
case

{ index == @ } { freqgscope_left.active true }
{ index == 1 } { freqgscope_right.active = true };
freqscope_stack.index = index;

initQZ_AnalyzerView { arg parent, bounds;

// variable and object initializations...
this.bounds = bounds;

freqscope_label = QStaticText();
freq_readings = QUserView();
number_of_freq_readings = 12;
freq_readings_width = 400;
freq_readings_height = 15;
db_readings = QUserView();
number_of_db_readings = 7;
db_readings_width = 25;
db_readings_height = 150;
readings_color = Color.red;

freqscope_bounds = Rect(9,0, freq_readings width, db_readings_height);
freqscope_left_view = QView();
grid_color_left = Color.yellow;
freqscope_right view = QView();
grid_color_right Color.cyan;
wave_color_left = [Color.magenta];
wave_color_right = [Color.green 1;
freqscope_stack = QStackLayout(freqscope left view, freqscope_right view);
killFreqscopes = {
freqscope_left.kill ; // you must have this on a freqgscope instance!
freqscope_right.kill;

1

freqscope_settings button = QButton().maxHeight (20).maxWidth_(170).
states = [["ANALYZER SETTINGS", Color.blue, Color.green]];

291

292

left_button = QButton().maxWidth_ (50).states = [
["L", Color.magenta, Color.blue.alpha (0.25)]1];

right _button = Button().maxWidth_(50).states = [
["R", Color.green, Color.blue.alpha (0.25)]];

sample_rate = FreqScopeView.server.sampleRate;

if(sample_rate != nil)
{ ("Server Sample Rate = " ++ sample_rate ++ "Hz").inform }
// else...
{
SIS

++ "An instance of the QZ_AnalyzerView class
++ "could not locate a valid server!\n"
++ "You may need to boot the server...\n").error;
~this
¥

nyquist_freq_limit = sample_rate/2;

// code realating to the extension of the class' QView instance

// (i.e. the 'this' instance)...

this.setLabel(freqscope_label, "Freqeuncy Analyzer ..." ,
Color.blue, 17, \center);

left_button.font Font.new(Font.default, 35, bold:true);

right_button.font = Font.new(Font.default, 35, bold:true);

freq_readings.background = Color.black;
db_readings .background = Color.black;
this.setReadingsLineColor(grid_color_left);
this.setFreqscopes(9);

freqscope_grid = QGridLayout.rows(
[[fregscope_label, columns:3], nil, nil, freqscope_settings_button],
[[left_button, rows:2], nil, [freq_readings, columns:2]],
[nil, [db_readings, rows:2], [freqscope_stack, rows:2, columns:2]],
[right_button]

)s

freqscope_stack.index = 9;
left_button .action = {
this.setReadingsLineColor(grid_color_left);
freqscope_stack.index = 0;
if(freqgscope_left.active.not) { freqgscope_left .active_(true); };
if(fregscope_right.active) { freqgscope_right.active_ (false); };
s
right_button.action = {
this.setReadingsLineColor(grid_color_right);
freqscope_stack.index = 1;
if(freqgscope_right.active.not) { freqscope_right.active_(true); };
if(freqscope_left .active) { freqscope_left .active_ (false); };

1

freq_readings.maxHeight_(freq_readings_height);
db_readings.maxWidth_(db_readings width);

this.background = Color.black;
this.layout_ (freqscope_grid);
this.onClose_ (killFreqgscopes);

this.initQvView(parent);
if(parent != nil) { parent.layout = this.layout };

~this
}

refreshReadings { arg index = 0;
var color = grid_color_left;

if(freqscope_stack.index == 1) { color = grid _color_right };

this.setReadingsLineColor(color);

killFreqscopes.value;
freqscope_left .destroy;
freqscope_right.destroy;
freqscope_left = nil;
freqscope_right = nil;

freqscope_bounds = Rect(9,0, freq_readings width, db_readings_height);

this.setFreqscopes(index);

}

number_of_freq_readings_ { arg n;
number_of_freq_readings = n;

this.refreshReadings(freqscope_stack.

}

number_of_db_readings_ { arg n;
number_of_db_readings = n;

this.refreshReadings(freqscope_stack.

}

freq_readings_width_ { arg width;
freq_readings_width = width;

this.refreshReadings(freqscope_stack.

}

freq_readings_height_ { arg height;
freq_readings_height = height;

this.refreshReadings(freqscope_stack.

}

db_readings_width_ { arg width;
db_readings_width = width;

this.refreshReadings(freqscope_stack.

}

db_readings_height_ { arg height;
db_readings_height = height;

this.refreshReadings(freqscope_stack.

}

readings_color_ { arg color;
readings_color = color;

this.refreshReadings(freqscope_stack.

}

grid_color_left_ { arg color;
grid_color_left = color;

this.refreshReadings(freqscope_stack.

}

grid_color_right_ { arg color;
grid_color_right = color;

this.refreshReadings(freqscope_stack.

index)

index)

index)

index)

index)

index)

index)

index)

index)

293

294

}

wave_color_left_ { arg color;
wave_color_left = color;
this.refreshReadings(freqscope_stack.index)

}

wave_color_right_ { arg color;
wave_color_right = color;
this.refreshReadings(freqscope_stack.index)

}

QZ_Analyzer : QWindow {
var window_layout, <>z_analyzer_view;

*new { arg name = "Z_Analyzer", bounds = Rect(750,450,536,231),
resizable = false, border = true, server, scroll = false;

Asuper.new.initQZ_Analyzer(name, bounds, resizable, border, server, scroll)

}

initQZ_Analyzer { arg name, bounds, resizable, border, server, scroll;

this.initQWindow(name, bounds, resizable, border, scroll);

z_analyzer_view
// window_layout
window_layout

this.background

QZ_AnalyzerView.new(bounds:bounds);

QGridLayout.rows([z_analyzer_view]);

QStackLayout(z_analyzer_view);

Color.green; // this color should be hidden
// by the child view!

this.alwaysOnTop = true;
this.layout (window_layout);
this.front;

~this

295

296

QZ_ConfirmDialog : QWindow {
classvar <server;

var dialog _grid, <purple, message_string, <>message;
var <>button_string_array, <>string_color_array;
var <>button, <>completion_function, <>args; // Arrays

*initClass { StartUp.add { server = Server.default; } }

*new { arg

}

button_strings ["Confirm" , "Cancel" 1],
button_string_colors = [Color.blue, Color.red],

name = "Confirm Dialog...", bounds = Rect(500,300,205,150),
resizable = true, border = false, server, scroll = false;

Asuper.new.initQZ_ConfirmDialog(button_strings, button_string colors,
name, bounds, resizable, border, server, scroll)

initQZ_ConfirmDialog { arg button_strings, button_string_colors,

name, bounds, resizable, border, server, scroll;

// variable and object initializations...
button_string_array = button_strings;

string_color_array = button_string colors;
this.initQWindow(name, bounds, resizable, border, scroll);

dialog grid = GridLayout();
purple = Color().darken(Color.magenta, 0.5);

message_string = "Are you sure that you wish to confirm this action?...

message = StaticText().string (message_string).stringColor_(purple)
.font_(Font(Font.default, 15.25, bold:true));

button = Array.newClear(button_string_array.size);
completion_function = Array.newClear(button_string_array.size);
args = Array.newClear(button_string_array.size);

/* code realating to the extension of the class' QWindow instance
(i.e. the 'this' instance)... */

// create whitespace for the message text...
dialog grid.add(nil, 1, 0);

button_string_array.size.do{ arg i;

completion_function[i] = {
var msg = (

"A 'completion_function["++i++"]"
++ "value must be set for the \""
++ button_string_array[i]

++ "\" dialog button to work correctly!\n"
++ "If no action is required the function
++ "value should be set to nil.\n"

++ "Arguments can be supplied by setting
++ "a value for 'args["++i++ "]'..."

)s

msg.inform
B
args[i] = [];

button[i] = Button().states_([[button_string array[i],
string_color_array[i]]]).action = {
this.close;
completion_function[i]. (*args[i])

}s

button[i].maxWidth_(80);

dialog_grid.add(button[i], 1, (i + 1));

1

// create further whitespace for the message text...
dialog grid.add(nil, 1, (button_string array.size + 1));

dialog grid.addSpanning(message, 90, 0,
columnSpan: (button_string _array.size + 2));

this.alwaysOnTop = true;
this.background = Color.white;
this.layout (dialog grid);
this.front;

~this

297

298

QZ_MeterView : QView {
classvar <server;

var meter_grid;

var <>input_bus , <>input_signal , <>input_level , <>input_level routine ;
var <>output_bus, <>output_signal, <>output_level, <>output_level routine;
var <>master_settings_button;

var <>in_label, <>out_label, <>max_label, <>min_label;

var <>separator_line;

*initClass {
StartUp.add {
server = Server.default;
this.initSynthDefs;

}

*new { arg parent = nil, bounds = Rect(750,450,160,300);
Asuper.new.initQZ_MeterView(parent, bounds)

}
*initSynthDefs {
/*
outputs a control-rate ugen from an input signal
to a bus so that the signal's value can be read...
*/
SynthDef(\monoOutput, { |bus, channel]|
Out.kr(bus, Amplitude.kr(In.ar(channel)))
}).add;
}

// update the indicator's value with a routine...
updateIndicator { arg level indicator, bus, routine;
routine = Routine

{
{
{
bus.get({
// get current value from the bus
arg value; {
// value.postln;
// set indicator's value...
level indicator.value_(
value.ampdb.linlin(-80, 0, 0, 1));
// set indicator's peak value
level indicator.peakLevel (
value.ampdb.linlin(-120, @, 0, 1));
}.defer(); // schedule in the AppClock
1
0.1.wait; // indicator will be updated every 0.1 seconds
}.loop
}.fork
}s

AppClock.play(routine);

~level indicator

}

addLevelIndicator { arg bus, routine, critical = 0.9; // critical must be a float!
var level indicator = Levellndicator(bounds:Rect(10, 10, 20, 160));

}

299

level _indicator.numTicks = 9;

level indicator.numMajorTicks = 3;

level indicator.drawsPeak = true;

level indicator.warning = -2.dbamp;

level indicator.critical = /*-0.001.dbamp*/ critical.dbamp;
this.updateIndicator(level_indicator, bus);

~level indicator

setLabel { arg label = StaticText(), string = "Add String!",

}

string_color = Color.green, font_size = 17.5, alignment = \center,

background_color = Color.black;

label.string = "++ string ++" ;
label.background = background_color;
label.stringColor = string_color;

label.align = alignment;

label.font = Font(Font.default, font_size, bold:true);

Alabel

freeUGens {

}

// Free LevelIndicator routines and
// ugens when the window is closed...
input_signal.size.do { arg i;
input_level[i].free;
input_level[i] = nil;
if(input_signal[i].isPlaying) {
input_signal[i].free;
input_signal[i] = nil;
s
input_level routine[i].stop;
input_level routine[i].free;
input_level routine[i] = nil;
input_bus[i].free;
input_bus[i] = nil;
}s
output_signal.size.do{ arg i;
output_level[i].free;
output_level[i] = nil;
if(output_signal[i].isPlaying) {
output_signal[i].free;
output_signal[i] = nil;
s
output_level routine[i].stop;
output_level routine[i].free;
output_level routine[i] = nil;
output_bus[i].free;
output_bus[i] = nil;

freeSynths {

input_signal.size.do { arg i;
input_signal[i].free;
input_signal[i] = nil;
output_signal[i].free;
output_signal[i] = nil;

300

}

initQZ_MeterView { arg parent, bounds;

// variable and object initializations...
this.bounds = bounds;

master_settings_button = Button().maxHeight_ (20).maxWidth_(140).states = [
["MASTER SETTINGS", Color.blue, Color.green]

15

in_label = StaticText();
out_label = StaticText();
max_label = StaticText();
min_label = StaticText();

separator_line = View();

input_bus = Array.newClear(2);
output_bus = Array.newClear(2);
input_signal = Array.newClear(2);
input_level = Array.newClear(2);
input_level routine = Array.newClear(2);
output_signal = Array.newClear(2);
output_level = Array.newClear(2);

output_level routine = Array.newClear(2);

/* code realating to the extension of the class' QView instance
(i.e. the 'this' instance)... */

// write amplitude data to the control bus arrays...
input_bus.size.do{ arg i;
input_bus[i] = Bus.control(server, numChannels:1);
input_signal[i] = {
Out.kr(input_bus[i], Amplitude.kr(SoundIn.ar(i)))
}-play;
NodeWatcher.register(input_signal[i]);
}s
output_bus.size.do{ arg i;
output_bus[i] = Bus.control(server, numChannels:1);

// 0.1.wait;
output_signal[i] = Synth.new(\monoOutput,
[\bus, output_bus[i], \channel, i],addAction:\addToTail);
/* \addToTail so that synths already playing
in the RootNode will be read */
NodeWatcher.register(output_signal[i]);
s
// Add the LevelIndicators...
input_level .size.do{ arg i;
input_level[i] = this.addLevellIndicator(
bus:input_bus[i],
routine:input_level routine[i]
)
}s
output_level.size.do{ arg i;
output_level[i] = this.addLevelIndicator(
bus:output_bus[i],
routine:output_level routine[i],
critical:-0.001)
/* the output meters will go red to indicate
a clip if 0.001 db is exceeded */

1

301

this.setLabel(in_label , "Inputs" , Color.black, 12, \left, Color.gray);
in_label.string = "Inputs"”; /* removes some of the whitespace
on the label string */
in_label.maxHeight = 15;
this.setLabel(out_label, "Outputs", Color.black, 12, \left , Color.gray);
out_label.string = "Outputs”;
out_label.maxHeight = 15;
this.setLabel(max_label, "0", Color.black, 12, \topRight , Color.gray);

max_label.string = "0";
this.setLabel(min_label, "-80", Color.black, 12, \bottomRight, Color.gray);
min_label.string = "-80";

separator_line.background = Color.blue;

meter_grid = GridLayout.rows(
[[master_settings_button, columns:6]],
[nil, [in_label, columns:2], nil, nil,
[out_label, columns:2], nil],
[[max_label],
[input_level[@], rows:2],
[input_level[1l], rows:2],
[separator_line.maxWidth_(5), rows:2],
[output_level[@], rows:2],
[output_level[1l], rows:2] 1,
[min_label]
)s

meter_grid.setAlignment(master_settings_button, \center);
this.maxWidth_ (250 /*150*/).maxHeight (1590);

meter_grid.setColumnStretch(0,1);
meter_grid.setColumnStretch(1,2);
meter_grid.setColumnStretch(2,2);
meter_grid.setColumnStretch(3,1);
meter_grid.setColumnStretch(4,2);
meter_grid.setColumnStretch(5,2);

this.background = Color.gray;
this.layout_ (meter_grid);
this.onClose ({

this.freeUGens;

TempoClock.clear;

/* clears any actions scheduled by the AppClock, however calling
the AppClock.clear method should be avoided as it will crash
any future events from being scheduled on the default AppClock
pending a full server reboot...

*/

1

this.initQvView(parent);
if(parent != nil) { parent.layout = this.layout };

~this
}

QZ_Meter : QWindow {
var window_layout, <>z_meter_view;

302

*new { arg name = "Z_Meter", bounds = Rect(750,450,254,154),
resizable = false, border = true, server, scroll = true;

Asuper.new.initQZ_Meter(name, bounds, resizable, border, server, scroll)

}
initQZ_Meter { arg name, bounds, resizable, border, server, scroll;
this.initQWindow(name, bounds, resizable, border, scroll);

z_meter_view = QZ_MeterView.new(bounds:bounds);

// window_layout = QGridLayout.rows([z_meter_view]);

window_layout QStackLayout(z_meter_view);

this.background Color.blue; // this color should be hidden
// by the child view!

this.alwaysOnTop = true;

this.layout (window_layout);

this.onClose = { z_meter_view.freeSynths };
this.front;

~this

303

QZ_ScopeView : QView {
classvar <server;

var scope_grid;

var <>scope_label, <>left_label, <>right_label;

var <>scope_settings_button;

var <>scope_synth, <>scope_display, <>scope_buffer;
var <xZoom, <yZoom;

*initClass {
StartUp.add {
server = Server.default;
this.initSynthDefs;

}

*new { arg parent = nil, bounds = Rect(750,450,160,300);
Asuper.new.initQZ_ScopeView(parent, bounds)

}
*initSynthDefs {
/*
reads values from an audio bus, using ScopeOut2
to write it to a ScopeBuffer...
*/
SynthDef (\monoscope, { arg bus = @, bufnum, zoom = 1.0;
var input;
input = In.ar(bus, 2);
// ScopeOut2 writes the audio to the buffer
ScopeQut2.ar(input, bufnum, 4096, 1024.0/zoom)
}).add
}

setLabel { arg label = StaticText(), string = "Add String!",
string_color = Color.green, font_size = 17.5, alignment = \center,
background_color = Color.black;

// label.string = " "++ string ++" ";
label.string = string;
label.background = background_color;

label.stringColor = string_color;
label.align = alignment;
label.font = Font(Font.default, font_size, bold:true);

Alabel
}

freeScopeSynth {
scope_synth. free;
scope_synth = nil;

}

xZoom_ { arg float = 1.0;
xZoom = float;
scope_display.xZoom = float;
// scope_synth.set(\cycle, (1024 * float).asFloat.reciprocal);
scope_synth.set(\zoom, float);

}

yZoom_ { arg float = 1.0;
yZoom = float;

304

}

scope_display.yZoom = float;

initQZ_ScopeView { arg parent, bounds;

// variable and object initializations...
this.bounds = bounds;

scope_label = StaticText();
left_label = StaticText();
right_label = StaticText();

scope_settings button = Button().maxHeight (20).maxWidth_(140).states
["SCOPE SETTINGS", Color.blue, Color.green]];
scope_buffer = ScopeBuffer.alloc(server, 2);

/* code realating to the extension of the class' QView instance

(i.e. the 'this' instance)... */
this.setlLabel(scope_label, "Oscilloscope ..." , Color.red, 17, \left);
this.setLabel(left_label , "L " , Color.yellow, 35, \left);
this.setlLabel(right_label, "R " , Color.cyan , 35, \left);

scope_display = QScope2();

scope_display.waveColors = [Color.yellow, Color.cyan];
scope_display.bufnum = scope_buffer.bufnum;
scope_display.server_(server);

// listening to the bus, using ScopeOut2 to write it to the buffer
scope_synth = Synth.new(\monoscope,
args:[\bus, @, \bufnum, scope_buffer.bufnum],
target:RootNode(server),
addAction:\addToTail
// make sure it goes after what you are scoping
)s

NodeWatcher.register(scope_synth);

55
5

this.xZoom
this.yZoom

I

1.
2.

scope_grid = GridLayout.rows(
[[scope_label, columns:2], nil, scope_settings_button],
[left_label, [scope_display, rows:2, columns:2]],
[right_label]

)s

this.background = Color.black;
this.layout_ (scope_grid);
scope_display.start;
this.onClose ({
scope_display.stop;
scope_display.free; scope_display = nil;
if(scope_synth.isPlaying) {
scope_synth. free;
scope_synth = nil;
}s
scope_buffer.free; scope_buffer = nil;

s

this.initQvView(parent);
if(parent != nil) { parent.layout = this.layout };

~this

[

305

}

QZ_Scope : QWindow {
var window_layout, <>z_scope_view;

*new { arg name = "Z_Scope", bounds = Rect(675,125,300,100),
resizable = true, border = true, server, scroll = false;

Asuper.new.initQZ_Scope(name, bounds, resizable, border, server, scroll)

}

initQZ_Scope { arg name, bounds, resizable, border, server, scroll;
this.initQWindow(name, bounds, resizable, border, scroll);

z_scope_view = QZ_ScopeView.new(bounds:bounds);

// window_layout = QGridLayout.rows([z_scope_view]);

window_layout QStackLayout(z_scope_view);

this.background Color.magenta; // this color should be hidden
// by the child view!

this.alwaysOnTop = true;

this.layout (window_layout);

this.onClose = { z_scope_view.freeScopeSynth };
this.front;

~this

306

QZ_ServerLevelsPanelView : QView {
classvar <server;

var panel_layout, <hour_stamp, <>time_label, <>server_label, <>level label;
var <>routine, <>tempo_clock;

*initClass { StartUp.add { server = Server.default; } }
*new{ arg parent = nil, bounds = Rect(600,425,580,60);

Asuper.new.initQZ_ServerlLevelsPanelView(parent, bounds)
}

setTimeUnit { arg value;

var unit = ;
if(value < 10) { unit = "@" };

// return as string...
A(unit ++ value)

}

setFloatUnit { arg float;
var unit = "";
if((float % 1) == 0) { unit = ".00" }
// else...
{ if(((float * 10) % 1) == @) { unit = "@" } };
// return as string...
~(float.asString ++ unit)

}

initQZ_ServerlLevelsPanelView { arg parent, bounds;
// check for valid server first and exit if invalid...

("Server Process ID = " ++ server.pid ++ "\n").inform;
if(server.pid == nil)
{ (ll\nll

++ "An instance of the QZ_ServerLevelsPanelView
++ "class could not locate a valid server!\n"
++ "You may need to boot the server...\n").error;
~this
}s

// variable and object initializations...
this.bounds = bounds;

/* create an independant TempoClock instance in order for the server
reading routine to survive a TempoClock.clear method call on the
default TempoClock...

*/

tempo_clock = TempoClock();

time_label = StaticText().string ("Test!").stringColor_(Color.cyan)
.background_(Color.black).align_(\left).font_(Font(Font.default,
size:14, bold:true)).minWidth_(92);

server_label = StaticText().string (" Server : ").stringColor_(Color.gray)
.background_(Color.black).align_(\center).font_(Font(Font.default,
size:15, bold:true)).minWidth_(60);

level label = Array.newClear(6);

307

panel layout = HLayout(time_label, server_label);
6.do{ arg i;
var min_width = if(i < 2) { 69 } { 57 };

level label[i] = StaticText().minWidth_(min_width);
level label[i].background_(Color.black)
.stringColor_(Color.green).align_(\right)

.font_(Font(Font.default, size:14, bold:true));
panel layout.add(level label[i]);

1

/* code realating to the extension of the class' QView instance
(i.e. the 'this' instance)...
*/
routine = Routine {
{ var hour = this.setTimeUnit(Date.getDate.hour);
var minute = this.setTimeUnit(Date.getDate.minute);
var second = this.setTimeUnit(Date.getDate.second);
var peak_string = this.setFloatUnit((server.peakCPU.round(9.01))
.asString.asFloat);
var avg_string = this.setFloatUnit((server.avgCPU .round(0.01))
.asString.asFloat);
/* .asString.asFloat will ensure that any remaining
smaller decimal places are completely truncated */

hour_stamp = hour ++ ++ minute ++ ++ second;

{
time_label .string_(hour_stamp);
level label[@].string_ (peak_string ++ "%");
level label[1].string_(avg_string ++ "%");
level label[2].string_((server.numUGens).asString ++ "u");
level label[3].string ((server.numSynths).asString ++ "s");
level label[4].string ((server.numGroups).asString ++ "g");
level label[5].string ((server.numSynthDefs).asString ++ "d");

}.defer;

0.25.wait;

}.loop
}s

tempo_clock.play(routine);

this.bounds_(bounds);
this.background_(Color.black);
this.layout_ (panel_layout);
this.onClose ({
routine.stop;
routine.free; routine = nil;
tempo_clock.clear;
tempo_clock.free; tempo_clock

nil;
3

this.initQvView(parent);
if(parent != nil) { parent.layout

this.layout };
~this
}

QZ_ServerLevelsPanel : QWindow {
var window_layout, <>z_server_levels_panel_view;

308

*new { arg name = "Z ServerLevelsPanel", bounds = Rect(600,425,580,60),
resizable = false, border = true, server, scroll = false;

Asuper.new.initQZ_ServerLevelsPanel(name, bounds, resizable,
border, server, scroll)

}

initQZ_ServerlLevelsPanel { arg name, bounds, resizable,
border, server, scroll;

this.initQWindow(name, bounds, resizable, border, scroll);
z_server_levels _panel _view = QZ_ServerLevelsPanelView();

this.background_(Color.blue);

window_layout = HLayout(z_server_levels panel view);
this.layout (window_layout);
this.alwaysOnTop_(true);

this.front;

~this

309

	Title Page
	Abstract
	Contents
	Project Aim
	Chapter 1
	Pitch Organisation Models
	Modes
	Polymodes
	Rows & Serial Techniques
	Intervallic Cells

	Chapter 2
	Modality

	Chapter 3
	Explicit Polymodality

	Chapter 4
	Electronic & Computer-Generated Sonorities

	Chapter 5
	"Urban Wilderness" for String Quartet

	Chapter 6
	Style, Influence & Context

	Bibliography
	Contemporary Music-Related Literature
	Welsh-Language Poetry, Prose & Celtic Mythology
	Audio Engineering & Computer Programming
	Music Scores
	Audio & Video Recordings

	Appendix 1
	Table of Diatonic Modes

	Appendix 2
	Contrabass Harmonics Chart

	Appendix 3
	Sketches for "Civilisations"

	Appendix 4
	Sketches for "Utopian Mirror"

	Appendix 5
	Sketches for "Amber on Black"

	Appendix 6
	Eternal Owl Call User Guide
	Title Page
	Contents
	Adding the Z_Library to SuperCollider's Core Class Library
	Running Eternal Owl Call's Performance Interface
	A Screenshot of the GUI
	Using the GUI
	The Left-Hand Columns (Patches & Subpatches)
	The "Next Subpatch" Button
	The "Start" and "Free" Buttons
	The "Info" Buttons

	The Central Columns (Top Area)
	The "Free All Synths" Button
	The "Exit GUI" Button
	The "Reboot Program" Button
	The Mode of Operation
	Testing Mode
	Performance Mode
	Record Mode
	The Last Recorded Session

	The Audio Sample Auditioning Panel
	The Doppler Effect Auditioning Panel
	The Microphone Bus Routing Panel
	The Modulation Routine Settings Panel
	The "Further Info..." Button
	The "Set" and "Free" Buttons

	The Top-Right Corner
	The Full Screen Toggle Button
	The Help Button

	The Post Window
	The "Clear Post Window" Button
	The "Patch # 2 Debug Data" Button
	The "Memory Size" Button
	The "Number of Audio Bus Channels" Button

	The Master, Scope & Analyzer Panels
	The Master Panel
	The Oscilloscope Panel
	The Frequency Analyzer Panel

	The Server Levels Panel
	Closing and Destroying the GUI Window
	Killing the Program Using CmdPeriod
	The User Directory

	Shortcut Keys...
	Example Run Script

	Appendix 7
	Contents
	SC Library Documentation
	Introduction to the Z_Library
	CZ_EternalOwlCall
	QCZ_EternalOwlCall_GUI
	QZ_Analyzer
	QZ_AnalyzerView
	QZ_ConfirmDialog
	QZ_Meter
	QZ_MeterView
	QZ_Scope
	QZ_ScopeView
	QZ_ServerLevelsPanel
	QZ_ServerLevelsPanelView

	SC SourceCode
	CZ_EternalOwlCall
	QCZ_EternalOwlCall_GUI
	QZ_AnalyzerView
	QZ_Analyzer
	QZ_ConfirmDialog
	QZ_MeterView
	QZ_Meter
	QZ_ScopeView
	QZ_Scope
	QZ_ServerLevelsPanelView
	QZ_ServerLevelsPanel

