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Modifying Colourings between Time-steps to

Tackle Changes in Dynamic Random Graphs
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Abstract Many real world operational research problems can be formu-
lated as graph colouring problems. Algorithms for this problem usually
operate under the assumption that the size and constraints of a problem
are fixed, allowing us to model the problem using a static graph. For many
problems however, this is not the case and it would be more appropriate
to model such problems using dynamic graphs. In this paper we will
explore whether feasible colourings for one graph at time-step t can be
modified into a colouring for a similar graph at time-step t + 1 in some
beneficial manner.
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1 Introduction

The graph colouring problem (GCP) aims to colour each vertex of a graph

G = (V, E) such that no adjacent vertices have the same colour and the number

of colours used is minimised. The minimum number of colours required to colour

a graph G is called the chromatic number of G, denoted by χ(G).

By considering the different aspects of a given problem instance and how they

might relate to the components of a graph (vertices, edges and colours), one can

reformulate many real world problems into a GCP. One example is frequency

assignment [1] where each geographical site is represented by a vertex, an edge

exists between two vertices if their respective sites are within a certain proximity

of one another, and colours represent communication frequencies (e. g. radio fre-

quencies). Other examples include exam timetabling [5,15], register allocation [3],

designing seating plans [11] and grouping people in social networks [16].

Most GCP methods can only be applied to such problems under the assump-

tion that the size and constraints of a problem are fixed (i. e. V and E are fixed

in the associated graph G = (V, E)). However, in areas such as the frequency

assignment problem [4] this is not always appropriate as sites can be added or

removed from the communication network, or the location of sites can themselves

move. The aim of this particular research, therefore, is to explore graph colouring

on dynamic graphs. More specifically, we wish to look at methods which modify

a feasible colouring for one graph into a colouring for a “similar” graph.
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The rest of the paper will be structured as follows: Section 2 will formerly

define dynamic graphs and their associated problems and Section 3 will then

discuss the various search spaces for graph colouring problems. Section 4 will

then outline a general approach and define the different modification methods

used, Section 5 will contain the experimentation details, and in Section 6 we

will present the results. Finally, Section 7 will summarise the findings of the

experiments and discuss future work.

2 Dynamic Graph Colouring Problems

The importance of studying dynamic graphs and their associated problems has

been highlighted by Harary and Gupta [7] who outlined many applications,

especially in the area of computer science, and postulated that techniques applied

to static graphs should be extended for dynamic graphs. However, there has been

very little research regarding methods designed explicitly for dynamic graphs.

Two methods for finding colourings for dynamic graphs are given in [13]

and [14]. The first of these proposes a genetic algorithm that uses the same

population of colourings between time-steps for vertex dynamic graphs and

the second proposes an agent-based approach for repairing colourings between

time-steps for edge dynamic graphs. Both of these methods are only concerned

with the quality of initial colourings, whereas this research will presume that

optimisation can take place between time-steps.

We define a dynamic graph G = (G0, G1, . . . , GT ) as a series of T + 1 static

graphs where Gt = (Vt, Et) ∈ G is the static graph defined for time-step t ∈
{0, 1, . . . , T}. At every time-step, the objective in analogous to the static GCP.

In terms of methodology, this means using heuristic methods to find a feasible

kt-colouring for each time-step t, where kt is a good approximation of χ(Gt).

Objectively, this is an attempt to minimise
∑T

t=0 kt.

In this work we choose to split the concept of dynamic graphs into two

cases: edge dynamic graphs and vertex dynamic graphs. In the edge dynamic

graph colouring problem, changes can only occur on the edge set Et; therefore

V0 = V1 = . . . = VT = V for all time-steps. For an edge dynamic graph G,

consider the graph Gt = (V, Et) for time-step t. To get to time-step t + 1 we must

define a set of deleted edges E−
t+1 ⊆ Et and a set of new edges E+

t+1 ⊆ (E\Et)

where E is the set of all possible edges between vertices in V . The edge set for

time-step t + 1 is then defined as Et+1 = (Et\E−
t+1) ∪ E+

t+1.

In the vertex dynamic graph colouring problem, changes are applied to the

vertex set Vt. This in turn affects the edge set Et, as edges incident to deleted

vertices will themselves need to be deleted. Similarly, new vertices will also require

the addition of new edges unless the new vertex is intended to be isolated. For a

vertex dynamic graph G, consider the graph Gt = (Vt, Et) for time-step t. To get

to time-step t + 1 we must define a set of deleted vertices V −
t+1 ⊆ Vt and a set

of new vertices V +
t+1. Once these are defined, the set of deleted edges E−

t+1 ⊆ Et

is defined to be the set of all edges incident to the deleted vertices (i. e. E−
t+1

contains all the edges {u, v} ∈ Et such that either u ∈ V −
t+1 or v ∈ V −

t+1). The
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set of new edges E+
t+1 is a set of connecting edges from the set of new vertices

to any of the vertices in Vt+1 (i. e. E+
t+1 contains edges {u, v} ∈ Et+1 where Et+1

is the set of all possible edges between vertices in Vt+1 and either u ∈ V +
t+1

or v ∈ V +
t+1). The vertex and edge sets for time-step t + 1 are then defined as

Vt+1 = (Vt\V −
t+1) ∪ V +

t+1 and Et+1 = (Et\E−
t+1) ∪ E+

t+1 respectively.

In fact, edge dynamic graphs can be considered as a special case of vertex

dynamic graphs where |V −
t | = |V +

t | = |Vt−1| and E−
t = Et−1, ∀t ∈ {1, . . . , T}.

Another special case is on-line graph colouring, where exactly one vertex is added

at each time-step (i. e. V −
t = ∅ and |V +

t | = 1, ∀t ∈ {1, . . . , T}). On-line graph

colouring has the additional constraint that, once coloured, a vertex cannot be

transferred to a different colour class. Research concerning on-line graph colouring

mainly consists of worst case behaviour analysis of algorithms [6,12].

3 Search Spaces of the GCP

In this paper we will approach dynamic graph colouring problems by adapting

methods for the static problem. In general, the literature suggest three main

search spaces for the static GCP: (i) feasible colourings only, where every

vertex is coloured, there are no clashes (i. e. all adjacent vertices are coloured

differently) and the number of colour classes is allowed to vary; (ii) complete,
improper colourings, where every vertex is coloured but clashes are permitted;

and (iii) partial, proper colourings, where no clashes occur but there may be

“uncoloured” vertices.

The search space of feasible colourings only is rarely used in the literature as

it is often difficult to determine which of two k-colourings is closer to becoming a

colouring with k − 1 colour classes. One example of a heuristic method in this

search space is a simulated annealing approach outlined in [9].

In the complete, improper search space a colouring S = {S1, . . . , Sk} is

a partition of V into k disjoint subsets (i. e. V =
⋃k

i=1 Si and Si ∩ Sj = ∅,

∀i, j ∈ {1, . . . , k} and i ̸= j). Si is called the ith colour class of the colouring

S and the colouring function c : V → {1, . . . , k} is defined such that c(v) = i
for all v ∈ Si. One well-known algorithm that operates in this search space is

TabuCol [8]. In this algorithm, to move from one colouring S to a neighbouring

colouring S ′, a vertex v is transferred from its current colour class Si to a different

colour class Sj where i ̸= j. Then S becomes S ′ = {S′
1, . . . , S′

k} with S′
i = Si\{v},

S′
j = Sj ∪ {v} and S′

l = Sl, ∀l ∈ {1, . . . , k}\{i, j}. The vertex v to be moved can

also be chosen exclusively from the set of currently clashing vertices (i. e. we can

move v ∈ Si if and only if ∃u ∈ Si such that u ̸= v and {u, v} ∈ E). For a given

solution S, the associated cost function in this algorithm is given by

f(S) =

k∑
i=1

|E(i)| (1)

where E(i) is the set of edges with both end points in Si. This cost function is

equivalent to the number clashes in the colouring. If f(S) = 0 then the colouring

S has no clashes and is therefore a feasible k-colouring.
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In the partial, proper search space a colouring S = {S1, . . . , Sk, Sk+1} is

defined by a partition of V into k + 1 disjoint subsets. The first k subsets

are independent sets (i. e. E(i) = ∅, ∀i ∈ {1, . . . , k}) and the remaining vertices

v ∈ V \(
⋃k

i=1 Si) are placed in the additional subset Sk+1 of “uncoloured” vertices,

in which clashes are also permitted.

PartialCol [2] (a modification of TabuCol) is an example of an algorithm

that operates in this search space. In this algorithm, to move from one colouring

S to a neighbouring colouring S ′, we transfer an uncoloured vertex v ∈ Sk+1 to

a colour class Si where i ≤ k and move the set of vertices adjacent to v, Ui ⊆ Si,

to Sk+1. Then S becomes S ′ = {S′
1, . . . , S′

k, S′
k+1} with S′

i = (Si\Ui) ∪ {v},

S′
k+1 = (Sk+1 ∪ Ui)\{v} and S′

l = Sl, ∀l ∈ {1, . . . , k}\{i}.

For a given solution S, the associated cost function in this algorithm is given

by

f(S) = |Sk+1| (2)

which is equivalent to the number of uncoloured vertices. An alternative cost

function is

f(S) =
∑

v∈Sk+1

deg(v) (3)

where deg(v) is the degree of vertex v. If the vertices in Sk+1 have low degrees

then, in theory, they will be easier to move into colour classes without causing

clashes. For both of these cost functions, if f(S) = 0 then there are no uncoloured

vertices and S is therefore a feasible k-colouring.

4 Methods

Our approach for solving a dynamic graph G = {G0, G1, . . . , GT } will follow the

process outlined in Algorithm 1. Notice that for G0 a method for the static GCP

needs to be applied.

Algorithm 1 Generic DGCP Algorithm

Input: a dynamic graph G = (G0, G1, . . . , GT )
Output: a set S = {S0,S1, . . . ,ST } where St is a feasible colourings for Gt ∈ G
1: S0 ← Static GCP Algorithm (G0)
2: for t = 1 to T do

3: St ← Dynamic GCP Time-step Algorithm (Gt,St−1) (i. e. Algorithm 2)
4: return S = {S0,S1, . . . ,ST }

For each time-step t, suppose a feasible colouring St for Gt has been found;

that is, a colouring where all vertices are coloured and no clashes occur. This

colouring might then be saved and possibly modified in some way to be used as a

colouring for Gt+1. Using this modified colouring with k ≥ |St| colour classes as a

starting point, we then wish to find a feasible k-colouring for Gt+1. If we succeed,
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then we search for a feasible colouring with one fewer colour class and so on until

some stopping criteria (e.g. a time or iteration limit) is reached. It may of course

be impossible to find a feasible k-colouring for Gt+1. In order to accommodate

this eventuality, if some timing criteria is met and a feasible colouring (of any

size) has not be found, then we increase k by 1, we allow the target number of

colour classes to be increased indefinitely until a feasible colouring is found or

the algorithm’s stopping criteria is met. This process is outlined in Algorithm 2.

The focus of this particular piece of research is to explore the different

methods for modifying a feasible colouring achieved in time-step t into an initial

colouring for time-step t + 1 (i. e. line 2 of Algorithm 2). The essential question

to be answered is: can a feasible colouring for one graph Gt be used in some

advantageous way to find a feasible colouring for a similar graph Gt+1?

Algorithm 2 Generic DGCP Time-step Algorithm

Input: a graph Gt+1 and a feasible colouring St for Gt

Output: a feasible colouring St+1 for Gt+1

1: Sbest ← ∅
2: St+1 ← St modified in some way (see Sections 4.1 and 4.2)
3: k ← |St+1|
4: while not stopping criterion do

5: attempt to make St+1 a feasible k-colouring for Gt+1

6: if St+1 is a feasible k-colouring for Gt+1 then

7: Sbest ← St+1

8: k ← k − 1
9: if Sbest = ∅ and a computation limit is reached then

10: k ← k + 1
11: St+1 ← Sbest

12: return St+1

4.1 Modification for Edge Dynamic Graphs

For all of the following methods, the final feasible colouring St for Gt can be

considered as a complete, improper colouring for Gt+1 with k = |St| colour

classes. We can do this because every vertex v ∈ V will be coloured but the new

edges E+
t+1 are likely to cause clashes. With this knowledge we can then apply

one of the following modification methods.

(1) Calculate the number of clashes: Calculate the initial number of clashes

and then pass St directly to the tabu search operator which will attempt to find

a feasible k-colouring for Gt+1.

(2) Uncolour clashing vertices: By identifying pairs of clashing vertices in St

and transferring one of the vertices in each of these pairs to a set of uncoloured

vertices, one produces a partial, proper colouring S̃t+1 for Gt+1. S̃t+1 along with

the set of uncoloured vertices can now be passed to the tabu search operator

which will attempt to find a feasible k-colouring for Gt+1.
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(3) Solve clashing vertices: In a similar manner to Method (2), clashing

vertices are “uncoloured” to produce a partial, proper colouring S̃t+1 for Gt+1.

An attempt is then made to re-insert each of these uncoloured vertices into a

colour class in S̃t+1 such that no clashes are incurred. The remaining uncoloured

vertices and any appropriate edges are then considered as a residual graph G′
t+1

of Gt+1. This residual graph is passed to the constructive operator (specifically,

the recursive largest first (RLF) algorithm [10]) which produces a feasible k′-

colouring for G′
t+1. The feasible colouring for G′

t+1 is then combined with S̃t+1 to

produce a feasible colouring for Gt+1 with k + k′ colour classes. The tabu search

operator will then attempt to find a feasible (k + k′ − 1)-colouring for Gt+1.

4.2 Modification for Vertex Dynamic Graphs

The final feasible colouring St achieved for Gt will be neither a complete, improper

colouring or a partial, proper colouring for Gt+1 as it will include the deleted

vertices V −
t+1 and won’t include the new vertices V +

t+1. For each of the following

methods, every deleted vertex v ∈ V −
t+1 must first be removed from St in order

to produce a partial, proper colouring S̃t+1 for Gt+1 with k = |St| colour classes.

We can then apply one of the following modification methods.

(4) Randomly assign new vertices: Each new vertex v ∈ V +
t+1 is randomly

assigned to a colour class in S̃t+1 to produce a complete, improper colouring for

Gt+1. This can then be passed to the tabu search operator which will attempt to

find a feasible k-colouring for Gt+1.

(5) Uncolour new vertices: Unlike Method (4), the new vertices V +
t+1 are not

assigned to colour classes in S̃t+1. Instead the new vertices V +
t+1 are considered

as a set of uncoloured vertices. Along with S̃t+1, this set of uncoloured vertices is

passed to the tabu search operator which attempts to find a feasible k-colouring

for Gt+1.

(6) Solve new vertices: An attempt is made to insert each of the new vertex

v ∈ V +
t+1 into an a colour class in S̃t+1 such that no clashes are incurred. The

remaining new vertices and any appropriate edges are then considered as a

residual graph G′
t+1 of Gt+1. This residual graph is passed to the constructive

operator (again, RLF) which produces a feasible k′-colouring for G′
t+1. The

feasible colouring for G′
t+1 is then combined with S̃t+1 to produce a feasible

colouring for Gt+1 with k + k′ colour classes. The tabu search operator will then

attempt to find a feasible (k + k′ − 1)-colouring for Gt+1.

5 Experimentation Details

In our experiments we considered dynamic random graphs. For each dynamic

random graph we specify an initial number of vertices n, a desired density d, a

change probability p and a number of time-steps T . To construct a sequence of

graphs G we use the following methods.

For an edge dynamic graph consider the graph Gt = (V, Et). To construct

Gt+1, every edge {u, v} ∈ Et is copied to the set of deleted edges E−
t+1 with
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probability p and every currently non-existent edge {u, v} ∈ E\Et is copied to

the set of new edges E+
t+1 with probability dp

1−d .

For a vertex dynamic graph, consider the graph Gt = (Vt, Et). To construct

Gt+1, every vertex v ∈ Vt is copied to the set of deleted vertices V −
t+1 with

probability p and the set of new vertices is constructed such that |V +
t+1| is an

integer between np(1 − p) and np(1 + p). Every edge {u, v} ∈ Et+1 with u ∈ Vt+1,

v ∈ V +
t+1 and u ̸= v is then added to the set of new edges E+

t+1 with probability

d.

For both the edge and vertex dynamic graphs, the following parameters were

used: n = 500, d ∈ {0.1, 0.5, 0.9}, p ∈ {0.005, 0.01, . . . , 0.05} and T = 10, and

for each combination of these parameters, 20 graphs were produced. The RLF
algorithm [10] was applied to obtain an initial colouring for G0. Note that all

results corresponding to these initial graphs are ignored; however, the colourings

they produced were used in the modification methods for G1.

In our case, each time-step was given a time limit of 10 seconds1 (i. e. line 4

of Algorithm 2). If this time limit had been set much longer, say hours, then the

advantage of modifying colourings between time-steps would obviously diminish.

TabuCol [8] and PartialCol [2] were used to find feasible colourings in the

complete, improper search space and partial, proper search space respectively (i. e.

line 5 of Algorithm 2). These algorithms use the neighbourhood moves outlined

in Section 3 and, upon performing a move, the inverse moves are made “tabu”

for 0.6 × f(S ′) + r iterations, where f is the cost function given in Equations (1)

and (2) respectively, S ′ is the resultant colouring after the neighbourhood move,

and r is a random integer from the set {0, 1, . . . , 9}. This tabu tenure has been

used in both [8] and [2].

During execution, the target number of colour classes is adjusted in the

following way. Let k be the target number of colour classes, initially defined by

the modification method being implemented. If a feasible k-colouring cannot

be obtained within half of the allotted time limit then k is increased by 1. If a

feasible k-colouring cannot then be obtained within half of this remaining time

limit then k is again increased by 1, and so on (i. e. lines 9 and 10 of Algorithm 2).

For example, say the target number of colour classes for Gt is initially set as

k = 23, if a feasible 23-colouring cannot be found within 5 seconds then the tabu

search operator attempts to find a feasible 24-colouring for Gt, if this cannot

be found within a further 2.5 seconds then the tabu search attempts to find a

feasible 25-colouring for Gt, and so on.

For a base-line comparison, the following control method was also imple-

mented:

(0) Reset: The static graph Gt ∈ G for each time-step t ∈ {1, . . . , T} is

considered without any information about colourings achieved in the previous

time-steps. As with G0, the RLF algorithm is applied to obtain an initial colouring

for Gt (i. e., RLF replaces line 2 of Algorithm 2). Tabu search is then applied

iteratively in an attempt to find colourings with fewer colour classes. The number

1 All algorithms were programmed in C++ and executed on a 3.3GHZ Windows 7 PC
with an Intel Core i3-2120 processor and 8GB RAM.
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of colour classes in the final, feasible colouring achieved and the time required to

obtain this colouring is then recorded.

Note that Methods (1) and (4) operate exclusively in the complete, improper

search space, Methods (2) and (5) operate exclusively in the partial, proper

search space, and Methods (0), (3) and (6) can operate in either search space

as required. Because of this, only comparisons between methods designed for

the same problem and operating in the same search space are compared. For

example, for the edge dynamic GCP operating in the complete, improper search

space only Methods (0), (1) and (3) are compared against one another.

In all of our results, unless otherwise stated, all statistical tests are Wilcoxon

signed rank tests with significance level α = 0.05.

6 Results

6.1 Initial Colourings for the Edge Dynamic GCP

Let us first consider the initial feasible colourings produced for the edge dynamic

GCP. For all densities d and change probabilities p, Methods (1) and (2) were

found to produce initial, feasible colourings with significantly fewer colour classes

than both Methods (0) and (3). This is clearly illustrated in Figure 1.

We have observed a significant increase in the time required by Methods (1)

and (2) to achieve their initial, feasible colourings compared to Methods (0) and

(3) for all values of d and p, as seen in Table 1. A main contributing factor to this

may be found in the nature of the different methods: Methods (0) and (3) both

start from feasible colourings whereas Methods (1) and (2) do not and therefore

require more time to move to a feasible region of the search space. For similar

reasons, as p increases so too does the time required by Methods (1) and (2) to

achieve an initial, feasible colouring.

For d = 0.1 with p = 0.005, d = 0.5 with p ≤ 0.02, and d = 0.9 with p ≤ 0.01

Method (3) was found to produce initial, feasible colourings with significantly

fewer colour classes than Method (0). However, for higher settings of p, specifically

for d = 0.1 with p ≥ 0.01, d = 0.5 with p ≥ 0.03, and d = 0.9 with p ≥ 0.015,

the opposite holds. This is again clearly illustrated in Figure 1. Hence we can

conclude that for these high levels of p, modifying feasible colourings for Gt is of

no benefit when attempting to achieve initial, feasible colourings for Gt+1.

Considering computational effort, we have found that the time required by

Method (3) to achieve initial, feasible colourings is significantly less compared

to Method (0) for d ∈ {0.5, 0.9} with all values of p. Both Methods (0) and (3)

employ RLF; however, Method (0) applies it to the whole graph Gt = (V, Et) at

each time-step t as opposed to Method (3) which only applies it to a residual

graph G′
t = (V ′, E′

t) of Gt where V ′ ⊆ V (which implies |V ′| ≤ |V |). We therefore

see that applying Method (3) with low levels of p is advantageous with regards

to both the number of colour classes in initial, feasible colourings and the time

required to obtain them.
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Figure 1. Mean initial, feasible colourings for the edge dynamic GCP. Graphs on the
left represents results from trials in the complete, improper search space and those
on the right for trials in the partial, proper search space. From top to bottom, rows
represent d = 0.1, 0.5, and 0.9 respectively.
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Table 1. Median time (in seconds) required to obtain an initial, feasible colouring for
the edge dynamic GCP (a 0∗ entry implies that the recorded time is less than 10−3

seconds).

p(%)
d Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.1 (0) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

(1) 0∗ 0.015 0.016 0.031 0.031 0.031 0.031 0.047 0.047 0.047
(2) 0∗ 0∗ 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016
(3) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.5 (0) 0.016 0.016 0.031 0.031 0.031 0.016 0.016 0.016 0.016 0.016
(1) 1.692 2.246 2.777 2.948 3.182 3.268 3.363 3.791 4.181 3.713
(2) 1.545 1.872 2.083 2.996 2.325 2.590 2.824 2.519 2.730 2.972
(3) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 (0) 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
(1) 5.008 5.125 5.335 5.140 5.288 5.421 5.366 5.171 5.327 5.304
(2) 4.376 4.235 5.016 5.070 5.047 5.031 5.008 4.789 5.038 5.023
(3) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

6.2 Initial Colourings for the Vertex Dynamic GCP

Let us now consider initial colourings for the vertex dynamic GCP. It is first

worth mentioning that a small change to the edge set of a graph will affect more

vertices than a comparable change to its vertex set. It is therefore not surprising

that the following results are similar to those presented in Section 6.1 but for

higher values of p.

Comparable to Methods (1) and (2) for the edge dynamic problem, the initial,

feasible colourings achieved by Methods (4) and (5) have significantly fewer

colour classes than Methods (0) and (6) but require significantly more time

to obtain them. The time required by Methods (4) and (5) also has a positive

relationship with the change probability p. These observations can be seen in

Figure 2 and Table 2. The reasons for this behaviour are the same as those given

for Methods (1) and (2) in Section 6.1.

Table 2. Median time (in seconds) required to obtain an initial, feasible colouring for
the vertex dynamic GCP (a 0∗ entry implies that the recorded time is less than 10−3

seconds).

p(%)
d Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.1 (0) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0.015 0.015

(4) 0∗ 0∗ 0.015 0.015 0.016 0.031 0.031 0.031 0.031 0.046
(5) 0∗ 0∗ 0.015 0.015 0.015 0.016 0.015 0.016 0.016 0.016
(6) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.5 (0) 0.016 0.031 0.016 0.016 0.016 0.016 0.016 0.016 0.016 0.016
(4) 0.320 1.131 1.240 1.724 1.482 1.724 1.935 2.411 2.114 2.785
(5) 0.663 0.983 1.537 1.529 1.630 1.537 1.973 1.794 1.841 2.340
(6) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

0.9 (0) 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
(4) 1.069 1.997 2.941 3.830 3.565 4.189 4.820 4.938 4.852 5.007
(5) 1.163 1.731 2.644 3.222 2.387 3.416 3.339 3.424 2.816 3.346
(6) 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗
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Again, as with Method (3) for the edge dynamic problem, Method (6) produces

initial, feasible colourings with both significantly fewer and significantly more

colour classes than Method (0) depending on the change probability p. However,

Method (6) only produces initial, feasible colourings with significantly more

colour classes for d = 0.1 with p ≥ 0.035. In fact, for d = 0.1 with p ≤ 0.02, and

d ∈ {0.5, 0.9} with all values of p, Method (6) achieves initial, feasible colourings

with significantly fewer colour classes. This is clearly illustrated in Figure 2.

As with Method (3), Method (6) requires significantly less time than Method

(0) in all instances except for d = 0.1 with p ≤ 0.03 (as seen in Table 2). This

is again likely because Method (6) applies RLF to a smaller graph G′
t with

|V ′
t | = |V +

t | ≈ np as opposed to applying it to Gt with |Vt| ≈ n.

6.3 Final Colourings for the Edge Dynamic GCP

Next let us consider final colourings for the edge dynamic GCP. The Friedman

test with α = 0.05 shows that for d = 0.1 there is no significant difference

between the number of colour classes in the final, feasible colourings achieved

when applying Methods (0), (1), (2) and (3). However, Methods (1) and (2) both

achieve final, feasible colourings with significantly more colour classes than those

achieved by Method (0) for d = 0.9 with p ≥ 0.01 and p ≥ 0.035 respectively.

Methods (1) and (2) also achieve final, feasible colourings with significantly more

colour classes than those achieved by Method (3) for d = 0.9 with some values of

p. This observation is likely due to the relatively large amount of time required by

Methods (1) and (2) to find an initial, feasible colouring compared to Methods (0)

and (3) (see Section 6.1 and Table 1). This “wasted” time then translates to time

not being allocated to finding feasible colourings with fewer colour classes.

For d = 0.5 and some values of p, Method (3) was found to achieve final, fea-

sible colourings with significantly fewer colour classes than Method (0). However,

for d = 0.9 with p ≥ 0.04 the opposite holds which is unsurprising as Method (3)

produces initial, feasible colourings with significantly more colour classes under

these parameter settings.

The following time comparisons correspond only to trials where the number of

colour classes in the final, feasible colourings achieved by the compared methods

were equal to one another. This will also be the case in Section 6.4.

Method (1) was found to reach final, feasible colourings significantly faster

than Method (0) for d = 0.1 with p ≤ 0.035, and d = 0.5 with p ≤ 0.01 as

seen in Table 3. Similarly, Method (2) also achieves final, feasible colourings

in significantly less time than Method (0) for d = 0.1 with all values of p, and

d = 0.5 with p = 0.005. Both of these methods were also able to reach final,

feasible colourings significantly faster than Method (3) for d = 0.1 with some

values of p. These observations are likely due to the fact that the initial, feasible

colourings achieved by Methods (1) and (2) are also the final, feasible colourings

achieved for d ∈ {0.1, 0.5} with low values of p.

On the other hand, Method (1) was found to require significantly more time

than Method (0) to achieve final, feasible colourings for d = 0.5 with p ≥ 0.035,

and d = 0.9 with all values of p. The same was also found for Method (2) for
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Figure 2. Mean initial, feasible colourings for the vertex dynamic GCP. Graphs on
the left represents results from trials in the complete, improper search space and those
on the right for trials in the partial, proper search space. From top to bottom, rows
represent d = 0.1, 0.5, and 0.9 respectively.
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d = 0.9 with most values of p. In a similar fashion, these two methods require

significantly more time to achieve final, feasible colourings than Method (3) for

d ∈ {0.5, 09} with most values of p. This is probably due to the same arguments

presented with regards to the number of colour classes in the final, feasible

colourings achieved by these methods for d = 0.9.

Unlike Methods (1) and (2), Method (3) was not found to require significantly

more time than Method (0) for any parameter settings. On the contrary, for

d = 0.1 with p ≤ 0.035, and d = 0.5 with p ≤ 0.02, Method (3) requires

significantly less time to achieve final, feasible colourings. It should be highlighted

that these are similar parameter settings for which Method (3) is able to produce

initial, feasible colourings with significantly fewer colour classes than Method (0).

Table 3. Median time (in seconds) required to obtain final, feasible colourings with
the same numbers of colour classes for the edge dynamic GCP (a 0∗ entry implies that
the recorded time is less than 10−3 seconds).

p(%)
d S.S. Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.1 C.I. (0) 0.047 0.046 0.047 0.046 0.047 0.046 0.047 0.046 0.047 0.047

(1) 0∗ 0.015 0.016 0.031 0.031 0.031 0.031 0.047 0.047 0.047
(3) 0.015 0.016 0.031 0.031 0.046 0.031 0.047 0.047 0.047 0.047

P.P. (0) 0.016 0.016 0.031 0.016 0.031 0.031 0.031 0.031 0.031 0.031
(2) 0∗ 0∗ 0.015 0.015 0.015 0.015 0.015 0.016 0.016 0.016
(3) 0∗ 0.015 0.015 0.015 0.016 0.016 0.016 0.031 0.031 0.031

0.5 C.I. (0) 3.478 2.996 3.034 3.128 2.442 2.855 2.528 3.136 2.941 2.754
(1) 1.653 2.371 3.190 3.097 3.424 3.417 3.869 4.259 4.321 4.275
(3) 1.077 1.794 2.130 2.683 2.239 2.652 2.754 2.465 3.284 2.762

P.P. (0) 2.933 2.910 3.081 2.870 2.278 2.730 2.636 2.559 2.309 2.676
(2) 1.872 1.888 2.356 3.783 2.356 2.722 3.058 2.847 2.746 3.331
(3) 1.435 2.160 2.060 2.356 2.246 2.699 2.169 2.442 2.168 2.598

0.9 C.I. (0) 5.492 5.476 5.008 4.836 5.569 5.912 4.851 5.694 4.430 4.602
(1) 6.225 7.122 7.691 7.074 7.964 7.550 7.535 8.455 7.176 7.488
(3) 4.181 4.906 4.415 4.353 5.694 5.195 4.649 5.234 5.039 4.882

P.P. (0) 4.181 5.242 5.179 4.166 5.273 4.914 3.681 4.602 4.212 4.633
(2) 5.141 5.616 5.975 6.365 6.365 5.741 6.038 5.506 5.452 5.866
(3) 3.877 4.649 5.070 4.275 4.352 4.025 4.196 4.618 4.688 4.977

6.4 Final Colourings for the Vertex Dynamic GCP

Finally, let us consider final colourings for the vertex dynamic GCP. As mentioned

in Section 6.2, a small change to the edge set will usually affect more vertices

than a comparable change to its vertex set.

Method (4) was found to achieve final, feasible colourings with significantly

fewer colour classes than Method (0) for d = 0.5 with most values of p, and

d = 0.9 with p ≤ 0.03. Similarly, Method (5) was also found to achieve final,

feasible colourings with significantly fewer colour classes than Method (0) for

d ∈ {0.5, 0.9} with some values of p. On the other hand, Method (4) achieves

final, feasible colourings with significantly more colour classes than Method (6)
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for d = 0.9 with p ≥ 0.025. Although Methods (4) and (5) require significantly

more time to produce initial, feasible colourings (see Section 6.2 and Table 1)

it is likely that Methods (0) and (6) still require more time to reach a feasible

colouring with equivalent numbers of colour classes for low levels of p. This

would imply that Methods (4) and (5) attempt to find feasible colourings with

fewer colour classes earlier than Methods (0) and (6). Further analysis should be

conducted in order to investigate the validity of this proposition.

Unlike Method (3) for the edge dynamic problem, Method (6) was only

found to reach final, feasible colourings with the same or significantly fewer

colour classes than Method (0). Both Methods (0) and (6) start each time-step

from a feasible colouring; however, Method (6) achieves initial colouring with

significantly fewer colour classes than Method (0) for most combinations of d
and p (see Section 6.2 and Figure 2). Method (6) will therefore attempt to find

feasible colourings with fewer colour classes earlier than Method (0).

It was found that Methods (4) and (5) achieve final, feasible colourings in

significantly less time than Method (0) for d = 0.1 with all values of p, and

d ∈ {0.5, 0.9} with p ≤ 0.01. Additionally, Method (4) was found to achieve

final, feasible colourings in significantly less time for d = 0.5 with p ≤ 0.04, and

d = 0.9 with p ≤ 0.025 also. This can be seen in Table 4. The reason for these

observations is likely to be the same as that given with regards to the number of

colour classes in the final, feasible colourings achieved with low levels of p.

On the contrary, Methods (4) and (5) require significantly more time to

achieve final, feasible colourings than Method (6) for d ∈ {0.5, 0.9} with most

values of p. In comparison to Method (0), Method (6) starts from a feasible

colouring with significantly fewer colour classes for d ∈ {0.5, 0.9} with all values

of p (see Section 6.2 and Figure 2). This will likely translate to Method (6)

attempting to find feasible colourings with fewer colour classes before Methods (4)

and (5) are able to produce initial, feasible colourings.

Method (6) was also found to require significantly less time to achieve final,

feasible colourings than Method (0) for all values of d with most values of p
(again, see Table 4). This is probably due to the same argument given earlier with

regards to the number of colour classes in the final, feasible colourings achieved

by Method (6) compared to Method (0).

7 Conclusions and Future Work

In this paper we have presented several methods for modifying feasible colourings

from one time-step of a dynamic random graph in order to help find a feasible

colouring for the next time-step.

Our experiments have shown that, for both edge and vertex dynamic graphs,

initial colourings with significantly fewer colour classes can be achieved by initially

modifying a feasible k-colouring for Gt into an infeasible k-colouring for Gt+1

and then passing this directly to the tabu search operator. However, there is a

significant trade off with respect to the time required to achieve an initial, feasible

colouring when these modification methods are applied. These methods were
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Table 4. Median time (in seconds) required to obtain final, feasible colourings with
the same numbers of colour classes for the vertex dynamic GCP (a 0∗ entry implies
that the recorded time is less than 10−3 seconds).

p(%)
d S.S. Method 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.1 C.I. (0) 0.046 0.046 0.047 0.047 0.047 0.047 0.047 0.047 0.047 0.062

(4) 0∗ 0∗ 0.015 0.015 0.016 0.031 0.031 0.031 0.031 0.046
(6) 0∗ 0∗ 0.015 0.016 0.031 0.031 0.031 0.046 0.031 0.047

P.P. (0) 0.016 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
(5) 0∗ 0∗ 0.015 0.015 0.016 0.016 0.016 0.031 0.031 0.031
(6) 0∗ 0.015 0.015 0.015 0.016 0.016 0.016 0.031 0.031 0.031

0.5 C.I. (0) 5.141 3.682 4.321 4.610 4.212 3.619 3.884 3.713 3.666 3.612
(4) 0.515 1.224 1.996 1.747 2.738 2.699 3.713 2.551 4.103 4.470
(6) 0.328 1.084 1.045 1.303 2.028 1.740 1.981 2.020 2.013 2.247

P.P. (0) 2.652 3.073 3.276 3.151 2.980 2.504 2.964 2.457 2.933 2.855
(5) 1.505 1.264 2.574 2.621 2.341 3.066 2.566 2.551 3.167 2.980
(6) 0.203 1.068 1.092 1.529 1.544 1.420 1.381 2.192 2.387 2.293

0.9 C.I. (0) 5.702 6.069 6.318 6.146 6.053 6.021 6.209 5.843 5.881 6.186
(4) 1.428 5.007 5.007 4.399 5.460 5.148 5.507 6.069 6.381 6.459
(6) 1.786 2.090 3.019 3.307 4.033 3.681 3.667 4.227 3.791 4.142

P.P. (0) 4.867 5.281 4.680 5.492 5.585 4.267 4.181 4.665 4.602 4.462
(5) 2.964 3.362 4.665 5.194 4.446 4.196 6.255 5.585 5.054 5.281
(6) 1.373 2.013 2.566 1.981 3.261 3.330 3.416 2.745 3.884 4.189

also found to achieve final, feasible colourings with the significantly more colour

classes for some edge dynamic problems but significantly fewer colour classes for

some vertex dynamic problems. The time required to achieve comparable final

colourings via these methods is dependent on p.

It has also been shown that reducing a feasible colouring for Gt into a partial,

proper colouring for Gt+1 and then applying a constructive algorithm to the

residual graph induced by the “uncoloured” vertices can also achieve initial,

feasible colourings with significantly fewer colour classes when p is small enough.

These modification methods were also shown to produce initial, feasible colourings

in significantly less time for d ∈ {0.5, 0.9}. Finally, these methods also resulted

in final, feasible colourings with the same or significantly fewer colour classes and

require equal or significantly less time to do so.

Note that in this piece of work, all changes between time-steps of dynamic

graphs have occurred completely at random; however, for some real world ap-

plications there may be some level of predictability. More specifically, we might

have some knowledge of how edges and vertices are likely to change in the future.

We wish to extend this research and explore how this sort of information can be

used to our advantage in order to produce more robust colourings.
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