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Abstract 

We test an approach to spatial housing sub-market delineation using street segment as 

the spatial unit and using finely grained measures of accessibility derived from spatial 

network analysis. The underlying idea is that street segment connectivity captures fine 

variations in home-buyers’ preferences for the location. The advantage of the approach 

is that it is spatially fine grained; it uses the street segment, intuitively the most 

fundamental spatial unit for spatial housing market analysis; it allows the use of 

statistical tests to optimize within-sub-market similarities, identifying spatial groups of 

street segments with the most similar accessibility features; it avoids the predefined 

arbitrary geographic boundaries usually used in spatial sub-market delineation; it 

increases the variability of accessibility information in sub-market delineation, 

accessibility being the principal spatial determinant of housing price; and it allows for 

normalized measures of accessibility at different spatial scales making it appropriate 

for comparative analysis across cities. Using a case study of Cardiff, UK, we compare 

the results with a market segmentation scheme based on prior-knowledge, notably one 

relying on building type classification.  We conclude that street layout can be used to 

efficiently delineate housing submarkets, and that the estimation is very close to the 

scheme requiring prior-knowledge. It has advantages, however that make it worthy of 

further investigation, namely its adaptability, scale-specificity and lower reliance on 

local knowledge of housing market culture and data.  

Keywords: housing submarket, street segments, accessibility, geographic 

boundary, network analysis



1.0 Introduction 

Housing markets in a city, region or country are not uniform entities; they comprise 

distinct expressions of demand and supply spatially defined.  For analytical, 

professional and policy purposes, the segmentation of housing submarkets should 

therefore be based on a clear understanding of spatially-specific demand and supply 

dynamics. There are many studies arguing for the existence of submarkets and 

suggesting methods of identifying them (Leishman, 2001, Watkins, 2001, Bramley et 

al., 2008, Jones et al., 2009, Leishman, 2009, Leishman et al., 2013, Bourassa et al., 

1999, Park, 2013, Pryce, 2013, Goodman and Thibodeau, 2007). 

 

Despite a large amount of research, there is no clear agreement about how spatial 

submarkets should best be identified for housing studies (Adair et al., 1996, Watkins, 

2001, Bourassa et al., 1999, Leishman, 2009). In practice, the crucial questions of how 

to identify close substitutes and what level of aggregation is appropriate, are often 

answered in an ad hoc manner. Predefined geographical boundaries, often arbitrary in 

terms of housing market behaviour, are adopted as the spatial unit for submarket 

delineation (Goodman and Thibodeau, 2003, Goodman and Thibodeau, 2007). 

Bourassa et al. (1999) questioned the extent to which  groupings of dwellings 

constructed from predefined geographical boundaries have the maximum degrees of 

internal homogeneity and external heterogeneity. Following the approach used in non-

spatial housing market segmentation, we suggest that it is worth exploring further the 

idea of statistical specification of demand to form submarkets (Park 2013). Non-spatial 



approaches subdivide the market statistically but the divisions are inconsistence over 

time, since the market is constantly changing (Leishman, 2009, Jones et al., 2003). We 

propose an approach that subdivides spatial demand in a way that acknowlegdes the 

primacy of location in the house price calculus and does this using highly differentiated 

and spatial scale-specfic accessibility measures. 

 

Kauko (2009) notes that the built environment is always an important factor in house 

price differentials due to its slow-changing nature. Noting this, our study builds upon the 

hypothesis that properties within a particular location tend to be similar in many 

attributes, and householders in a location tend to be from the same social-economic 

group and to share the same locational preferences (Ball and Kirwan, 1977). 

Furthermore, many studies within the built environment field have found that the 

accessibility information contained in a city’s street layout is also associated with 

property value and by implication, locational preferences (Matthews and Turnbull, 

2007, Xiao et al., 2014). In particular, street layout determines the ease of access to 

transport services, employment and all manner of human transactions within a city 

(Webster 2010, Jones et al. 2009). Jones et al. (2009) argue that particular urban forms 

imply particular inter-linkages of environmental, social and economic attributes, and 

that urban form tends to persist with submarket residential density. We extend these 

propositions about the importance of geography (Basu and Thibodeau, 1998, Goodman 

and Thibodeau, 2007, Watkins, 2001), by investigating the use of street segments as the 

basic spatial unit for aggregation and demarcation of spatial housing market demand. 



The intuitive importance of streets and street segments (parts of streets between 

junctions) for housing homogeneity, identity and preferences lends additional credence 

to this method. 

 

The aims of this paper are two fold: firstly, we address weaknesses in traditional 

attempts to identify spatial submarkets, and argue for the street segment as the basic 

spatial unit. Secondly, we test our idea empirically by comparing it with a traditional 

specification that requires local knowledge about building typology. We do this by 

clustering street segments on the basis of accessibility, creating stable, homogenous 

contiguous grouping of houses delineated by statistical tests that optimise internal 

homogeneity (Bourassa et al., 1999). We undertake this experiment using a case study 

of Cardiff, UK, the residential core of which was built over a short period of roughly 

30 years at the turn of the 19th and 20th centuries. 

 

This study follows a general framework for testing for sub-market existence at a given 

time as adopted in previous studies (Jones et al., 2009, Watkins, 2001, Leishman et al., 

2013). To index street network segments for connectivity we utilize a spatial network 

analysis method known as ‘space syntax’(Chiaradia et al., 2012) and  use two indices 

of connectivity, both measured at different spatial scales: “closeness” and “betweenness” 

(defined below). A two-step clustering analysis (Chen et al., 2009, Bacher et al., 2004) 

is applied to identify the optimal number of clusters necessary to delineate distinct 

housing submarkets. We use the indexed accessibility maps to identify sub-areas of the 



road grid that are characterized by similar accessibility value.  These can be thought of 

as areas of the city characterized by homogenous values of local agglomeration 

economies since accessibility is a surrogate for all manner of urban agglomeration 

benefits and disbenefits. The remaining steps in our methodology follows Schnare and 

Struyk’s (1976) approach, using the Chow test and a weighted standard error test to 

measure the efficiency of submarkets thus delineated. 

 

The remainder of the paper is organized as follows. Section 2 outlines the theory of 

housing submarket specification and sets out our alternative approach based on street 

segment analysis. The methodologies of spatial network analysis and the specification 

of our spatial hedonic price model are reported in section 3. We introduce the study area 

and the dataset for the Cardiff in section 4. Results of three different submarket 

specification models (city-wide, building type, street layout) are presented in section 5; 

and the conclusions are presented in section 6. 

 

2.0 Literature review  

2.1 Specifications of housing submarkets 

Housing submarkets are one cause of housing market disequilibrium according to 

(Whitehead and Odling-Smee, 1975). Straszheim (1975) first noted that a fundamental 

characteristic of urban housing markets is the variation in housing characteristics and 

price by location. Goodman and Thibodeau (1998) stated that a metropolitan housing 

area is always segmented into small submarkets due to a mix of supply and demand-



related factors. Therefore, understanding the segmentation of a housing market is 

essential for both policy makers and private property investment assessments，

especially since housing submarkets can serve to reduce consumers’ search and other 

transaction costs (Goodman and Thibodeau, 2007). However, there exists little 

consensus as to how spatial submarkets should be defined for applied housing studies 

(Adair et al., 1996, Watkins, 2001).  

 

Three mainstream approaches exist for identifying submarkets. The first one is mainly 

focused on geographical areas (e.g. census tracts or local government areas) using 

predefined or otherwise convenient geographical boundaries to delineate the housing 

submarket. For example, Straszheim (1975) and Gabriel and Wolch (1984) use the 

racial composition of districts to delineate sub-markets; Sonsteilie and Portney (1980) 

use political districts; and Hancock (1991) uses postcode districts. Munro (1986) 

specified the Glasgow market using a pre-defined geographical boundary system: north 

and south of the river and inner and outer suburban areas. Additionally, researchers have 

emphasized that buildings’ structural characteristics determine and reflect peoples’ 

preferences on the supply-side, with willingness to pay for individual housing 

characteristics showing a consistency within particular building categories. For 

example, Dale-Johnson (1982) used a factor analysis to group dwellings with similar 

characteristics in order to define housing submarkets. Allen et al. (1995) specified 

housing submarkets on the basis of dwelling types (e.g., condominiums, single-family 

homes, and apartments).  



 

Adair et al. (1996) attempted to subdivide the city into inner city, middle city and outer 

city and identified nine submarkets in the Belfast housing market, based on terraced, 

semidetached and detached dwellings within each area. Watkins (2001) used a hybrid 

definition that nests dwelling characteristic-based submarkets within a spatially defined 

market sub-structure. Goodman and Thibodeau (1998) defined a housing market as a 

geographic area, utilizing the hierarchical model to show how a metropolitan area can 

be segmented by school zone, as the premise of their assertions is that all homes within 

a spatially concentrated area share amenities directly associated with the property’s 

location. 

 

The second main approach to specify housing submarkets relies on data as a driver and 

emphasizes accuracy of estimation, allowing for systematic statistical methods (for 

example, principal component analysis and clustering) to delineate sub-markets. The 

regularities in consumer perceptions of individual characteristics of housing can be 

captured through multivariate statistical techniques in the same way as in the 

segmentation of any other consumer market. Bourassa et al. (1999), for example, 

segmented the Sydney and Melbourne housing markets by applying principal 

components and cluster analysis to a variety of neighborhood attributes, spatial and 

structure characteristics and lettings data in order to determine specific submarkets. 

Further, Day et al. (2003) used hierarchical clustering techniques to identify housing 

sub-markets defined by a combination of property types, locations and socioeconomic 



characteristics of residents. Tu et al (2007) investigated housing market segmentation 

through housing price spatial autocorrelation, seeking to let the data define urban 

housing market segmentation, rather than use the traditional administrative or other pre-

defined boundaries to limit sub-market structure. Statistical delineation methods can, 

in principle, be used to cluster either individual housing units or to cluster individual 

areas.  

 

A third approach to submarket definition emphasizes the self-reported specification on 

spatial boundary of housing submarket by expert, the sales agent an etc. This is 

exemplified by Palm (1978), who argued that existing methods that use fixed 

geographies are flawed, as she demonstrated that specifications based on brokers’ 

evaluations are better than those based on economic and racial-ethnic characteristics of 

householders.  Also re-examining the role of the supply-side broker, Bourassa et al. 

(2003) compared two submarket constructions: (1) geographically concentrated “sale 

areas” used by local real estate appraisers in New Zealand and (2) a spatial submarket 

construction obtained by applying a cluster analysis to the most influential factors 

generated from property, neighborhood and locational attributes. They concluded that 

while a statistically generated submarket significantly increased hedonic house price 

prediction accuracy, it did not outperform the sales-area submarket model. 

 

Recent developments of statistical approaches to spatial sub-market identification 

include Chen et al. (2009), who conducted two clustering methods, namely the ‘K mean’ 



and ‘two-step’ methods, to compare housing market constructions in Knox County, 

Tennessee, USA. Their findings indicate that housing sub-market boundaries drawn 

from local government jurisdictions, school districts and expert opinions are closely 

aligned with the boundaries drawn by statistical clustering methods in a mature housing 

market.  

 

However, Goodman and Thibodeau (2003, 2007) insist that researchers should impose 

submarket geographic boundaries rather than deriving them through statistical 

modeling, as practitioners and policy makers require a clear grasp of the housing 

submarket structure system across space. Furthermore, Jones et al. (2003) also point 

out that specifying housing submarkets by social neighborhood characteristics is 

unstable over time because the market is constantly changing. Such an approach 

requires constant monitoring of the spatial dynamics of am urban housing system since 

the sub-market boundaries are likely to change over time Leishman (2009). This makes 

emergent specifications of submarkets based on data difficult for policy purposes. 

Household self-selection as a process in sub-market formation is likely to be important 

in mature cities with well-defined social-spatial geographies and less so where the 

housing markets are immature. 

 

2.2 An alternative submarket specification using street geometry and topology 

It has long been accepted that accessibility is a major influence on residential location, 

with formal models going back to Von Thunen. Beckmann (1973) and Michelson (1977) 



noted that accessibility is jointly purchased with a residential plot of land. Theoretically 

accessibility can be viewed as an attribute of land. There are many studies that show 

accessibility to be empirically associated with property value. For example, Handy and 

Niemeir (1997) show that different segments of the population care about different sets 

of opportunities and evaluate the impedance to and the attractiveness of opportunities 

in distinct ways. Further, Niemeier (1997) showed that accessibility preference is 

connected with social neighborhood characteristics, finding that different social groups 

can be shown to value accessibility in disparate ways. 

 

Kauko (2009) noted that the physical environment is always an important factor in 

house price differentials, while Jones et al. (2009) argued that street layout creates 

distinct urban structure determing how areas, space, place, and development sites are 

organized and therefore valued. Batty (2009) introduces the idea of ‘centrality’ as a type 

of accessibility that can be measured in a street network. Webster (2010) argues that 

network centrality in an urban configuration can be considered a city’s preeminent 

public good and that although there are sub-markets for it, there are strong and abiding 

patterns of demand for ‘raw’ geometric ‘general accessibility’.  Empirical studies have 

confirmed statistically that street layout is associated with property value. For example, 

elements of the road network connectivity index such as intersection density and 

network “integration”, have been shown to positively impact housing prices (Xiao et 

al., 2014, Matthews and Turnbull, 2007). Furthermore, street layout network metrics 

have been found to capture the special accessibility demands of sub-groups as well as 



the general accessibility of a location’s connectivity to all other locations. Vaughan et 

al. (2005) and Vaughan and Penn (2006), for example, show that poorer immigrants 

tend to congregate in poverty areas with lower road network connectivity.  

 

The specific trigger of our study is to extend Goodman and Thibodeaus’ (1998, 2003, 

2007) and Bau and Thibodeaus’ (1998) study of the spatial division of submarkets, but 

doing so using street segments as an alternative to geographic boundaries and 

aggregation units. The logic of our hypothesis is that the street segment (part of a street 

between two consecutive junctions) is a natural geographic boundary and unit in a city’s 

subdivided housing market.  It can be taken as a unit within which there is a high 

probability of homogenous households with respect to locational preferences for 

services, amenities, destination opportunities and the characteristics of neighbours. A 

sub-market segmentation scheme based on street segments has the advantages of  

retaining a consistent physical boundary (important for policy makers and market actors) 

while allowing  greater precision of aggregation by virtue of the finer spatial scale and 

the greater behavioural importance of street segments compared to more arbitrary fixed 

data-collection boundaries. 

 

3.0 Methodology 

The study follows Schnare and Struyk’s (1976) general framework for testing for sub-

market existence at a given time, a framework widely employed in other studies such 

as  Watkins (2001) and Bourassa et al. (1999). Generally, the procedure involves four 



stages. First, a hedonic price function is estimated for the entire market. Secondly, sub-

markets are defined on two different dimensions: (i) building type; (ii) urban 

configurational features. Then, following Bourassa et al. (1999) and Chen et al (2009), 

we utilize a simple, two-step cluster analysis (Bacher et al. 2004) to identify the optimal 

number of groups of street segment features with similar accessibility values measured 

by the  ‘Space Syntax’ method in Confeego 1.0. Thirdly, a Chow test is computed to 

establish whether statistically significant differences exist between the spatial sub-

markets derived by the cluster analysis. Finally, a weighted standard error (WSE) is 

applied for the evaluation of sub-market sub-division. Normally, WSE represents the 

weighted average of the mean square error (MSE) of each submarket hedonic equations, 

and if the reduction of the weighted standard error is lower than the criteria value , then 

the postulated market subdivision is accepted (Goodman and Thibodeau, 2003, Park 

2013). 

 

3.1 Measuring accessibility in street layout. 

Space Syntax, is a street network analysis method developed by UCL academics, 

(Hillier and Hanson, 1984). Space Syntax was designed principally to parameterize 

urban design and architectural schemes and borrows from more general network 

analysis. Contrasting with traditional geographic network analysis, space syntax 

models street segments as ‘node’ and intersections as ‘link’ (Batty and Rana, 2004).  

 

In our study, we have used two space syntax metrics of network centrality: Integration 



and Route Choice. Behaviorally, these are based on two trip-choice criteria that an 

individual has to make while negotiating a road network (while using a home as a basis 

for making economic and social transactions in the city); namely, selecting a destination 

and selecting a route to get to the destination. The former variable is premised on how 

easy is it to get to a particular destination, and is termed the to-movement component. 

Destinations that are more accessible are more likely to be selected as locations by 

higher activity uses, such as shops. The latter variable determines the places that an 

individual has to pass through the get to a destination, this is termed the through-

movement component. 

 

In graph-theoretic terminology, the to-movement potential is termed 'closeness' 

(integration in space syntax) and measures the ease with which a destination may be 

accessed within a network. Space syntax closeness analysis models the mean distance 

between the origin and all possible destinations within network radius R. It measures 

the extent to which a road segment is close to all other road segments along the shortest 

distance of the street network and is formalised by equation (1): 

 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑖 =
𝑁−1

∑ 𝑑𝑖𝑗
𝑁
𝑗=1;𝑗≠𝑖

                              (Equation 1) 

 

Where N is the total number of segments in the network, and   is the shortest 

topological depth between segment i and j.  

 

The through-movement potential is captured by the graph-theoretic measure of 



betweenness (Freeman, 1977). This is commonly referred to as ‘Route Choice’ (or 

Choice) in the space syntax literature and measures the degree of potential for 

movement through a particular segment of the road network. In contrast to ‘Closeness,’ 

which measures the relative ease of reaching potential destinations, the betweenness 

index indicates how often people are likely to pass through a particular route and 

therefore which parts of the road network will be the busiest. Space syntax betweenness 

analysis assumes that people will travel from two points on the network along the 

shortest path based on physical distance. As we are interested in road segments, a 

calculation of betweenness at radius R measures the number of shortest paths by 

distance connecting all pairs of road segments in the network with the maximum length 

of the path being R. A road segment is more central, and has more potential for through 

traffic the larger the number of shortest paths within the surrounding network that pass 

through it. Betweenness for road segment  is defined as: 

                                            

𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑛𝑒𝑠𝑠𝑖 =
1

(𝑁−1)(𝑁−2)
∑

𝑛𝑗𝑘(𝑖)

𝑛𝑗𝑘

𝑁
𝑗=1;𝑘=1;𝑗≠𝑘≠𝑖              (Equation 2) 

 

Where  is the number of shortest paths between segment j and k, and 𝑛𝑗𝑘(𝑖) is the 

number of these shortest paths that contain segment .  

 

We measure closeness and betweenness at different radii: 400m 800m, 1200m, 1600m, 

2000m, 2500m, 3000m, 4000m, 5000m, 6000m, 7000m, 8000m, 10000m and global 

Nm (the entire network) to capture various kinds of location advantages. We utilize 

these measurements as it is assumed that different householders assess a location for 



different kinds of centrality – access to city-wide destinations, local destinations, 

through traffic from the entire city, from the local area and so on. Each can be 

considered a potentially independent influence on location choice and therefore on price 

and market characteristic.  

 

We implement these measurements using the Integrated Transport Network Layer (ITN) 

street network from the UK Ordnance Survey Mastermap, and the radii setting is 

determined by findings in the literature and bounded by size of the study area.  

 

3.2 Hedonic model specification  

The hedonic price model employed in this study is specified in the following general 

form: 

Pi= αi + β1Si + β2Ci + β3Ti + β4Di + β5Xi + εi                      (Equation 3) 

Where,  

Pi= Transaction price of residential property; 

Si= Vector of property structural attributes; 

Ci= Classification of OA; 

Ti= Year of transacted property price; 

Di= Vector of conventional accessibility variables; 

Xi= Vector of space syntax spatial network accessibility metrics at different radii; 

εi = Random error term 

 

As is common in hedonic property price research a log-linear (semi-log) specification 

is used (Malpezzi, 2003, Orford, 2000, Orford, 2002), as this can deal with dummy 

variables for characteristics that are either present or absent (0 or 1). It also reduces 



heteroscedasticity in the error terms (Diewert, 2003).  

 

4.0 Data source and study area 

In order to undertake the tests described above, Cardiff, the capital city of Wales, was 

chosen as a study area, due to the availability of hedonic data from Orford’s (2000, 

2010) previous studies. The study focuses on an area of 6x4 km stretching from the 

north of Cardiff city centre to the edge of the suburbs (Figure 1) containing a 

representative housing stock for the city, these include Victorian and Edwardian inner-

city terraces, inter-war, post-war semi-detached and detached suburban homes; recent 

infill development of flats in the inner-city, and new builds on the urban edge. There 

also exists a dual carriage way (the A48M) dividing the study area into the inner-city 

and suburbs, with each displaying different social and built-form characteristics. This 

morphology is typical of many British cities. 

[Insert Figure 1 Here] 

The data sets are collected from several sources. Firstly, property prices come from the 

England and Wales Land Registry and a service license was acquired to use the 

following data: full address of property, price paid, sale date, property type (detached, 

semi-detached, terraced, Flat/Maisonette), new-build or not, and tenure (freehold or 

leasehold). Data for 16,297 properties sold in the study area during the period 2001 to 

2007 (an average of 2000 transactions per year) were acquired and linked to Ordnance 

Survey Master map Address Layer that provided the grid co-ordinates for each property 

to a resolution of less than 1 meter. Since the Land Registry does not supply information 

on the size of property, floor area was estimated for each property in the property price 



database using a methodology described by Orford (2010) and the natural log of these 

measures was used in our hedonic models to standardize by size. Secondly, Office of 

National Statistics (ONS) Output Area Classification (OAC) data were used to capture 

area demographic and socio-economic characteristics (Vickers and Rees, 2006). We 

used seven OAC classes: blue collar communities, city living, countryside, prosperous 

suburbs, constrained by circumstances, typical traits and multicultural. Thirdly, land 

use information is from Ordnance Survey Master map. This data set includes location 

information of green spaces and hospitals and the ITN street network.  

[Insert Table 1 Here] 

Finally, 25 variables were prepared for the hedonic models: 21 dummy variables and 

four continuous variables, with an additional 28 continuous variables representing 

street layout features. Following housing price studies of Cardiff by Orford (2002, 

2000), the natural log of distance from each property to the city centre is used in our 

study as a traditional central-accessibility attribute. Regarding structural characteristics, 

very few properties were new build and four-fifths were freehold tenure. Terraced 

houses made up the largest portion in the sample (53%), with semi-detached houses the 

second largest (21%), followed by flats (17%). Only 5% of the OAs in the study area 

were classified as ‘constrained by circumstances’ in contrast to 28% classified ‘typical 

traits’ and ‘living in the city’. The percentage of total housing stock sold each year in 

the sample ranged from 11 to 15%, with the exception of 2008, when only 1% changed 

hands due to the large downturn in the housing market that occurred in that year. For 

dummy variables, we followed the rule of thumb, dropping the category of the lower 



marginal group (earliest year, cheapest housing class etc) as the reference variable to 

achieve intuitive expectations of the likely signs.   

 

5.0 Empirical Results  

5.1 Hedonic Results for the Complete Market 

The initial step in the test procedure outlined above is to estimate a hedonic model for 

the city-wide market. This provides a reference estimation for comparing the efficiency 

of sub-market specifications. We employed robust regression estimation for all models 

in order to control the heteroscedasticity in residuals. Results of combined  model are 

presented in Table 2, and they are broadly similar in performance to those reported 

elsewhere in the hedonic house price literature (Orford 1999, 2000, 2002). House price 

variance is explained by a range of structural, neighborhood, and locational 

characteristics. For example, building structure characteristics have a positive impact, 

whereas, locational attributes, such as the distance to CBD and distance to park show a 

‘trade-off’ effect on property value. Generally, the results (Table 2) show that the 

models are statistically significant; the adjusted R–square of all models is 63.3%; and 

multicollinearity is not a problem with all VIF values under 10 for each variable.  

[Insert Table 2 Here] 

 

5.2 Aggregating street segment features   

The second stage of our method identifies a potential housing submarket geography 

based on street segments, using the two-step cluster method of Bacher et al. (2004) to 



acquire an optimal numbers of clusters.  It is noted that we clustered 28 attributes of 

street layout features measured at different radii around the homes for which we have 

price information, since, it represents the locational specific characteristics of all 

manner of urban agglomeration benefits and disbenefits. Table 3 displays the results 

showing that the optimal number of submarkets based on all street features is three, 

(since the critical ratio is above the critical value at 2.448). The total sample of 16297 

is therefore divided into three subgroups, with subgroups respectively containing 

sample sizes of 8615, 4002 and 3680. 

[Insert Table 3 Here] 

[Insert Figure 2 Here] 

 

With regards to the aggregation results, Table 4 and Figure 2 show that street layout 

features are segregated at different levels. This is reported as sub-group “1” which is 

associated with the areas near the central city, which has the greatest ease of access for 

pedestrian and automobile usage, and consequentially having the highest values of both 

closeness and betweenness at all radii level. Sub-group “3” captures the areas along 

secondary streets that are served by dead-end roads, and these are the areas with the 

second highest betweenness value and second lowest closeness value. In contrast, sub-

group “2” has the lowest values of both closeness and betweenness, indicating that they 

are the most isolated area at both pedestrian and automobile level, where connectivity 

and potential traffic flows are both low.   

[Insert Table 4 Here] 



 

It is also apparent from Table 5 that street layout features can spatially discrimitate 

building structure and social characteristics of properties. For example, sub-group “1” 

comprises 52.9% of all houses in the study area and contains over 50% terraced houses, 

which also have the highest average housing price and floor area. More than 70% of 

residents are classified as ‘living in the city’ and share ‘typical traits’ characteristics. In 

contrast, just 24.6% of total observations are in sub-group “2”, which has the cheapest 

average housing price and smallest average floor area. 30% of residents are classified 

as coming from social economic groups drawn from the group of ‘typical traits’, and 

another third of the observations are from ‘blue collar’ and ‘multicultural’ groups. 

Subgroup “3” covers a sample size of 3680, mostly capturing Semi-detached houses 

with larger floor area. Two thirds here are from ‘blue collar’, ‘prosperous suburbs’ and 

‘typical traits’ social classes. The univariate classification of street segments into 

distinct classes of accessibility is of interest in it own right. It shows that the city of 

Cardiff has three distinct classes of road links in terms of centrality. Further, we have 

shown that these classes are highly correlated with important attributes of housing 

markets.  

[Insert Table 5 Here] 

 

 

5.3 Hedonic estimations for alternative aggregations 

In order to test submarket existence of our demarcation, we estimate for each submarket 



using the same attributes as in the city-wide model. It is important to note that the 

coefficients are relatively unimportant when testing for submarket existence (Dale-

Johnson, 1982). However, the results shown in Table 5, indicate that it is indeed possible 

and useful to identify geographical areas that are statistically distinct in terms of price, 

network morphology and social morphology. Since, different socio-economic groups 

seem to be associated with particular patterns of accessibility (Table 6). For example, 

‘Constrained by Circumstances’ group is insignificant in all subgroups, while the ‘blue 

collar’ group is only significant in sub-group ‘1.’ The ‘living in city’ was a dominant 

determinant of distinct network characteristics in the city-wide model, but becomes less 

dominant or unimportant in submarket models, for example it appears along with 

‘typical traits’ as explanatory of distinct accessibility in sub-group “3”. Finally, The 

Chow test used to examine whether each subgroup differed, suggests there is no 

evidence of parameter equality between any submarkets (Table 7), thereby confirming 

that submarkets exit. 

[Insert Table 6 Here] 

[Insert Table 7 Here] 

 

5.3. Comparison of Submarket Classifications 

In order to understand  the effectiveness of our submarket specification, we compare 

the results with existing traditional identifications (Watkins 2001, Bourassa et al , 1999, 

Chen et al 2009).  In the local context of the study area and the UK more generally, 

there is a strong general cultural preference for detached over semi-detached, semi- 



over terraced and terraced over apartments. Orford (2000) confirms that these building 

structure features are important for housing submarkets in the Cardiff housing market. 

As the dataset in our study area has four types (detached house, semidetached house, 

flat and terrace house), the whole market is easily classified into four building-type 

submarkets, which we use to compare with our street segment-based approach 

 

[Insert Table 8 Here] 

Table 8 shows the estimation results for each submarket, revealing that the adjusted R 

square value varies from 58.4% to 65.7%. Only the estimation of the semidetached 

group is higher than the city–wide model (3% more). The general results are similar to 

our submarket specification using street segments, showing that building types clearly 

also reflect people’s preferences, in particular for the two groups: ‘blue collar’ and 

‘Constrained by Circumstances’. 

 

The Chow test similarly confirms that the four groups based on building typology are 

statistically not equal at a 1% confidence level (table 9). Thus, the results show that the 

delineation of housing submarkets can also (and more traditionally) be safely based 

upon building types. 

[Insert Table 9 Here] 

 

 

To compare the performance of these two submarket delineations, we take Schnare and 



Struyk's (1976) `common-sense' test, comparing the reduction in the standard error 

(weighted) of the segmented model with the standard error of the market-wide hedonic 

model. Schnare and Struyk accepted a threshold of 10 percent reduction in their 

modelling, whereas Dale and Johnson (1982) suggested five percent. From Table 10, 

we can see that our street segment and building type submarkets both pass the weighted 

10% standard error test, at 5.41% and 9.09% respectively. The building type sub-market, 

based on it local knowledge of cultural values has only 3.7% difference in performance 

compared to our alternative specification. This finding is supportive of Watkins (2001) 

and Orford’s (2000) own systematic confirmations that in the UK context, dwelling 

type variables provide essential information for identifying housing submarkets.  

 

Given the dominance of these cultural values, we expected this result. Although our 

scheme did not produce a superior sub-market estimation in comparison, it is important 

for a number of reasons as discussed in the next section. The results confirm that a 

submarket demarcation scheme based on street segments connectivity is valid one. We 

have identified three types of street segments which are able to discriminate housing 

price in a typical British Victorian city. We suggest that with further investigation in 

other contexts and refinement based on comparative findings, this scheme could  

comprise a more generic and adaptive methodology for spatial division of submarket 

in cities where there is a less well-established social valuation of housing typologies. It 

stands to reason that this is likely to be the case in the less mature housing markets of 

rapidly developing cities. 



 [Insert Table 10 Here] 

 

6.0 Conclusions 

It has long been established that urban housing markets are too complex and subdivided 

to be described adequately by a simple, unitary, competitive equilibrium model 

(Whitehead, 1999). Neither can they unambiguously be divided into submarkets on the 

basis of regularities in their heterogeneity. There are regularities but submarket patterns 

will depend on variables chosen and spatial and temporal scales used to measure them. 

This paper extends the search for alternative generic and specific schemes of 

subdivision. It does what has not been done before: to experiment with a subdivision 

based on street network accessibility (also referred to as connectivity or centrality). It 

hypothesizes that since accessibility is the key locational attribute of a residential home, 

then it should be possible to delineate housing submarkets on this basis. This requires 

both finely grained spatial units of analysis (street segments) and a reliable and accurate 

measure of accessibility (closeness and betweenness measures of network centrality). 

In this way, we have extended the analytical frameworks of Goodman and Thibodeau 

(1998, 2003, 2007), Sonsteilie and Portney (1980), Hancock (1991), and  Watkins 

(2001), which emphasize that geographic areas should be the basis for delineating 

housing submarkets. By using a fine-grained spatial unit we were able to take a 

statistical approach to identify submarkets as emergent phenomenon and to do this in a 

way that is easily interpretable as spatial phenomenon. From this insight, we propose a 

novel idea: the street segments, as a type of natural geographic unit and boundary, is 



likely to be highly associated with people’s preferences for locational attributes. Our 

results show that this is indeed the case and that the locational preferences of different 

groups are strongly correlated with the three classes of centrality identified in Cardiff’s 

street pattern. The finding that the performance of our submarket segmentation model 

was only marginally lower than that using a priori knowledge about housing typology 

preferences confirms the worth of this line of enquiry.  

 

There are three main contribution of this research. First, we have established that the 

street segment is a good surrogate of many kinds of spatially clustering housing 

attributes, and is a good spatial unit to capture centrality - something quite axiomatic 

and central to locational choice. The approach has potential for understanding the 

spatial structure of both polycentric and moncentric cities and cities with different 

housing typologies and with different social values attached to those typologies. As 

such, our approach less reliant on the data, prior knowledge and the existence of highly 

visible and culturally specific discriminating features of housing markets. It is a more 

generic approach that subdivides markets on a dimension that, from the historical 

literature as well as from intuition, is possibly of more abiding and a more generic 

importance than housing typology: centrality. Furthermore, such  an approach combines 

the advantages of both having a geographically specific definition of submarkets and 

being subject to statistical verification in estimation (Goodman and Thibodeau, (2003, 

2007).    

 



Secondly, the results provide empirical evidence to support Jones and McDonald’s 

(2004) assertion that urban form should be important in understanding housing market 

segregation. We have shown that optimal housing sub-markets based on street layout, 

are close to the specification based on a priori knowledge of building type (a priori 

information may be presumed to always improve submarket classification). Compared 

with previous studies using predefined geographic area, our method improves the 

resolution at street level, while it also has the potential to increase the accuracy of 

estimation ( Bourassa et al. 1999).  

 

Thirdly, we utilized spatial network metrics to measure the accessibility features of a 

street network (using Space Syntax software). The two accessibility indices: closeness 

and betweenness were effective in helping to delineate a spatially discrete pattern of 

street segment, which reinforces the findings reported by Maclennan and Tu (1996). 

Our findings also confirm that street layout is linked to spatial segregation (Jones et al. 

2009, Vaughan 2007), since a street layout always spatially distributes access to 

services unequally. It is a novel idea that we can use this inequality to a priori identify 

social spatial regions within a city (and as we have done, use these to inform the 

identification of housing submarket). 

 

Finally, to summarise, there are several features of our approach to submarket 

segmentation that suggests areas of further research that would be rewarding. First, the 

approach increases the resolution of the segmentation. The idea of micro-housing 



markets, or multi-scale submarkets is an intriguing one. Submarkets can be delineated 

at different scales of analysis to show the impact of different locational externalities. 

Second, our approach should be more useful for policy interventions than approaches 

using arbitrary territorial boundaries; all the more so if spatial submarkets can be 

identified at different nested spatial scales. Third, the approach can identify submarket 

boundaries in a way that approaches the accuracy of traditional models that require 

more specific and subjective knowledge requirements. Fourth, there is good deductive 

reason to suppose, and some evidence to confirm, that the approach may be suitable for 

delineating submarkets in cities with high building structure homogeneity (ie few visual 

cues from buildings themselves). Fifth, the analysis offers the possibility of assessing 

at the urban design and planning stage, the likely impact of urban grid configuration on 

housing submarket formation.  
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Appendix  

1. The Chow test has the null hypothesis that 𝛽01 = 𝛽02, 𝛽11 = 𝛽12, 𝛽𝑘1 = 𝛽𝑘2, and is 

formulated as follows: 

𝐹 = [(𝑅𝑆𝑆𝑐 − 𝑅𝑆𝑆𝑖 − 𝑅𝑆𝑆𝑗)/k)]/[(𝑅𝑆𝑆𝑖 + 𝑅𝑆𝑆𝑗)/(𝑛 + 𝑚 − 2𝑘)]

=
[𝑅𝑆𝑆𝑐 − (𝑅𝑆𝑆𝑖 + 𝑅𝑆𝑆𝑗)](𝑛 + 𝑚 − 2𝑘)

(𝑅𝑆𝑆𝑖 + 𝑅𝑆𝑆𝑗)𝑘
 

Where, 𝑛 and 𝑚 are the number of observations in the two sub-samples 𝑖 and 𝑗; and 

𝑅𝑆𝑆𝑐  is the residual sum of squares of the combined model. k is the number of 

exploratory parameters, including the intercept. The 𝑅𝑆𝑆𝑠 is found by estimating the 

equation three times, once for each of the sub-samples and once for the pooled sample. 

The 𝐹  statistic which is calculated is compared with the critical value 𝐹𝑐𝑣  which is 

distributed as 𝐹𝑐𝑣~𝐹(𝑅 + 1, 𝑛 + 𝑚 − 2(𝑘 + 1)).  

 

2. The formula for calculating the geometric mean of the standard error (SE) test of 

the j segmented models can be written as follow:  

𝑆𝐸𝑐 =
𝑁1 − 𝑘1 − 1

∑(𝑁𝑗 − 𝑘𝑗 − 1)
𝑆𝐸1 +

𝑁2 − 𝑘2 − 1

∑(𝑁𝑗 − 𝑘𝑗 − 1)
𝑆𝐸2 +⋯+

𝑁𝑗 − 𝑘𝑗 − 1

∑(𝑁𝑗 − 𝑘𝑗 − 1)
𝑆𝐸𝑗 

Where, 𝑁𝑗  is the number of transactions in the 𝑗 th sub-market, 𝑘𝑗  is the number of 

explanatory variables in the 𝑗th sub-market equation; and there are 𝑗 sub-markets. 
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Figures: 

 

Figure 1 Study area in Cardiff, Wales, UK. 

Source: Orford (2010) 

 



 

Figure 2  The pattern of street segments clustered by network centrality measures 

Source: Authors 
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Tables: 

Table 1 Description of variables  

Variables Description  Min Max Mean SDev 

LN_FL Natural log of floor area 1.793 9.595 4.903 1.071 

LN_CBD Natural log of distance to City Centre -0.66 1.79 0.76 0.62 

LN_BAY Natural log of distance to Cardiff bay 0.93 2.18 1.6 0.29 

LN_ROATH Natural log of distance to Roath Park -3.19 1.52 0.72 0.52 

LN_HOSP Natural log of distance to Heath hospital -0.42 1.82 0.99 0.48 

LN_BUTE Natural log of distance to Bute Park -1.03 1.64 0.95 0.39 

BE_R400M Betweeness value at radius 400m 0 3.183 1.483 0.923 

BE_R800M Betweeness value at radius 800m 0 3.879 2.152 1.277 

BE_R1200M Betweeness value at radius 1200m 0 4.464 2.51 1.485 

BE_R1600M Betweeness value at radius 1600m 0 4.961 2.745 1.626 

BE_R2000M Betweeness value at radius 2000m 0 5.287 2.912 1.721 

BE_R2500M Betweeness value at radius 2500m 0 5.57 3.069 1.817 

BE_R3000M Betweeness value at radius 3000m 0 5.789 3.195 1.891 

BE_R4000M Betweeness value at radius 4000m 0 6.155 3.389 2.004 

BE_R5000M Betweeness value at radius 5000m 0 6.43 3.529 2.091 

BE_R6000M Betweeness value at radius 6000m 0 6.655 3.634 2.161 

BE_R7000M Betweeness value at radius 7000m 0 6.887 3.719 2.209 

BE_R8000M Betweeness value at radius 8000m 0 7.058 3.778 2.249 

BE_R10000M Betweeness value at radius 10000m 0 7.273 3.834 2.295 

BE_N Betweeness value for whole city 0 7.567 3.834 2.337 

CL_R400M Closeness value at radius 400m  0 95.898 29.479 16.135 

CL_R800M Closeness value at radius 800m 0 194.551 68.402 40.154 

CL_R1200M Closeness value at radius 1200m 11.928 350.988 120.269 67.933 

CL_R1600M Closeness value at radius 1600m 16.489 482.002 181.727 97.358 

CL_R2000M Closeness value at radius 2000m 26.903 576.524 246.244 125.338 

CL_R2500M Closeness value at radius 2500m 30.971 719.865 327.692 155.646 

CL_R3000M Closeness value at radius 3000m 44.303 825.042 411.021 181.137 

CL_R4000M Closeness value at radius 4000m 77.035 1044.48 584.539 219.047 

CL_R5000M Closeness value at radius 5000m 141.572 1317.72 763.448 254.955 

CL_R6000M Closeness value at radius 6000m 251.813 1604.22 944.528 281.435 

CL_R7000M Closeness value at radius 7000m 359.996 1793.71 1114.311 298.407 

CL_R8000M Closeness value at radius 8000m 441.707 1939.79 1248.791 308.14 

CL_R10000M Closeness value at radius 10000m 616.409 2107.21 1412.711 292.122 

CL_N Closeness value for whole city 858.122 2150.76 1521.65 245.688 

 

Variables Description  Type Code 0 (%) Code 1 (%) Mean SDev 

DU_NEW New Build Dummy 92.9 7.1 0.08 0.268 

DU_DET Detached House  Dummy 91.2 8.8 0.1 0.3 

DU_SEMI Semidetached House  Dummy 79.2 20.8 0.21 0.407 

DU_TER Terrace house  Dummy 46.6 53.4 0.52 0.5 

DU_FLAT Flat  Dummy 83 17 0.17 0.375 

DU_TEN 
Tenure ( Freehold=1 Leasehold 

=0) 
Dummy 21.7 78.3 0.79 0.411 

DU_BC OAC Blue collar communities  Dummy 89.1 10.9 0.11 0.31 



DU_CL OAC Living in the city  Dummy 72 28 0.27 0.446 

DU_PS OAC Prosperous suburbs  Dummy 87 13 0.15 0.354 

DU_CC 
OAC Constrained by 

Circumstances  
Dummy 95.5 4.5 0.05 0.208 

DU_TT OAC Typical traits  Dummy 71.7 28.3 0.28 0.449 

DU_MU OAC Multicultural  Dummy 84.7 15.3 0.15 0.353 

Y2000 Transactions in 2000 Dummy 89.3 10.7 0.11 0.309 

Y2001 Transactions in 2001 Dummy 86.6 13.4 0.13 0.34 

Y2002 Transactions in 2002 Dummy 85 15 0.15 0.359 

Y2003 Transactions in 2003 Dummy 86.7 13.3 0.13 0.339 

Y2004 Transactions in 2004 Dummy 87.5 12.5 0.13 0.332 

Y2005 Transactions in 2005 Dummy 90.2 9.8 0.1 0.301 

Y2006 Transactions in 2006 Dummy 87.6 12.4 0.12 0.328 

Y2007 Transactions in 2007 Dummy 88.2 11.8 0.12 0.321 

Y2008 Transactions in 2008 Dummy 98.9 1.1 0.01 0.099 

 

Table 2 Hedonic estimation results 

  Coef.  
Robust 

Std. Err. 
t Sig. VIF 

LN_FLOOR 0.13  0.00  33.70  0.00**  2.37  

DU_NEW 0.20  0.01  16.20  0.00**  1.29  

DU_DET 0.70  0.02  40.83  0.00**  3.19  

DU_SEMI 0.43  0.02  28.65  0.00**  5.13  

DU_TER 0.25  0.01  17.44  0.00**  7.19  

DU_TEN 0.26  0.01  21.19  0.00**  3.45  

DU_BC -0.10  0.01  -7.97  0.00**  2.02  

DU_CL 0.13  0.01  13.38  0.00**  2.47  

DU_PS 0.38  0.01  29.04  0.00**  2.67  

DU_CC -0.05  0.02  -2.86  0.00**  1.48  

DU_TT 0.13  0.01  14.13  0.00**  2.38  

Y2001 0.12  0.01  10.36  0.00**  1.95  

Y2002 0.30  0.01  27.20  0.00**  2.03  

Y2003 0.51  0.01  45.72  0.00**  1.95  

Y2004 0.68  0.01  59.79  0.00**  1.91  

Y2005 0.78  0.01  64.83  0.00**  1.76  

Y2006 0.81  0.01  71.31  0.00**  1.90  

Y2007 0.85  0.01  74.94  0.00**  1.93  

Y2008 0.84  0.03  30.28  0.00**  1.09  

LN_DCBD -0.10  0.01  -13.51  0.00**  2.70  

LN_DRoath -0.18  0.01  -14.67  0.00**  5.44  

LN_DHeath -0.07  0.02  -4.26  0.00**  6.07  

_cons 10.19  0.03  352.76  0.00**   

Adj. R 
Square 

0.633 

F-test 1209.32 

P-value 0．00 

RSS 1943.44  

Stand Error 0.119419 

Significance:*<0.05 **<0.01 



 

Table 3 Cluster results on street segments 

Number of Clusters 

Schwarz's 

Bayesian 

Criterion 
(BIC) 

BIC 

Changea 

Ratio of BIC 

Changesb 

Ratio of 
Distance 

Measuresc 

1 316823.28     

2 172256.88  -144566.40  1.00  2.49  

3 114410.82  -57846.06  0.40  2.45  

4 91102.34  -23308.48  0.16  1.48  

5 75539.26  -15563.08  0.11  1.72  

6 66699.48  -8839.78  0.06  1.48  

7 60902.69  -5796.79  0.04  1.07  

8 55544.04  -5358.66  0.04  1.68  

 

Table 4  Description of street features in each subgroup  

  Subgroup 1 Subgroup 2 Subgroup 3 

 Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

BE_R400M 0.07  0.27  1.75  0.51  2.15  0.42  

CL_R400M 15.91  8.95  24.54  10.50  45.55  13.10  

BE_R800M 0.05  0.24  2.53  0.50  3.17  0.37  

CL_R800M 39.38  27.38  52.60  24.95  109.84  29.29  

BE_R1200M 0.06  0.27  2.94  0.54  3.71  0.42  

CL_R1200M 74.54  50.95  91.46  42.31  192.16  42.98  

BE_R1600M 0.07  0.29  3.21  0.59  4.06  0.47  

CL_R1600M 117.21  75.27  140.48  64.71  285.01  53.16  

BE_R2000M 0.08  0.33  3.41  0.62  4.30  0.52  

CL_R2000M 165.02  99.71  193.07  85.77  378.65  62.45  

BE_R2500M 0.08  0.34  3.60  0.65  4.53  0.57  

CL_R2500M 228.68  128.45  261.59  107.46  491.71  68.71  

BE_R3000M 0.09  0.35  3.76  0.67  4.70  0.62  

CL_R3000M 296.79  153.24  336.86  128.37  599.33  73.96  

BE_R4000M 0.10  0.40  4.01  0.72  4.95  0.70  

CL_R4000M 445.68  197.09  506.70  166.60  799.50  79.73  

BE_R5000M 0.10  0.39  4.18  0.76  5.15  0.73  

CL_R5000M 600.94  239.34  678.58  196.28  1007.08  88.01  

BE_R6000M 0.09  0.40  4.32  0.79  5.29  0.77  

CL_R6000M 763.43  262.77  847.98  210.38  1216.85  97.80  

BE_R7000M 0.10  0.42  4.42  0.82  5.41  0.80  

CL_R7000M 918.37  273.59  1009.93  218.79  1408.54  104.06  

BE_R8000M 0.10  0.41  4.49  0.85  5.49  0.83  

CL_R8000M 1043.39  281.19  1143.76  230.91  1550.48  104.00  

BE_R10000M 0.10  0.40  4.56  0.91  5.56  0.88  

CL_R10000 1217.10  272.17  1321.03  222.69  1691.42  94.45  

BE_N 0.03  0.19  4.58  1.00  5.58  0.89  

CL_N 1341.88  223.71  1445.13  182.86  1757.27  92.78  



Number  3879 

 

Table 5 Description of each subgroup 

  Subgroup 1 Subgroup 2 Subgroup 3 

N 8615 4002 3680 

% of Total 52.9 24.6 22.6 

 N Percent Mean N Percent Mean N Percent Mean 

PRICE 8615 100.00% 148772.92  3720 100.00% 124949.99  3680 100.00% 127166.22  

FLOOR_AREA 8615 100.00% 895.93  3720 100.00% 128.26  3680 100.00% 193.24  

DU_NEW 573 6.70% 0.07  219 5.50% 0.05  240 6.50% 0.07  

DU_DE 545 6.30% 0.06  345 8.60% 0.09  538 14.60% 0.15  

DU_SEMI 1104 12.80% 0.13  1056 26.40% 0.26  1248 33.90% 0.34  

DU_TER 5160 59.90% 0.60  2155 53.80% 0.54  1379 37.50% 0.37  

DU_FLAT 1806 21.00% 0.21  446 11.10% 0.11  515 14.00% 0.14  

DU_TEN 6616 76.80% 0.77  3295 82.30% 0.82  2845 77.30% 0.77  

DU_BC 148 1.70% 0.02  760 19.00% 0.19  874 23.80% 0.24  

DU_CL 3715 43.10% 0.43  483 12.10% 0.12  369 10.00% 0.10  

DU_PS 743 8.60% 0.09  566 14.10% 0.14  804 21.80% 0.22  

DU_CC 84 1.00% 0.01  302 7.50% 0.08  349 9.50% 0.09  

DU_TT 2410 28.00% 0.28  1207 30.20% 0.30  999 27.10% 0.27  

DU_MU 1515 17.60% 0.18  684 17.10% 0.17  285 7.70% 0.08  

Y2000 887 10.30% 0.10  436 10.90% 0.11  421 11.40% 0.11  

Y2001 1197 13.90% 0.14  505 12.60% 0.13  479 13.00% 0.13  

Y2002 1299 15.10% 0.15  585 14.60% 0.15  501 13.60% 0.14  

Y2003 1081 12.50% 0.13  544 13.60% 0.14  511 13.90% 0.14  

Y2004 996 11.60% 0.12  527 13.20% 0.13  490 13.30% 0.13  

Y2005 838 9.70% 0.10  427 10.70% 0.11  356 9.70% 0.10  

Y2006 1111 12.90% 0.13  457 11.40% 0.11  452 12.30% 0.12  

Y2007 1114 12.90% 0.13  475 11.90% 0.12  438 11.90% 0.12  

Y2008 92 1.10% 0.01  46 1.10% 0.01  32 0.90% 0.01  

LN_DCBD 8615 100.00% 0.42  4002 100.00% 1.01  3680 100.00% 1.26  

LN_DROATH 8615 100.00% 0.66  4002 100.00% 0.75  3680 100.00% 0.83  

LN_DHEALTH 8615 100.00% 0.83  4002 100.00% 1.04  3680 100.00% 1.14  

 

Table 6 Estimations of each subgroup 

  subgroup 1 subgroup 2 subgroup 3 

 Coeff. t Coeff. t Coeff. t 

LN_FLOOR 0.18  30.75** 0.15  11.30** 0.02  2.59** 

DU_NEW 0.19  8.99** 0.14  5.84** 0.29  11.94** 

DU_DET 0.60  17.45** 0.68  19.00** 0.73  21.45** 

DU_SEMI 0.38  12.22** 0.44  13.53** 0.37  13.18** 

DU_TER 0.19  6.62** 0.27  8.3** 0.17  6.12** 

DU_TEN 0.41  15.33** 0.13  5.85** 0.14  5.95** 

DU_BC -0.07  -2.56* -0.03  -1.36 -0.01  -0.62 

DU_CL 0.14  11.29** 0.16  7.85** 0.09  2.94** 



DU_PS 0.25  11.61** 0.42  16.15** 0.46  17.76** 

DU_CC -0.06  
-1.18 

-0.01  -0.49 0.01  0.55 

DU_TT 0.08  6.77** 0.19  9.79** 0.17  8.29** 

Y2001 0.11  7.24** 0.09  4.33** 0.15  6.37** 

Y2002 0.31  18.98** 0.25  11.95** 0.30  12.55** 

Y2003 0.50  30.69** 0.51  25.55** 0.54  23.40** 

Y2004 0.69  42.49** 0.64  32.08** 0.70  29.89** 

Y2005 0.78  47.60** 0.76  39.73** 0.83  36.32** 

Y2006 0.80  53.87** 0.80  42.91** 0.85  39.92** 

Y2007 0.83  54.54** 0.85  45.32** 0.91  41.93** 

Y2008 0.82  27.03** 0.79  15.69** 0.97  28.12** 

LN_DCBD 0.03  2.12* -0.15  -9.78** -0.02  -1.15 

LN_DRoath -0.31  -10.82** -0.13  -6.94** 0.25  4.49** 

LN_DHeath 0.12  3.82** -0.13  -4.65** -0.64  -7.15** 

_cons 9.78  232.84** 10.25  131.76** 10.90  146.5** 

Adj. R Square 0.592 0.679 0.721 

F-test 566.71 401.21 356.82 

P-value 0.00 0.00 0.00 

RSS 1088.528  376.570  368.047  

Stand Error 0.126691  0.094639  0.100642  

Significance:*<0.05 **<0.01 

 

Table 7 Chow test for street features specification  

Segments Chow 

Subgroup 1 with Subgroup 2 178.45** 

Subgroup 1 with Subgroup 3 178.01** 

Subgroup 2 with Subgroup 3 534.52** 

** indicates significance at 1% level  

Note: in order to test for the differences in housing prices between submarkets, we used a Chow test for 

structural instability (parameter constancy) over space (more information on the Chow test is found in 

the appendix). 

 

Table 8 Estimations results for building type specification 

Dwelling 

type 
N 

Adjust-
R 

square 

F-

statistics 
RSS 

Stand 

Error 
Significant variables  

Numbers 
of 

variables 

Flat 2767 0.630 253.37 324.451  0.118111  

LN_FLOOR,DU_NEW,DU_TEN, DU_CL, 
DU_PS, DU_TT, Y2001, Y2002, 

Y2003,Y2004,Y2005,Y2006,Y2007,Y2008, 

LN_DCBD,LN_DHealth 

16 

Detached 1428 0.625 117.31 170.720  0.121250  

LN_FLOOR, , DU_NEW, DU_TEN, DU_CL, 

DU_PS, DU_CC, DU_TT, Y2001, Y2002, Y2003, 
Y2004, Y2005, Y2006,Y2007, Y2008, 

LN_DRoath, LN_DHealth 

15 



Semidetached 3408 0.657 326.91 316.882  0.093531  

LN_FLOOR,DU_NEW,DU_TEN, DU_BC, 

DU_CL, DU_PS, DU_TT, Y2000, Y2001, Y2002, 

Y2003,Y2004,Y2005,Y2006,Y2007,Y2008, 
LN_DCBD, LN_Droath, LN_DHealth  

18 

Terraced 8694 0.584 624.43 948.562  0.109357  

LN_FLOOR,,DU_TEN, DU_BC, DU_CL, 

DU_PS, DU_CC, DU_TT,  Y2001, 
Y2002,Y2003,Y2004,Y2005,Y2006,Y2007,Y2008, 

LN_DCBD, LN_Droath, LN_DHealth 

18 

 

Table 9 Chow test for building type specification 

Segments Chow 

Flat with detached 607.6248** 

Flat with semidetached 608.5278** 

Flat with terraced 300.7417** 

Detached with semidetached 696.7662** 

Detached with terraced 371.1832** 

Semidetached with terraced 

Note: ** indicates significance at 1% level 

315.8658** 

 

 

Table 10 Weighted standard error tests. 

Stratification scheme Standard error % 

reduction 

Market-wide model  0.119419  

Structure definition identified by dwelling type 0.108566 9.09% 

Submarket specified by urban configurational features 0.112962 5.41% 

Note: The “common sense test”, weighted standard error test is employed to compare the fitness of 

different submarket classification. This indicates how closely substitutable the housing units are in that 

market segment with those in other segments. More information is found in the appendix. 

 

 


