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Abstract— Series of 4-amino-6-(arylamino)-1,3,5-triazine-2-

carbohydrazides (3a-e) and N'-phenyl-4,6-bis(arylamino)-1,3,5-triazine-2-

carbohydrazides (6a-e), for ease of readership, we will abbreviate our 

compound names as “ new triazines”,  have been synthesized, based on the 

previously reported Rad6B-inhibitory diamino-triazinylmethyl benzoate 

anticancer agents  TZ9 and 4-amino-N'-phenyl-6-(arylamino)-1,3,5-

triazine-2-carbohydrazides. Synthesis of the target compounds was readily 

accomplished in two steps from either bis-aryl/aryl biguanides via reaction 

of phenylhydrazine or hydrazinehydrate with key 4-amino-6-

bis(arylamino)/(arylamino)-1,3,5-triazine-2-carboxylate intermediates. 

These new triazine derivatives were evaluated for their abilities to inhibit 

Rad6B ubiquitin conjugation and in vitro anticancer activity against 

several human cancer cell lines: ovarian (OV90 and A2780), lung 

(H1299and A549), breast (MCF-7 and MDA-MB231) and colon (HT29) 

cancer cells by MTS assays. All the 10 new triazines exhibited superior 

Rad6B inhibitory activities in comparison to selective Rad6 inhibitor TZ9 

that was reported previously. Similarly, new triazines also showed better 
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IC50 values in survival assays of various tumor cell lines. Particularly, new 

triazines 6a-c, exhibited lower IC50 (3.3 to 22M) values compared to 

TZ9. 

Keywords: Ubiquitination; E2 ubiquitin conjugating enzyme; 

Rad6B; anticancer; triazines. 

The ubiquitin-proteasome system controls the turnover of regulatory 

proteins involved in critical cellular processes including cell cycle 

progression, cell development and differentiation, apoptosis, angiogenesis 

and cell signaling pathways 1-2. This system requires the action of three 

enzymes: E1 ubiquitin activating enzyme, E2 ubiquitin conjugating 

enzyme and E3 ubiquitin ligase 3. Firstly, the ubiquitin is activated by the 

E1 activating enzyme and once it is activated, it is then transferred to E2 

conjugating enzyme. The final step is the formation of an iso-peptide bond 

between a lysine of the target protein and the C-terminal glycine of 

ubiquitin (carried by E2). This step usually requires the action of an E3 

ubiquitin ligase 4. 

Interference with the proteasome activity was proven to be effective 

in cancer therapeutics since the clinical approval of bortezomib 

(Velcade®) as a proteasome inhibitor for treatment of relapsed multiple 

myeloma and mantle cell lymphoma 5. However, the requirement for more 

specific inhibiting targets like the design of potential E2 or E3 inhibitors, 

has appeared in order to reduce the side effects resulting from bortezomib 

6. Recently, many E1 and E3 ligase inhibitors such as PYR-41, Nutlin-3a, 

P013222 and SCF-I2 have been successful and progressed to 

preclinical/clinical development. Also, the approved myeloma drug 

thalidomide has been recently identified as an E3 ligase inhibitor 7.  



Among the E2 ubiquitin conjugating enzyme family, Rad6B is of 

special interest since it is found to be over-expressed in many human 

cancer cell lines and tumors 8-9. Constitutive over-expression of Rad6B in 

the non-transformed human breast epithelial cell line MCF 10A induces a 

number of adverse effects associated with cancer progression such as 

formation of multinucleated cells, centrosome amplification, abnormal 

mitosis, aneuploidy, and transformation 10. Most importantly, Rad6B has 

been shown to positively regulate β-catenin stabilization and activity that 

drives the malignant progression of breast cancer cells 11-13. Since β-

catenin- mediated signaling has been implicated in many human 

malignancies, including lung, colon, breast, and ovarian, it has been an 

important therapeutic target. Furthermore, Rad6B plays a central role in 

regulation of multiple DNA repair pathways through its interactions with 

different E3 ubiquitin ligases. For example, Rad6 partners with the E3 

ubiquitin ligase Rad18 and monoubiquitinates PCNA in response to 

replication fork-stalling lesions to promote trans-lesion synthesis (TLS) or 

the DNA damage tolerance pathway 14-17. Rad18/Rad6 ubiquitin ligase 

complex is also important in the activation of the Fanconi anemia tumor 

suppressor pathway, which plays critical roles in genome integrity and 

tumor resistance to a variety of chemotherapeutic agents, including those 

that induce DNA crosslinks and DNA double strand breaks 17-18. Rad6 has 

also been shown to associate with RNF168 to monoubiquitinate histone 

H1.2 thereby enabling chromatin relaxation and allowing DNA damage 

response factors access to damage sites 19. Moreover, increased expression 

or activation of these DNA damage response (DDR) signaling and repair 

genes accounts for tumor resistance to chemotherapy 9, 20-22. Therefore, 

development of DNA damage response and repair signal inhibitors are 

important to effectively treat these tumors.   



We have recently reported [4-amino-6-(arylamino)-1,3,5-triazin-2-

yl]methyl 4-nitrobenzoates TZ8-TZ9 (Fig. 1) as novel and selective 

Rad6B-inhibitory lead compounds 23. These inhibitors were identified   by 

virtual screening of a pharmacophore model generated from the conserved 

key residues stabilizing the E2-ubiquitin thioester intermediate against a 

pre-prepared database using drug-like filters which determined the 

substituted diamino-triazine core structure as a starting point for analogue 

synthesis. Triazine analogue synthesis coupled to in vitro anticancer 

evaluation led to the identification of lead compounds TZ8-TZ9 23. 
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Fig.1: Chemical structures of Rad6B-inhibitory lead compounds TZ8 and TZ9 

Using a molecular modeling approach to guide the design of new 

derivatives of TZ8 and TZ9, we reported 4-amino-N'-phenyl-6-

(arylamino)-1,3,5-triazine-2-carbohydrazides (Fig. 2) with IC50 values 

(2.48–4.79 µM) superior to those of TZ8 and TZ9 when tested on the 

Rad6B-expressing MDA-MB-231 cell line 24. In docking studies, such 

triazinecarbohydrazide derivatives were found to be incorporated deep 

inside the Rad6B binding pocket, making key interactions between the 

hydrazine nitrogen atoms and the Rad6B active site residues Cys88 and 

Asp90. Additional interactions between the aniline nitrogens and 

Asn119/Gln93 and between the phenyl (hydrazide) ring and Leu89 were 

also apparent from our docking analysis. The importance of these active 



site residues to the allosteric effect on Rad6B induced by E3 ligases, and 

the observation that no other E2 family members (with the exception of 

Rad6A) have residues corresponding to Gln93 or Asn119, suggest that 

these triazinecarbohydrazides could be selective Rad6B inhibitors 24.  
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Fig.2: 4-amino-N'-phenyl-6-(arylamino)-1,3,5-triazine-2-carbohydrazides 

In the current work, we studied the effect of removal of the phenyl 

(hydrazide) ring (3a-e) or the addition of aryl substituent to the free amino 

group (6a-e) of our previously reported 4-amino-N'-phenyl-6-(arylamino)-

1,3,5-triazine-2-carbohydrazides (Fig. 2) on the Rad6B inhibitory activity 

and cellular anticancer activity. (Fig. 3) 
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Fig. 3: SAR modifications of previous lead compounds 



The synthesis of the 4-amino-6-(arylamino)-1,3,5-triazine-2 

carbohydrazide (3a-e) was accomplished in two steps from arylbiguanide 

hydrochloride salts (1a-e), which were prepared from commercially 

available substituted aniline and dicyandiamide according to previously 

reported procedures 25-26. Neutralization of the arylbiguanide hydrochloride 

salt using sodium methoxide/methanol was followed by reaction with 

dimethyloxalate in refluxing methanol. This gave the intermediate methyl 

4-amino-6-(arylamino)-1,3,5-triazine-2- carboxylates (2a-e) in 83–92% 

isolated yield following recrystallization from methanol. Reaction of 

intermediates (2a-e) with hydrazinehydrate in refluxing ethanol produced 

the target new triazines (3a-e) in high yield (81–92%) following 

recrystallization from ethanol (Scheme 1). 
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Scheme.1: Synthetic pathway for compounds 3a-e 

A similar strategy was used to synthesize the N'-phenyl-4,6-

bis(arylamino)-1,3,5-triazine-2-carbohydrazides (6a-e) from bis-

arylbiguanide hydrochloride salts (4a-e), which were prepared from 

commercially available substituted aniline and sodium dicyanamide 

according to previously reported procedures 25-26. Neutralization of the bis-

arylbiguanide hydrochloride salt using sodium methoxide/methanol was 

followed by reaction with dimethyloxalate in refluxing methanol. This 

produced the intermediate methyl 4,6-bis(arylamino)-1,3,5-triazine-2-

carboxylates (5a-e) in 72-87% isolated yield following recrystallization 

from methanol. Reaction of intermediates (5a-e) with phenylhydrazine in 



refluxing ethanol, catalyzed by glacial acetic acid produced the target new 

triazines (6a-e) in good yield (76-86%) following recrystallization from 

ethanol: water (3:1)  (Scheme 2). 
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Scheme.2: Synthetic pathways for compounds 6a-e 

 

Evaluation of newly synthesized 4-amino-6-(arylamino)-1,3,5-

triazine-2-carbohydrazide (3a-e) and N'-phenyl-4,6-bis(arylamino)-1,3,5-

triazine-2-carbohydrazide (6a-e) was carried out in the human cancer cell 

lines OV90 and A2780 (ovarian), H1299 and A549 (lung), MCF-7 and 

MDA-MB231 (breast), and HT29 (colon) using MTS assay reagent 

(Promega) to assess the cell viability (Table 1). TZ9 was used as a positive 

control and aqueous DMSO as a negative control. 

 To assess the efficacy of these compounds in cell cultures, MTS 

assays were performed using multiple tumor cell lines from different tissue 

origins. We have randomly chosen these cell lines as many of these tumors 

were previously shown to either over express Rad6 or -catenin mediated 

signaling. The IC50 values for each of the compounds against the individual 

cell line were calculated from their respective dose response curves. As 

shown in Table 1, almost all the compounds inhibited survival of cancer 

cells, although their IC50 concentrations and specificities to the cell lines 

varied. For example, compounds 3a-e, 6a-e and TZ9 showed IC50 values 

in the low micromolar range (3.3–16 µM) when tested on HT-29 and MCF-

7 cell lines, whereas only compounds 6a-d show low micromolar IC50 



values (3.6–12 µM) when tested on OV 90  and A2780 cell lines.  These 

values compare favorably with the studies on TZ9. The compound 6b 

shows the lowest IC50 value (5 µM) when tested on the H1299 cell line. 

However, the reasons for these biological selectivities to particular cell 

lines and differences in IC50 values of the compounds need further 

evaluation.  Moreover, these variations could be attributed to differences 

in functional groups of these compounds and inherent molecular signatures 

of the tumor cells, which may include their Rad6B status and their inherent 

dependence on its mediated signaling networks. 

Name of 

Compound  

Formula 

Weight  

OV 90  A2780 MCF-7  MDA-

MB231 

A549 H1299  HT-29  

TZ9  366.3  60  7.8   5   4.6   7.2   45   8.3   

3a 245.24  75   7.3   5.9   2.6   7.8   65   3.3   

3b 275.27  80   14.7   6.2   7.6   5.2   65   5.4   

3c 259.27  60   5.5   16   12.7   9.3   40   4.5   

3d 275.27  90   5.6  11.8   15.7   7.5   50   8.6   

3e 279.69  85   36.6   8.8   24.6   7.5   30   4.6   

6a 397.43  8   7.1   6   2.5   14.6   11   9.5   

6b 457.48  12   6.3   7.2   4.2   10.8   5  5.8   

6c 425.49  5   3.6   4.2   3.5   11.6   22   5.2   

6d 457.48  10   5   7.2   3.9   6.9   26   8.9   

6e 466.32  60   8.2   4.2   3.5   7.8   15   4.1   

Table 1: IC50 Values for New Triazine Analogues. 

As described in the methods, the MTS assay was used to evaluate cell survival in the 

presence of each new triazine analogue in the range of 0 to 125 µM concentrations. For 

each cell line, the MTS assays were performed at least three independent experiments 

and each time in triplicates. The results presented in the table are average values from 

multiple experiments. The IC50 values were calculated from the data of % survival vs. 

drug concentration using Microsoft Excel 2010. 

 

To evaluate the efficacy of newly synthesized 4-amino-6-

(arylamino)-1,3,5-triazine-2-carbohydrazide (3a-e) and N'-phenyl-4,6-



bis(arylamino)-1,3,5-triazine-2-carbohydrazide (6a-e) analogues for their 

Rad6 inhibitory activities, in vitro ubiquitin conjugation assays were 

performed in comparison with our previously reported Rad6 inhibitor TZ9. 

In these assays (Fig. 4A and 4B), ubiquitin conjugation to Rad6 enzyme 

readily occurs in the positive control (lane 3 in Fig. 4A and lane 2 in Fig. 

5A), but not in the negative controls, which lacks either Rad6 (lane 1 in 

Fig. 4A) or ubiquitin (lane 2 in Fig. 4A and lane 1 in Fig. 5A) in these 

assays. Consistent with the previous data, pretreatment of Rad6 with TZ9 

inhibited its ability to conjugate with ubiquitin 23. Interestingly, in the 

initial screening experiments, all the new triazines exhibited Rad6 

inhibitory activity (Fig 4A and 4B). As shown in the figures (4B and 5B) 

most of the new triazines are better Rad6 inhibitors than TZ9 at the 

equimolar concentration (25 nM), for both inhibition of Rad6 conjugation 

to ubiquitin and its substrate H2A ubiquitination in these assays. 

 

Figure 4: New triazine analogues inhibit conjugation of ubiquitin to Rad6B 

more effectively than TZ9. A). Representative western blot of in vitro ubiquitin 

conjugation experiment showing all new triazine analogues in comparison with TZ9 , 



and probed with Rad6 antibody. Rad6-; negative control with all experimental 

components except Rad6B. Ub-; negative control with all experimental components 

except ubiquitin. Control: positive control with all experimental components that shows 

Rad6B conjugation to ubiquitin. Experiment was repeated for reproducibility at a 

minimum of two times. B). Densitometry calculations of Rad6B-Ub bands were made 

using ImageJ software on the western blot shown in (A). 

 To further assess their inhibitory effects on Rad6B ability to transfer 

ubiquitin to the substrate, in vitro ubiquitination assays were performed 

using H2A as substrate 23. We have selected four compounds 6a, b, c, e 

that exhibited more favorable IC50 values and better inhibitory effects on 

Rad6 conjugation to ubiquitin in the in vitro ubiquitin assays compared to 

TZ9. As shown in Figure 5A and 5B, compounds 6a, b, c, e exhibited 

superior Rad6B inhibitory properties, both in its conjugation to ubiquitin 

and substrate ubiquitination (H2A-Ub) when compared to TZ9.  Together, 

these studies report the synthesis of new triazines with better Rad6B 

inhibitory activities and anticancer properties compared to previously 

reported Rad6B inhibitor TZ9 in in vitro evaluations.  



 

Figure 5: Rad6-mediated ubiquitination of H2A is inhibited by new triazine analogues. 

A). Western blot showing Rad6-mediated ubiquitination of histone H2A in the presence 

of new triazine analogues probed with ubiquitin, H2A and Rad6 antibodies. B). 

Represents densitometric values of western blot shown in (A), were calculated using 

ImageJ software and presented as relative to positive control. All experiments were 

repeated at least twice to verify reproducibility.  

In summary, Series of novel 4-amino-6-(arylamino)-1,3,5-triazine-

2-carbohydrazides (3a–e) and N'-phenyl-4,6-bis(arylamino)-1,3,5-

triazine-2-carbohydrazides (6a-e) have been synthesized. Compared to the 

previously reported Rad6B-inhibitor TZ9, new triazines showed better IC50 



values in survival assays of various tumor cell lines. Particularly, new 

triazines 6a-c exhibited much lower IC50 (3.3 to 22M) values. 

Moreover, when compared to TZ9 in in vitro ubiquitin conjugation 

assays, compounds 6a, b, c, e exhibited superior Rad6B inhibitory 

properties, both in its conjugation to ubiquitin and to the substrate H2A.   
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