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SPA: Sparse Photorealistic Animation Using a
Single RGB-D Camera

Kun Li, Jingyu Yang, Leijie Liu, Ronan Boulic, Yu-Kun Lai, Yebin Liu, Yubin Li, and Eray Molla

Abstract— Photorealistic animation is a desirable technique
for computer games and movie production. We propose a new
method to synthesize plausible videos of human actors with new
motions using a single cheap RGB-D camera. A small database
is captured in a usual office environment, which happens only
once for synthesizing different motions. We propose a marker-less
performance capture method using sparse deformation to obtain
the geometry and pose of the actor for each time instance in
the database. Then, we synthesize an animation video of the
actor performing the new motion that is defined by the user.
An adaptive model-guided texture synthesis method based on
weighted low-rank matrix completion is proposed to be less
sensitive to noise and outliers, which enables us to easily
create photorealistic animation videos with new motions that are
different from the motions in the database. Experimental results
on the public data set and our captured data set have verified
the effectiveness of the proposed method.

Index Terms— Marker-less performance capture, photorealistic
animation, RGB-D camera, sparse representation, texture
synthesis.

I. INTRODUCTION

PHOTOREALISTIC animation aims to create a plausible
photorealistic video of an actor performing a new motion

based on a database, which is highly desirable for both
computer games and movie production [1]–[3]. On the
one hand, the rendered results of fully animated human
characters are not realistic and on the other hand, the captured
videos are difficult to synthesize new motions. Video texture
methods [4], [5] attempt to generate videos with new motions
by rearranging the subsequences, but it is difficult to create
truly new motions. Recently, some methods [6], [7] set up
a multicamera system to help better synthesize videos with
new motions. They achieve promising results with the help
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of multiview information. However, systems of this kind
are expensive, difficult to maintain, and need many manual
operations. Moreover, they need the actor to clench their
hands. In this paper, we try to achieve photorealistic animation
using a single cheap RGB-D camera by capturing the database
in a usual office environment. Our system is nonintrusive and
easy to set up.

The input for photorealistic animation contains several
videos with various basic motions, while the output is a
plausible video corresponding to a new motion defined by
users. Creating a new video with new motions from limited
existing motions is essentially an ill-posed problem, because
the limited available textures of motions do not contain
complete information to reconstruct the textures for the
new motion. Moreover, the appearance of actors continually
changes with their motions when they perform different
motions, such as folds and wrinkles. The key to generate
appealing textures is to impose proper priors to make the
problem well posed. Recently, sparse representation has shown
its great power in the regularization of the ill-posed estimation
problem, such as in surface reconstruction [8], [9], 3D shape
denoising [10], and depth enhancement [11].

Data-driven photorealistic animation method can effectively
use knowledge from the database. By using the sparse priors,
we can reduce the dependency on high quality or complete
input, which makes it possible to use a single RGB-D camera
for photorealistic animation. In our work, we propose a new
method to synthesize photorealistic videos of human actors
with user-defined motions based on a small database captured
by a single RGB-D camera in a usual office environment,
allowing a small change of viewpoint. We present a sparse
deformation optimization method to make the marker-less
performance capture less affected by noise and outliers,
which gives a pivotal constraint for video synthesis. Besides,
we address the video synthesis problem by adaptive weighted
low-rank matrix completion. Our method offers the following
advantages.

1) Cheap Nonintrusive System: Our method achieves
photorealistic animation using only a single cheap
RGB-D camera.

2) Less Requirement: Our method does not require the actor
to wear skin-tight garments, attach markers, or clench
the hands.

3) Accuracy: By using sparse priors, our method can
recover the textures with high accuracy from a very
small data set.

4) Robustness: By using sparse representation, our method
is less sensitive to noise and outliers than previous
methods.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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We demonstrate the power and effectiveness of our method
on a public data set and our captured data sets. Our
method achieves plausible animation videos for all the new
motions.

The main contributions of this paper are as follows.

1) Photorealistic Animation Using a Single Cheap RGB-D
Camera in a Usual Environment: We capture the
database using a Kinect v2.0 camera in a usual office
environment, and generate a plausible photorealistic
animation video using the proposed method.

2) Marker-Less Performance Capture Method: To obtain
more consistent results with the real motion, we propose
a two-step marker-less performance capture method.
A multipriority inverse kinematics method and the
skinning method are first used to get an initial mesh
for each frame, and then a sparse deformation method
is adopted to generate more accurate meshes.

3) Adaptive Sparse Texture Synthesis Method: To recover
the textures from limited data set with different motions,
we propose an adaptive weighted low-rank matrix
completion method. Through this method, not only is
the frame that has high percentages of missing data
recovered, but also the noise and outliers in the initially
estimated image are reduced.

The remainder of this paper is structured as follows.
Section II provides a brief review of related work in the field
of animation. A system overview of the proposed method is
given in Section III. The technical details of database setup,
retrieval, and video synthesis are described in Sections IV–VI,
respectively. Validation experiments and results are presented
in Section VII, and this paper is concluded in Section VIII.

II. RELATED WORK

This section provides a brief review of related work in
the field of animation. Animation approaches are mainly
divided into three categories: 1) skeleton-based methods;
2) model-based methods; and 3) image-based methods.
The most common skeleton-based method is linear blend
skinning (LBS) [12], but this method has bad twisting
animation result around joints. To overcome this problem,
Wang and Phillips [13] and Merry et al. [14] compute
different weights from different poses of models.
Mohr and Gleicher [15] generate animation by introducing
some dummy joints. Kavan et al. [16] replace the classic
LBS method by a dual quaternions skinning method. However,
the results of these methods look unrealistic.

Model-based methods can generate more realistic
animations by building a database that has some 3D model
samples with high accuracy and strong sense of reality.
De Aguiar et al. [17] use principal component analysis to
reduce the dimensions of human body models and clothing
models, and then learn their relationship by linear regression
to generate new models with target motions. Wang et al. [18]
analyze surface vertices for different body parts, and choose
different samples to synthesize the 3D model with a new
motion. However, these kinds of methods usually demand
very high computational complexities, and need to sacrifice

some accuracy and authenticity for reasonable computational
complexity.

Image-based methods aim at generating realistic textures
and have low computational complexity. The video texture
method [4] is an early work in this field, which analyzes a
video clip to extract its structure and creates a new video by
rearranging the frames. As an extension, video sprites [19]
are proposed to animate moving objects. It finds good frame
arrangements based on repeated partial replacements of the
sequence, which allows the user to specify animations using
a flexible cost function.

It is challenging to use the above methods to generate
new videos for moving humans without any knowledge
of 3D shapes and poses. Celly and Zordan [20] preliminarily
solve the problem by identifying transition regions with
human-specific feature extraction and performing an
image-based warping afterward. Flagg et al. [5] adopt
marker-based motion capture and construct a video-based
motion graph to synthesize a new video.

All the above methods generate a new video by rearranging
the subsequences with specific motions, and no novel motions
can be created. Starck et al. [21] use 3D video sequences
by combining image-based reconstruction and video-based
animation to allow controlled animation of human body
from captured multiview video sequences. The blended
video sequences are constructed offline and represented
as a motion graph for interactive animation. Similarly,
Huang et al. [22] synthesize novel 3D video sequences
by finding the optimal path in the motion graph between
user-specified key-frames for control of movement, location,
and timing. Casas et al. [6] introduce a new representation,
4D video texture, for rendering photorealistic animations from
a multiview multimotion database. However, the generated
new sequences are restricted to the space of basic motions
in the database, and texture synthesis is not considered.
Xu et al. [7] set up a multicamera system with 12 cameras and
achieve realistic video synthesis of a novel target motion using
a model-guided image warping method. However, this method
relies on an expensive multicamera system, and requires the
actor to clench hands. When the query motion is different
from the basic database motions and less view information is
available, there are obvious blurring artifacts on the recovered
textures. In contrast, with sparse representation, our approach
only uses a single cheap camera and achieves plausible
animation videos without such artifacts.

The Microsoft Kinect camera has been widely used due
to its low cost and multisensing [23]–[25]. The version 2.0
sold last year has more accuracy in color, depth, and skeleton
tracking. In this paper, we use a single Kinect v2.0 camera
to capture a multimotion database. A multipriority inverse
kinematics method is used to ensure the topology consistency
of Kinect skeletons and a sparse deformation method is
proposed to ensure the accuracy of mesh deformation. For
synthesizing textures, instead of using existing projective
texturing and blending methods [26], [27], which tend
to produce texture ghosting, we propose a new adaptive
model-guided texture synthesis method based on weighted
low-rank matrix completion.
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Fig. 1. Framework of the proposed method. The system contains a small database of an actor performing several basic motions: color images are captured by
a single Kinect camera and skeletons and dynamic meshes are calculated by a marker-less performance capture method. The user gives a new query skeleton
sequence with a new motion. We select the similar images from the database and synthesize a photorealistic video of the actor performing the new motion
using an adaptive model-guided sparse texture reconstruction (STR) method.

III. SYSTEM OVERVIEW

Fig. 1 illustrates the workflow of our sparse photorealistic
animation approach. The input to our system is a skeleton
sequence and a rigged surface mesh of an actor. The output
is a synthesized photorealistic animation video with the input
motion. To make this possible, we take a data-driven approach.
A small database is first set up offline, which contains
videos and meshes with skeletons performing various basic
motions (Section IV). Then, appropriate images are retrieved
from the database according to the input skeleton sequence
(Section V). Finally, a photorealistic animation video is
synthesized based on adaptive weighted low-rank matrix
completion using the retrieved images (Section VI).

Database: We use a Kinect camera to capture RGB-D
images of a character performing various basic motions, and
obtain a 3D scanned template mesh of the character using
the Kinect Fusion technique [28]. Then, we manually embed
a skeleton into the template mesh, compute the skinning
weight [29], and segment the body of the mesh into 16 parts
according to the maximum skinning weight of each vertex.
Finally, we compute a 3D skeleton and a 3D surface mesh for
each frame of the database. Therefore, the database contains
a color image sequence, a skeleton sequence, and a mesh
sequence for each motion. The database is only needed to be
built once for generating new motions of the same character.

Query: A query sequence is a user-defined skeleton
sequence that specifies the actor motion in the target video,
which uses the same template mesh model and skeleton as the
database. Arbitrary animation tools can be used to define the
whole animation sequence. Alternatively, it is also possible to
use motion retargeting techniques [30] to apply motion capture
data from existing databases to the given skeleton.

Retrieval: A candidate image is retrieved from the database
according to the spatiotemporal similarity for each frame
of target motion. To achieve high performance retrieval,
we consider the similarity of motion and the completeness
of sequence in our scheme.

Synthesis: We synthesize the target sequence using the
retrieved frames based on adaptive weighted low-rank matrix
completion, which can recover the matrix that has high

percentages of missing data and can also reduce the noise
and outliers in the known elements.

IV. DATABASE SETUP

We capture the color images, depth images, and skeletons
for a database using a single Kinect v2.0 camera, and then
we compute and optimize the skeletons and dynamic meshes
using the proposed method.

A. Acquisition

We capture an actor (actress) performing various basic
motions using a Kinect v2.0 camera. The basic motions we
used are walking with flexed legs, running, marching, waving,
stretching, front-kicking, side-kicking, salute, and kungfu. Each
depth image is transformed into a depth mesh and segmented
by an RANSAC algorithm to remove the floor and a bounding
box of the actor to remove the background. Skeleton is
identified using a pose recognition method [31] at each time
instance.

Besides, we also obtain a 3D scanned mesh without textures
of the actor using the Kinect camera by capturing the 3D point
clouds in a circle and merging them together using the Kinect
Fusion technique [28]. The Kinect Fusion method only works
for rigid objects, so the actor being scanned needs to stand
still and the Kinect camera is controlled by another person
to scan from 360◦ directions. The underlying skeleton of the
mesh is generated by manually marking the joint positions.
We calibrate the coordinate system relationship of the static
template mesh and the captured depths of Kinect by computing
the rigid transformation using four skeleton joints (spine base,
spine center, left hip, and right hip) of the skeleton of the
template mesh and the skeleton of the first frame of Kinect.

B. Marker-Less Performance Capture

With the 3D template mesh and the captured depth+skeleton
sequences, we present a skeleton-based marker-less
performance capture method to obtain a new skeleton
sequence and a dynamic mesh sequence for each motion.
Because the skeletons captured by Kinect do not maintain
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Fig. 2. Example of sparse deformation optimization. (a) Mesh before optimization. (b) Depth mesh. (c) Mesh after optimization. (d) Mesh projection before
optimization. (e) Mesh projection after optimization.

topological consistency, we use a multipriority inverse
kinematics method [32] to obtain pose parameters and new
skeletons with the consistent topology. The skinning weights
are automatically calculated for each vertex, which describe
the association of the vertex with each bone [29]. With
these weights, an LBS method is adopted to deform the
template mesh using the calculated pose parameters. Then,
we optimize the deformed meshes with depths based on
sparse representation to make the deformed mesh consistent
with the data captured by Kinect.

Let us define the deformed mesh by the LBS method
as Ms and the vertices of Ms as P � {p1, . . . , pN },
where pi � [xi , yi , zi , 1]� and N is the number of vertices.
Similarly, we denote the vertices of the depth mesh Mt by
Q � {q1, . . . , qM }. We compute the visible vertices of the
deformed mesh at the viewpoint of the depth camera and find
the closest correspondences on the depth mesh. Specifically,
we find the closest point for each vertex of the deformed
mesh and calculate the distance between this vertex and its
closest point. Then, we choose the ones whose distances are
smaller than the median as the correspondences. Denote the
correspondence point of pi ∈ P by q f (i) ∈ Q, where
f : {1, · · · , N} �→ {1, . . . , M} represents the index mapping.
Given the correspondence mapping f [33], we compute
a 3 × 4 transformation matrix Ti for each vertex of Ms by
minimizing the following energy function:

E =
∑

pi ∈P

ωi
∥∥Ti pi−q̃ f (i)

∥∥2
2 + γ

∑

pi ∈P

∑

p j ∈Ni

πi j
∥∥Ti−T j

∥∥
1

(1)

where q̃ f (i) is the Cartesian coordinate of q f (i),
Ni represents one round neighborhood connecting with
edges, and ‖ · ‖1 represents the �1 norm of the matrix. πi j =
exp(−H 2/σ 2) allows larger nonrigid transformation around
curved places, where H is the mean curvature and σ is a
constant. The weight ωi is set at zero if pi does not have
a corresponding point in Q, and set at one otherwise.
The first term reflects the fidelity of the estimated
transformations and ensures the accuracy of the reconstruction,

while the second term as regularization ensures the smoothness
of the transformations.

We further define a differential matrix L ∈ {−1, 1}G×N

with G representing the number of edges of Ms . Each
row of L corresponds to an edge of Ms , and each column
of L corresponds to a vertex of Ms . For the r th edge that
connects vertex pi and vertex p j , we have Lr,i = 1 and
Lr, j = −1. Therefore, (1) can be rewritten as

min
T,X

∥∥∥�
(

PT − Q̃ f

)∥∥∥
2

F
+ γ

∥∥� ◦ X
∥∥

1 , s.t. X = (L ⊗ I4) T

(2)

where

� = diag
(√

ω1, . . . ,
√

ωN
)

P = diag
(

p�
1 , . . . , p�

N

)
(3)

Q̃ f = [
q̃ f (1) . . . q̃ f (N)

]�

T is a 4N × 3 matrix by taking Ti as its column,
� is a weight matrix with πi j as its elements,
“◦” represents element-wise multiplication of two matrices,
I4 is a 4 × 4 identity matrix, and ⊗ denotes the operator
of the Kronecker product. We iteratively find the closest
correspondences and solve (2) using the alternate direction
method (ADM) [34] until convergence. In our experiments,
we use 15 outer iterations for sparse deformation and 25 inner
iterations for the ADM algorithm. Fig. 2 demonstrates the
effectiveness of the proposed optimization method. The
mesh before optimization is not very consistent with the real
motion, while the mesh after optimization is very consistent
with the real motion, which can be seen from the projection
results.

V. RETRIEVAL

Similar to [7] but simpler, we use database retrieval to
find the best matched candidate frames for video synthesis
based on spatiotemporal consistency. In order to compare the
query skeletons with the database skeletons, we register them
to the same coordinate system by translating the spine-base
joints of database skeletons to the same 3D position of the
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query’s joint and rotating the database skeletons to face
the same direction. We define the front viewpoint in the
database as the reference viewpoint. So given a new query
viewpoint, we compute the transformation matrix between the
new viewpoint and the reference viewpoint, and transform the
query skeleton using this matrix for later retrieval.

Then, we compute an energy for each frame of the data set
and choose T (2 in our experiments) frames with lowest energy
values as the candidates for video synthesis. Considering the
spatiotemporal continuity, the energy function is expressed as

E(F) =
∑

i∈I (F)

Ds
(
Si

d − Si
q

)

+ α

⎛

⎝
∑

i∈I (F)

Ds
(
Si

d−Si−1
d

)−
∑

i∈R

Ds(Si
q−Si−1

q )

⎞

⎠ (4)

− β N(F)

where F is the unknown candidate sequence, N(F) is the
number of frames in the candidate sequence F, I (F) is the set
of frame indices in the original sequence, and R is the number
of frames in the query sequence. Sd is the vector of skeleton
joints of a database sequence and Sq is the vector of skeleton
joints of the query sequence. The skeletal distance is defined as

Ds(Sm − Sn) =
√√√√

J∑

j=1

(
S j

m − S j
n
)2

σ j
(5)

where m and n are d or q , S j is the 3D position of the
j th skeletal joint in the world coordinate system, J is the
number of joints, and σ j is the variance of the position of joint
j in the database.

In (4), the first term is a spatial constraint, which ensures
the similarity between the skeleton in the candidate sequence
and that in the query sequence. The second term is to ensure
the similarity of amount of motion between the candidate
sequence and the query sequence, and the third term is to
make the sequence from the same data set as long as possible.
These two terms impose the temporal continuity, avoiding the
jitter effect.

VI. VIDEO SYNTHESIS BASED ON

ADAPTIVE MATRIX COMPLETION

In this section, we synthesize each target frame based
on adaptive weighted low-rank matrix completion. Initial
estimations are first obtained by warping the retrieved
candidates with the help of 3D models. Then, the frames
warped from the candidate that has the lowest energy value
are optimized using an adaptive weighted matrix completion
method to synthesize a frame of the animation video.

For our problem, no existing image completion methods can
be directly applied after initial estimation because the video
synthesis in our problem is challenging.

1) A large range of missing data need to be repaired.
2) Many of missing pixels are around the boundary (the

junction of the foreground and the background), which
is difficult to correctly recover.

3) The texture to be restored may be complex.

Therefore, we propose a video synthesis method based on
weighted low-rank matrix completion and elegantly design
an adaptive block size scheme to remove the block artifacts
around boundary.

A. Initial Estimation

With query skeletons, we can obtain query meshes by
deforming the static template mesh using the multipriority
inverse kinematics method and DQS skinning method
mentioned in Section IV. Based on the assumption that the
surface meshes in the database and query are generated by
deforming the same static 3D model, i.e., the meshes in the
database and query have the same connectivity but different
poses, we warp the retrieved database frames (source frames)
using the vertex correspondences based on moving least
squares [35]. Specifically, we first segment the body of the
query mesh into 16 parts according to the maximum skinning
weight of each vertex, and hence obtain 16 segments in the
target frame via projection. Then, we project the meshes of the
database and the mesh of the query onto the source and target
frames. Using the vertex correspondences as a guide, moving
least squares is adopted to compute the corresponding pixels
in the source frames for all the pixels in each body part of the
target frame. For the pixels on the boundary of two body
parts, we compute a weighted blending of two warping results
on the assumption about the attribution of the pixel. In this
way, we obtain an image with some missing regions for each
retrieved candidate frame.

B. Sparse Texture Reconstruction

The initial estimation generated by Section VI-A may
contain missing pixels because not all the needed information
is included in the retrieved database frame. In this step,
we take the initial estimated image I from the candidate
with the lowest retrieval energy E(F) from (5) as reference and
interpolate the missing regions based on the adaptive weighted
matrix completion. Fig. 3 shows the procedure of the proposed
sparse texture reconstruction (STR) method.

We generate a silhouette image Is by projecting the query
mesh onto the target frame. Let us denote the known human
body region in I by F , the unknown human body region
by U , and the background region by G . For each pixel xi at
the boundary of the unknown region U , we get a block Bi

with size m × m centered at xi and compute its priority P by

P = wi

∣∣
I⊥
i · ni

∣∣
255

exp

(
−ξ

∑
j∈Bi∩F d j

|Bi ∩ F |

)
. (6)

The first term wi is set at 0 for the pixels around background
and 1 otherwise, which is judged by examining the difference
in pixel values on Is between left and right pixels or top
and bottom pixels. This guarantees that the texture recovery
always uses the foreground pixels. The second term gives high
priority to the pixels on edges, e.g., folds and wrinkles, which
guarantees that the recovered texture has rich details. 
I⊥

i is
a vector orthogonal to the gradient at pixel xi but has the same
magnitude, and ni is a unit vector orthogonal to the boundary
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Fig. 3. Illustration of the proposed STR method. The top-left image shows the computed priorities for the pixels at the boundary of the unknown regions.
1 represents the highest priority and 0 is the lowest priority. The block centered at the pixel with the highest priority is illustrated with a pink border and
enlarged for closer observation. This block and several searched similar blocks (shown with a cyan border) are arranged into a matrix, and then the matrix
is recovered with a weighted low-rank matrix completion method. In this way, we get the reconstructed texture for the current block from the first column
of the recovered matrix. The top-right image gives the reconstructed texture for the top-left image.

of the unknown region. The third term considers that the pixels
close to the known human body region F are more reliable
than those far away. Instead of searching the nearest pixel
in F , we estimate the distance in a greedy manner

d j = min
xk∈N j ∩F

dk + ||xk − x j ||2 (7)

where N j is the eight-connected neighborhood of x j . If x j lies
in the original known region, we set d j = 0. The parameter
ξ controls the decay rate of the exponential and is set at 3
in our experiments. Specifically, the parameter is tuned by
the bisection method. We found that the optimal parameters
for different data sets were quite close, and the performance
around the optimal values was stable. Therefore, we use the
same parameter setting for all the experiments in our paper.

After determining the priorities for all the pixels at the
boundaries, we recover the textures beginning from the pixel
with the highest priority. Let us denote B0 as the block
centered at the pixel with the highest priority. We search K
similar blocks within a range of n × n pixels on I and the
same locations on the other candidate images by computing
the sum of zero-mean normalized cross-correlation (ZNCC)
on the silhouette image Is and the RGB channels of I

C(B0,Bi ) = (Z NCCr +Z NCCg+Z NCCb+Z NCCs )/4.

(8)

Suppose the pixel (a, b) in image I is the center of
block B0 and the pixel (a+x, b+ y) is the center of block Bi

with disparity (x, y). The ZNCC between two blocks centered

at the corresponding pixels is computed by
∑

u,v

(
Ru,v − R

) (
Sx+u,y+v − Sx,y

)
√∑

u,v

(
Ru,v − R

)2 ∑
u,v

(
Sx+u,y+v − Sx,y

)2
(9)

where u and v are pixel indices in the two (2U +1)×(2V +1)
blocks. Ru,v and Sx+u,y+v represent the value of the pixel
(a + u, b + v) in block B0 and the value of the pixel
(a + x + u, b + y + v) in block Bi , respectively. R and Sx,y

are the mean values of the (2U + 1) × (2V + 1) block. Note
that we compute ZNCC using the pixels in the known regions.
In our experiments, we set U and V at (m − 1)/2.

We process the image for each channel of RGB color space
separately. Taking one channel for example, we vectorize
the current block and all the similar blocks, and stack
them into a matrix: D := [vec(B0), vec(B1), . . . , vec(BN )].
On the one hand, there is a strong correlation between each
column of D, and hence, the rank of D should be very low.
On the other hand, the known entries in D are corrupted by
considerable amount of noise and outliers due to nonconsistent
texture between different candidate images, self-occlusion, and
lighting. Therefore, we use an observation model with missing
data and noise: D = A + E, where A is the latent low-rank
matrix to be recovered and E represents the noise and outliers
in the known elements that is sparse. So we formulate the
problem as

min
A,E

rank(A) + λ||E||0 s.t. P� (D)=P� (A + E) (10)

where ‖ · ‖0 represents the �0 norm of the matrix (number
of nonzero entries), λ is the weighting factor, � is the index
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set of known elements, and P� is a projection operator that
projects the matrix onto the domain of �. The optimization
problem (10) is extremely difficult (NP-hard in general) to
solve. So the rank and the �0-norm are relaxed into the
nuclear-norm (sum of the singular values) and �1-norm,
respectively. There may be some mismatching in the searched
similar blocks. Hence, considering different contributions
of each similar block, we adopt a weighted matrix completion
model

min
A,E

||A||∗ + λ||W ◦ E||1, s.t. P� (D) =P� (A + E) (11)

where ||A||∗ is the nuclear norm of the matrix A, ◦ represents
element-wise multiplication of two matrices, and W is a
weighting matrix to consider the similarity of searched blocks.
Concretely, the weighting matrix is defined as W = 1 ⊗ w�,
where 1 := [1, 1, . . . , 1]� ∈ R

m2×1 is an all-one vector, and
w := [w0, w1, w2, . . . , wK ] ∈ R

(K+1)×1 is a vector containing
the similarity of the searched blocks to the current block B0

wi = C(B0,Bi ), i = 0, 1, . . . , K . (12)

In this way, blocks that are more similar to the current block
are assigned with larger weights, and hence contribute more
to the final restoration results.

We solve the weighted matrix completion problem (11)
using the augmented Lagrangian method [36]. The augmented
Lagrangian function of minimization (11) is

L (A, E, Y, μ) = ||A||∗ + λ||W ◦ E||1
+ 〈Y, P� (D − A − E)〉 (13)

+ μ

2
||P� (D − A − E)||2F

where Y is the Lagrangian multiplier, 〈〉 denotes the inner
product of two matrices (defined in the same way as the
inner product of two vectors), ‖·‖F denotes the matrix
Frobenius norm, and μ > 0 is a scalar variable to adjust the
consistency of the recovered matrix to the observed values.
We minimize the augmented Lagrangian optimization using
alternating direction method (ADM ) [34]. We take the first
column of the recovered matrix A and reshape it into an
m × m block as the recovered block of B0.

Adaptive Block Size: The reconstruction algorithm processes
the missing pixels progressively from interior pixels toward
the boundary. Then, the anchor block will step across the
boundary of the human body and contain background pixels,
which would affect the search of similar blocks. We adaptively
reduce the block size to handle this issue. The size of the
anchor block is recursively reduced until it does not contain
background pixels. Then, missing pixels of the anchor blocks
with reduced size are reconstructed in the same way as normal
blocks. If the size of the anchor block is reduced to one,
it is simply filled by the average of available pixels in its
four-connected neighborhood.

Since we synthesize the textures frame by frame, some jitter
artifacts may occur when the recovered textures are temporally
inconsistent. This can be easily improved by any temporal
blending technique based on optical flow [7], [37].

Fig. 4. Reconstructed textures for (a) image with missing data using (b) MVC
method and (c) our proposed method. Top to bottom: walking, punching, and
turning motions. In order to compare with the MVC method, we use the same
background for synthesizing the new video.

VII. RESULTS

In this section, we evaluate the performances of the
proposed method on a public data set (Section VII-A) and
a real Kinect data set (Section VII-B), and some discussions
are given in Section VII-C. We set the parameters as follows:
block width m = 11, range width n = 100, and number
of similar blocks K = 30.

A. Evaluation on Public Data Set

We generate a data set for evaluation using the multiview
data set of the multiview video-based character (MVC)
method [7] by keeping only one view for each motion. In order
to compare with the method in [7], we use the same retrieval
method and the background for synthesizing the new video.
Fig. 4 gives the comparison results for walking, punching,
and turning motions. The regions highlighted by rectangles
are enlarged and shown in the associated images for closer
observation. It can be seen that the results of the MVC method
have obvious blurring artifacts on the legs, while our method
is free of this problem and provides significantly better results
than MVC method. This appealing property is attributed to the
proposed adaptive weighted sparse reconstruction model (11).
The constraint reflects the fidelity of the reconstructed
matrix and ensures the accuracy of the reconstruction.
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The objective takes the low-rankness and sparsity into
account and ensures the smoothness of the reconstruction.
By bridging the two terms with a penalization parameter
and then minimizing it, not only are the unknown elements
recovered, but the noise and outliers in the known elements
are also reduced. Adaptive block-size selection ensures that
the recovery is implemented on the necessary resolution: large
enough to consider the global consistency and small enough
to recover the local details.

B. Evaluation on Kinect Data Sets

Our method is further evaluated on the data sets captured
with a Kinect RGB-D camera. We capture an actor (actress)
with normal clothing performing nine basic motions using
a Kinect v2.0 camera at 30 frames/s with a color image
resolution of 1920×1080 pixels and a depth image resolution
of 512 × 424 pixels. We calibrate the color camera and the
depth camera using OpenCV (Open Source Computer Vision)
library. All the data sets will be made publicly available at a
project webpage.

1) Sparse Texture Reconstruction: We first assess the
performance of the STR component (Section VI-B) that
plays an important role in synthesizing photorealistic videos.
In Fig. 5, we compare the STR method with three other
methods: 1) exemplar-based inpainting method (EBIM) [38];
2) the MVC method [7]; and 3) the STR method without
adaptive block sizes (STRwoABS). In EBIM [38], the missing
pixels of the current block are filled by the counterparts of the
most similar block. EBIM considers only texture information
in determining the order of inpainting, which is not applicable
to our case with silhouette constraints. For fair comparison,
we use the same priority calculation scheme as the proposed
method. As shown in Fig. 5(a), the results generated by the
EBIM method present obviously wrong textures around the
silhouette of the human body. The reason for the artifacts is
that the straightforward copy of similar blocks may introduce
some wrong pixels, which are further propagated by the
recursive inpainting procedure. The result of the MVC method
is blurred. On the contrary, the proposed STR method is able
to reconstruct correct textures thanks to the powerful recovery
capability of the weighted low-rank matrix completion from
incomplete observations. The result in Fig. 5(c) contains
severe blocking artifacts around the boundaries of the human
body while that in Fig. 5(d) is free of this issue, which
demonstrates the effectiveness of the proposed block-size
adaptation scheme.

The proposed STR method is able to challenge some
extreme cases with large missing regions. For demonstration,
we synthesize video frames for a given query bow-pulling
motion only from a single candidate image (the leftmost
image in Fig. 6). The poses of the actress can significantly
deviate that in the single available image, e.g., the right arm
raises and blends in the bow-pulling motion. In such cases,
the initially estimated images would present large missing
areas, which are quite challenging to reconstruct as only
a small fraction of pixels are available. Fig. 6 shows ten
frames of the synthesized video for the bow-pulling motion

Fig. 5. Comparison of reconstructed textures from an image with
missing pixels by (a) EBIM, (b) MVC, (c) STRwoABS, and (d) proposed
STR method.

at different poses. The results show that the STR method is
able to reconstruct visually appealing results from even one
single candidate image.
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Fig. 6. Ten frames of our created video for bow-pulling motion. Only one frame is used as the data set. The inlays show the associated query skeleton used
to create the target frame.

Fig. 7. Ten frames of our created video for lateral raising motion. The inlays show the associated query skeleton used to create the target frame.

Fig. 8. Five frames of our created video for the actor without clenched fists. The inlays show the associated query skeleton used to create the target frame.

2) Sparse Photorealistic Animation: Fig. 7 shows
ten frames of the synthesized video for the query lateral
raising motion. The results show that the poses of the actress
in the synthesized frames are consistent with the poses
of the query skeletons. The frames are reliably reconstructed
according to the new motion, which is demonstrated by the

completeness of the reconstructed textures, e.g., the logo
texture on the T-shirt, two white stripes on the sleeves, and
the laces on the shoes.

Fig. 8 presents five reconstructed frames for the query
walking motion. In the candidate videos of the data sets, the
actress does not clench her fists, which is different from data
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Fig. 9. Five frames of our created video for another actor at a new viewpoint. The inlays show the associated query skeleton used to create the target frame.

Fig. 10. Animation results of an actor that are created with our method from a small database captured by a single RGB-D camera. The motion is designed
by an animator and the background is captured by a commercial camera. Relighting techniques are not used.

sets in most previous photorealistic animation work, and it
is difficult to reconstruct the hands. As observed in Fig. 8,
our method is able to provide acceptable results although it
is difficult to reconstruct the fine details of the hands with
flexible motions.

Fig. 9 shows the results of another actor for the robotic
walking motion at a new viewpoint. The synthesized frames
are of the same quality as the results for other data sets,
although some small white holes caused by the segmentation
error can be seen on the right leg of the actor in the last
image. This suggests that our method has stable performance
for various actors and query motions.

Fig. 10 shows a composite of our synthesized video into a
real scene. Four frames of the created video are given. The
motion is designed by an animator and the background is
captured by a commercial camera. Relighting techniques are
not used. The results demonstrate that it is feasible to insert our
video-based animations with new motions into real captured
videos.

C. Discussion
Experimental results show that our method achieves

plausible animation videos. The visual quality depends on the
quality of the database and the similarity between new motion
and database motions. Visual artifacts in either segmentation
or performance capture will degrade the quality of video
synthesis for new motion. Some segmentation errors will
bring background color into the foreground region when
reconstructing the textures, while errors in performance
capture will also affect the accuracy of model-guided image
deformation. The reasons for artifacts are as follows.

1) The segmentation of depth is not accurate enough
without the use of chroma-key backgrounds. This is
the main reason, because the depth boundary directly
affects the boundary of the synthesized frame (please
see Sections IV-B and VI-A). We use a common
segmentation method [39] for Kinect to segment the
depth. Even using manual segmentation, it is difficult
to ensure the boundary consistency for all the motions
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due to the depth accuracy of Kinect, especially for the
hair.

2) For database setup, we did not use a special design
for uniform lighting. Instead, we capture the data in
the normal official environment with several fluorescent
lights on the ceiling, which leads to some highlights and
inconsistent color on the actor, particularly on the face.

The above analysis can be verified from the experiment using
the data set from [7], in which there is no such artifact
for our method because the data set in [7] is captured with
a chroma-key background and uniform lighting. If a more
accurate depth camera is used, the reconstructed mesh and the
recovered texture will be better. However, we did not involve
post-processing such as temporally blending and did not use
an expensive depth camera, because we want to demonstrate
the possibility of achieving animation videos in a simple way
of using a single cheap RGB-D camera and capturing the
database in a usual office environment.

In our experiments, we only use nine data sets and usually
only three data sets are used for video synthesis after retrieval.
If the new query motion is very different from the database
motions, adding more data sets with similar kind of motions
might be helpful.

The main limitation of our approach is the computational
complexity of the STR method. We run the algorithm on a
laptop with an Intel(R) Core(TM) i5-4200M 2.5-GHz CPU
and 4.0-GB RAM. The running time is about 10 min/frame,
which is not suitable for real-time applications.

Our method does not include color correction and relighting.
We try to minimize the color difference of different data sets
by using uniform lighting when capturing the data set images.
In future work, multisource co-color-correction methods can
be used to adjust the colors of different database images to
be consistent, and intrinsic image decomposition methods can
be adopted together with relighting techniques to increase the
realism of the generated video [40].

VIII. CONCLUSION

In this paper, we present a new photorealistic animation
method using a single RGB-D camera. Based on a small
database with some basic motions, we create a plausible
video of an actor performing a new motion. We obtain
more accurate deformed meshes for marker-less performance
capture based on sparse representation. We also propose
a sparse reconstruction method for textures using adaptive
weighted low-rank matrix completion, which is less sensitive
to noise and outliers. Our system is cheap and nonintrusive.
We demonstrate the effectiveness of the proposed method on
a public data set and our captured data sets. The potential
of our method is verified on an extreme case in Fig. 6: all
frames of the new motion were synthesized from the same
frame while the visual quality is still quite good. Our method
achieves compelling animations, despite the poor quality of the
input database.
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