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Chromosome 10q24.32-q24.33 is one of the most robustly

supported risk loci to emerge from genome-wide association

studies (GWAS) of schizophrenia. However, extensive linkage

disequilibrium makes it difficult to distinguish the actual

susceptibility gene(s) at the locus, limiting its value for

improving biological understanding of the condition. In the

absence of coding changes that can account for the associa-

tion, risk is likely conferred by altered regulation of one or

more genes in the region. We, therefore, used highly sensitive

measures of allele-specific expression to assess cis-regulatory

effects associated with the two best-supported schizophrenia

risk variants (SNP rs11191419 and indel ch10_104957618_I/

rs202213518) on the primary positional candidates BORCS7,

AS3MT, CNNM2, and NT5C2 in the human brain. Heterozy-

gosity at rs11191419 was associated with increased allelic

expression of BORCS7 and AS3MT in the fetal and adult

brain, and with reduced allelic expression of NT5C2 in the

adult brain. Heterozygosity at ch10_104957618_I was associ-

ated with reduced allelic expression of NT5C2 in both the

fetal and adult brain. Comparisons between cDNA ratios in

heterozygotes and homozygotes for the risk alleles indicated

that cis-effects on NT5C2 expression in the adult dorsolateral

prefrontal cortex could be largely accounted for by genotype

at these two risk variants. While not excluding effects on

other genes in the region, this study implicates altered neural

expression of BORCS7, AS3MT, and NT5C2 in susceptibility

to schizophrenia arising from genetic variation at the chro-

mosome 10q24 locus.

� 2016 The Authors. American Journal of Medical Genetics Part B: Neuro-

psychiatric Genetics Published by Wiley Periodicals, Inc.
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INTRODUCTION

Chromosome 10q24.32-q24.33 is one of the best-supported

genetic risk loci to arise from large-scale genome-wide association

studies (GWAS) of schizophrenia [Schizophrenia Psychiatric
ropsychiatric Genetics Published by Wiley Periodicals, Inc. 806
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Genome-Wide Association Study Consortium, 2011; Ripke et al.,

2013; Schizophrenia Working Group of the Psychiatric Genomics

Consortium, 2014]. Variation at this locus also exhibits genome-

wide significant association with the five disorders included in

the Psychiatric Genomics Consortium combined [Cross-Disorder

Group of the Psychiatric Genomics Consortium, 2013], suggesting

that it increases susceptibility to psychiatric disorders in general.

However, like many other loci identified by schizophrenia

GWAS, extensive linkage disequilibrium in the region results

in association signals spanning multiple genes (Fig. 1), making it

difficult to predict the actual susceptibility gene(s) at the locus.

As with the majority of genome-wide significant signals for

schizophrenia, the chromosome 10q24 variants exhibiting strongest

evidence for association are in non-coding sequence [Schizophrenia

Working Group of the Psychiatric Genomics Consortium, 2014].

These variants do not appear to index variation influencing protein

structure, and are therefore likely to confer risk for schizophrenia

through effects on the expression of one or more genes in the

region. Measures of allele-specific expression provide a powerful

means of assessing such cis-regulatory influences, because they allow

the level of gene expression fromchromosomes carrying the risk and

non-risk alleles of a given variant to be compared simultaneously

within individual samples [Bray et al., 2003a]. This approach

typically makes use of exonic (i.e., expressed) single nucleotide

polymorphisms (SNPs) in genes of interest as allele-specific tags,

allowing theRNAtranscribed fromeachparental chromosome tobe

distinguished and relatively quantified in individual heterozygotes

[Yan et al., 2002]. Amajor advantage of thismethodover traditional

expression quantitative trait loci (eQTL) approaches based on total
FIG. 1. Genetic association with schizophrenia in a region of strong linka

by Ricopili (http://www.broadinstitute.org/mpg/ricopili/) using the PGC_SC

the Psychiatric Genomics Consortium [2014] study. Positions of rs11191

of genome-wide significance (P< 5� 10�8) is indicated by a green horiz

showing most significant association with schizophrenia (rs11191419) a

online version of this article, available at http://wileyonlinelibrary.com/jo
gene expression is that it effectively controls for tissue variables such

as RNA quality as well as confounding effects of other genetic and

environmental variables, since these influences will usually act on

both alleles to the same extent [Bray et al., 2003b].

In order to identify genes that are differentially cis-regulated in

associationwith schizophrenia risk variants on chromosome 10q24

(and therefore genes at the locus that potentially confer suscepti-

bility to the disorder), we assessed genotypic effects on the

allele-specific expression of the genes encompassed by the strongest

schizophrenia association signal: BORCS7 (formerly C10ORF32),

AS3MT, CNNM2, and NT5C2 (Fig. 1). As cis-effects on gene

expression can be specific to developmental stage [Hill and

Bray, 2012; Tao et al., 2014] and brain region [Buonocore et al.,

2010; Gibbs et al., 2010; Ramasamy et al., 2014], we examined

effects in the human fetal brain as well as in three adult brain

regions implicated in the pathophysiology of schizophrenia: dor-

solateral prefrontal cortex (DLPFC), hippocampus, and caudate.

MATERIALS AND METHODS

Brain Samples
Ethical approval for this study was provided by The Joint South

London and Maudsley and The Institute of Psychiatry NHS

Research Ethics Committee (REF: PNM/12/13-102). Post-mortem

human brain tissue from 116 unrelated adults (mean age at death:

72 years; range: 18–102 years) was obtained from the London

Neurodegenerative Diseases Brain Bank (UK). All subjects were

free from psychiatric or neurological diagnosis at the time of

death. Whole brain from 95 second trimester human fetuses
ge disequilibrium on chromosome 10q24.32-q24.33. Plot generated

Z52_may13 dataset described in the Schizophrenia Working Group of

419 and ch10_104957618_I are indicated by triangles. The threshold

ontal line. Color key indicates r2 between the variant at the locus

nd other variants in the region. [Color figure can be seen in the

urnal/ajmgb]

http://www.broadinstitute.org/mpg/ricopili/
http://wileyonlinelibrary.com/journal/ajmgb]
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(13–23 post-conception weeks) was provided by the MRC—

Wellcome Trust Human Developmental Biology Resource (UK).

The demographics of samples assayed for each candidate gene are

provided in Supplementary Table S1. Genomic DNA was initially

extracted from all samples using standard phenol/chloroform

procedures, and was used to genotype for the schizophrenia risk

variants and the exonic SNPs used to assay the allele-specific

expression of each gene. Total RNA was extracted from each

brain sample using Tri-Reagent (Life Technologies, Paisley, UK),

according to manufacturer’s instructions. RNA samples were

treated with TURBO DNase (Life Technologies) prior to reverse

transcription and did not yield a PCR product in the absence of a

reverse transcription step. Approximately 1mg of total RNA was

reverse transcribed with SuperScript III and randomdecamers (Life

Technologies). Resulting cDNA was diluted 1:7 prior to use.
Genotyping
In order to identify heterozygotes informative for the allele-specific

expression assays, all samples were initially genotyped for the exonic

(expressed) SNPs rs4917985, rs1046778, rs2275271, and rs3740387,

tagging BORCS7, AS3MT, CNNM2, and NT5C2 transcripts, respec-

tively.Genotypingof exonic SNPswasperformedby single base primer

extension using SNaPshot1 chemistry (Life Technologies). All 116

adult and 95 fetal samples were also genotyped for schizophrenia risk

SNP rs11191419 and indel ch10_104957618_I (rs202213518). These

were selected for study because they are the two independent (r2< 0.2)

variants at the chromosome 10q24 locus showing most significant

association with schizophrenia (rs11191419, P¼ 6.2� 10�19;

ch10_104957618_I, P¼ 1.06� 10�13) in the largest GWAS of the

disorder published to date [Schizophrenia Working Group of the

Psychiatric Genomics Consortium, 2014] (Fig. 1). SNP rs11191419

was genotyped by single base primer extension using SNaPshot1

chemistry (Life Technologies). The ch10_104957618_I indel was gen-

otyped by Sanger sequencing using BigDye Terminator v3.1 (Life

Technologies) in the forward and reverse direction. Primer sequences

areprovided in SupplementaryTable S2.Wehadpreviously genotyped

all adult samples for rs7085104 and rs11191580, two chromosome

10q24 SNPs reported as genome-wide significant in earlier GWAS of

schizophrenia [Schizophrenia Psychiatric Genome-Wide Association

Study Consortium, 2011; Ripke et al., 2013], using SNaPshot1 primer

extension (Life Technologies). SNP rs7085104 is in strong linkage

disequilibrium (LD)with rs11191419 in our samples (r2¼ 0.79), while

SNP rs11191580 is in strong LD with ch10_104957618_I (r2¼ 0.82),

suggesting that they index the same functional risk variation.Therewas

no significant (P< 0.05) deviation fromHardy-Weinberg equilibrium

in the genotype distribution of any of the genotyped variants.
Assessment of Allele-Specific Expression
To investigate variable cis-effects on the expression of genes at the

chromosome 10q24 locus, we used a common exonic SNP in each

gene to distinguish the RNA transcribed from each chromosomal

copy. Expressed SNPs rs4917985, rs1046778, rs2275271, and

rs3740387 were used to tag RNA transcripts for BORCS7,

AS3MT, CNNM2, and NT5C2, respectively. The allele-specific

expression assay was performed using brain cDNA alongside the
corresponding genomic DNA from the same subjects. Sequences

containing the exonic tag SNPs were PCR-amplified using primers

based on single exon sequence, each producing the same amplicon

from both cDNA and genomic DNA (Supplementary Table S2).

Four technical replicates for each cDNA and genomic DNA sample

were assayed for each expressed SNP, with one H2O-negative

control on each plate. PCR products were treated with shrimp

alkaline phosphatase and exonuclease I (New England Biolabs,

Hitchin, UK) to inactivate nucleotides and primers for down-

stream steps. Alleles of each expressed SNP were discriminated

and relatively quantified by SNaPshot1 primer extension (Life

Technologies) using extension primers detailed in Supplementary

Table S2. Reaction products were electrophoresed on an Applied

Biosystems 3130xl Genetic Analyzer and peak heights of allele-

specific extended primers were determined using GeneMarker

software (SoftGenetics, State College, PA). Peak heights represent-

ing the relative abundance of each allele were used to calculate an

allele ratio for each reaction. Allele ratios were calculated for each

expressed SNP by dividing peak height for the expressed allele

that is usually in phase with the risk alleles of rs11191419/

ch10_104957618_I by the peak height of the expressed allele

that is usually in phase with the non-risk alleles of these variants

in samples that were heterozygous at the expressed SNP and the risk

variant. For each plate, the average allele ratio from all genomic

DNA samples was used as a correction factor for all genomic DNA

and cDNA allele ratios, since this can be assumed to reflect a perfect

1:1 ratio of the two alleles and can therefore be used to correct for

any inequalities in allelic representation specific to the assay [Bray

et al., 2003b]. The average of the four corrected allele ratios for

genomic DNA and cDNA from each sample was calculated

and used for statistical comparisons. Any samples showing poor

reproducibility in cDNA allele ratios (standard deviation/mean

> 0.25) were excluded from further analyses.

Assessment of Association Between Schizophrenia
Risk Alleles and Allele-Specific Expression
Predicted haplotypes between the schizophrenia risk variants

(rs11191419 and ch10_104957618_I) and the expressed SNP for

each gene were calculated based on combined genotype data from

the 116 adult and 95 fetal samples using Haploview 4.2 software

[Barrett et al., 2005]. Predicted haplotype frequencies were

used to infer phase between the risk alleles of rs11191419/

ch10_104957618_I and the alleles of the exonic SNPs, so that

the effect of the risk alleles on gene expression (i.e., up- or down-

regulation) could be determined, as described previously [Bray

et al., 2005]. Specifically, for samples that were heterozygous at

both the exonic SNP and a risk variant, we calculated the frequency

of the two possible diplotypes constructed from the two alleles of

the exonic SNP and the two alleles of the risk variant on the basis

of predicted haplotype frequencies and the assumption of Hardy

Weinberg equilibrium using the equations:

Frequency diplotype 1 ¼ 2� f requency haplotype A� f requency haplotype B

Frequency diplotype 2 ¼ 2� f requency haplotype C� f requency haplotype D

The probability that an individual who is heterozygous at both the

exonic SNP and the risk variant is carrying diplotype 1 (comprising
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haplotypes A and B, rather than haplotypes C and D) is, therefore,

calculated by dividing the predicted frequency of diplotype 1 by

the combined frequency of both possible diplotypes.

Due to strong linkage disequilibrium in the region, the risk

alleles of rs11191419 and ch10_104957618_I would nearly always

be carried on the same chromosome as one of the alleles of each

exonic SNP. As an initial test of whether the risk alleles were

associated with a relative increase or decrease in the allelic expres-

sion of each gene, we therefore compared cDNA allele ratios in

samples that were heterozygous for each risk variant (where the risk

alleles would usually be carried on the same chromosome as one of

the expressed alleles and the non-risk alleles would be usually

carried on the same chromosome as the alternative expressed allele)

with the allele ratios observed in genomicDNA (representing a true

1:1 ratio of the two alleles). As a more specific test of whether risk

genotype could account for altered cis-regulation of each candidate

gene, we also compared cDNA allele ratios between risk allele

heterozygotes (where any cis-regulatory effects of that variant will

differ) and homozygotes (where any cis-regulatory effects of the

variant will be the same), as performed previously [Bray et al.,

2003a, 2005; Hill and Bray, 2012]. Due to small numbers of

homozygotes for rs11191419 in assayed exonic heterozygotes,

these latter analyses were restricted to comparisons between

ch10_104957618_I genotypes. All comparisons were performed

by t-tests using SPSS 22.0 software. Where differences in variance

were detected between comparison groups (Levene’s test P< 0.05),

we used t-tests that assumed unequal variance. All tests were two-

tailed and P-values < 0.05 were considered to be significant. As a

more stringent measure of the significance of each finding, we

additionally applied a Bonferroni correction for the number of tests

performed in each analysis. For the comparisions between allele

ratios in cDNA from risk allele heterozygotes and those in genomic

DNA, we corrected observed P-values for 32 tests (assessing the

effects of heterozygosity at two risk variants on the allelic expres-

sion of four genes in four brain tissues). For the comparisons

between cDNA ratios observed in heterozygotes and homozygotes

for ch10_104957618_I, we corrected observed P-values for 16 tests

(assessing the effect of ch10_104957618_I genotype on four genes

in four brain tissues).
RESULTS

One hundred and sixteen adult and 95 fetal human brains were

initially genotyped for schizophrenia risk SNP rs11191419

and indel ch10_104957618_I (rs202213518), as well as exonic

SNPs in BORCS7 (rs4917985), AS3MT (rs1046778), CNNM2

(rs2275271), and NT5C2 (rs3740387), which could serve as

allele-specific tags for the four candidate genes in heterozygous

samples. Frequencies of the schizophrenia risk alleles in our

samples approximated those observed in the control sample of

the recent Schizophrenia Working Group of the Psychiatric

Genomics Consortium [2014] GWAS. The risk (T) allele of

rs11191419 had a reported frequency of 0.64 in the GWAS

control samples and a frequency of 0.64 in our combined fetal

and adult brain samples, while the risk (deletion) allele of

ch10_104957618_I had a reported frequency of 0.92 in the

GWAS control samples and a frequency of 0.90 in our samples.
Predicted haplotype frequencies in our entire brain collection

allowed us to infer phase between the risk alleles of rs11191419/

ch10_104957618_I and the alleles of the exonic SNPs used to assess

the allelic expression of each candidate gene (see Materials and

Methods). The strong linkage disequilibrium (D0) in the region

meant that, in individuals who were heterozygous at a risk variant

as well as an exonic variant, the risk allele would nearly always be

carried on the same chromosome as a particular allele of the exonic

SNP. An assessment of whether the risk alleles were associated with

a general increase or decrease in the allelic expression of each

candidate gene could, therefore, be made by comparing cDNA

allele ratios in individuals who were heterozygous for the risk

variant with allele ratios observed in genomic DNA (representing

the true 1:1 ratio of the two alleles) [e.g., Bray et al., 2003a, 2005].

Allelic expression data at SNP rs4917985, used to tagBORCS7, in

heterozygotes for rs11191419 and ch10_104957618_I, are shown in

Figure 2A. The C-allele of rs4917985 was predicted to be in phase

with the risk (T-) allele of rs11191419 on>99% of occasions when

the subject was heterozygous at both loci. Allele ratios in cDNA

from rs11191419 heterozygotes indicated a mean increase in

expression of the allele carried on the same chromosome as the

risk allele, relative to that carried with the non-risk allele, in all

assayed tissues (DLPFC: 12%, hippocampus: 8%, caudate: 11%,

fetal brain 5%). cDNA allele ratios in all assayed tissues differed

significantly from allele ratios observed in genomic DNA (all

P< 0.05). Although P-values survived Bonferroni correction for

32 independent tests only in the DLPFC (P¼ 0.001, corrected

P¼ 0.032), BORCS7 cDNA ratios did not differ significantly from

those obtained from rs11191419 heterozygotes in any other adult

brain region (all P> 0.05). The C-allele of rs4917985 was also

predicted to be in phase with the risk (deletion) allele of

ch10_104957618_I on >99% of occasions when the subject was

heterozygous at both loci. However, allele ratios in cDNA from

ch10_104957618_I heterozygotes were close to the 1:1 ratio of

equal allelic expression, and did not significantly differ from those

observed in genomic DNA in any tissue.

Allelic expression data at SNP rs1046778, used to tag AS3MT,

in heterozygotes for rs11191419 and ch10_104957618_I, are

shown in Figure 2B. The T-allele of rs1046778 was predicted

to be in phase with the risk (T-) allele of rs11191419 on>94% of

occasions when the subject was heterozygous at both loci. As for

BORCS7, cDNA allele ratios in rs11191419 heterozygotes indi-

cated a mean increase in expression of the AS3MT allele carried

on the same chromosome as the risk allele, compared to that

carried with the non-risk allele, in all assayed tissues (DLPFC:

14%, hippocampus: 36%, caudate: 23%, fetal brain 40%). cDNA

allele ratios differed significantly from allele ratios observed in

genomic DNA in fetal brain and in adult hippocampus and

caudate (P< 0.05 in all tissues). Although P-values survived

Bonferroni correction for 32 independent tests only in fetal brain

(P¼ 1.12� 10�5, corrected P¼ 0.00036), AS3MT cDNA ratios

did not differ significantly from those observed in rs11191419

heterozygotes in adult hippocampus or caudate (P> 0.05). The

T-allele of rs1046778 was predicted to be in phase with the risk

(deletion) allele of ch10_104957618_I on >99% of occasions

when the subject was heterozygous at both loci. Relative over-

expression of the AS3MT allele in phase with the risk allele was



FIG. 2. Allelic expression of BORCS7 (A), AS3MT (B), CNNM2 (C), and NT5C2 (D) in heterozygotes for schizophrenia risk variants rs11191419

and ch10_104957618_I. Allelic expression ratios are calculated by dividing measures of the expressed allele that is generally in phase with

the schizophrenia risk alleles by measures of the expressed allele that is generally in phase with the non-risk alleles for each susceptibility

variant. All raw cDNA ratios are divided by the average allele ratio in genomic DNA (representing the true 1:1 allele ratio) to correct for any

inequalities in allelic representation specific to each assay. Data points represent the average of four corrected measures of cDNA allele ratio

per sample. Mean corrected cDNA allele ratios are indicated by horizontal lines. The dotted horizontal line indicates the mean genomic DNA

(1:1) ratio of the two alleles. Comparisons between cDNA allele ratios in heterozygotes for the risk variants and allele ratios in genomic

DNA: �< 0.05, ��P< 0.05 when Bonferroni corrected for 32 tests.
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less pronounced than in rs11191419 heterozygotes (DLPFC: 7%,

hippocampus: 24%, caudate: 14%, fetal brain 14%). While allele

ratios in ch10_104957618_I heterozygotes differed significantly

between cDNA and genomic DNA in hippocampus, caudate and

fetal brain (all P< 0.05), no observation survived Bonferroni

correction.
Allelic expression data at SNP rs2275271, used to tagCNNM2, in

heterozygotes for rs11191419 and ch10_104957618_I, are shown in

Figure 2C. The A-allele of rs2275271 was predicted to be in phase

with the risk (T-) allele of rs11191419 on>98% of occasions when

the subject was heterozygous at both loci. However, unlike cDNA

allele ratios in rs11191419 heterozygotes for BORCS7 and AS3MT,
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those for CNNM2 were close to the 1:1 ratio of equal allelic

expression, only differing significantly from those in genomic

DNA in fetal brain (P¼ 0.012), where a small (5%) relative

decrease in the mean expression of the allele generally in phase

with the risk allele of rs11191419 was observed. The A-allele of

rs2275271 was predicted to be in phase with the risk (deletion)

allele of ch10_104957618_I on >99% of occasions when the

subject was heterozygous at both loci. Heterozygotes for

ch10_104957618_I also displayed little allelic expression imbalance

of CNNM2, with cDNA allele ratios only differing significantly

from those in genomic DNA in the adult DLPFC, where amean 5%

decrease in expression of the allele usually in phase with the risk

allele was observed (P¼ 0.015). No allelic expression imbalance of

CNNM2 associated with heterozygosity for the assayed schizo-

phrenia risk variants survived Bonferroni correction.

Allelic expression data at SNP rs3740387, used to tag NT5C2, in

heterozygotes for rs11191419 and ch10_104957618_I, are shown in

Figure 2D. The C-allele of rs3740387 was predicted to be in phase

with the risk (T-) allele of rs11191419 on >98% of occasions when

the subject was heterozygous at both loci. In rs11191419 hetero-

zygotes, expression of the NT5C2 allele generally in phase with the

risk allele was reduced in all assayed adult brain regions (mean

DLPFC: 11%, hippocampus: 7%, caudate: 7%), with cDNA allele

ratios differing significantly from those in genomic DNA (all

P< 0.05). Observed P-values survived Bonferroni correction for

32 independent tests in theadultDLPFC(P¼ 6.29� 10�7, corrected

P¼ 2.01� 10�5) and caudate (P¼ 0.001, correctedP¼ 0.032),with

a less significant imbalance of allelic expression observed in the

hippocampus (P¼ 0.003, corrected P¼ 0.083). The C-allele of

rs3740387 was predicted to be in phase with the risk (deletion)

allele of ch10_104957618_I on>99% of occasions when the subject

was heterozygous at both loci. Expression of the NT5C2 allele in

phase with the ch10_104957618_I risk allele was also reduced in all

assayed adult brain regions (mean DLPFC: 15%, hippocampus:

12%, caudate: 13%), with highly significant differences in allele

ratios observed between cDNA and genomic DNA that survived

Bonferroni correction in all areas (DLPFC: P¼ 1.03� 10�4, cor-

rected P¼ 0.003; hippocampus: P¼ 2.64� 10�6, corrected

P¼ 8.46� 10�5; caudate P¼ 8.11� 10�5, corrected P¼ 0.0025).

Unlike cDNA ratios in rs11191419 heterozygotes, those in

ch10_104957618_I heterozygotes also significantly differed from

genomic DNA in fetal brain (P¼ 0.05), with the risk allele again

associated with reduced NT5C2 allelic expression, although this

latter observation did not survive Bonferroni correction.

Although comparisons between cDNA and gDNA allele ratios in

heterozygous risk allele carriers under conditions of high-linkage

disequilibrium allow an assessment of whether the risk allele is

associated with a general increase or decrease in allelic expression

[Bray et al., 2003a, 2005;Hill andBray, 2012], theydonot specifically

test whether genotype at the risk variant could directly account for

altered cis-regulation of the gene. For this, it is necessary to compare

cDNA allele ratios in heterozygotes for the risk variant (where any

cis-regulatory effects of the two alleles will differ) with those in

homozygotes for the risk variant (where any cis-regulatory effects of

the variant will be equal) [Bray et al., 2003a, 2005; Williams et al.,

2011;Hill andBray, 2012]. Small genotype groupsprecluded suchan

assessment of cis-regulatory effects of rs11191419, but genotype at
ch10_104957618_I was associated with significant effects on the

allelic expression of BORCS7 in fetal brain, adult DLPFC, adult

hippocampus and adult caudate, AS3MT in the fetal brain and

adult caudate, and NT5C2 in the fetal brain, adult DLPFC and

adult hippocampus. P-values survived Bonferroni correction for 16

tests for BORCS7 in the adult hippocampus (P¼ 0.001, corrected

P¼ 0.016) and fetal brain (P¼ 0.002, corrected P¼ 0.032), AS3MT

in the fetal brain (P¼ 0.002, correctedP¼ 0.032), andNT5C2 in the

adult DLPFC (P¼ 0.003, corrected P¼ 0.048). Mean cDNA allele

ratios at the four candidate genes in ch10_104957618_I heterozy-

gotes and homozygotes are shown in Table I. These analyses showed

that the risk allele of ch10_104957618_I is associated with a down-

regulation of both BORCS7 and AS3MT, reducing the general

overexpression of these genes associated with the risk allele of

rs11191419, with less allelic expression imbalance observed in

heterozygotes for ch10_104957618_I than in homozygotes.

This is consistent with the initial comparisons between allele ratios

in cDNA and genomic DNA, which showed less pronounced

allelic expression imbalance of BORCS7 and AS3MT in

ch10_104957618_Iheterozygotes than in rs11191419heterozygotes.

In contrast, the risk alleles of rs11191419 and ch10_104957618_I

appear both to be associated with reduced expression of NT5C2.

Indeed, genotype at rs11191419 and ch10_104957618_I could

largely account for observed allelic expression imbalance of

NT5C2 in the adult DLPFC (Fig. 3), where samples that were

heterozygous at both risk loci showed a mean 16% reduction in

NT5C2 allelic expression, while homozygotes at both risk loci

displayed cDNA allele ratios close to the genomic 1:1 ratio (com-

parison between cDNA ratios in heterozygotes and homozygotes at

both loci: P¼ 0.007).
DISCUSSION

Variants on chromosome 10q24.32-q24.33 exhibit robust associa-

tion with schizophrenia [Schizophrenia Psychiatric Genome-Wide

Association Study Consortium, 2011; Aberg et al., 2013; Ripke

et al., 2013; Schizophrenia Working Group of the Psychiatric

Genomics Consortium, 2014], but, like many regions implicated

by GWAS, the actual susceptibility genes cannot be easily resolved

through genetic data alone. Using a highly sensitive method for

assessing variable cis-effects on gene expression [Yan et al., 2002;

Bray et al., 2003a,b], we have found that several of the principal

candidate genes at this locus exhibit altered cis-regulation in the

developing and adult human brain in association with the most

strongly supported schizophrenia risk variants. Largest and most

consistent effects were observed on BORCS7, AS3MT, andNT5C2,

providing functional support for these as genuine susceptibility

genes for schizophrenia.

Our data indicate a complex pattern of cis-regulation at

the chromosome 10q24 locus. The indel ch10_104957618_I

(rs202213518) is located 4,555 bp upstream of the predicted tran-

scription start site of NT5C2 transcript variant 1 (NM_012229).

ENCODEChIP-seq data indicate that ch10_104957618_I resides in

an H3K27ac-marked region that is bound by multiple transcrip-

tion factors, suggesting direct effects of this variant on NT5C2

transcription. However, genotype at this variant was also found to

influence the allelic expression of BORCS7 and AS3MT, with the



TABLE I. Average Corrected cDNA Allele Ratios at Expressed SNPs in BORCS7, AS3MT, CNNM2, and NT5C2 According to Genotype at
Schizophrenia Risk Variant ch10_104957618_I

Gene (expressed SNP) Genotype at ch10_104957618_I Adult DLPFC Adult hippocampus Adult caudate Fetal whole brain
BORCS7 (rs4917985; C/Ta) Heterozygous 0.99 0.95 0.98 0.99

Homozygous 1.17 1.12 1.15 1.06

P het versus hom 0.006 0.001� 0.004 0.002�

AS3MT (rs1046778; T/C) Heterozygous 1.07 1.24 1.14 1.14

Homozygous 1.25 1.52 1.31 1.42

P het versus hom 0.235 0.187 0.034 0.002�

CNNM2 (rs2275271; A/G) Heterozygous 0.95 0.96 1.04 0.98

Homozygous 0.99 0.98 1.02 0.95

P het versus hom 0.095 0.629 0.527 0.342

NT5C2 (rs3740387; C/T) Heterozygous 0.85 0.88 0.87 0.93

Homozygous 0.94 0.95 0.93 0.99

P het versus hom 0.003� 0.014 0.072 0.016

aAllele ratios at each expressed SNP were calculated by dividing measures of the allele generally in phase with the schizophrenia risk alleles by measures of the allele generally in phase with the non-risk
alleles, as indicated.
�P-values surviving Bonferroni correction for 16 tests.
Uncorrected P-values < 0.05 are indicated in bold.
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risk allele (in contrast to that of rs11191419) associated with

reduced allelic expression of these genes. Similarly, heterozygosity

for rs11191419, located within 2 kb of the transcriptional start site

of BORCS7, was found to be associated with allelic expression
FIG. 3. Allele ratios at expressed NT5C2 SNP rs3740387 in the

DLPFC of adult subjects who are homozygous at both

rs11191419 and ch10_104957618_I (6 M, 3 F, average age¼ 64

years) and in adult subjects who are heterozygous at both

variants (9 M, 4 F, average age¼ 70 years). Data points

represent the average of four corrected measures of allele ratio

in genomic DNA or cDNA per sample. Mean corrected allele ratios

are indicated by horizontal lines. The dotted horizontal line

indicates the mean genomic DNA (1:1) ratio of the two alleles.

Allele ratios in cDNA from subjects who are homozygous at both

risk variants do not significantly differ from those in genomic

DNA. Allele ratios in cDNA from subjects who are heterozygous

at both risk variants differ significantly from those in genomic

DNA and from those in cDNA from homozygotes at both

variants. ��< 0.01, ���P< 0.001.
imbalance ofBORCS7,AS3MT, andNT5C2. This could result from

long-range enhancer effects of these variants (or variants in linkage

disequilibrium with them), transcriptional interference on adja-

cent gene expression, or linkage disequilibrium with other func-

tional variants at the chromosome 10q24 locus.

It appears that the risk alleles of rs11191419 and

ch10_104957618_I have opposing effects on the expression of

both BORCS7 and AS3MT, with the risk (T-) allele of rs11191419

associated with increased allelic expression and the risk (deletion)

allele of ch10_104957618_I associated with decreased allelic expres-

sion of these genes. This is consistent with the risk allele of

ch10_104957618_I conferring susceptibility to schizophrenia

through effects on a different gene, such as NT5C2. However, the

risk allele of ch10_104957618_I appears insufficient to fully coun-

teract the increased expression of AS3MT associated with the

risk allele of rs11191419, with allele ratios in cDNA from

ch10_104957618_I heterozygotes remaining significantly higher

than the genomic 1:1 ratio in most assayed tissues. In contrast,

both risk alleles of rs11191419 and ch10_104957618_I are associated

with reduced allelic expression ofNT5C2, and appear to account for

the majority of cis-regulatory effects on this gene observed in the

adult DLPFC. It is possible that the strong association between

rs11191419 and schizophrenia is due to it indexing functional risk

variation affecting the regulation of multiple genes at the locus.

Although only some observations survived Bonferroni correc-

tion for multiple testing, we urge caution in drawing conclusions

as to the relative importance of each finding on the basis of

P-values alone, since the number of subjects differed between

analyses due to differences in expressed allele frequency between

candidate genes and the availability of brain tissue from each

region. As can be seen in Figure 2, for BORCS7, AS3MT, and

NT5C2 at least, we observed a general consistency in the effects of

risk variant heterozygosity on allelic expression across the brain

tissues analyzed.
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There are no previous data assessing the impact of

ch10_104957618_I genotype on gene expression. However, our

findings for rs11191419 appear consistent with existing data gen-

erated by eQTL and bioinformatic approaches. The Schizophrenia

Working Group of the Psychiatric Genomics Consortium study

[2014] included analyses that sought to relate credible GWAS risk

variants to genome-wide eQTL data, finding rs11191419 to be in

strong linkage disequilibrium (r2¼ 0.85) with an eQTL SNP

(rs7096169) influencingAS3MT expression in blood. Using several

brain eQTL datasets, Roussos et al. [2014] identified SNPs influ-

encing BORCS7 (C10ORF32), AS3MT, WBP1L, and NT5C2

expression that are in linkage disequilibrium with rs7085104,

identified in an earlier GWAS of schizophrenia [Ripke et al.,

2013], which we found to be in strong linkage disequilibrium

(r2¼ 0.79)with rs11191419 in the samples genotyped in the present

study. These authors also assessed whether schizophrenia-

associated eQTLs were located in predicted cis-regulatory elements

(CREs); expression of BORCS7 and AS3MT was reported to be

influenced by SNPs within individual CRE, while expression of

NT5C2 was associated with SNPs in 14 such elements [Roussos

et al., 2014]. Most recently, a genome-wide analysis of DNA

methylation QTL in the human fetal brain has indicated that

rs7085104 and SNPs in linkage disequilibrium with it are QTL

for methylation probes within AS3MT [Hannon et al., 2016],

consistent with our observation of a large allelic expression imbal-

ance of AS3MT in association with rs11191419 heterozygosity in

the fetal brain.

Our study is the first to specifically explore effects of chromo-

some 10q24 schizophrenia risk variants on gene expression in the

human fetal brain. Microarray data indicate that AS3MT and

NT5C2 are both expressed at a higher level in the prenatal human

brain compared to that of the adult [Kang et al., 2011; Birnbaum

et al., 2015]. We find that heterozygosity for rs11191419 is

associated with particularly pronounced allelic expression

imbalance of AS3MT in the fetal brain, with an average 40%

increase in expression of the AS3MT allele that is generally

carried on the same chromosome as the risk allele. We find

no evidence that NT5C2 expression is influenced by rs11191419

genotype in fetal brain, but we do observe small effects of

ch10_104957618_I genotype on NT5C2 allelic expression at

this early stage of development. These findings would therefore

appear consistent with an early neurodevelopmental component

to schizophrenia [Murray and Lewis, 1987; Weinberger, 1987],

although the observed persistence of effects in the adult brain

suggests an ongoing risk mechanism.

A limitation of our study is that it focused on a restricted number

of positional candidate genes at the chromosome 10q24.32-q24.33

locus. Although we selected the four candidates flanked by the two

best supported risk variants (Fig. 1), extended linkage disequilib-

rium and the possibility of long-range effects on gene regulation

[Sanyal et al., 2012] implicate several other known genes in the

region (e.g.,WBP1L,CYP17A1, INA,PCGF6). In addition, through

our use of exonic SNPs that typically tag multiple alternative

transcripts of a given gene, we might underestimate cis-regulatory

effects on individual transcripts, while missing effects on any

transcripts that do not include those SNPs. Some of these limi-

tations could be overcome by RNA sequencing, which can be used
to measure allele-specific (as well as total) expression of individual

transcripts on a genome-wide scale.

The neural functions of the genes implicated in this study remain

to be fully elucidated. BORCS7 encodes BLOC-1-related complex

subunit 7 (Diaskedin), part of the recently described BLOC-1-

related complex, which has been implicated in lysosomal function

and cell migration [Pu et al., 2015]. AS3MT encodes arsenic

methyltransferase, which has a known role in arsenic metabolism

[Sumi and Himeno, 2012], although its functions in the brain are

currentlyunclear.NT5C2 encodesa cytosolicpurine50-nucleotidase
(cytosolic 50-nucleotidase II, or cN-II) involved in cellular purine

metabolism [Itoh, 2013]. A purinergic hypothesis of schizophrenia

has been proposed to explain neurochemical as well as neuro-

developmental aspects of the disorder [Lara and Souza, 2000].

In summary, we have provided an assessment of cis-regulatory

effects associated with schizophrenia risk variants in a region of

extensive linkage disequilibrium on chromosome 10q24. We re-

port altered cis-regulation of BORCS7, AS3MT, and NT5C2 in

association with schizophrenia risk variation, implicating these as

genuine schizophrenia susceptibility genes at the locus. Further

characterization of these genes in the developing and adult brain is

now warranted in order to understand how perturbations in their

expression might confer risk for schizophrenia.
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