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SUMMARY 

An influx of leucocytes, particularly macrophages, into the glomerulus and cortical 

interstitium, is characteristic of most forms of progressive renal disease. Previous work 

in our lab has demonstrated that leucocyte adherence to primary cultures of human renal 

fibroblasts stimulated ICAM-1 induction (1). Induction was initiated as a result of the 

ICAM-1/ β2 integrin interaction, and was mimicked by crosslinking ICAM-1 with 

specific antibodies. The aim of my research was to examine the effect of 

leucocyte/fibroblasts interaction on ICAM-1 and HAS2 expression, and to investigate 

the mechanisms involved. I have shown induction of HAS 2 mRNA, the principal 

synthase involved in generation of the extracellular matrix polysaccharide hyaluronan 

(HA), in parallel with ICAM-1 in the fibroblasts. There were both cell-contact and 

soluble factor-mediated components to this activation. In addition there was an 

exponential rise in this induction when monocytes were activated. This was mediated by 

ICAM-1 on the fibroblast surface. Two major pro-inflammatory cytokines, TNFα and 

IL 1β, were shown to be  potential soluble factor involved.  

In conclusion, I was able to show two possible mechanisms through which mononuclear 

cells activate fibroblasts and induce ICAM 1 and HAS 2, thus perpetuating an 

inflammatory reaction.  The first was through interaction with ICAM-1 on the fibroblast 

surface the second was through the release of pro-inflammatory cytokines. 
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1.1 KIDNEYS – STRUCTURE AND FUNCTION 
	
Kidneys are retroperitoneal organs, normally 2 in number one on each side of the 

vertebral column. They are usually 11cm in length and 6 cm in width, and weigh 140g 

each. Despite being small in comparison to the rest of the human body, they account for 

receiving 20 to 25% of the cardiac output. This is about 10 times the coronary blood 

flow calculated per unit tissue weight (2). More than 90% of the blood supply goes to 

the outer cortex at a rate of 500ml/min per 100g of tissue. It then goes to the inner 

medulla, with a perfusion rate of approximately 100ml/min per 100g of tissue to the 

outer medulla and 20ml/min per 100g of tissue to the inner medulla (2). 

Each kidney has about 1 million nephrons to begin with, interspersed in the cortex and 

medulla and bound together with connective tissue containing extra cellular matrix, 

blood vessels, nerves and lymphatics. These nephrons are the functional unit of the 

kidneys. They consist of a filtering corpuscle and a tubular part, the main function of 

which is secretion and reabsorption. The renal corpuscle is made of the glomerulus, 

which is a tuft of arteriolar vessels and a capsule, called Bowman’s capsule, which 

surrounds the tuft. The Bowman’s capsule is a cup-shaped structure at the beginning of 

the tubular component of the nephron into which the glomerulus sits. The glomerulus 

receives its blood supply from an afferent arteriole. Once the solutes and water filter 

through the vessels into the Bowman’s space, the remaining blood leaves via the 

efferent arteriole.  The segment of the Bowman’s capsule towards the glomerular tuft 

provides the filtering component and has 3 layers. The first is the endothelial layer of 

the blood vessels, second is the glomerular basement membrane that is made of 

collagen and glycoproteins. This layer provides the main barrier to larger molecules 

such as albumin because of the smaller pores and negative charge it carries from high 

concentration of sialic acid and heparan sulphate. The third layer is formed of 

podocytes.  
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The tubular part of the nephron is divided into a proximal convoluted tubule (PCT), 

loop of Henle, Distal Convoluted Tubule (DCT) and a collecting system. The function 

of the proximal tubule is essentially reabsorption of filtrate in accordance with the needs 

of homeostasis, whereas the distal part of the nephron and collecting duct are mainly 

concerned with the detailed regulation of water, electrolyte, and hydrogen-ion balance. 

The loop of Henle is principally involved in maintaining the concentration gradient in 

the medulla, which is important for concentrating the urine. 
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Figure	1-1	Diagram	of	renal	corpuscle	structure	

	A	–	Renal	corpuscle	B	–	Proximal	tubule	C	–	Distal	convoluted	tubule	D	–	
Juxtaglomerular	apparatus	1.	Basement	membrane	(Basal	lamina)	2.	Bowman's	
capsule	–	parietal	layer	3.	Bowman's	capsule	–	visceral	layer	3a.	Pedicels	(Foot	
processes	from	podocytes)	3b.	Podocyte	4.	Bowman's	space	(urinary	space)	5a.	
Mesangium	–	Intraglomerular	cell	5b.	Mesangium	–	Extraglomerular	cell	6.	
Granular	cells	(Juxtaglomerular	cells)	7.	Macula	densa	8.	Myocytes	(smooth	
muscle)	9.	Afferent	arteriole	10.	Glomerulus	Capillaries	11.	Efferent	arteriole	
From	
https://en.wikipedia.org/wiki/Glomerulus_(kidney)#/media/File:Renal_cor
puscle.svg	
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Figure	1-2	Cross	section	of	a	Human	Kidney 

From: Human Physiology, 3rd edition, Pocock, Gillian; Richards, Christopher D. 
 
Figure 1.2 shows a cross section of one of the human kidneys. As mentioned before, the 

kidney has an outer cortex and inner medulla. Cone-shaped renal pyramids form the 

renal medulla deep to the renal cortex. The renal pyramids are aligned with their bases 

facing outward toward the renal cortex and their apices point inward toward the centre 

of the kidney. Each apex connects to a minor calyx, a small hollow tube that collects 

urine. The minor calyces merge to form larger major calyces, which further merge to 

form the hollow renal pelvis at the centre of the kidney. The renal pelvis exits the 

kidney at the renal hilum, where urine drains into the ureter. The hilum is the 

indentation in the concave side of the kidney that provides a space for the renal artery, 

renal vein, and ureter to enter the kidney. 
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The kidneys make on an average 1 to 1.5L urine every 24 hours, filtering up to 200L of 

blood in this time. They manage multiple functions, including fluid and electrolyte 

balance, excretion of harmful metabolites and by-products, endocrine functions 

including production of renin and erythropoietin, and metabolic functions such as 

activation of vitamin D, catabolism of low molecular weight proteins such as insulin, 

parathyroid hormone etc. 
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1.2 KIDNEY DISEASE 
	
Injury to the kidneys can be acute, from which recovery is possible, or chronic and 

progressive. There is an increasing focus on targeting early detection and prevention of 

progressive conditions such as chronic kidney disease. This is especially important, 

given the rise in multiple risk factors including obesity, hypertension and diabetes 

promoting chronic kidney disease. 

1.2.1 ACUTE KIDNEY INJURY (AKI) 
	
Acute Kidney Injury (AKI) is the term that has replaced the previous term acute renal 

failure. This is because insults to kidneys lead to a spectrum of injury rather than being 

an all-or-none phenomenon. It is characterised by a rapid reduction in kidney function. 

This is assessed clinically in terms of serum creatinine and urine output.  

Acute kidney injury is common in hospitalised patients and also has a poor prognosis 

with mortality ranging from 10%-80%, dependent upon the patient population studied. 

Patients who present with uncomplicated AKI have a mortality rate of up to 10%. In 

contrast, patients presenting with AKI and multi-organ failure have been reported to 

have mortality rates of over 50%. If renal replacement therapy is required, the mortality 

rate rises further to as high as 80% (3-5). AKI has been demonstrated to be an 

independent risk factor for mortality (6).  

Acute kidney injury is most frequently caused by ischaemia, sepsis or nephrotoxic 

insults like contrast dye exposure to the kidney for various imaging modalities. 

Depending on the cause and severity of the insult to the kidney, patients can recover 

from the injury with renal functions returning to baseline, have partial recovery with 

scarring or fibrosis or develop progressive chronic kidney disease. In some patients AKI 

can be fatal.  
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1.2.2 CHRONIC KIDNEY DISEASE (CKD) 
	
Chronic kidney disease is the reduced ability of the kidney to carry out the functions 

mentioned above in the long-term. A UK population study estimated that in people with 

CKD there was a 4% risk of progression to end stage renal disease (ESRD) over a 5.5 

year follow-up period (7). 

Many different types of insults to the kidney can cause CKD. These include toxic, 

ischaemic, infectious, paraneoplastic, congenital, genetic, endocrine, and 

immunological diseases. CKD is characterised by glomerulosclerosis, interstitial 

fibrosis, tubular atrophy and inflammation.  

Most cases of CKD are acquired, but congenital syndromes like Alport’s syndrome and 

autosomal dominant polycystic kidney disease are well known. More recently, research 

has started to identify genetic risk factors that put individuals at risk of developing 

CKD. A study revealed that African-American black people with genetic variants in 

both copies of apolipoprotein L1 (APOL1) are at higher risk for hypertension-

attributable ESRD and FSGS (Focal segmental glomerulosclerosis). In contrast, black 

individuals without the risk genotype and European Americans appear to have similar 

risk for developing non-diabetic CKD(8). 

An episode of AKI puts a person at risk of developing CKD as discussed above. This 

has especially been studied in patients with diabetes, where it has been a shown that 

each episode of AKI led to a doubling of risk of developing CKD (9).  

ESRD (End Stage Renal Disease) is a long-term irreversible decline in kidney function, 

for which renal replacement therapy (RRT) is required if the individual is to survive. 

RRT can take a number of forms; kidney transplantation, haemodialysis and peritoneal 

dialysis. 
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1.3 INFLAMMATION AND FIBROSIS 
	
Inflammation is a protective response to eliminate the initial cause of cell injury, the 

necrotic cells and tissues resulting from the initial injury, and to initiate the process of 

repair (10). Although the aim of the inflammatory response is to get rid of the offending 

organism or stimuli, sometimes the response itself can cause considerable harm. 

 Inflammation can be acute or chronic. Acute inflammation has a rapid onset, is of short 

duration and is characterised by a neutrophilic leucocyte accumulation and fluid and 

protein exudation at the site of injury. Acute inflammation has 2 main components, 

involving vascular and/or cellular changes. Vascular changes involve vasodilatation and 

increased permeability. Vasodilatation takes place to increase blood flow to the site of 

inflammation, in order to carry participants of the inflammatory process to the site of 

injury. These include circulating antibodies, cells, oxygen, nutrients and cytokines. 

Increased vascular permeability involves leakage of circulating protein into the 

extravascular tissue through formation of endothelial gaps in venules, direct endothelial 

damage, necrosis or detachment, and leucocyte-mediated endothelial injury that 

ultimately results in the loss of circulating protein into the extravascular tissue (11). 

Cellular changes involve emigration of leucocytes (mainly neutrophils) to site of injury 

and activation of leucocytes. Leucocytes, including monocytes and macrophages, are 

needed at the site of injury and inflammation. For this purpose, leucocytes adhere to the 

endothelial lining of the blood vessels, transmigrate across the endothelium (a process 

called as diapedesis), and migrate in interstitial tissues toward chemotactic stimuli to 

reach the site of inflammation or injury. For this extravasation to occur and for the 

leucocytes to adhere and transmigrate from the blood into tissues, both leucocytes and 

endothelial cells express complementary adhesion molecules, whose expression, in turn, 

is regulated largely by cytokines. The adhesion receptors involved in this process 

belong to four major molecular families, which are discussed further below. The multi-
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step process of leucocyte migration through blood vessels involves: leucocyte rolling, 

activation and adhesion of leucocytes to endothelium, transmigration of leucocytes 

across the endothelium whilst piercing the basement membrane, and finally migration 

towards chemo-attractants emanating from the site of injury or inflammation. 

Acute inflammation usually has one of the following outcomes: 

1. Resolution: If the injury is short lived and there has been no or limited tissue 

damage, this is the usual outcome. The aim is restoration of normal structure as well 

as function. 

2. Chronic inflammation: This may be present from the outset or follow an acute 

inflammatory process. This may again, over time, lead to resolution or proceed to 

scarring. 

3. Scarring: This occurs when either the injury to tissue is substantial enough to 

outweigh the regenerative potential of the tissue, or the tissue involved does not 

regenerate and is filled with connective (scar) tissue.  

Progressive, uncontrolled deposition of extracellular matrix proteins leading to scar 

formation and organ failure represents a final common pathway of tissue response to 

chronic injury (12). 

In organs where considerable connective tissue deposition takes place to heal the 

damage, the function of the organ can be significantly compromised. This is called 

Fibrosis (10). Renal fibrosis is the inevitable consequence of an excessive accumulation 

of extracellular matrix that occurs in virtually every type of chronic kidney disease. The 

pathogenesis of renal fibrosis is a progressive process that ultimately leads to end-stage 

renal failure, a devastating disorder that requires dialysis or kidney transplantation(13). 
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1.4 INFLAMMATION IN KIDNEY DISEASE: 

Inflammation contributes to progression of chronic kidney disease by inducing release 

of various pro-inflammatory cytokines. It also increases the production and activity of 

adhesion molecules that promote adhesion and migration of inflammatory cells into the 

interstitium. 

There are multiple mediators of inflammation in CKD and ESRD such as 

hypoalbuminaemia, atherosclerosis, LPS, β-glucans etc (14). 

It has also been shown that the pro-inflammatory cytokines TNFα (Tumor Necrosis 

Factor – α) and IL-1β (Interleukin-1β) are elevated in ESRD and also once dialysis is 

initiated (15, 16). There is a direct correlation between serum albumin and circulating 

pro-inflammatory cytokines such as TNFα. Studies in cancer patients have shown this 

link where TNF has also been related with cachexia(17). A significant correlation was 

seen between degree of renal impairment, serum albumin levels and serum TNFα 

levels in the CRIC study, a prospective observational study with almost 4000 

participants(18). This study showed the levels of TNF were higher and serum albumin 

lower in patients with lower eGFR, a measure of kidney function. 

Pro-inflammatory cytokines take part in pathways that promote inflammation that in 

turn can promote renal fibrosis. These induce the production and activity of adhesion 

molecules in capillary endothelial cells. The adhesion molecules bind to receptors on 

activated T cells causing T cell adhesion and migration in to the interstitium (19).  

Further evidence of a role of inflammation in promoting progression of CKD is seen in 

the various treatments used in CKD. Use of atorvastatin to treat hyperlipidaemia in 

patients with CKD stage 2-4 resulted in reduction of lipid levels but also of 

inflammation as measured by CRP, TNFα and IL-1β. No changes were observed in 

untreated patients (20). Corticosteroids and calcineurin inhibitors have also been used 

for their anti-inflammatory roles for a long time in treating glomerular diseases. 



	 26	

In summary, inflammation is an important safety mechanism to prevent uninterrupted 

harm to organs and tissues. There is also a strong possibility that this in itself can 

become harmful. There is extensive evidence that a pro-inflammatory state exists in 

CKD and this is heightened as CKD progresses and promotes further impairment. There 

is also extensive evidence for the role of leucocytes, adhesion molecules and cytokines 

in inflammation and progression of CKD, as detailed above. It has also been shown that 

the extracellular matrix (ECM) has an important role in influencing immune cell 

behaviour in inflamed tissues. The individual components of the ECM and its three-

dimensional ultrastructure and biophysical properties can signal specific information to 

cells and modulate essential immune functions, such as immune cell migration into and 

within inflamed tissues, immune cell activation and proliferation, and cell 

differentiation processes, such as T cell polarization (21). 

In inflamed tissues, inflammatory cytokines that are released by extravasating cells or 

by activated tissue-resident cells can modify the ECM. This results in the generation of 

‘bioactive’ fragments of the ECM that may influence the activity and/or function of 

both infiltrating and resident cells. Improved understanding of mechanisms involved in 

mediating inflammation may lead to novel therapies to combat the devastating outcome 

of inflammation in CKD.	

Inflammation leading to fibrosis and scarring involves a complex multistage process 

with inflammatory cell infiltration, mesangial and fibroblast activation, tubular 

epithelial to mesenchymal transition, endothelial to mesenchymal transition, cell 

apoptosis, and extracellular matrix expansion that is orchestrated by a network of 

cytokines/ chemokines, growth factors, adhesion molecules, and signalling processes.  

While the source of injury could be of any form such as autoimmune, metabolic, 

haemodynamic instability, trauma etc., the response initially is inflammation in most 

cases. Beyond the embryonic stage, any insult is always followed by repair by 
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inflammation, followed by resolution or scarring (4, 5). Inflammation is closely related 

to tissue repair with regeneration of parenchymal cells and the filling of tissue defects 

with fibrous tissue, namely, scar formation. The inflammatory response therefore 

represents a two-sided sword: beneficial in terms of the repair process to injury; 

detrimental when proceeding in an uncontrolled manner, which then leads to 

progressive fibrosis with a loss of function (6). 

1.5 ANTI INFLAMMATORY THERAPY IN RENAL DISEASE  
 

A number of therapeutic options exist to treat or control renal disease using anti-

inflammatory and immunomodulatory actions, suggesting the significant role played by 

inflammation. This is true, not only for conditions that are primarily inflammatory in 

nature such as glomerulonephritis or vasculitis but also conditions such as diabetic 

nephropathy and hypertension related CKD. Progression of diabetic nephropathy 

consists of three steps: (i) glomerular hypertrophy and hyperfiltration; (ii) inflammation 

of glomeruli and tubulointerstitial regions; and (iii) reduction of cell number by 

apoptosis and accumulation of ECM(22). Proinflammatory cytokines have been in 

implicated in progression of diabetic nephropathy. Studies have shown elevation of 

serum TNF levels and structural changes in kidney tissues in diabetes (23).  

Activation of the renin–angiotensin system (RAS) and an increase in the local 

production of angiotensin II (AngII) is one of the main mechanisms involved in 

hypertension- induced tissue damage in kidneys, heart and brain. Angiotensin II acts as 

a pro inflammatory cytokine by	activating	 circulating	 immune	 cells	 and	 regulating	

many	 of	 their	 functions,	 including	 chemotaxis,	 proliferation,	 differentiation	 and	

phagocytosis.	It	is	known	to	play	a	role	in	expression	of	adhesion	molecules	as	well	

as	cytokines	and	chemokines	(24)	
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ACE inhibitors (Acetylcholine esterase inhibitors) and Angiotensin 1 blockers are the 

most common drugs used in preventing worsening of renal disease especially in 

hypertension and diabetes. Given the presence of angiotensin receptors on the surface of 

monocytes, a role of immune system regulation by these drugs cannot be ruled out (25). 

The direct renin inhibitor, aliskiren has been shown to reduce TGF β related renal 

fibrosis and albuminuria in mouse models (26). 

The oral hypoglycaemic agents, thiazolidinediones such as pioglitazone and 

rosiglitazone also have anti-inflammatory properties. They reduce pro-fibrotic cytokines 

such as TGF β and PAI-1(Plasminogen Activator Inhibitor-1) as well as pro-

inflammatory cytokines such as IL-1, IL-6 and TNF – α (27, 28). 

Anti-cytokine therapy is well established in chronic diseases such as rheumatoid 

arthritis and inflammatory bowel disease. There is increasing evidence for the role of 

similar therapy in renal diseases. Toclizumab, a monoclonal antibody against IL-6 

receptor, has been shown to have some benefit in lupus nephritis and crescentic GN 

(29). 

 

 

 

1.6 CELLULAR MEDIATORS OF INFLAMMATION 
 

1.6.1 LEUCOCYTES  
 
The term leucocyte comes from the Greek word leuko- meaning "white" and cyte 

translated as "cell". White blood cells (WBCs) as they are commonly known are derived 

from the pluripotent stem cells in the bone marrow. These comprise only 0.01% of the 

total marrow cells and produce a hierarchy of lineage committed stem cells. There are 5 
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types of leucocytes found in blood: granulocytes (neutrophils, eosinophils, basophils), 

monocytes and lymphocytes. This is based on morphology and staining characteristics. 

1.6.1.1 Neutrophils 
These are the most common type of leucocyte in the blood of adults. They are 10 - 14 

microns in diameter with a multilobular nucleus containing 2 to 5 segments and 

granules in their cytoplasm, hence the name granulocytes. They get their name from the 

characteristic neutral pink staining with haematoxylin and eosin (H&E).  

In addition to activating other cells at the site of infection or inflammation, neutrophils 

play a very direct and active role in fighting foreign antigens such as microbes. They do 

so in 4 ways: 

a. Phagocytosis: Neutrophils have the capacity to ingest and internalise microbes 

into phagosomes. There is release of hydrolytic enzymes and free oxygen 

radicles into these phagosomes to digest the microbes (30). 

b.  Degranulation: Neutrophils contain 3 types of granules (31)- 

i) Primary granules or azurophilic granules: myeloperoxidase, 

bactericidal/permeability-increasing protein (BPI), defensins, and the serine 

proteases neutrophil elastase and cathepsin G. 

ii) Secondary or specific granules: alkaline phosphatase, lysozyme, NADPH 

oxidase (Nicotinamide adenine dinucleotide phosphate-oxidase), 

collagenase, lactoferrin and cathelicidin. 

iii) Tertiary granules: cathepsin and gelatinase. 

c. Neutrophil Extracellular Traps (NET): These comprise a web of fibres 

composed of chromatin and serine proteases that trap and kill microbes 

extracellularly (32). 
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d. Oxygen-free radicals 

1.6.1.2 Eosinophils 
Eosinophils represent 1 to 6 % of the circulating WBCs. They have 2 lobes in the 

nucleus and prominent granules on staining. These cells express cytoplasmic granules 

containing enzymes that are harmful to the cell walls of parasites but can also damage 

host tissues. The granules of eosinophils contain basic proteins that bind acidic dyes 

such as eosin. This gives the characteristic red staining with H&E stains.  

Their granules contain peroxidase involved in intracellular killing of protozoa and 

helminths. These are also involved in allergic reactions, atopic diseases, asthma and 

interstitial nephritis. 

1.6.1.3 Basophils 
These represent less than 1% of circulating WBCs. Basophils contain granules that bind 

basic dyes and they are capable of synthesizing many of the same mediators as mast 

cells. Basophils express IgG and IgE receptors, bind IgE, and can be triggered by 

antigen binding to the IgE. They bind to IgE antibody on their surface and release 

heparin, leucotrienes and histamines. Basophils are involved in hypersensitivity 

reactions.  

1.6.1.4 Lymphocytes 
These are the most abundant of the white cells till the age of 7, after which neutrophils 

become more abundant. They are quite heterogeneous in size. There are 2 types of 

lymphocytes: 

a. T cells, which represent about 80% of the lymphocyte population and mediate 

cellular immunity. There are 2 subtypes of T cells: CD4 positive helper cells and 

CD8 positive suppressor cells. 

b. B cells, which mediate humoral immunity. 
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1.6.1.5 Monocytes 
These are the largest of the white cells with a diameter of 12 - 20 microns and an 

irregular nucleus in abundant pale blue cytoplasm when stained with Giemsa stain. 

Once they enter tissues, these monocytes mature and become macrophages (33). 

Macrophages in different tissues have been given special names to designate specific 

locations. For instance, in the central nervous system, they are called microglial cells; 

when lining the vascular sinusoids of the liver, they are called Kupffer cells; in 

pulmonary airways, they are called alveolar macrophages; and multinucleate 

phagocytes in bone are called osteoclasts. These produce a variety of cytokines 

including Interleukin 1, Tumour necrosis factor-α and GM-CSF (Granulocyte monocyte 

colony stimulating factor) (34-36). Monocytes, once activated, also play an important 

role in phagocytosis of microbes, dead neutrophils and apoptotic cells thereby 

preventing unwanted release of pro-inflammatory mediators from neutrophils(37). 

Another important function of macrophages is to promote repair of damaged tissues by 

stimulating new blood vessel growth (angiogenesis) and synthesis of collagen-rich 

extracellular matrix (fibrosis). This function is mediated by specific cytokines secreted 

by the macrophages that act on various tissue cells. 

 

While there are small numbers of the various leucocyte lineages present in resting 

tissues, these numbers are massively augmented by recruitment from the circulation in 

response to inflammatory cues. Figure 1.3 shows the approximate time course of influx 

of neutrophils, macrophages, T lymphocytes and mast cells in a murine wound response 

superimposed on the three classically considered and overlapping phases of tissue 

repair, namely inflammation, proliferation/ migration and maturation/remodeling. 

Amongst the WBCs, neutrophils are the first cells to arrive at the site of inflammation 

or injury. They have a short life span. The short lifetime of neutrophils reduces spread 

of those pathogens that parasitize phagocytes because the more time such parasites 
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spend outside a host cell, the more likely they will be destroyed by some component of 

the body's defenses. Also, because neutrophil antimicrobial products can also damage 

host tissues, their short life limits damage to the host during inflammation (38). 

 

 

 
 
Figure	1-3	Relative	Time	course	of	inflammatory	cell	recruitment	to	sites	of	tissue	damage.		

From	The	Inflammation–Fibrosis	Link?	A	Jekyll	and	Hyde	Role	for	Blood	Cells	during	Wound	Repair;	
Brian	M.	Stramer,	Ryoichi	Mori	and	Paul	Martin;	Journal	of	Investigative	Dermatology	(2007)	127,	
1009–1017.	Doi:	10.1038/sj.jid.5700811		
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1.7 ADHESION MOLECULES 
	
Adherence, whether it is cell to cell or cell to proteins in the extra cellular matrix, plays 

a critical role in various biological processes such as immune responses, embryogenesis, 

haemostasis and inflammation (39-41). 

The ability to characterize cellular adhesion molecules (CAMs) at the molecular level 

has enabled us to classify molecules into several discrete groups that include integrins, 

cadherins, members of the immunoglobulin superfamily, and selectins (42).  

 

 

 

 

 

 Structure and Function of Cell Adhesion Molecules: Lilli Petruzzelli, MD, 

PhDMimi Takami, MD, H. David Humes, MD, Am J Med. 1999; 106:467– 476. 

 

 

 
Figure	1-4	Schematic representation of four classes of adhesion molecules; cadherins, selectins, Ig family 
members and integrins. 

From	Structure	and	Function	of	Cell	Adhesion	Molecules:	Lilli	Petruzzelli,	MD,	PhD,	Mimi	Takami,	MD,	

H.	David	Humes,	MD,	Am	J	Med.	1999;	106:467–	476.	

 

 

1.7.1 CLASSIFICATION OF ADHESION MOLECULES 
 

1.7.1.1 CADHERINS 
The classic cadherins were among the earliest identified in this family and are 

comprised of the N, P, R, B, and E cadherins (40). Cadherins mediate homotypic 

cellular interactions by binding to their homologues on an adjacent cell (43). The brain 
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expresses the largest number of different cadherins, presumably due to the necessity of 

forming very specific cell-cell contacts. 

Calcium is critical to their function and serves to maintain the structural integrity of the 

protein. During differentiation and in some diseases, the amount or nature of the cell-

surface cadherins changes, affecting many aspects of cell-to-cell adhesion and cell 

migration. For example, the metastasis of tumour cells is correlated with the loss of 

cadherins on their cell surface (44). 

The cadherins function not only to maintain the integrity of the epithelial layer but also 

to organize the formation of the correct architecture. 

 

1.7.1.2 SELECTINS 
	
Movement of leucocytes to a site of inflammation requires extravasation of leucocytes 

from circulation. This requires successive formation and breakage of cell-to-cell 

contacts between leucocytes in the blood and endothelial cells lining the vessels. These 

contacts are mediated by selectins, a class of cell-adhesion molecules that are specific 

for leucocyte – vascular cell interactions. Each type of selectin binds to specific 

oligosaccharide sequences in glycoproteins or glycolipids. As with cadherins, the 

binding of selectins to their ligands is Ca2+ dependent. There are 3 classes of selectins: 

E-, L- and P-Selectins (45). P-selectin is localized to the blood-facing surface of 

endothelial cells in Weibel-Palade bodies and α granules of platelets. In normal 

endothelial cells, P-selectin is localized to intracellular vesicles and is not present on the 

plasma membrane. L-selectin is expressed on all granulocytes and monocytes and on 

most lymphocytes. E-selectin is not expressed under baseline conditions but is induced 

by inflammatory cytokines (46). 

Activation allows exocytosis of the selectins onto the surface of the plasma membrane. 

As a consequence, passing leucocytes adhere weakly to the endothelium; because of the 
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force of the blood flow, these “trapped” leucocytes are slowed but not stopped and roll 

along the surface of the endothelium. 

 

	
Figure	1-5	Interactions	between	cell-adhesion	molecules	during	the	initial	binding	of	leucocytes	to	
activation	of	endothelial	cells		

From	R.	O.	Hynes	and	A.	Lander,	1992,	Cell	68:303	

 

1.7.1.3 INTEGRINS 
	
The integrins are a set of cell surface adhesion molecules that regulate cell to cell and 

cell to extracellular matrix protein interactions. The integrin family is composed of two 

subunits, α and β, which traverse the cell membrane and are characterized by non-

covalent interactions. The integrins, now numbering more than 20, are further divided 

into subgroups based on their β subunit. These play multiple roles such as tissue 

organization by binding to molecules both in the extracellular matrix (ECM) within 

many tissue and in the basement membranes found in muscle, the nervous system, 

epithelial tissue, and endothelium (47), lymphocyte homing and leucocyte migration 

(48), platelet activation and thrombosis (49). 

The major ligands for the integrins fall into two categories: 

1. Cell surface molecules that are members of the immunoglobulin superfamily 

[such as intracellular adhesion molecules (ICAM-1, ICAM-2), vascular cell 
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adhesion molecule (VCAM-1), or mucosal addressin cell adhesion molecule 

(MAdCAM-1)], and  

2. A variety of large extracellular matrix proteins (such as fibronectin, vitronectin, 

fibrinogen) (42, 48). 

Some integrins can bind to ligand in the absence of cell stimulation. The recruitment of 

either leucocytes or platelets from the circulation requires the participation of several 

different adhesion molecules as well as the activation of inside-out signalling pathways 

(48-50). Usual binding processes involve activation, ligand binding, reorganisation of 

the cytoskeleton and finally binding (51). 

 

1.7.1.4 IMMUNOGLOBULIN SUPERFAMILY 
	
These proteins are classified together, because they contain one or more of a common 

immunoglobulin-like repeat that is characterized by two cysteines separated by 55 to 75 

amino acids. The members of this group play a critical role in the development of the 

nervous system, in immune and inflammatory responses, and in embryonic 

development (42, 52). 

In the immune system, immunoglobulin superfamily members play a critical role in 

cellular adhesion. These members include ICAMs, VCAMs and the peripheral 

addressin, MAdCAM-1. These proteins serve as ligands for the integrins, and their 

adhesive interactions depend on the endogenous  cell (for example, endothelial, 

epithelial or fibroblast cells) and the individual leucocyte. 

Structurally, the ICAMs include three family members, ICAM-1, ICAM-2, and ICAM-

3, which contain two to five extracellular immunoglobulin domains. 
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1.8 EXTRACELLULAR MATRIX 
 
The extracellular matrix (ECM) is the non-cellular component present within all tissues 

and organs, and provides not only essential physical scaffolding for the cellular 

constituents but also initiates crucial biochemical and biomechanical cues that are 

required for tissue morphogenesis, differentiation and homeostasis. 

The composition of ECM varies between different tissues. It is a complex assembly of 

many proteins and polysaccharides forming an elaborate meshwork within tissues. The 

main fibrous ECM proteins are collagens, elastins, fibronectins and laminins (53). 

Collagens, which constitute the main structural element of the ECM, provide tensile 

strength, regulate cell adhesion, support chemotaxis and migration, and direct tissue 

development (54). These are mainly secreted by fibroblasts that are present in the 

matrix or recruited from surrounding tissues(55). 

Adhesion of mesenchymal cells such as fibroblasts mediates cytoskeletal coupling to 

the ECM and is involved in cell migration through the ECM (56). The ECM is a highly 

dynamic structure that is constantly being remodelled; it generates the biochemical and 

mechanical properties of each organ, such as its tensile and compressive strength and 

elasticity, and also mediates protection by a buffering action that maintains extracellular 

homeostasis and water retention. The ECM also allows binding to growth factors and 

other cell surface receptors to regulate gene transcription. The structure and 

composition of ECM can vary from time to time, depending on the physiological state 

such as normal to cancerous or post-inflammation. 

There are multiple growth factors that are bound to the ECM which modulate cell 

growth and cell migration and are essential for normal homeostasis (57, 58). Any insult, 

acute or chronic, activates the fibrogenic machinery and induces wound healing. One of 

the first events that characterises a wound response is vascular damage and the 
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formation of a fibrin clot, which stimulates monocyte infiltration to the damaged ECM. 

These differentiate into macrophages under the influence of various cytokines (33). The 

activated macrophages, in turn, secrete and release multiple Growth Factors, MMPs 

(Matrix Metalloproteinases) and cytokines that promote angiogenesis and stimulate 

fibroblast migration and proliferation (59). Thereafter, recruited fibroblasts begin to 

synthesize and deposit large quantities of ECM proteins, including collagen type I and 

III, fibronectin and hyaluronic acid. The elevated mechanical stress associated with this 

profound ECM deposition can induce the differentiation of fibroblasts and other tissue-

resident cells – i.e. epithelial-to mesenchymal transition (EMT) of epithelial cells – or of 

circulating bone marrow-derived mesenchymal stem cells into myofibroblasts (59, 60) 

1.8.1 ROLE OF EXTRACELLULAR MATRIX IN KIDNEYS 
	
ECM constituents and their receptors play a significant role in development. Matrix 

molecules and matrix receptors act at multiple steps during kidney development, from 

the onset of ureteric bud development, during its branching morphogenesis and during 

the formation of epithelial tubules from condensing mesenchymal cells (61). 

In the adult kidneys, ECM is present in distinct areas and its function depends on the 

specific molecular components 

1. In the glomeruli  

       a. Glomerular basement membrane 

       b. Bowman’s capsule 

       c. Mesangial ECM 

2. In the tubulointerstitium 

       a. Tubular basement membrane (in part segment specific)  

       b. Peritubular capillary basement membrane 

       c. Interstitial ECM 

3. In larger vessels 



	 39	

       a. Within the vessels (lamina elastica interna and externa) 

       b. Around the vessels (adventitia of arteries and veins) 

Medullary interstitial ECM is physiologically more prominent compared to the cortical 

interstitial ECM.  It steadily increases in quantity in the direction from outer to inner 

medulla/papilla (62). 

The glomerular basement membrane (GBM) is thicker compared to most other 

basement membranes. It contains four main macromolecules: laminin, collagen type IV, 

nidogen and heparan sulphate proteoglycans. The main function of the GBM is to act as 

a charge- and size- selective filtration barrier between the vascular system and the 

urinary space (62). It therefore acts as a barrier to bigger molecules and proteins being 

lost in urine. 

The mesangial ECM provides structural support for the glomerular capillaries and has a 

role in cell-matrix signalling. Its major components are fibronectin, collagen type IV, 

collagen type V, laminin A, B1 and B2, chondroitin sulphate and heparan sulphate 

proteoglycans (63). 

The interstitial extracellular matrix is normally composed of collagen type I, III, V, VI, 

VII and XV, both sulphated and non-sulphated glycosaminoglycans, glycoproteins and 

polysaccharides (62). Collagens provide the tensile strength, regulating cell adhesion, 

support, chemotaxis, cell migration and tissue development (54). Among the 

glycoproteins, fibronectin is the most important one and its accumulation is one of the 

first events during renal fibrosis (64). Proteoglycans are a subgroup of glycoproteins 

with a high content of carbohydrates, which fill renal extracellular interstitial space. 

They have a wide variety of functions, such as hydration, force-resistance and growth 

factor binding (65). 

The ECM plays an important role in several renal disorders. The accumulation and 

dysregulated remodelling of ECM can affect all major compartments of the kidney, and 
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is called glomerulosclerosis in the glomeruli, tubulo-interstitial fibrosis in the 

tubulointerstitium and arteriolosclerosis in the vasculature. Mutations in the gene for the 

α5 chain of collagen type IV causes the X-linked Alport’s syndrome in humans, a rare 

genetic disease characterized by progressive glomerular injury. Collagen type IV is also 

the target of two autoimmune diseases affecting the kidney: Goodpasture’s syndrome 

and Alport’s post-transplantation disease. Both diseases are characterized by 

autoantibodies attacking the GBM and causing rapidly progressive 

glomerulonephritis.(66) Expression of versican, an ECM proteoglycan, was found to be 

increased in areas with marked tubulointerstitial fibrosis in patients with proteinuric 

CKD, suggesting a role for it in progression of CKD.(67) 

 

1.9 HYALURONAN 
	
Hyaluronan (HA) is a glycosaminoglycan of alternating N-acetyl glucosamine 

(GlcNAc) and glucuronic acid (GlcA) residues synthesized by essentially all organisms 

from bacteria to mammals (68). Hyaluronan is synthesised at the inner face of the 

plasma membrane by one of three distinct hyaluronan synthases (HAS) (69, 70). It is 

synthesised as a linear polymer on the inside of the plasma membrane and then extruded 

to the outside (68, 70). The synthases HAS1, HAS2, and HAS3 are encoded on separate 

chromosomes but possess amino acid and structural similarities (71, 72). HAS 1 gene is 

localised to chromosome 19, HAS 2 gene to chromosome 8 and HAS 3 gene to 

chromosome 6 (72). In the normal kidney, all three HAS are expressed in larger 

amounts in the medulla than in the cortex. Furthermore, the relative expressions are 

such that HAS2 > HAS1 > HAS3 (73). 

HAS 2 is considered to be the major source of HA production during embryo 

development and tissue regeneration (74, 75). Hyaluronan chains, being negatively 

charged, attract water and salt. HA also binds to other extracellular molecules resulting 
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in a strong structural meshwork which is resistant to biomechanical pressure (76). The 

key capabilities of HA are its water-attracting properties (1 g HA attracts one litre of 

water) and its ability to form gels in higher concentrations (>0.2 mg/ml) (77). 

Various biological and physiological roles of hyaluronan are related to its molecular 

weight. This is governed by the isoform of HAS from which it is synthesized. HAS 1 

seems to be least active and is responsible for high molecular weight HA (HMW HA), 

up to 2 x 106 Da. HAS 2 is responsible for high molecular weight HA as well (more 

than 2 x 106 Da). HAS 3 is most active and makes large amounts of low molecular 

weight HA (LMW HA) (69, 71, 72). 

Hyaluronan also plays a key role in embryogenesis. The HA contribution to kidney 

development is mostly accomplished by inducing morphogenic branching and 

differentiation. The mechanism by which HA is reduced in the kidney during 

maturation involves reduced HAS2 and increased Hyal1 expression (78). 

 HMW HA possesses anti-inflammatory and anti-angiogenic properties and can 

promote cell quiescence, whereas LMW HA is pro-inflammatory and can induce 

cytokine and chemokine secretion, activation of signalling pathways, cell proliferation, 

and angiogenesis (79). 

Hyaluronan plays an important role in the pathogenesis and progression of chronic 

inflammatory conditions such as atherosclerosis, chronic wounds and inflammatory 

bowel diseases like Crohn’s disease. Elevated Hyaluronan levels in inflammation 

highlight this. It is also involved in tumour genesis and normal development (68, 80).  
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Figure	1-6	Structure	of	hyaluronan	(HA)	demonstrating	the	repeated	D-glucuronic	acid	and	N-acetyl-D-
glucosamine	moieties.		

From	Renal	interstitial	hyaluronan:	functional	aspects	during	normal	and	pathological	conditions.	Sara	
Stridh	,	Fredrik	Palm	,	Peter	Hansell.	American	Journal	of	Physiology	-	Regulatory,	Integrative	and	
Comparative	Physiology	Published	1	June	2012	Vol.	302	no.	R1235-R1249	
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Figure	1-7	Synthesis	and	turnover	of	HA	

The	HA	synthases	(HAS)	1–3	produce	HA	in	the	plasma	membrane	of	different	sizes	and	at	different	

rates.	The	hyaluronidases	(Hyal)	hydrolyze	HA.	This	may	begin	already	1)	on	the	plasma	membrane	by	

Hyal2,	followed	by	2)	binding	to	CD44,	which	is	a	scavenger	receptor	for	HA.	After	3)	internalization	

and	degradation	in	endosomes	by	Hyal2,	HA	is	4)	further	degraded	by	Hyal1	in	lysosomes	

From:	Renal	interstitial	hyaluronan:	functional	aspects	during	normal	and	pathological	conditions	
Sara	Stridh	,	Fredrik	Palm	,	Peter	Hansell,	American	Journal	of	Physiology	-	Regulatory,	Integrative	and	
Comparative	Physiology	Published	1	June	2012	Vol.	302	no.	R1235-R1249	
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1.9.1 ROLE OF HYALURONAN IN KIDNEY DISEASE 
 
In the kidneys, hyaluronan is primarily expressed in the medullary interstitium (81).The 

main purpose here is to provide structural stability to the tubules and blood vessels. It 

also helps in urine concentration. The amount of renal papillary HA changes in response 

to water balance. HA plays a role in renal water handling by affecting physicochemical 

characteristics of the papillary interstitial matrix and influencing the interstitial 

hydrostatic pressure, thereby determining interstitial water diffusion (82). 

HA can also be secreted by cortical interstitial cells, fibroblasts, and apical membrane of 

tubular cells (83-85).  

Hyperglycaemia can stimulate vascular smooth muscle cells and mesangial cells to 

produce hyaluronan (86, 87). There is evidence for the role of hyaluronan in various 

forms of renal injury. This ranges from acute flare up of autoimmune conditions such as 

lupus nephritis, to renal impairment in transplant recipients. Serum levels of IL-6, TNF-

α, IFN-α, and hyaluronan (HA) are increased in patients with lupus nephritis. It has 

been shown that their expression is increased in the renal parenchyma of patients and 

mice with active lupus nephritis, mediated in part through stimulation of resident renal 

cells with anti-dsDNA antibodies, which contribute to the development and progression 

of disease (88). 

There is also evidence to suggest that during chronic kidney inflammation, mesangial 

cells and proximal renal tubular epithelial cells synthesize HA that forms long cable-

like structures which function as an adhesive matrix, binding leucocytes and 

macrophages and preventing them from interacting with adhesion molecules, thereby 

limiting glomerular and tubulointerstitial inflammation (86, 89, 90). 

Up-regulation of HA and its binding receptors is involved in interstitial fibrosis in 

chronic cyclosporin-induced renal injury (91). Experimental evidence is also available 

that suggests a role of hyaluronan in ischaemic reperfusion injury (92, 93). Kidney 
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transplant increases the chances of ischaemic reperfusion injury. There is also risk of 

rejection which is an immune reaction leading to inflammation with release of several 

cytokines. These play a role in modifying the extra-cellular matrix. HA is seen early in 

transplant rejection and is especially localised to cortex and sclerotic vessels (94). 

Hyaluronan has also been implicated in formation of renal stones (95). 

Diabetic nephropathy is the leading cause of end stage renal failure across the world and 

25% of all type 1 Diabetes patients are likely to develop nephropathy (96). As 

mentioned above, several cells in the kidney produce hyaluronan at an increased rate. 

There is also accumulation of all components of the extra-cellular matrix as diabetic 

nephropathy progresses. HAS2 mRNA activity is elevated and coincides with 

proteinuria, overt diuresis, and depressed kidney function (97). 

 

1.10 FIBROBLASTS 
	
Fibroblasts are elongated cells with extended cell processes that show a fusiform or 

spindle-like shape in profile (98). Fibroblasts are morphologically heterogeneous with 

diverse appearances, depending on their location and activity. They are the most 

abundant cell type in connective tissue, and play a central role in extracellular matrix 

(ECM) remodelling and wound contraction during tissue repair. Characteristic features 

include expression of vimentin in the absence of desmin and α-smooth muscle actin. 

Fibroblasts synthesize many of the constituents of the fibrillar ECM such as type I, type 

III and type V collagen, and fibronectin (99). They also contribute to the formation of 

basement membranes by secreting type IV collagen and laminin (100). Fibroblasts are 

an important source of ECM-degrading proteases such as matrix metalloproteinases 

(MMPs), which highlights their crucial role in maintaining an ECM homeostasis by 

regulating ECM turnover (100). Fibroblasts continually synthesise ECM proteins and it 

has been estimated that each cell can synthesise approximately 3.5 million procollagen 



	 46	

molecules/cell/day (101). However, this is regulated by lysosomal enzymes, such as 

cathepsins B, D and L, with between 10% and 90% of all procollagen molecules being 

degraded. Regulation of this process appears to provide a mechanism for rapid 

adaptation of the amount of collagen secreted following injury (102). 

 

1.10.1 ACTIVATION OF FIBROBLASTS 
 
Fibroblasts that are isolated from the site of a healing wound or from fibrotic tissue 

secrete higher levels of normal ECM constituents and proliferate more than their normal 

counterparts, isolated from healthy organs (99, 103). Thus a normal fibroblast can 

become 'activated'. The stimulus for the activation comes from growth factors such as 

Platelet-derived growth factors, TGF β, Fibroblast growth factor 2 (FGF 2), and 

Epidermal Growth Factor (EGF) released from monocytes, macrophages and injured 

cells (104-106). Activation also takes place with interaction of fibroblasts with 

leucocytes via adhesion molecules (1). 

 To synthesize large amounts of ECM constituents, activated fibroblasts typically 

contain a large oval euchromatic nucleus with one or two nucleoli, rough endoplasmic 

reticulum, and a prominent Golgi apparatus. In inactive adult fibroblasts, the 

endoplasmic reticulum is smaller and the nucleus is flattened and heterochromatic (98). 

Activated fibroblasts express α-smooth-muscle actin, leading to the term 

'myofibroblasts'. These secrete matrix metalloproteases such as MMP2, MMP3 and 

MMP 9. These are ECM degrading proteases, suggesting increased ECM turnover and 

remodelling (99). Activated fibroblasts are involved in secretion of growth factors such 

as hepatocyte growth factor (HGF), insulin-like growth factor (IGF), nerve growth 

factor (NGF), Wnt1, EGF and FGF2, secretion of cytokines such as interleukin-1 and 

chemokines such as monocyte chemotactic protein 1 (MCP1) (107, 108). 



	 47	

The difference between activated fibroblasts (myofibroblasts) from a wound that is 

healing and from fibrosing tissue is that the myofibroblasts in a healing wound revert to 

inactive form whereas the myofibroblasts from a fibrosing organ/tissue remain 

activated. These continue to secrete growth factors, cytokines etc. and thereby activate 

further fibroblasts in the vicinity (109). 

 

Hylauronan appears to play a significant role in myofibroblast differentiation and 

maintenance of myofibroblast phenotype (110).  This has been well described in studies 

from our laboratory using dermal and oral fibroblasts as representative of scarring and 

non- scarring fibroblast phenotypes. The inability of the oral fibroblast to differentiate 

into myofibroblasts in response to the profibrotic cytokine, TGF β1 was associated with 

the inability to induce the HAS 2 enzyme or assemble a pericellular HA coat. The 

converse was true for the scarring dermal fibroblasts. These, when stimulated with TGF 

β1, expressed HAS 1 and HAS 2, showed development of an HA coat and myfibroblast 

differentiation. In the same study HAS2 activity and HA synthesis were shown to be 

essential for differentiation as siRNA to HAS2 or inhibiting HA synthesis with 4-

methyl umbelliferone in dermal fibroblasts altered TGFβ1-dependent responses in these 

cells preventing fibroblast to myofibroblast differentiation(111). 

Aged cells also show dysregulated responses to TGFβ1 and this is also due to reduced 

HAS2 and HA pericellular coat induction in these cells. (112). These studies highlight 

the importance of the induction of HAS 2, the synthesis of HA and the assembly of the 

HA coat in fibroblast to myofibroblast differentiation. 

It has been shown that expression of Bone morphogenetic protein-7(BMP-7) is reduced 

in renal fibrosis. BMP-7, a member of TGFβ family, may work by antagonizing the 

effects of TGFβ1, its profibrotic counterpart (113, 114). One of the possible 

mechanisms is likely to be the internalization of the HA coat into hyaluronidase 
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containing endosomes (115). This again highlights the importance of HAS2 and HA in 

fibroblast differentiation and also maintenance of the myofibroblast phenotype. 

(111-115) 

 

 

 

 

 

	

Figure	1-8	Fibroblasts	and	myofibroblasts 

From	Kalluri	et	al.	Nature	Reviews	Cancer	advance	online	publication;	published	online	30	March	2006	
|	doi:10.1038/nrc1877	
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1.10.2 EPITHELIAL MESENCHYMAL TRANSITION (EMT) 
	
Fibroblasts display the highly activated phenotype characteristic of myofibroblasts, at 

sites of inflammation and fibrosis. These fibroblasts could come from the proliferation 

of pre-existing stromal fibroblasts, recruited from the bone marrow. Increasingly, it is 

becoming evident that transition of epithelial cells to mesenchymal phenotype plays an 

important role in tissue repair and even fibrosis. Epithelial Mesenchymal Transition 

(EMT) refers to this orchestrated transition of epithelial cells to migratory mesenchymal 

cells, which develop the capacity to generate extracellular matrix. 

EMT was first identified in kidneys while investigating features of tubular atrophy in 

end-stage kidney disease. It identified cytokeratin- expressing single cells or loosely 

associated cell clusters dispersed within the fibrotic interstitium(116). In an 

experimental study, 36 % of interstitial FSP1/S100A4-immunoreactive fibroblasts 

within the fibrosing kidney were found to have come from EMT of the labelled tubular 

epithelium(117). Markers of myofibroblasts transition such as Vimentin, HSP-47 and α 

SMA have been identified in epithelial cells in renal biopsies from patients with 

diabetes, chronic allograft nephropathy and various glomerulonephritis. On several 

occasions, these are seen even before histological evidence of progression of disease 

and might be used as prognostic markers (118). 

Fibroblasts therefore play a significant role in promoting renal fibrosis. Once activated, 

they are the primary source of extra cellular matrix deposition and therefore increase the 

loss of architecture in the kidney. 
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1.11 AIMS 
	
In previous studies, the ligation of ICAM-1 on fibroblasts by leucocytes or specific 

cross-linking with anti-ICAM-1 antibody has been shown to activate the cells, which 

then adopt a pro-inflammatory phenotype (1, 119).TGFβ1 transcription is also induced 

in renal epithelial cells by leucocyte binding and is down-regulated by HAS 2 

dependent HA generation (120).  The aim of the work described in this thesis was to 

study the interaction between fibroblasts and monocytes and focus on the role played by 

the adhesion molecule ICAM 1 in this interaction. I investigated how this interaction led 

to further pro-fibrotic events by impacting on production of ICAM 1 and HAS 2, the 

chief synthase involved in the production of HA. 
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2 METHODS 
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2.1 TISSUE CULTURE:  

2.1.1 LUNG FIBROBLASTS MONOLAYER CULTURE 
 
Human Lung Fibroblasts (AG02262) used in this work were primary human fibroblasts 

obtained from Coriell Cell Repositories. These were cultured in Dulbecco’s Modified 

Eagle’s / HAMS F-12 medium (Sigma-Aldrich), containing 100 units/ml Penicillin and 

0.1 mg/ml Streptomycin (Sigma-Aldrich), 2 mM L-glutamine (Sigma-Aldrich) and 10% 

Foetal calf serum (FCS) (Biosera).  They were maintained at 370C in an atmosphere of 

5% CO2 in a humidified incubator (Cell House 170, Heto Holten, Derby, UK) and 

medium was replenished every 3 days. 

Confluent cell layers were sub-cultured (1:3 ratio) using trypsin solution diluted 1:1 

with sterile phosphate buffered saline pH 7.3 (PBS). The protease activity in the 

solution was then neutralized with an equal volume of FCS. Cells were pelleted at 1500 

rpm for 7 minutes at room temperature. The pellet was resuspended in three times the 

original volume of the medium and cells seeded in appropriate culture flasks (T25 or 

T75) or plates (BD FalconTH Bioscience, Bedford, USA). 

Cells were growth arrested in serum-free medium for 72 hours before experiments to 

allow cell cycle synchronisation. Only Cells having less than 10 passages were used for 

experiments. 

2.1.2 U937 CELL CULTURE 
 
U937 cells are a human cell line extracted from a 37 year old with diffuse histiocytic 

lymphoma. It is one of only a few human lines still expressing many of the monocytic 

like characteristics exhibited by cells of histiocytic origin. The cells are committed to 

the macrophage branch of the myeloid lineage and can be induced by a variety of agents 

to mature into a monocytic stage of development. 



	 53	

Cells were grown and subcultured in RPMI 1640 medium. Each 500ml of medium was 

supplemented with 10 ml of HEPES Buffer 10.25 ml of L Glutamine.  FCS was added 

to a final concentration of 5%.  

U 937 cells are stored frozen in liquid nitrogen. The tubes are thawed at room 

temperature. 10 % FCS was used in the first instance when freshly thawed cells are 

suspended and incubated for 24 hours at 37° C in a humidified atmosphere and 5% 

CO2.      

Medium was then changed every 3 days. The cell suspension was harvested and 

centrifuged at 1600 rpm for 6 minutes. The pellets were then resuspended in 5% 

medium and transferred to fresh flasks or plates as required. 

2.1.3 CO-CULTURE EXPERIMENTS 
 
Lung Fibroblasts were cultured in 6 well plates as described above. Once confluent the 

cells were growth arrested for 48 hours in serum free medium. 

U937 cells that have been grown in RPMI 1640 medium were pelleted by centrifugation 

at 1600 rpm for 6 minutes. The supernatant was discarded and the cells re-suspended in 

DMEM F12 HAM medium. Cells were counted using a Beckman coulter counter. 

5 x 105cells/ml were added to the lung fibroblasts in a final volume of 2ml. The co-

cultures were incubated for varying time periods. Cells were washed with sterile PBS 

three times at specific time points and RNA extracted as detailed above. 

The above experiments were also conducted with the fibroblasts stimulated with 1 x 10 -

12 M TNF α for 24 hours before co-incubation with U 937 cells. 
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2.2 ACTIVATION OF U937 CELLS 
	
U 937 cells were grown in 5% FCS in RPMI medium in T75 flasks as described. The 

cells were then centrifuged and the pellet re-suspended in 5% FCS with 160 nM PMA 

for 48 hrs. Most of the cells adhered to the flask after this time and these were the 

activated cells. The medium containing the remaining cells in suspension was aspirated 

and discarded. 

Two methods were employed to harvest the activated cells from the flask.  

1. 0.1% EDTA: 5 ml of cold 0.1%EDTA was added to the flask and it was left on ice 

for 3 to 5 min. It was then agitated and most of the cells came off by this time. The cells 

were aspirated and centrifuged at 1600 rpm for 6 min. The supernatant was discarded 

and the activated U937 cells were suspended in the DMEM F12 HAM medium and 

used for the experiment.  

2. 10% TRYPSIN: Once the medium with the remaining suspended cells was removed, 

5 ml of 10% trypsin was added and incubated for 5 min. The trypsin was then 

neutralized with 5 ml FCS. The cells were then pelleted by centrifugation and re-

suspended in serum free DMEM F12HAM medium for use in the experiment. 

The “Alamar Blue” assay was carried out to determine the viability of cells extracted by 

both methods and cell counts performed using a Coulter counter. 

 

2.3 CO CULTURE OF FIBROBLASTS AND ACTIVATED U937 CELLS  
	
Fibroblasts were grown as described previously in 6 well plates. Once confluent, 

medium was changed to serum free medium to growth arrest and synchronise cell 

cycles. U 937 cells were activated and extracted as described above. Cells were then 

resuspended in DMEM F12 HAM medium. Cell number was determined using a 

Coulter counter and 5 x 105 cells/ml in 2 ml medium were added to each well and co 
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incubated for a set period of time. At relevant time points the medium was aspirated and 

cells washed to remove any non-adherent cells. Adherent U937 cells were removed 

from the fibroblasts monolayers again using EDTA treatment as described above. RNA 

extraction and q PCR was then carried as described above. 

The possibility of contamination of fibroblasts with adherent U937 cells was 

considered. Adherent U937 cells were disassociated from fibroblasts using EDTA 

treatment after washing cells with PBS 3 times. Experiments relied on the ability of 

EDTA to remove the adherent U 937 cells from the surface of adherent fibroblasts (121) 

. The figures (2-1 And 2-2 illustrate successfully removal of U937 cells from fibroblasts 

in co-culture experiments. 
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a                                                                   b 

Figure	2-1	Fibroblasts	and	U937	cells	co-culture		(a)	pre	and	(b)	post	PBS	wash	

	
	
	
	
	

		 	
	
Figure	2-2	Fibroblasts	and	U937	cells	co-culture	post	PBS	wash	and	EDTA	treatment	
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2.4 CROSS LINKAGE EXPERIMENTS 
 
Lung fibroblasts (AG02262) were grown in 6 well plates as described above. Once 

confluent they were growth arrested for 48 hours for cell cycle synchronisation by 

growing in serum free medium. Cells were then incubated for 24 hours in serum free 

medium with 1 x 10 -12 M TNFα. This allows optimal protein expression on the surface 

of the cells for cross linkage to take place. Cells were washed with sterile PBS and 

incubated with anti – ICAM 1 monoclonal IgG (Catalogue number: BBA4, R&D 

Systems) in serum free DMEM F12 HAM for 1 hour. The anti ICAM 1 was used at a 

concentration of 10 µg/ml as employed in previous experiments in the lab. 

Cells were then washed with warm sterile PBS.  The primary antibody was cross-linked 

using goat anti mouse IgG antibody (Catalogue number M8642, Sigma) at a 

concentration of 10 µg/ml for varying time periods. RNA was extracted as described 

above at 1 hour, 2 hours, 4 hours, 8 hours, 12 hours and 24 hours. Reverse Transcription 

and quantitative PCR was carried out to examine the expression of ICAM 1, and HAS 2 

mRNA. 

 

2.5 CELL LYSIS, RNA EXTACTION AND ANALYSIS 

1.1.1 CELL LYSIS AND RNA ISOLATION 
 
Medium was aspirated off the plates. The majority of the experiments described were 

done using 10 cm2 6 well plates. Cells were washed with sterile PBS x 3 times. 0.5 ml 

of TRI reagent (Sigma) was added and the plates left for 1 minute. The lysate was 

pipetted up and down several times to break up any complexes, and samples were 

collected in clear tubes. Another 0.5 ml of TRI reagent was added to the well and the 

above procedure repeated. The homogenate was added to the first tube. 
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This could then be stored at  -70 ° C for future use. TRI reagent is a mixture of 

guanidine thiocyanate and phenol in a monophase solution which effectively dissolves 

DNA, RNA, and protein on homogenization or lysis of tissue sample. After adding 

chloroform and centrifugion, the mixture separates into 3 phases: an aqueous phase 

containing the RNA, the interphase containing DNA, and an organic phase containing 

proteins. Each component can then be isolated after separating the phases. One ml of 

TRI Reagent is sufficient to isolate RNA, DNA, and protein from 50-100 mg of tissue, 

5-10 x106 cells, or 10 cm2 of culture dish surface for cells grown in monolayer; 

according to manufacturer’s protocol. 

Sample was thawed when required and 200 µl of chloroform was added to each tube. 

This was then mixed by shaking and incubated at room temperature for 5 to 10 minutes. 

It was then centrifuged at 12000xg for 20 minutes at 4°C and the aqueous phase 

transferred to a fresh tube. 

500 µl of isopropranol (Sigma-Aldrich) was added to each tube, mixed and RNA 

allowed to precipitate overnight at 4°C. Following centrifugation as before the 

supernatant was discarded and two washes were performed with 1ml of 70% ethanol 

and repeat centrifugation performed at 12000xg for 20 minutes. After the final wash, the 

supernatant was removed and the pellets were air-dried for 10 minutes before dissolving 

in 21 µl of sterile water. 

1.1.2 RNA QUANTIFICATION 
 
1 µl of each sample was diluted with 49 µl of nuclease free water. 

The spectrophotometer (Beckman UV -DU64 - Beckman Instruments Ltd, High 

Wycombe, UK) was blanked using nuclease free water and the first reading taken was 

of  the blank as a control. Optical density at 260 and 280 was measured. The amount of 

RNA in each sample was quantified using the following formula: 
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Abs260 x dilution factor (50) x RNA Coefficient (40) = RNA in µg/ ml 

 

The A260/A280 ratio was also used as an indicator of RNA purity. 

 

1.1.3 REVERSE TRANSCRIPTION 
 
Quantification of specific mRNA was carried out by quantitative Polymerase Chain 

Reaction (qPCR) and the first step for this was generating cDNA by Reverse 

Transcription. Accurate quantification of RNA targets depends upon the performance of 

this step. 

The method employed uses the random primer scheme to initiate cDNA synthesis. The 

total volume for the reaction was 20 µl. (High Capacity cDNA Reverse Transcription 

Kit Applied Biosystems) 

 

1.1.3.1 PREPARATION OF 2X RT MASTER MIX:  
 
2 µl of RT (Reverse Transcription) Buffer, 0.8 µl of 25X dNTP Mix, 2µl of 10XRT 

Random Primers, 1µl of multiscribe Reverse Transcriptase, 1 µl of RNase inhibitor and 

3.2 µl of nuclease free water were combined making a total of 10 µl per reaction.  

 

1.1.3.2 PREPARATION OF cDNA REVERSE TRANSCRIPTION REACTION: 
 
10 µl of the master mix was added to each well of an 8 well strip and 1 µg of RNA 

sample was added to each corresponding well, together with nuclease free water to give 

a final volume of 20 µl, and the contents mixed. As negative control 1 tube was loaded 

with nuclease free water instead of the RNA sample. The strips were then sealed and 

centrifuged. All the above steps are done on ice. 
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The strips were then loaded on the thermal cycler (Applied Biosystems Gene Amp PCR 

System 7000 thermocycler) and the following programme was followed as per the kit 

protocol 

 

 Step 1 Step 2 Step3 Step4 

Temperature 25°C 37°C 85°C 4°C 

Time  10 min 120 min 5 sec ∞ 

 

Once the cycle had ended the strips containing the cDNA could stored at 4°C or  -20°C 

until required. 

 

1.1.4 QUANTITATIVE POLYMERASE CHAIN REACTION (qPCR) 
 
A relative quantitation assay was used to analyse changes in gene expression in a given 

sample relative to a reference sample. The comparative CT method was used for this.  

CT refers to threshold cycle where amplification is in linear range of the amplification 

curve. It is also defined as the fractional cycle number at which the fluorescence passes 

the threshold.  To use this method a validation experiment was run to show that the 

efficiencies of the target and endogenous control amplifications were approximately 

equal.  The advantage of using the comparative CT method is that the need for a 

standard curve is eliminated. This eliminates the adverse effect of any dilution errors 

made in creating the standard curve samples. Ribosomal RNA (rRNA) or rRNA was 

used as the internal control for all samples, and the results presented as the RQ 

calculated by the delta delta CT method using the equation: 2- [ΔCT(1)- ΔCT(2)]  (where 

ΔCT(1) is the mean ΔCT calculated for the experimental samples and ΔCT(2) is the 

mean ΔCT calculated for the control samples.  

PCR was carried out using 7900 Fast Real-Time PCR system from Applied Biosystems. 
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TaqMan reagent-based chemistry uses a fluorogenic probe to enable detection of a 

specific PCR product as it accumulates during PCR cycles. A single primer pair was 

present in the reaction well. Only one target sequence or endogenous control was 

amplified per reaction. Three replicate reactions per sample and endogenous control 

were carried out to ensure statistical accuracy. 

 

Figure : Taqman gene expression assays (Applied Biosystems). 

 

PRIMER 

 

CATALOGUE NUMBER (Applied 

Biosystem) 

ICAM 1 HS00164932_m1 

HAS 2 Hs 00193435_m1 

rRNA 4310893E 

TNFα HS00174128_m1 

IL 1β HS01555410_m1 

CD45  
Hs00236304_m1 

 

2.6 IMMUNOHISTOCHEMISTRY 
 
Immunohistochemistry experiments were done to review sub-maximal stimulation of 

surface ICAM 1 on lung fibroblasts stimulated with varying concentration of TNFα. 

Cells were grown in 8 well chamber slides. Cells were growth arrested for 48 hours and 

then stimulated with medium containing varying concentrations from 1 x 10 -9 to 1 x 10 

-14 M of TNFα for 24 hours. Wells used as controls contained only serum free medium. 

 After 24 hours the medium was aspirated and cells washed with sterile PBS. Cells were 

fixed with 3.5% (w/v) paraformaldehyde for 15 minutes at room temperature, after 
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which the paraformaldehyde was removed and the cells washed with sterile PBS. Non 

specific binding was prevented by blocking with 1% BSA (wt/vol) in PBS for 1 hour. 

Cells were then washed x2 with PBS 0.1% BSA and incubated with primary 

monoclonal antibody (Anti ICAM 1 antibody 10 µg/ml) for 2 hours at room 

temperature. Positive control staining was carried out using Vimentin and negative 

control staining was Cytokeratin (both at 1 in 50 dilutions) 

Unbound primary antibody was removed after 2 hours with repeated washes with 1% 

BSA in PBS. Secondary antibody, Fluorescein Isothiocyanate (FITC) conjugated anti-

mouse IgG (Dako) was then added and incubated for 1 hour. Cells were again washed 

as above to remove unbound secondary antibodies. 

 The cells were then mounted in Vectashield fluorescent mountant (Vecta Laboratories, 

Peterborough, UK) and examined under UV-light on a Leica Dialux 20 fluorescent 

microscope (Leica Microsystems Ltd, Milton Keynes, UK). 

 

2.7 RNA INTERFERENCE 
RNA interference offers a valuable tool to study the effect of selective gene knockdown 

with in the cells. This was done using transient transfection with specific siRNAs (short 

interfering RNA). 

4 x 104 cells/ml were plated on 6 well plates and grown to 70 to 80% confluence The 

medium was changed to antibiotic and serum free medium for 4 hours prior to 

transfection. Transient transfection of fibroblasts was done using Lipofectamine 2000 

transfection reagent (Invitrogen, Catalogue number 11668 -027). The transfection was 

done as per manufacturer’s protocol. 

Two master mixes were made. First mix was for the siRNA oligomers and second for 

the lipofectamine 2000. Specific siRNA oligonucleotides ( sp1 and p3) were diluted in 

the Opti-MEM®I medium  such that the final concentration of the siRNA when added to 
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the cells would be 33nM. 250 µl of the diluted complex is prepared for each well of a 6 

well plate. 5 µl of lipofectamine was diluted in 250 µl of Opti-MEM®I. This was mixed 

gently and incubated for 5 minutes at room temperature. 

The two master mixes were then mixed and incubated for 20 minutes at room 

temperature. At the end of this incubation 500 µL of the oligomer-Lipofectamine TM 

2000 complexes was added to 500 µl antibiotic and serum free medium per well of the 6 

well plate. The plates were gently rocked to allow the complexes to mix. They were 

then incubated for 24 hours at 37 C with 5% CO2 for 24 hours. After incubation the 

medium containing the complexes was removed by aspiration and substituted with fresh 

serum and antibiotic free medium. RNA was then extracted at various time points as 

described before. Target gene expression was compared against that in cells transfected 

with scrambled control siRNA. 

The transfection time was optimized prior to performing the experiments with siRNA 

transfection. Optimum time was considered to be the time point with maximal 

knockdown of the target gene with no loss of cell viability as assessed by the Alamar 

Blue method. 

 

2.8 PROTEIN ESTIMATION: ELISA 
 

Enzyme linked immunosorbent assay (ELISA) was used to analyse IL 1β and TNFα 

concentrations in cell culture. This was assessed using a commercial available kit 

(Human IL 1β BD OptEIA, BD Biosciences) and anti-human TNFα paired antibodies 

and recombinant standard, (R&D Systems). 

 

A 96 well high-binding ELISA plate was initially coated with 100µL of capture 

antibody, 1 in 250 dilution in coating buffer, 0.1 molar sodium carbonate at 9.5 pH and 
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incubated overnight at 4degree C. They were then washed with wash buffer (PBS-

0.05% Tween20) ad then blocked with 3% BSA PBS. Serially diluted assay standards 

(1000 pg/ml, 500pg/ml, 250 pg/ml, 125 pg/ml, 62.5 pg/ml, 31.3 pg/ml) and samples 

were added in duplicate and incubated for 2 hours at room temperature. Plates were 

washed again with the wash buffer 3 times. Biotinylated detection antibody was then 

added to each well and incubated for 1 hour for TNF and 2 hours for IL 1β as per 

manufacturer’s instructions. The plates were again washed with wash buffer 3 

times.100µL of diluted (1 in 250 dilution) streptavidin-Horse radish Peroxidase 

conjugate was added and incubated for 30 minutes at room temperature. The plates 

were again washed with wash buffer 3 times. 100µL of TMB (Tetramethylbenzidine) 

substrate (SureBlue check manufacturer, KPL Inc, Maryland, USA) was added and 

incubated for 20 minutes. A blue colour develops in the standards wells. 50µL 2N 

sulphuric acid stop solution was added to each well and absorbance read on the plate 

reader at 450nm (with reference wavelength at 570nm). 

The standard curve was calculated by plotting mean optical density vs standard 

concentration. R2 value and equation of the trend line was generated. This equation was 

used to calculate the concentration of the proteins in the experimental samples. 

2.9 ASSESSMENT OF CELL PROLIFERATION AND VIABILITY 
	
Cell proliferation and viability was measured using the alamarBlue (Invitrogen) assay as 

per the manufacturers recommendations. Alamar Blue is a non toxtc growth indicator 

that detects metabolic activity. The metabolic activity of growing cells causes a 

reduction of the alamarBlue molecule which is detected by an increase in the 

fluorescence of the molecule. 

Briefly, the alamarBlue was added to a final of 10% (v/v) in fresh culture medium on 

the cells under investigation. Typically this was in a final volume of 250 µl per well of a 



	 65	

24 well plate and 500 µl per well of a 6 well plate. The incubation was then continued 

for 1 hour, at which point 100 µl medium samples were taken and the fluorescence 

intensity read (Excitation 540 and Emission 590). Experimental cells were compared to 

untreated control cells in order to detect any effect of the various treatments on cell 

viability or proliferation. 

2.10 STATISITCAL ANALYSIS 
Statistical analysis was carried our using the ANOVA test and t - test. 
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3 ICAM 1 AND HAS 2 REGULATION IN A MODEL 
SIMULATING INTERACTION BETWEEN FIBROBLASTS 

AND LEUCOCYTES 
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3.1 INTRODUCTION 
	
The role of adherence in various stages of life, in development and pathological, has 

already been discussed previously. One of the most important adhesion molecules and 

the primary Cell Adhesion Molecule in our study is Intercellular adhesion molecule-1 

(ICAM-1). 

3.1.1 INTERCELLULAR ADHESION MOLECULE-1 
	
The human ICAM-1 gene is located on chromosome 19 and consists of seven exons and 

six introns, with each of the five immunoglobulin-like domains encoded by a separate 

exon. Intercellular adhesion molecule-1 (ICAM-1, CD54) is a transmembrane 

glycoprotein of 505 amino acids. It is a member of the immunoglobulin family. In 

contrast to other cell adhesion molecules, ICAM-1 mediates adhesive interactions by 

binding to two integrins belonging to the β2 subfamily i.e., CD11a/CD18 (LFA-1) and 

CD11b/CD18 (Mac-1) (42). 

It is present on the cell surface of a wide variety of cell types including fibroblasts, 

leucocytes, keratinocytes, endothelial cells and epithelial cells. It is up-regulated by 

various pro-inflammatory signals including cytokines (IL 1β, TNFα and IFN γ), viruses, 

oxidative stress etc. (122, 123). This takes place through various signalling pathways 

involving MAP Kinases and transcription factors such as NFkB and AP-1 (124-127). 

Many of these triggers act synergistically when present together rather than 

independently. For instance, TNFα and IFN γ when present together, up-regulate ICAM 

1 expression much more than when they are present alone. The level of ICAM-1 

expression on the surface of any given cell type depends on the concentrations of pro- 

and anti-inflammatory mediators and on the availability of specific receptor-mediated 

signal transduction pathways and their nuclear transcription factor targets on the ICAM-

1 promoter. A number of signalling pathways and transcription factors are involved in 
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ICAM-1 transcription. This reflects the complex cell type-specific and stimulus-specific 

regulation of the ICAM-1 gene. The induction of ICAM-1 transcription occurs rapidly, 

being detected by nuclear run-on analysis as early as 30 min after treatment with TNFα 

(128). 

ICAM 1 is the major adhesion molecule involved in cell-to-cell adhesion when 

mononuclear cells infiltrate the injury site. Cell adhesion mediated by ICAM-1 is 

critical for the trans-endothelial migration of leucocytes and the activation of T cells, 

where ICAM-1 binding functions as a co-activation signal as well (129). 

 

3.1.2 ROLE OF MONOCYTES AND MACROPHAGES IN THE KIDNEY 
	
Monocytes play an important role in all types of renal injury, be it in native kidneys or 

in renal transplants (34, 130, 131).  Macrophages have been recorded in large numbers 

in acute diseases such as post-streptococcal glomerulonephritis (GN), ANCA associated 

GN and in chronic diseases such as IgA nephropathy or Systemic Lupus Erythematosis 

(SLE) (34, 130, 132). 

Macrophages have an associative or causative role inflammation in the kidneys in 

various disorders, and also carry prognostic implications. In several renal diseases, the 

number of macrophages seen in renal biopsies is related to the outcome of the disease 

(133). Once activated, these macrophages secrete a broad range of cytokines through 

intracellular signalling pathways including NFkB and MAP Kinases. These can be pro-

inflammatory cytokines like TNF α, IL-1β, IL-12, IL-18, IL-23, IL-6. They can also be 

pro-inflammatory chemokines like MIP-1, MIP-2, MCP, and generate reactive nitrogen 

and oxygen species (134, 135). Macrophages also secrete cytokines that can be 

beneficial to the kidneys; IL-10, HGF, FGF2, VEGF among others. One of the most 

important functions of macrophages is their ability to phagocytose. They can do this 

even in an inactive form in the absence of any of the above cytokines (136, 137).  This 
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is important for a normal kidney to scavenge particles such as dying erythrocytes, 

immune complexes, dying leucocytes or cellular debris, which exist even in a non 

pathological state.(138, 139). 

One interpretation would be that macrophages respond initially helping with repair of 

any injury, but in chronic injury or repetitive injury states they get activated with 

harmful effects (140, 141). 

3.1.3 ROLE OF MONOCYTE AND ICAM 1 INTERACTION IN 
INFLAMMATION 

	
Interactions between monocytes and adhesion molecules play a significant and varied 

role in inflammation and progression of various disorders. Monocyte and endothelial 

cell interaction, through ICAM-1 binding, plays a significant role in atherosclerotic 

disorders as well as vasculitis. Increased ICAM-1 expression has been correlated with 

increased infiltration of monocytes in cell culture experiments and in animal models 

(142, 143).  Inflammatory mediators associated with endothelial cell activation, such as 

oxidized lipids and cytokines, can significantly increase ICAM-1 expression on cultured 

endothelial cell lines (144). Loss or inhibition of ICAM-1 expression has been reported 

to decrease both atherosclerotic and vasculitic lesion formation in animal models (145).  

Accumulation of LFA -1(CD-11+ and CD18+) cells in areas of tubulointerstitial 

damage has been noted in experimental models showing significant up-regulation of 

ICAM-1. In this model IL-1RA (IL-1 receptor antagonist) treatment partially reduced 

glomerular ICAM-1 expression and leucocyte infiltration. However, IL-1RA treatment 

resulted in a dramatic inhibition of interstitial ICAM-1 expression, interstitial leucocyte 

infiltration, and tubulointerstitial damage. This again highlights the importance of 

ICAM-1 in renal disease (146). Again in rat models it has been shown that up-

regulation of periglomerular /peritubular capillary ICAM-1 expression is important for 

mononuclear cell entry into the interstitium, while interaction with fibroblast-like cells 
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may facilitate movement and subsequent focal accumulation of mononuclear cells at 

sites within the interstitium (19). 

 

 

 

3.2 AIMS  
	

The aim of the experiments in this chapter was to investigate the interaction between 

fibroblasts and monocytes with respect to the potential pro-inflammatory effects on 

ICAM-1 and HAS2 induction.  
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3.3 RESULTS 
 

3.3.1 TNFα DEPENDENT ICAM 1 RNA INDUCTION ON THE SURFACE OF 
FIBROBLASTS IS DOSE DEPENDENT. 

 

The aim of this experiment was to decide the concentration of TNFα that induced sub-

optimal expression of ICAM 1 mRNA and protein on the surface of fibroblast for 

further experiments. 

Fibroblasts were grown in 8 well plates as described in the Methods, and stimulated 

with various concentrations of TNFα for 24 hours. Surface expression of ICAM 1 was 

studied by immunohistochemistry. Vimentin was used as a positive control. Vimentin is 

the major structural component of intermediate filaments in cells of mesenchymal 

origin, e.g. fibroblasts and endothelial cells (147) .Cytokeratin was used as a negative 

control, given that keratin polypeptides are constituents of tonofilaments found 

exclusively in epithelial cells and therefore are used as markers for epithelial cells 

(148). 

ICAM 1 surface expression was induced by stimulation of fibroblasts with TNFα and 

was dose dependent. Strong expression was seen when fibroblasts were stimulated with 

1 x 10-9 M TNFα. The expression decreased as the concentration of TNFα reduced and 

expression was barely visible at 1 x 10-13M TNFα (Figure 3-1) 
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Figure	3-1	Expression of ICAM 1 on surface of Lung Fibroblast after stimulation of Fibroblasts with 
TNFα: A dose response review	

                                     

A. Positive control: Vimentin                                B.   Negative Control: Cytokeratin 

                                              

C. Unstimulated Lung fibroblasts                        D. Stimulated with 1 x 10-9M TNF                                                

                                          

E. Stimulated with 1 x 10-10M TNF α                 F. Stimulated with 1 x 10-11M TNF α   

                                 

G.  Stimulated with 1 x 10-12M TNF α               H. Stimulated with 1 x 10-13M TNF α 
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Experiments were then designed to quantify the up-regulation of ICAM 1 mRNA in 

response to stimulation with different concentrations of TNFα. Fibroblasts were plated 

in 6 well plates. Growth arrested fibroblasts were then treated with different 

concentrations of TNFα for 24 hours. Cells were washed with PBS 3 times and RNA 

extracted as discussed in methods. Reverse transcription and QPCR analysis for ICAM 

1 showed a stable up-regulation of ICAM1 at a basal level with 1 x 10-12 M of TNFα. 

At 10 x 10-12M TNF expression began to increase from basal levels and there was 

strong induction at 100 x 10-12M (Figure 3-1).  A TNF concentration of 1x10-12 M was 

used for sub-optimal induction of ICAM-1 in subsequent experiments.   
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Figure	3-2 Stimulation of Fibroblasts with different concentrations of TNFα 

Fibroblasts	were	incubated	with	different	concentrations	of	TNFα	from	10-14	M	TNFα	to	1	x	10-10	M	
TNFα.	After	24	hours	medium	was	aspirated	and	cells	washed	with	PBS	x	3	times.	mRNA	was	
extracted	as	described	before.	Q	PCR	results	for	ICAM	1	are	represented	as	mean	+	SE	of	mean(	n	=	3)	
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3.3.2 TNFα CAUSES UP REGULATION OF ICAM 1 BUT NOT HAS 2 RNA 
	
TNFα is known to stimulate expression of ICAM 1 on the surface of fibroblasts. It was 

important to investigate whether 1pM TNFα, which caused submaximal expression of 

surface ICAM 1 would also up-regulate HAS 2. If proven this could prove a synergetic 

effect of TNFα in promoting pro-fibrotic process by inducing expression of both 

ICAM 1 and HAS 2. On the other hand if it showed a differential up-regulation, it 

would suggest a secondary process occurring simultaneously when fibroblasts interact 

with monocytes.  

Fibroblasts were grown in 6 well plates. Cells were growth arrested for 48 hours once 

confluent and stimulated with 1 x 10 -12 M TNF α for a time course. RNA was extracted 

at times up to 24 hours. RT and QPCR were done as described above. 

There was significant up-regulation of ICAM 1 mRNA peaking at 4 hour that then came 

down to baseline levels within 24 hours.  In contrast there was no significant up-

regulation of HAS 2 at mRNA level (Figure 3-3) 
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Figure	3-3 Stimulation of Lung Fibroblasts with 1 x 10-12 M TNF α 

Fibroblasts	were	incubated	with	1	x	10-12	M	TNF	α.	At	set	time	points	cells	were	washed	with	PBS	x	3	
times.	mRNA	was	extracted	as	described	before.		

Q	PCR	results	for	ICAM	1							and	HAS	2							expression	are	represented	as	mean	+	SE	of	mean	
normalised	to	0.5hrs	time	point	(n	=	3).	P	value	for	ICAM1	comparing	time	0	and	4	hours		(p	value:	❋ 
<0.001)	
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3.3.3 CROSS LINKING OF SURFACE ICAM 1 ON FIBROBLASTS LEADS 
TO UP-REGULATION OF ICAM 1 

	
Leucocyte binding to fibroblasts (isolated from both the human renal cortex and 

lung) and to endothelial cells induced the de novo synthesis of ICAM-1 mRNA and 

protein through the ICAM-1- dependent activation of the cultured cells. This has 

been mimicked by cross-linking ICAM 1 on the surface of different cell lines using 

anti-ICAM 1 antibodies   Cross-linking of cell surface ICAM 1 on TNF α-

stimulated lung fibroblasts in this study also led to an increase in the ICAM 1 

mRNA which peaked at 1 hour (1, 119) (Figure 3-4). In addition, cross-linking cell 

surface ICAM-1 also up-regulated HAS 2mRNA, which peaked at 4 hours. Given 

the cross-linking model was designed to imitate the ICAM-1-dependent interaction 

of fibroblasts with leucocytes, it would suggest this interaction may also lead to 

induction of HAS 2 with ICAM 1-dependent binding playing an important role.  
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Figure	3-4 ICAM 1 and HAS 2 mRNA expression following ICAM-1 cross-linking 

Fibroblasts	were	incubated	with	10-12	M	TNFα	for	24	hours	after	growth	arresting.	Cells	were	washed	
with	sterile	PBS	and	incubated	with	anti	–	ICAM	1	monoclonal	IgG	in	serum	free	DMEM	F12	HAM	for	1	
hour.	Cells	were	then	washed	with	PBS	(× 	3	times)	and	primary	antibody	was	cross	linked	using	goat	
anti	mouse	IgG	antibody	at	a	concentration	of	10μg/ml.	mRNA	was	extracted	as	discussed	in	
methods.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	performed	and	the	results	are	expressed	as	mean	+	
SE	of	mean	of	the	measurements	corrected	for	rRNA	(n=6)	,	p	value	❋=0.020,#<0.001 
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3.3.4 CO-CULTURE OF FIBROBLASTS WITH U937 CELLS LEADS TO UP-
REGULATION OF ICAM 1 AND HAS 2 

	
Lung Fibroblasts were plated in 6 well plates and growth arrested for 48 hours 

when near confluence. Co-culture with 5 x 105 U937 cells/ml was then carried out 

using the method described before.  There was significant up-regulation of ICAM 1  

mRNA. This peaked at 4 hours. There was also up-regulation of HAS 2 m RNA, 

which peaked at 4 to 8 hours (Figure 3-5).  

Co-culture with U937 cells was carried out with lung fibroblasts stimulated with 1 

x 10-12 M TNF α after cell cycle synchronisation as well as unstimulated 

fibroblasts. No significant difference was seen in the peak up-regulation of either 

ICAM 1 or HAS 2 between the two co-culture models (TNF α stimulated 

fibroblasts or unstimulated fibroblasts with U937 cells). (Figure 3-6). The increase, 

however, was maintained for longer.  This is important, as it would suggest that 

even unstimulated fibroblast have the capacity to up-regulate ICAM 1 and HAS 2 

and therefore may have a role to play in propagating inflammation.  Under the 

influence of an inflammatory cytokine, however, this response would be prolonged. 
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Figure	3-5 ICAM 1 and HAS 2 mRNA expression following Lung Fibroblasts and U937 cell co-culture 

Fibroblasts	were	incubated	with	5	× 	105	U937	cells	for	times	up	to	24	hours.	Cells	were	washed	with	
PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described.	RT	and	q-PCR	for	ICAM-1	
and	HAS	2	were	performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	measurements	
corrected	for	rRNA	(n=6),	p	value:	❋=0.006,	#=0.022 
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Figure	3-6 Comparison of ICAM 1 and HAS 2 mRNA expression following co-culture of TNF α stimulated 
Fibroblasts and U937 cells with co culture of unstimulated Lung Fibroblasts and U937 cells. 

								Fibroblasts	were	incubated	with	10	-12M	TNF	α	for	24	hours.	Medium	was	aspirated	and	cells	
washed	with	PBS	×3	times.	These	were	then	incubated	with	5	× 	105	U937	cells	for	times	up	to	24	
hours.	Cells	were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	
described	before.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	performed	and	the	results	are	expressed	
as	mean	+	SE	of	mean	of	the	measurements	corrected	for	rRNA	(n=6).	

At	the	same	time							Fibroblasts	were	incubated	with	5	× 	105	U937	cells	for	times	up	to	24	hours.	Cells	
were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	before.	
RT	and	qPCR	for	ICAM-1	and	HAS	2	were	performed	and	the	results	are	expressed	as	mean	+	SE	of	
mean	of	the	measurements	corrected	for	rRNA	(n=6).		
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3.3.5 CO-CULTURE OF FIBROBLASTS AND ACTIVATED U937 CELLS 
LEADS TO EXPONENTIAL UP-REGULATION OF ICAM 1 AND HAS 2 
mRNA   

	
In an on-going inflammatory process the monocytes recruited to the site of 

inflammation get activated into a more macrophage-like state. To assess whether the 

interaction between fibroblast and U937 cells was altered if the U937 cells were 

activated, we repeated the experiment above with PMA-activated U937 cells. PMA 

(phorbol myristate acetate) leads to clustering of CDlla/CD18 integrin molecules at 

the cell surface, without any increase in integrin affinity (149).  It therefore offers 

greater possibility of cell-to-cell binding.	 This is important as we have already 

shown that even in an unstimulated state fibroblasts and U937 cells up-regulate 

ICAM 1 and HAS 2, thus propagating pro-inflammatory process.  

Co-culture experiments were carried out with lung fibroblasts and PMA activated U 

937 cells, as described earlier. There was an exponential increase in both ICAM 1 

and HAS 2  mRNA that was statistically significant (Figure 3-7). 
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Figure	3-7	Comparison of ICAM 1 and HAS 2 mRNA expression following co culture of Lung Fibroblasts 
and Activated U937 cells and Lung Fibroblasts and U937 cells. 

	U937	were	activated	by	treating	them	with	160nM	Phorbol	Myristate	Acetate	(PMA)	for	48hours.	
Majority	of	the	cells	were	adherent	to	the	plastic	flasks.	Cells	were	taken	off	the	flask	using	0.1%	EDTA	
and	then	centrifuged	and	re-suspended	in	DMEM	F12	HAM	medium.	

						Fibroblasts	were	incubated	with	5	× 	105	U937	cells	for	times	up	to	24	hours.	Cells	were	washed	
with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	before.	RT	and	qPCR	
for	ICAM-1	and	HAS	2	were	performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	
measurements	corrected	for	rRNA	(n=6).	

					Fibroblasts	were	incubated	with	5	× 	105	activated	U937	cells	for	times	up	to	24	hours.	U937	cells	
were	taken	off	the	flask	using	0.1%	EDTA	and	Cells	were	washed	with	PBS	(×3	times)	to	wash	the	
U937	cells	off	and	mRNA	extracted	as	described	before.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	
performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	measurements	corrected	for	
rRNA	(n=6)		

P value: ❋<0.001, #<0.001 
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It was important to confirm that activated U 937 cells were not the source of the 

exponential rise of HAS 2 mRNA . For this purpose U 937 cells and activated U 937 

cells were plated in 6 well plates and RNA extracted as explained before at times up to 

24 hours. HAS 2 expression was reviewed using reverse transcription and Q-PCR as 

before. There was no rise in HAS 2 expression by U 937 cells over 24 hrs as shown by 

lack of amplification of the HAS 2 sequence by Q-PCR (Figure 3-8). This would 

therefore confirm that the HAS 2 mRNA was expressed by the fibroblasts in the 

fibroblast and activated U937 cells interaction, as there was no detectable HAS 2 

expression in the U937 cells and activated U937 cells. I have shown that U937 cells and 

act U937 cells, in isolation do not express HAS 2 using qPCR. Another way of 

confirming this would be to separate the fibroblasts and U937 cells from each other 

using cell separation technique such as FACS and then performing RT qPCR for HAS 

2. Newer techniques are also available which rely on mechanical separation of 

monocytes off the fibroblasts using micromanipulators such as CellcelectorTM. I have 

shown upregulation of ICAM 1 and HAS2 in experiments where ICAM 1 has been 

cross-linked on the surface of the fibroblasts. Additional experiment using U937 cells 

and cross linking surface receptors such as CD18 can be attempted to simulate 

activation of U937 cells and investigated as possible source of ICAM 1 and HAS2 but 

were not done in the present thesis.           
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Figure	3-8 HAS 2 expression in plated U937 cells and PMA activated U937 cells over a time course: This 
showed the lack of any amplification after 40 cycles 
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DISCUSSION 

In this chapter, I have shown that co-culture of fibroblasts and U937 cells resulted in 

up-regulation of ICAM 1 and HAS 2 mRNA. This was mimicked in experiments where 

ICAM-1 on the cell surface was cross-linked using primary and secondary antibodies 

(119). 

Fibroblast and U937 cell interaction has been studied previously in various models. In 

systemic sclerosis it has been shown that there is an over expression of ICAM-1 on 

dermal fibroblasts. In these experiments, the use of neutralising anti-ICAM 1 antibody 

greatly reduced U937 cell binding to these fibroblasts (150). It has also been shown in 

the alveolar epithelial carcinoma cell line, A549, that binding to U937 cells is ICAM-1 

dependent (126). ICAM-1 up-regulation in this co-culture was found to be TNFα 

mediated and involved MAP kinases and NFkB and AP-1 activation (151). U937 cells 

can also induce ICAM 1 mRNA in other cell lines. Interaction between Human 

Umbilical Vein endothelial cells and U937 cells led to up-regulation of adhesion 

molecules ICAM 1 and VCAM-1. This was found to be IL 1β and TNFα 

mediated(152). 

The interaction in fibroblast-U937 cell co-culture is therefore possibly mediated by 

ICAM 1 linked binding. Up-regulation of ICAM 1 would promote leucocyte infiltration 

and inflammation at site of any form of injury. Cross-linkage experiments have shown 

that up-regulation of ICAM 1 causes a positive feedback loop which would further up-

regulate induction of ICAM-1. 

In addition to up-regulation of ICAM-1, I have also shown up-regulation of HAS 2 

mRNA in fibroblast-U937 cell co-culture. It has also been shown that intermediate 

molecular weight products of hyaluronan markedly stimulate the expression of the 

adhesion molecules ICAM-1 and VCAM-1 in cultured kidney tubular cells (153). This 

response was seen in some cell lines but not in others such as the 3T3 cell line (mouse 
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fibroblasts). In the cells that responded, it was seen that NF-κB and AP-1 activities were 

induced in response to HA and the authors suggested that these transcription factors 

could participate in the regulation of adhesion molecule expression in MCT cells. Given 

hyaluronan can also stimulate ICAM 1 induction, the above process could work 

synergistically in promoting fibrosis and offer two different targets to alter the fibrosis 

promoting events.  

ICAM 1 mRNA up-regulation, is exponentially increased when U937 cells are activated 

with phorbol esters. Phorbol esters are strong activators of leucocyte adhesion. 

Activation of adhesion by these agents takes place by clustering of CDlla/CD18 integrin 

molecules at the cell surface, allowing more receptors to be available for binding (154). 

Phorbol esters such as phorbol-12-myristate 13-acetate (PMA) have pleiotropic effects 

on cells. Phorbol exerts its biologic effects by altering gene expression through the 

activation of PKC and modulating the activity of transcriptional factors such as AP-1, 

NFkB and PU-1 (155, 156). Increased leucocyte binding after activation with PMA has 

been seen in mesangial cells and has been shown to be ICAM 1 dependent (157). 

I have shown that ICAM 1 and HAS 2 up-regulation takes place in the fibroblast and U 

937 cell interaction and this is also confirmed in ICAM 1 cross linkage experiments 

which mimic ICAM 1 binding. It would therefore be logical to hypothesise that ICAM 1 

binding plays a significant role in the fibroblast and U937 interaction. A significant 

increase in the up-regulation of ICAM 1 and HAS2 mRNA in the presence of PMA-

activated U937 cells also adds evidence for the role of ICAM 1 binding based on 

mechanisms involving increased interaction of fibroblast ICAM-1 with the up-regulated 

CD18 integrins on the activated U937 cell surface.  This will be further investigated in 

subsequent chapters.  
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4 MECHANISM BEHIND UP-REGULATION OF ICAM 1 AND 
HAS 2: COMMON OR DIFFERENT PATHWAY? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 89	

4.1 INTRODUCTION 
 
In the previous chapter I have shown that there is a significant role played by cell 

interaction (probably through ICAM 1 binding) in the up-regulation of ICAM 1 and 

HAS2   In previous studies, when U937 cells were co-cultured with synovial fibroblasts 

they created an environment very similar to osteoarthritic synovial fluid. Expression of 

CD80, a macrophage activation marker, suggested that U937 cells became activated 

when cultured with the synovial fibroblasts. This model also showed the importance of 

cell-to-cell contact between the synovial fibroblasts and U937 cells (158). Cell-to-cell 

contact is also deemed important in studies with lung fibroblasts to assess the role of 

mononuclear cell and fibroblast contact in promoting alveolar inflammation and fibrosis 

(159).  

Conversely, there is also work that shows the cell-to-cell contact may not be essential in 

other fibroblast-U937 cell co-cultures. Fibroblasts, obtained from either rheumatoid 

arthritis or osteoarthritis synovial tissue, could mediate cartilage degradation if co-

cultured with  U937 macrophages. Fibroblast-macrophage contact was not required for 

cartilage degradation. Macrophage-conditioned media was sufficient to cause the 

degradation. Soluble factors released by the macrophage appear to be, at least in part, 

responsible for the fibroblast activation. Cartilage degradation by synovial fibroblasts 

was inhibited by antibodies to TNF α, IL-1β and IL-6. The degradation process was 

almost completely inhibited by a combination of antibodies to TNF α and IL-1β (160). 

Co-culture experiments between fibroblast cell lines (16Lu) and mononuclear cells 

isolated from blood have shown differential up-regulation of different chemokines. It 

showed that even though the two chemokines are produced during the adhesion event, 

they are differentially regulated. MIP-1α appears to be dependent upon adhesion-

mediated pathways, where as MCP-1 appears to require cytokine signalling pathways 

for its production. They appear to be differentially induced during the cell-to-cell 
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interactions (135). It has also been shown that in T cell-synovial fibroblast interactions 

TNFα , ICAM 1 and VCAM 1 get up-regulated. There was, however, reduced ICAM 1 

and TNFα expression when cells were co-incubated in the presence of inserts 

preventing cell-to-cell contact (161). 

 

 

4.2 AIM 
	
My observations and the evidence discussed above raised important questions about the 

role of cell-to-cell contact in causing up-regulation of ICAM 1 and HAS 2 and the role 

of ICAM 1 binding. Cross-linking experiments had shown the potential role of cell 

contact with ICAM 1 cross-linking causing up-regulation of ICAM 1 and HAS 2 

mRNA.  

This led to the hypothesis that if the cell-to-cell contact between adhesion molecules on 

fibroblasts and U937 cells in co-culture experiments was interrupted, the up-regulation 

of ICAM 1 and HAS2 mRNA should also be inhibited. In this chapter I also studied the 

possible mechanisms behind ICAM-1 and HAS 2 mRNA up-regulation and  assessed if 

these were along common or different pathways.  
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4.3 RESULTS 
	

4.3.1  ROLE OF CELL TO CELL CONTACT IN FIBROBLAST-U937 CELLS 
CO-CULTURE 

 
Co-culture experiments were designed using 0.4-micron membrane inserts to eliminate 

the cell-to-cell contact and binding. The inserts were chosen on the basis that the U937 

cell size is 13microns.  To investigate the degree to which cell-to-cell contact was 

involved in the activation of fibroblasts, cells (AG02262) were plated in 6 well plates 

and cultured to near confluence. They were then growth arrested by growing them in 

serum free culture media for 48 hours. Fibroblasts and 5 × 105 U937 cells/ml were 

incubated in separate plates as well allowing cell to cell contact for 4 and 8 hours as 

control. In the experimental plates 0.4 micron membrane inserts were suspended over 

growth-arrested fibroblast monolayers and 5 × 105 U937 cells/ml were added into the 

insert to interrupt the cell to cell contact but still allow liquid phase contact with the 

medium. Medium was added outside the insert to allow contact between the 2 phases to 

allow movement of solutes.  Cells were washed with PBS (×3 times) to wash the U937 

cells off and mRNA extracted as described before. RT and Q-PCR for ICAM-1 and 

HAS 2 were performed. 

Preventing cell-to-cell contact using the membrane inserts resulted in a significant 

reduction in ICAM-1 mRNA induction, p value < 0.001. In contrast, HAS 2 up-

regulation was unaffected in the presence of inserts (figure 4-1). This would suggest 

that there might be additional mechanisms involved in addition to cell-to-cell contact in 

the regulation of HAS 2 in comparison to ICAM 1, which appears to be regulated 

mainly by cell adhesion.  
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Figure 4-1 Role of Cell-to-Cell Contact: ICAM-1 and HAS-2 mRNA expression following Fibroblasts 
and U937 cells incubation in the presence/ absence of 0.4μ membrane inserts. 

								Fibroblasts	and	5	× 	105	U937	cells/ml	were	incubated	for	4	and	8	hours	as	control.						0	.4μ 	
membrane	inserts	were	suspended	over	Fibroblasts	monolayer	and	5	× 	105	U937	cells/ml	were	added	
into	the	insert.	Medium	was	added	outside	the	insert	to	allow	contact	between	the	2	phases	to	allow	
movement	of	solutes.	Cells	were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	
extracted	as	described	before.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	performed	and	the	results	are	
expressed	as	mean	+	SE	of	mean	of	the	measurements	corrected	for	rRNA	(n=6),p	value	❋<0.001		
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4.3.2 INHIBITION OF FIBROBLAST-U937 CELLS INTERACTION WITH 
SOLUBLE ICAM 

	
To confirm whether the interaction between fibroblasts and U937 cells involved ICAM-

1 dependent binding to U937 CD18 receptors, fibroblasts were incubated with U937 

cells in the presence of soluble ICAM-1. Fibroblasts were grown to near confluence in 6 

well plates, growth arrested and incubated with varying concentrations of soluble ICAM 

1 for 1 hour. After 1 hour the medium was aspirated and cells washed with PBS x 3 

times.  Co-culture experiments using 5 x 105 U937 cells were then conducted as before. 

There was a dose dependent reduction in the up-regulation of ICAM 1(p value 0.045) 

and HAS 2 (p value 0.020) in the presence of increasing concentrations of soluble 

ICAM-1 (figure 4-2a). This again showed that there was a role for cell binding in the up 

regulation of ICAM 1 and HAS 2. The binding was assessed directly using CD45 as a 

marker for U937 cells binding. There was a dose-dependent reduction in the expression 

of CD45 mRNA in the presence of soluble ICAM, though not statistically significant (p 

value 0.080), thereby supporting the role of ICAM dependent binding interaction (figure 

4-2b). 
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Figure 4-2a: Fibroblast and U937 interaction in the presence of Soluble ICAM 1 

    Fibroblasts	were	incubated	with	5	× 	105	U937	cells/ml	in	the	presence/	absence	of	soluble	ICAM	in	
varying	concentration	to	assess	dose	response,		
						800ng/mL	S	ICAM,					400ng/mL	S	ICAM	
Cells	were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	
before.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	performed	and	the	results	are	expressed	as	mean	+	
SE	of	mean	of	the	measurements	corrected	for	rRNA	(n=3),	p	value:	❋=0.045,❋❋=0.020	
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Figure 4-2b:	Fibroblast and U937 interaction in the presence of Soluble ICAM 1 

      Fibroblasts	were	incubated	with	5	× 	105	U937	cells/ml	in	the	presence/	absence	of	soluble	ICAM	
in	varying	concentration	to	assess	dose	response,	 

									800ng/mL	S	ICAM	
	
									400ng/mL	S	ICAM	
Cells	were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	
before.	RT	and	qPCR	for	CD45	were	performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	
the	measurements	corrected	for	rRNA	(n=3)	
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4.3.3  FIBROBLAST AND U937 CELLS CO-CULTURE IN PRESENCE OF β2 
INTEGRIN ANTIBODY 

 
Another way to confirm that ICAM 1 - CD18 interaction was involved in the response 

of fibroblast to U937 cells was to block the β2	integrins	on	the	U937	cell.  Fibroblasts 

were again grown to near confluence and then growth arrested for 48 hours before the 

experiment. U937 cells were incubated with 20mcg/ml of β2 integrin antibody (Integrin 

β2 (TS1/18), Santa Cruz Biotechnologies Inc.) for an hour before the co-culture. Co-

culture was then carried out as in previous experiments. The experiment was conducted 

as a 4-hour timed course based on previous experiments and mRNA extracted for 

analysis by reverse transcription and qPCR. 

The experiment showed down-regulation in the expression of both HAS 2 and ICAM 1 

mRNA in the presence of β 2 integrin antibodies, highlighting the importance of cell-to-

cell contact in the up-regulation of ICAM 1 and HAS 2 in fibroblast and U 937 cell co-

culture using CD18-mediated ICAM-1 binding. The reduction in ICAM 1 mRNA 

induction was significant with a p-value of 0.038. Despite this reduction, there was still 

statistically significant induction of ICAM 1 mRNA in comparison to plated fibroblasts 

with a p-value of 0.013. This would suggest that there are other mechanisms also 

involved in this process, though ICAM 1 binding may be the more dominant one. 

The reduction in HAS 2 mRNA up-regulation was present but not significant 

statistically with a p value of 0.394 (Figure 4-3). This would suggest a greater role of 

cell-to-cell contact with ICAM 1 binding playing a more significant role in ICAM 1 

mRNA up-regulation in comparison to HAS2 mRNA induction.  
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Figure 4-3: Fibroblast and U937 cells co-culture in the presence of β2 Integrin Antibody 

Fibroblast	monolayer	were	incubated	with	5	x	105	U937	cells	in	the	presence/absence	of	20μg/ml	of	
β	2	 Integrin	Antibody,	 (TS1/18),	 sc-53712.	Cells	were	washed	with	PBS	 (´3	 times)	 to	wash	 the	U937	
cells	off	and	mRNA	extracted	after	4	hours.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	performed	and	
the	 results	 are	 expressed	 as	mean	 +	 SE	 of	mean	 of	 the	measurements	 corrected	 for	 rRNA	 (n=3).p	
value:	❋=0.038	
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4.3.4 FIBROBLAST RESPONSE TO THE PRESENCE OF CONDITIONED 
MEDIUM FROM FIBROBLAST AND U937 CELL INTERACTION 

 
Experiments with the use of medium conditioned by the contact of fibroblast and U937 

cells were designed to study other mechanisms that may be involved in the up-

regulation of ICAM 1 and HAS2 mRNA. This medium would contain any soluble 

factors released from the cells that may play a role in the up-regulation of ICAM 1 and 

HAS 2.  

Lung fibroblast monolayers were growth arrested when nearly confluent. After 48 hours 

5 x 105 U 937 cells/ml were added to the 6 well plates. Medium was then aspirated after 

15 minutes, 30 minutes, 1 hour, 2 hour and 4 hours of co-incubation. This was then 

centrifuged at 7000 rpm for 7 min. The supernatant was then used as conditioned 

medium.  This initial experiment was designed to decide the duration of time the 

fibroblasts need in which to interact with the U 937 cells (Figure 4-4).   
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Figure 4-4: Fibroblast response to incubation with conditioned medium from fibroblast-U937 cell co-
culture 

Fibroblast	monolayer	was	plated	in	6	well	plates.	After	48	hours	of	growth	arrest	period	in	serum	free	
medium	5	x	105	U	937	cells	were	added	in	serum	free	medium.	The	supernatants	were	aspirated	from	
respective	wells	at	15	minutes,	30	minutes,	1	hour,	2	hour	and	4	hour	of	co-incubation.	Any	cells	 in	
the	aspirate	were	pelleted	 	by	 centrifugation.	 	 Fibroblasts	were	 then	exposed	 to	 this	medium	 for	4	
hrs.	RNA	was	extracted	and	analysed	as	described	before.	
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Based on the results of the initial experiment, I decided to use the 2-hour conditioned 

medium, given that in the fibroblast and U937 co-culture model, the maximum up-

regulation in ICAM 1 and HAS 2 mRNA was noted at 4 hours. Fibroblasts were plated 

in 6 well plates and growth arrested in serum free medium when near confluence. They 

were then incubated with 5 x 105 U 937 cells for 2 hours. After 2 hours the medium was 

aspirated and centrifuged at 7000 rpm for 7 minutes. The supernatant was used as 

conditioned medium. This conditioned medium was added to growth arrested 

fibroblasts plated on separate 6 well plates. They were allowed to incubate for 4 hours. 

After 4 hours medium was aspirated, cells washed with PBS x3 and RNA extracted as 

detailed before. 

These conditioned medium experiments confirmed that though cell-to-cell contact plays 

an important role in up-regulation of ICAM 1 and has some role in HAS 2 up-

regulation, there are other mechanisms involved which lead to up-regulation of ICAM 1 

and HAS 2 mRNA even in the absence of the U937 cells contact. ICAM 1 mRNA up-

regulation in the presence of conditioned medium was significant with a p value of 

<0.001. This is despite the fact that the induction was significantly reduced when 

compared to induction in the presence of cell-to-cell contact (p value=0.001). HAS 2 

mRNA up-regulation from fibroblasts was also significant in the presence of 

conditioned medium (p value= 0.004) but there was no significant difference in this up-

regulation in comparison to fibroblast and U 937 cells interaction (p value=0.478). The 

results show that cell-to-cell contact plays a significant role in the up-regulation of 

ICAM 1 but possibly a contributory role to the up-regulation of HAS 2 (Figure 4-5). 

Rather, some factor may be present in the medium generated either by the interaction of 

fibroblasts with U 937 cells or secreted by the U 937 cells themselves. 
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Figure 4-5: ICAM 1 and HAS 2 expression in fibroblasts in response to incubation with conditioned 
medium from fibroblast and U937 cell co-culture 

Growth	arrested	fibroblast									were	incubated	with	5	x	105	U	937	cells	in	6	well	plates							.		
At	the	same	time	fibroblasts	were	also	incubated	with	conditioned	medium	from	Fibroblast	and	U	937	
co-culture	taken	after	2	hours	of	co-incubation.						.			.	Cells	were	washed	with	PBS	(´3	times)	to	wash	
the	U937	cells	off	and	mRNA	extracted	after	4	hours.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	
performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	measurements	corrected	for	
rRNA	(n=3).	
ICAM	1	mRNA	up-regulation	in	the	presence	of	conditioned	medium	was	significant	with	a	p	value	of	
<0.001(❋ ).	The	reduction	in	the	ICAM	1	up-regulation	in	the	presence	of	conditioned	medium	in	
comparison	to	fibroblast	and	U937	cell	interaction	was	also	significant,	p	value=0.001(❋❋ )	

HAS	2	mRNA	up-regulation	from	fibroblasts	was	also	significant	in	the	presence	of	conditioned	
medium,	p	value=	0.004(#)	but	there	was	no	significant	difference	in	this	up-regulation	in	comparison	
to	fibroblast	and	U	937	cells	interaction,	p	value=0.478	(##).	
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4.3.5 ROLE OF CELL TO CELL CONTACT WITH ACTIVATED U937 
CELLS 

 
The interaction of PMA activated U937 cells with fibroblasts leads to an exponential 

increase in ICAM 1 and HAS2 mRNA in comparison to interaction with unstimulated 

U937 cells. I have shown that there are different mechanisms involved in ICAM 1 and 

HAS 2 mRNA induction, with cell-to-cell contact playing a more dominant role in 

ICAM 1 induction. To investigate the role of cell-to-cell contact in this interaction, 

fibroblasts were incubated with PMA-activated U937 cells separated from each other by 

membrane inserts. 

In contrast to co-incubation with untreated U937 cells, co-incubation with activated 

U937 cells induced an approximate 200 fold greater induction of ICAM-1 and 10 fold 

greater induction of HAS 2 mRNA. Both increases were inhibited in the presence of cell 

culture membrane inserts but still present to a significant level in comparison to 

fibroblasts alone (Figure 4-6). These results suggest that there was a binding interaction 

triggered once the monocytes were activated, which was a potent mechanism for 

fibroblast activation. 
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Figure 4-6:ICAM-1 and HAS-2 mRNA expression following Fibroblasts and PMA activated U937 cells 
incubation in the presence/ absence of 0.4µ membrane inserts. 

 
        Fibroblasts	and	5	× 	105	activated	U937	cells/ml	were	incubated	for	4	hours	Similarly	fibroblasts	
and	5	x	105	activated	U937	cells	were	plated	in	the	presence	of	0.4μ 	membrane	inserts	suspended	
over	Fibroblasts	monolayer							.	Medium	was	added	outside	the	insert	to	allow	contact	between	the	2	
phases	to	allow	movement	of	solutes	but	to	prevent	cell-to-cell	contact.	Cells	were	washed	with	PBS	
(×3	times)	and	mRNA	extracted	as	described	before.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	
performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	measurements	corrected	for	
rRNA	(n=6)		
	p-value:❋=0.001,❋❋=0.010,#<0.001,##=0.026	
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4.3.6 FIBROBLAST AND PMA ACTIVATED U937 CO-CULTURE IN 
PRESENCE OF SOLUBLE ICAM 

 
The activation of fibroblasts was many fold greater in the presence of activated U937 

cells. To investigate if this was due to increased ICAM-1 dependent binding, the 

interaction was repeated in the presence of soluble ICAM-1. A small non-significant 

effect was seen in the induction of ICAM 1 and HAS 2. The effect was seen most with 

ICAM 1 induction in the presence of 800ng/ml of sICAM1 with a p value of 0.062. 

These results would suggest that either the concentrations of soluble ICAM used were 

too low for the binding interaction induced by activated U937 cells or that there were 

other mechanisms in which U937 cells bind or interact with the fibroblasts (Figure 4-7). 
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Figure 4-7:ICAM-1 and HAS-2 mRNA expression following Fibroblasts and PMA activated U937 cells 
incubation in the presence/ absence soluble ICAM 1 

						Fibroblasts	were	incubated	with	5	x	105	PMA	activated	U937	cells/ml	in	the	presence/	absence	of	
soluble	ICAM	in	varying	concentration	to	assess	dose	response.							

						800ng/ml	soluble	ICAM							400ng/ml	soluble	ICAM					
Cells	were	washed	with	PBS	(´3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	
before.	RT	and	qPCR	for	ICAM-1	and	HAS	2	were	performed	and	the	results	are	expressed	as	mean	+	
SE	of	mean	of	the	measurements	corrected	for	rRNA		(n=3).	
P	value:	❋=0.276,❋❋=0.062,	#=0.576,	##=0.415	
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4.3.7 FIBROBLASTS AND ACTIVATED U937 CO-CULTURE IN PRESENCE 
OF β2 INTEGRIN ANTIBODY 

 
PMA activated U937 cells were pre-incubated for one hour with 20μg/ml of blocking 

anti-CD18 antibodies, to clarify whether there were other binding interactions occurring 

when activated U937 cells were incubated with fibroblasts. The cells were then co-

incubated with growth arrested fibroblasts for 4 and 8 hours. There was no significant 

effect on the levels of ICAM 1 and HAS 2 mRNA. ICAM 1 mRNA up-regulation was 

reduced by 18% (p value 0.166), HAS 2 mRNA up-regulation was reduced by 12% (p 

value 0.453) and CD45 by 8% (p value 0.654) (Figure 4-8). These results suggest that 

other binding interactions were also involved in fibroblast activation with PMA 

stimulated U937 cells. 
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Figure 4-8: ICAM 1 and HAS 2 expression following fibroblast and PMA activated U937 cells co-culture 
in the presence of β2 Integrin antibodies. 

						Fibroblast	monolayers	were	incubated	with	5	x	105	activated	U937	cells	as	control.							
						
						Fibroblast	monolayers	were	also	incubated	with	5	x	105	PMA	activated	U937	cells	in	the	
presence/absence	of	20μg/ml	of	β	2	Integrin	Antibody.	Activated	U937	cells	were	pre-incubated	with	
the	β	2	integrin	Antibody	for	1-hour	prior	to	co-culture	with	Fibroblast	monolayers.	Cells	were	washed	
with	PBS	(x	3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted.	RT	and	qPCR	for	ICAM-1,	HAS	2	
and	CD45	were	performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	measurements	
corrected	for	rRNA		(n=3)	
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4.3.8 FIBROBLASTS RESPONSE TO THE PRESENCE OF CONDITIONED 
MEDIUM FROM FIBROBLAST AND ACTIVATED U937 CELL 
INTERACTION 

 
Similar to the conditioned medium experiments with unstimulated U937 cells, 

conditioned medium experiments were designed for U937 cells stimulated with PMA. 

Growth arrested fibroblasts were co-cultured with 5 x 105 PMA activated U 937 cells 

for 2 hours and the conditioned medium generated as before. This medium was added to 

separate growth arrested lung fibroblasts in 6 well plates and incubated for 4 hours. 

Cells were washed at the end of 4 hours with PBS and RNA extracted as before. 

ICAM 1 mRNA induction was significantly increased in the presence of the conditioned 

medium (p value < 0.001). This up-regulation, however, was significantly reduced in 

comparison to the up-regulation seen when the fibroblasts interacted directly with the 

activated U937 cells (p value < 0.001). This would again support the significant role 

played by cell-to-cell binding in the interaction of fibroblasts with U937 cells and of the 

existence of other potential mechanisms in the process. 

Similar results were seen with  HAS 2 mRNA being up regulated significantly with a p 

value of 0.013 when compared to resting fibroblasts. Interaction of fibroblasts with 

conditioned medium from activated U 937 cells led to a reduced up-regulation of HAS 

2 in comparison to the interaction with activated U937 cells directly (p value <0.001). 

This would suggest a greater role played by cell-to-cell contact once the U937 cells are 

activated (Figure 4-9). 
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Figure	4-9:	ICAM 1 and HAS 2 expression in fibroblasts in response to incubation with conditioned 
medium from fibroblast and PMA activated U937 cell co-culture 

Growth	arrested	fibroblast									were	incubated	with		5	x	105	PMA	activated	U	937	cells	in	6	well	
plates							.		
At	the	same	time	fibroblasts	were	also	incubated	with	conditioned	medium	from	Fibroblast	and	
activated	U	937	co-culture	taken	after	2	hours	of	co-incubation							.Cells	were	washed	with	PBS	(x3	
times)	to	wash	the	U937	cells	off	and	mRNA	extracted	after	4	hours.	RT	and	qPCR	for	ICAM-1	and	HAS	
2	were	performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	measurements	
corrected	for	rRNA	(n=3).	
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4.4 DISCUSSION 
	
The co-culture of fibroblasts and U 937 cells led to up-regulation of both ICAM 1 and 

HAS 2 mRNA. The up-regulation was highly statistically significant when the U937 

cells were  activated, suggesting a greater role of cell binding once monocytes were 

activated.  The role of cell-to-cell contact was investigated by interrupting the contact 

between growth-arrested fibroblasts and U937 cells using membrane inserts in  co-

culture experiments. This prevented direct contact between the U937 cells and the 

fibroblasts, leaving communication only via the medium in which the  cells were 

incubated. 

These experiments showed that although there was up-regulation of ICAM 1 mRNA in 

the insert experiments, this was reduced in comparison with the co-culture setting where 

the U 937 cells came into contact with the fibroblasts. The up-regulation was also 

significantly reduced in the presence of activated monocytes, when fibroblasts were 

incubated with PMA-activated U 937cells in inserts. This showed that the cell-to-cell 

binding had a greater role in up-regulation of ICAM 1 mRNA, especially in the 

presence of activated U937 cells. At the same time, it also confirmed that there were 

other mechanisms at play responsible for the up-regulation of ICAM 1 mRNA, as there 

was still some up-regulation despite the barrier between the 2 cell lines. It would 

suggest a role of soluble factors in the medium secreted either by the U937 cells or 

fibroblasts.  

In the same experiments we saw that HAS 2 mRNA up-regulation was unaffected when 

fibroblasts were incubated with inactive U 937 cells in inserts but more suppressed 

when fibroblasts were incubated with PMA activated U 937 cells in inserts. This again 

highlighted a more significant role of cell-to-cell contact and binding in the presence of 
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activated U937 cells but suggests that a different mechanism may be involved in the up-

regulation of HAS 2 when inactive monocytes interact with fibroblasts. 

 

It is important to understand that for any cell to fulfill its function, it has to interact with 

other cells and the extracellular matrix. It is therefore not surprising that adhesion 

molecules play a central role in multiple aspects of pathology and inflammation.. 

Adhesion molecules are not merely passive linkage between cells but play an important 

role in various molecular events by communicating with various signalling pathways. 

The dynamic role of adhesion molecules is highlighted in cell migration that involves 

constant binding and release by the cells. Once inflammatory cells have moved to the 

site of inflammation, the monocyte and macrophages continue to interact with the 

resident cells by cell to cell contact and produce cytokines and growth factors that are 

responsible for the persistence of leucocytes at the site of inflammation and chronic 

progression. 

These results highlight important findings. Firstly, it would suggest that pathways 

involved in ICAM 1 and HAS 2 mRNA up-regulation may be different as ICAM 1 

mRNA up-regulation is more suppressed than HAS 2 mRNA up-regulation when the 

cell-to-cell contact is interrupted in the fibroblasts and inactive U937 cells co-culture. 

Secondly, PMA activated U937 cells, when incubated with fibroblasts separated by 

inserts, show greater suppression in up-regulation of both ICAM 1 and HAS 2 mRNA, 

highlighting that the up-regulation may be taking place via different mechanisms 

depending on activation of U937 cells/ mononuclear cells. Finally, one or more soluble 

factors may be secreted by either monocytes or fibroblasts or both, causing differential 

up-regulation of ICAM 1 and HAS 2. 

The role of cell-to-cell contact was further analysed using soluble ICAM (sICAM) to 

saturate the surface ICAM and therefore reducing binding. This showed that although 
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there was some up-regulation in both ICAM 1 and HAS 2 mRNA, this was suppressed 

in the presence of sICAM. Results were similar in co-culture experiments in the 

presence of β 2 integrin antibodies. These experiments highlighted that ICAM 1 binding 

or cell-to-cell contact does play a role in the up-regulation of ICAM 1 and HAS 2, but 

there are other mechanisms also involved or contributing to this pathway, given the 

persistence of the up-regulation despite interrupting the ICAM 1 LFA binding. 

This led us to hypothesize that there might be a role for some soluble factor that may be 

produced by either the fibroblasts or U 937 cells, which may play a role in this process. 

This was investigated with experiments using medium conditioned from fibroblasts and 

U 937 cells co-culture or activated U937 cells. The consistent up-regulation of ICAM 1 

and HAS 2 mRNA in the presence of conditioned medium confirmed the role of soluble 

factors in the process. Work from others has also shown a role of soluble factors in the 

increase in various chemokines and cytokines (135). Differential up-regulation of 

chemokines macrophage inflammatory protein-1 α (MIP-1α) and monocyte 

chemoattractant protein-1 (MCP-1), during fibroblast- monocyte interactions, was seen 

in the presence of anti-TNF antibodies and blocking β3-integrins (135). 

Interaction of gingival fibroblasts and monocytes led to up-regulation of Matrix 

metalloproteinase-1 (MMP-1). Treatment of fibroblasts with conditioned medium from 

monocytes also stimulated the production of MMP-1 in the fibroblasts (162). 

 

Production of several growth factors and cytokines are affected when monocytes 

interact with different cells. Some of these are profibrotic and pro-inflammatory while 

others are anti-inflammatory. It depends on the type of cell interacting with the 

monocytes, stimulus involved and whether the monocytes are activated. For example 

macrophages in the atherosclerotic plaque are highly activated and are known to 

produce interferon- gamma (IFN-γ) and tumor necrosis factor -alpha and -beta (TNF α 
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and TNF β) and interleukin-12 (IL-12) (163).	Stimulation	of	monocytes	with bacteria 

causing meningitis, i.e., H. influenza or S. pneumonia showed that the amount of TNF α 

and IL10 produced was dependent on the concentration of bacteria used to stimulate 

monocytes and the time of stimulation in vitro (164). 

 

Conversely, the interaction between monocytes and different cell types is itself 

modified in the presence of various cytokines. For example, IL 1β promotes ICAM-1 

dependent binding of renal proximal tubular cell line HK 2 cells to monocytes(165). 

Expression of adhesion molecules can also be induced by proinflammatory cytokines on 

the surface of different cell types(1, 166, 167). 

Work done in our lab has shown the importance of cytokines TNF α and IL 1β in the 

up-regulation of ICAM 1 and HAS 2 in the past. We have shown that TNF α stimulates 

ICAM 1 expression at mRNA level and protein level in lung fibroblasts in the past and 

in my experiments(1). It has also been shown that ICAM-1 cross-linking on the surface 

of E11 human synovial cells induced the transcription of IL-1β (168). 

Both IL-1β and TNF-α act in an autocrine manner on macrophages to stimulate their 

own transcription, as well as the production of each other(169).The combination of 

TNF α and IL-Iβ produces a greater inflammatory response than is observed with either 

cytokine alone(170). 

TNF α and IL 1β also play a role in modulating HAS transcription in cell 

cultures(171).This also depends on the cell type(172). The treatment of normal 

fibroblasts with TNF-α, IFN-γ, and IL-1β significantly increased the expression of all 

HAS isoforms. IL-1β was more effective than TNF-α and IFN-γ and all cytokines were 

able to induce HAS mRNA in a dose dependent manner(173).  Previous work in our lab 

has also shown IL 1 β mediated HAS 2 up-regulation is transcriptionally controlled by 
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Sp1 and Sp3. Knocking out Sp1 and Sp3 leads to reduction in HAS 2 expression in 

proximal tubular cells(174).  This led us to investigate the role of TNF α and IL 1β as 

soluble factors contributing to up regulation of HAS 2 and ICAM 1 in fibroblast /U 937 

co culture. 
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5 SOLUBLE FACTOR: ROLE OF TNFα AND INTERLEUKIN 1β 
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5.1 INTRODUCTION 
	
Cytokines are proteins secreted by immune cells that act on other cells to coordinate 

appropriate immune responses. Cytokines include a diverse assortment of interleukins, 

interferons, and growth factors. These are usually extracellular signalling proteins less 

than 80kD in size (175). Their interaction could be on the cells they originate from 

(autocrine), on adjacent cells (paracrine) or distant cells (endocrine). The term 

lymphokine was coined to describe cytokines derived from lymphocytes, while 

monokines were produced by monocytes or macrophages. These distinctions were quite 

artificial and rapidly broke down.  

Cytokines act by binding to cell surface receptors. These are usually low in number but 

get up-regulated when cells are activated. Cytokines can have an effect on their own 

receptor expression on the surface, or affect the expression of receptors of other 

cytokines (176). Two examples are the actions of interferon γ (IFN-γ) in decreasing 

the effect of tumour necrosis factor α (TNF-α) receptors on macrophages and that of 

interleukin 1β (IL-1β) in increasing the expression of the same receptors (176). 

Many cell populations produce cytokines, but predominant among them are helper T 

cells and macrophages. 

5.1.1.1 PROINFLAMMATORY CYTOKINES 
	
These are mainly produced by activated macrophages and cause up-regulation of 

inflammatory reactions. Chief among these are IL 1β, IL 6 and TNF α. There is 

further discussion on IL-1 β and TNF α in the following section. 

A number of cytokines are also responsible for enhancing chemotaxis. These are called 

CHEMO tactic cytoKINES or chemokines. Their main role is in promoting activation 

and migration of leucocytes to site of inflammation. They are of low molecular weight 

and have conserved cysteine residues that allow them to be assigned to four groups: C-



	 117	

C chemokines (RANTES, monocyte chemo attractant protein or MCP-1, monocyte 

inflammatory protein or MIP-1α, and MIP-1β), C-X-C chemokines (IL-8 also called 

growth related oncogene or GRO/KC), C chemokines (lymphotactin), and CXXXC 

chemokines (fractalkine) (177). 

5.1.1.2 ANTI INFLAMMATORY CYTOKINES 
	
Anti-inflammatory cytokines include interleukin (IL)-1 receptor antagonist, IL-4, IL-10, 

IL-11, and IL-13. These act by controlling the response of some of the proinflammatory 

cytokines in concert with soluble cytokine receptors and cytokine inhibitors (177). 

These are mainly produced by lymphocytes. 

Some cytokines like TGF β, Interferon α and Leukaemia Inhibitory factor can act as 

both pro-inflammatory and anti-inflammatory factors, depending on the circumstances 

and situation. Specific receptors to TNF α and IL 1β also act to down-regulate the 

pro-inflammatory cytokines. 

Of the anti-inflammatory cytokines, IL-10 is supposed to be the most potent, down-

regulating the expression of TNF α, IL-1 and IL-6 from activated macrophages. IL-10 

can also up-regulate endogenous anti-cytokines and down-regulate pro-inflammatory 

cytokine receptors. There are studies that show low levels of anti-inflammatory 

cytokines such as IL-10 and IL-4 in chronic pain conditions (178). 

Secretion of IL-1β is counterbalanced by secretion of IL-1RA and TNF α secretion is 

counterbalanced by soluble TNF receptors (179, 180). The balance between pro- and 

anti-inflammatory mediators dictates the overall effect of an inflammatory response. 
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Figure	5-1	Cytokine	network	

From:	Int	Anesthesiol	Clin.	2007	Spring;	45(2):	27–37.	doi:10.1097/AIA.0b013e318034194e	

 

 

CYTOKINE NETWORK: Several different cell types coordinate their efforts as part 

of the immune system, including B cells, T cells, macrophages, mast cells, neutrophils, 

basophils and eosinophils. Each of these cell types has a distinct role in the immune 

system, and communicates with other immune cells using secreted cytokines. 

Macrophages phagocytose foreign bodies and are antigen-presenting cells, using 

cytokines to stimulate specific antigen dependent responses by B and T cells and non-

specific responses by other cell types. T cells secrete a variety of factors to coordinate 

and stimulate immune responses to specific antigen, such as the role of helper T cells in 

B cell activation in response to antigen. The proliferation and activation of eosinophils, 

neutrophils and basophils respond to cytokines as well. 
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5.1.1.3 ROLE OF CYTOKINES IN RENAL DISEASE 
 
Of all organ systems, the kidneys play a leading role in the clearance of circulating 

cytokines (181-183). Cytokines play an important role in both acute kidney injury 

(AKI) as well as chronic kidney disease (184, 185). They can act by up-regulating the 

endothelial adhesion molecules and chemokines that can further stimulate infiltration of 

immune cells (186, 187). They also activate various signalling pathways that activate 

transcription factors such as NF kappa B and MAP kinases. NF kB activation is seen in 

patients with diabetic nephropathy (188), acute kidney injury (189) and 

glomerulonephritis (190). TNF α, TGF β and interleukins can also influence sodium 

excretion and renal blood flow (191, 192). 

Hypertensive patients are known to have elevated levels of TNF α, IL-6, MCP-1 and 

adhesion molecules (193, 194). Etanercept, a TNF α antagonist, has been shown to 

reduce blood pressure in autoimmune associated hypertension and angiotensin II related 

hypertension (195, 196). Experimental work also shows role of cytokines in nephrotic 

syndrome (197) . Mononuclear cells from patients with nephrotic syndrome cause TNF 

levels to go up in plasma and urine (198). There is evidence to suggest a positive role 

for IL-1 receptor antagonists in management of anti-GBM antibody associated 

glomerulonephritis(199). They have also been shown to suppress experimental 

crescentic glomerulonephritis (200). Cytokines also play an important role in IgA 

nephropathy. TNF-α and IL-6 levels increase in IgA nephropathy and are reduced by 

immunoglobulin therapy (201).  

 

INTERLEUKIN 1 
	
The IL – 1 family has 11 different member proteins, coded by 11 genes (178, 202). 

Their main function is management of innate immunity in humans by regulating pro-
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inflammatory responses. Macrophages or monocytes are the main source of IL1β and 

IL 1α (203). These cytokines are also secreted by other cell types such as epithelial 

cells, endothelial cells and fibroblasts(204, 205). 

 A brief description of the 11 members is shown in the following table. 

 

Table: The IL 1 Family 

Family name Name Receptor Property 
IL-1F1 IL-1α IL-1RI Proinflammatory 
IL-1F2 IL-1β IL-1RI Proinflammatory 
IL-1F3 IL-1Ra IL-1RI Antagonist for IL-1α, IL-1β 
IL-1F4 IL-18 IL-18Rα Proinflammatory 
IL-1F5 IL-36Ra IL-1Rrp2 Antagonist for IL-36α, IL-36β, IL-36γ 
IL-1F6 IL-36α IL-1Rrp2 Proinflammatory 
IL-1F7 IL-37 ?IL-18Rα* Anti-inflammatory 
IL-1F8 IL-36β IL-1Rrp2 Proinflammatory 
IL-1F9 IL-36γ IL-1Rrp2 Proinflammatory 
IL-1F10 IL-38 Unknown Unknown 
IL-1F11 IL-33 ST2 Th2 responses, proinflammatory 
 

Adapted	from:	Dinarello	CA	(2011).	"Interleukin-1	in	the	pathogenesis	and	treatment	of	inflammatory	

diseases".	Blood	117	(14):	3720–32.	(?:	Pending	confirmation)	

 

 

 Interleukin-1β and Interleukin-1α were the first members of the IL -1 family to be 

described and the best studied of the 11 members. They induce many different genes in 

multiple types of cells (204). They also stimulate further IL-1 production causing a 

positive feedback loop by up-regulating their own genes (203, 206). There are three 

main limiting steps controlling the multiple ways in which IL-1 promotes inflammation. 

These are 1) control of synthesis and release, 2) control of membrane receptors and 3) 

regulation of signal transduction downstream of the activated receptors. In response to 

ligand binding to the receptor, a complex sequence of phosphorylation and 

ubiquitination events results in activation of nuclear factor kβ signalling and the JNK 
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and p38 mitogen-activated protein kinase pathways, which, co-operatively, induce the 

expression of IL-1 target genes (such as IL-6, IL-8, MCP-1, COX-2, IL-1α, IL-1β, 

MKP-1) by transcriptional and post-transcriptional mechanisms. Of note, most 

intracellular components that participate in the cellular response to IL-1 also mediate 

responses to other cytokines (207). Several studies have demonstrated low levels of 

circulating IL-1β in human disease. (208) IL-1β binds to the type I IL-1 receptor (IL-

1R1) the main receptor for IL 1β activity. It also binds to an accessory receptor called 

the IL-1 receptor accessory protein (IL-1RAcP), which serves as a co-receptor required 

for signal transduction of IL-1/IL-1RI complexes. This co-receptor is also necessary for 

activation of IL-1R1 by other IL-1 family members.(207) The type II IL-1 receptor (IL-

1R2) binds IL-1α and IL-1β but lacks a signalling-competent cytosolic part and thus 

serves as a decoy receptor (208). IL-1Ra (IL-1 Receptor antagonist) blocks IL-1 surface 

receptors, which are present on all nucleated cells, primarily by occupancy of the 

ligand-binding IL-1RI; in fact, IL-1Ra binds to this receptor with a greater affinity than 

IL-1β. 

IL-1β plays an important role in regulation of HAS 2. Transcriptional regulation of the 

human HAS genes has been studied. Sp1 and Sp3 were found to be principal mediators 

of HAS2 constitutive transcription.(174) Work in our lab has also shown that IL 1 

mediated HAS 2 up-regulation is transcriptionally controlled by Sp 1 and Sp 3. 

Knocking down Sp1 and Sp3 expression led to suppression in IL 1β mediated HAS 2 

mRNA induction. 

ICAM-1 induction by inflammatory cytokines such as IL-1β, TNF-α, and IFN-γ has 

also been revealed in various cell types such as human umbilical vein endothelial cells, 

pulmonary artery endothelial cells (209), intestinal epithelial cells (210), keratocytes 

(211), and renal tubular epithelial cells. (212) 
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5.1.2 TUMOR NECROSIS FACTOR α  

	
Tumour necrosis factor alpha (TNF α) is also a mediator of inflammatory and immune 

functions. It regulates growth and differentiation of a wide variety of cell types. TNF α 

is secreted by activated monocytes and macrophages, and many other cells, including B 

cells, T cells and fibroblasts. The gene for TNFα is mapped to 6p21.3. TNFα is 

synthesised as a 26 kDa (233 amino acids) membrane-bound propeptide (pro-TNFα) 

and is secreted after cleavage by TNFα-converting enzyme (TACE). The 26 kDa form 

is also functional and binds to TNFRII via direct cell-to-cell contact.(213) 

There are two types of TNF α receptors: Type I and type II. Type I receptors are found 

on most cells but there are few which don’t such as RBCs and resting T cells. Type II 

is restricted to haematopoetic cells. The two types of receptors are very different to each 

other, suggesting different signalling mechanisms. 

	

Figure	 5-2	 TNFα 	 binds	 to	 TNFRI	 and	 TNFRII	 activating	 several	 pathways	 associated	 with	
inflammation,	apoptosis,	and	cell	survival.	From	THE	LANCET	Oncology	Vol	4	September	2003 
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Given their central role in inflammation, TNFα antagonists have been developed as 

effective therapies for rheumatoid arthritis and inflammatory bowel disease.  

Both TNFα and Interleukin-1β are secreted by similar cells and in response to similar 

stimuli. Both cause activation of integrins on leucocytes as well as induction of 

adhesion molecules on endothelial cells (206). In chronic fibrotic diseases, such as 

idiopathic fibrosis (IPF) or liver cirrhosis, the persistent production of TNFα and 

recruitment of mononuclear cells is maintained (214). TNFα appears to be a major 

factor for inducing and maintaining fibrotic responses, even in the absence of an 

apparent inciting agent (215). It has been shown U937 cells differentiated by phorbol 

ester were able to release these two cytokines and, in the case of the co-culture, mRNAs 

for both cytokines were highly expressed in the U937 cells (121).  

 

 

 

 

5.2 AIM 
	
The aim of this chapter was to investigate in detail, the response of fibroblasts to 

conditioned medium. Experiments with membrane inserts and conditioned medium 

have shown in the previous chapter, the possibility of a soluble factor involved in the 

interaction between fibroblasts and U 937 cells. In this chapter, I investigated TNFα and 

IL-1β as the potential soluble factors, given the strong evidence for these cytokines in 

up-regulating ICAM 1 and HAS 2 expression from previous work in the lab. 
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5.3 RESULTS 

5.3.1 TIME DEPENDENT INDUCTION OF ICAM 1 AND HAS 2 IN 
FIBROBLASTS by IL 1β AND TNF α 

	
Initial experiments were designed to confirm that stimulation of fibroblasts with TNFα 

and IL1β led to similar up-regulation of ICAM-1 and HAS2, as seen in previous 

chapters.  Fibroblasts were plated in 6 well plates and growth arrested for 48 hours 

when near confluence. The growth-arrested monolayer was then treated with  

1 x10-12 M TNF α, 1 x 10-9 IL-1β or both in serum free medium. Medium was aspirated 

at pre set time points; cells were washed with PBS and mRNA extracted. ICAM 1 and 

HAS 2 expression was assessed with Reverse Transcription and Q-PCR. 

HAS 2 and ICAM mRNA expression showed up-regulation in a time-dependent 

manner, with maximum up-regulation with 2-hour incubation in the presence of IL 1β, 

TNF α or both. The up-regulation in expression of both HAS 2 and ICAM 1 mRNA 

was more when fibroblasts were incubated with IL 1β and TNFα together. Up-

regulation of HAS 2 and ICAM 1 seen with the combination was significantly more 

than when the cytokines were used individually. ICAM 1 induction at 2 hours was also 

significantly increased in the presence of TNF α and IL 1β individually in comparison 

to resting fibroblasts (p value for both being < 0.001). HAS 2 induction was 

significantly increased at 2 hours in the presence of IL 1β (p value< 0.001), marginally 

increased in the presence of TNFα (p value=0.560) and significantly increased when 

both IL 1β and TNF α were used ( p value< 0.001) (Figure 5-1) 

This is important as this again proves the synergistic effect of various cytokines in any 

interaction especially in this co-culture model where more than one soluble factor may 

be involved.  It also supports the idea that these two cytokines may be involved in the 

fibroblast/monocyte interaction. 
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Figure 5-3: TNF and/ or IL 1 β stimulation of Fibroblasts 

									Fibroblast									Fibroblasts	+	1	x	10-12M	TNF	α								Fibroblasts+1x	10-9M	IL	1β				

									Fibroblasts+	1x	10-12M	TNFα	and	1x	10-9M	IL	1β			

Growth	arrested	fibroblast	monolayer	were	incubated	with	1nmol	of	IL	1	β	and	/	or	1picomolar	TNF	α.	
Cells		in	predetermined	plates	were	washed	with	PBS	× 	3	times	at	30	minutes	to	24	hours.	mRNA	was	
extracted	as	described	before.	QPCR			results	for	ICAM	1	and	HAS	2	expression	are	represented	as	
mean	+	SE	of	mean	normalised	to	rRNA	(n	=	3).	P	value:	❋<0.001,❋❋<0.001,	#<0.001,##<0.001 

 

 

0 
20 
40 
60 
80 

100 
120 
140 
160 

0.5 1 2 4 8 24 R
el

at
iv

e 
Ex

pr
es

si
on

 (R
Q

) 

Time (hrs) 

ICAM 1 

❋ 

❋❋	

0 
0.5 

1 
1.5 

2 
2.5 

3 
3.5 

4 
4.5 

5 

30min 1h 2h 4h 8h 24h 

R
el

at
iv

e 
Ex

pr
es

si
on

 (R
Q

) 

Time 

HAS 2 

#

## 



	 126	

	

5.3.2 EXPRESSION OF TNF α AND IL1 β IN FIBROBLAST AND U937 
CELLS CO-CULTURE 

	
The main aim for experiments in this chapter was to ascertain whether TNFα and IL 1β 

might be soluble factors responsible for the up-regulation of ICAM-1 and HAS2 in 

fibroblast and U 937 cell co-culture. Therefore it was important to first see if there was 

any up-regulation of these cytokines in the co-culture model. 

Fibroblasts and U937 cell co-culture was carried out as detailed previously. Expression 

of IL 1β and TNFα was evaluated in addition to HAS 2 and ICAM 1 mRNA expression. 

These experiments demonstrated definite up-regulation in expression of these two 

cytokines in the co-culture model. The induction was statistically significant at 4 hours, 

with p value < 0.001 for both IL1β and TNFα mRNA. ICAM 1 and HAS induction 

was again found to be significant (Figure 5-2a) 
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Figure	5-4-:a TNFα and IL 1β mRNA expression following Lung Fibroblasts and U937 cell co-culture 

Growth	arrested	fibroblasts	were	incubated	with	5	× 	10
5	

	U937	cells	for	times	up	to	24	hours.	Cells	
were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described.	RT	and	
q-PCR	for	TNF	α	and	IL	1β	were	performed	and	the	results	are	expressed	as	mean	+	SE	of	mean	of	the	
measurements	corrected	for	rRNA	(n=6),	p	value:❋ 	<0.01,❋❋ 	<0.001	
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Figure 5-2b: ICAM 1 and HAS 2 mRNA expression following Lung Fibroblasts and U937 cell co-culture 

Growth	arrested	fibroblasts	were	incubated	with	5	× 	10
5	

	U937	cells	for	times	up	to	24	hours.	Cells	
were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described.	RT	and	
q-PCR	for	ICAM-1	and	HAS	2,	TNF	α	and	IL	1β	were	performed	and	the	results	are	expressed	as	mean	+	
SE	of	mean	of	the	measurements	corrected	for	rRNA	(n=6),	p	value	#	<	0.001,	##=	0.030	
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5.3.3 EXPRESSION OF TNF α AND IL 1β IN FIBROBLASTS AND U937 
CELLS CO-CULTURE IN THE PRESENCE OF sICAM 1  

	

The role of binding between U937 cells and fibroblasts was previously shown to be 

ICAM and CD18 dependent using sICAM 1 (Experiment 4.3.2). U 937 cells were 

suspended in DMEM F12 HAM medium for 1 hour in the presence of varying 

concentrations of soluble ICAM. After 1 hour 5 x105 U937 cells/ml were added to 

growth arrested fibroblasts monolayer. RNA was then extracted as described. 

Expression of ICAM 1, HAS 2, TNF α and IL lβ mRNA were then assessed using 

Reverse Transcription and Q PCR. TNF and IL1 first 

The results again showed visible reduction in the upregulation of ICAM1 (55% 

reduction in the presence of 800ng/mL of sICAM1, p value of 0.048), HAS 2 (~ 60% 

reduction in the presence of 800ng/mL of sICAM1, p value 0.030). 

 IL 1β and TNFα induction was also suppressed. IL 1β induction was reduced by 67% 

in the presence of sICAM-1, but this was statistically not significant (p value 0.059). 

TNFα induction was suppressed by 70% approximately in the presence of 800ng/mL 

sICAM 1 (p value 0.030) (Figures 5-3 and 5-4). 

This confirms that TNFα and IL 1β induction in U937 cell and fibroblast co-culture is 

also dependent on ICAM 1 binding. The presence of some mRNA induction could 

suggest incomplete nullification of ICAM1 binding or the presence of other 

mechanisms contributing to the process. 
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A 

B 

Figure	5-5:	Expression TNF and IL 1 in fibroblast-U937 cells co-culture in the presence of sICAM 

							Fibroblasts	+	U937	cells																																													Fibroblasts+800ng/ml	sICAM	+	U937	cells		

						Fibroblasts	+	400ng/ml	sICAM	+	U937	cells											Fibroblasts	+200ng/ml	sICAM	+U	937	cells	

							Fibroblasts	+	100ng/ml	sICAM	+	U937	cells	

U	937	cells	were	suspended	in	varying	concentrations	of	sICAM	in	DMEM	F12	HAM	medium	for	1	
hour.	These	media	were	then	used	to	incubate	growth	arrested	fibroblasts	monolayers	for	4	and	8	
hours	with	5	x	105	U937	cells	in	12	well	plates.	RNA	was	extracted	as	detailed.	mRNA	expression	for		
TNFα	(A),	IL	1β	(B),	ICAM	1(C)	and	HAS	2(D),	was	assessed	using	reverse	transcription	and	Q	PCR	
techniques.	

P	values:	x	=	0.032,	xx	=	0.034,	•	=	0.064,	••	=	0.059	
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C 

D 

Figure	5-6:	Expression of ICAM 1 and HAS 2 in fibroblast-U937 cells co-culture in the presence of 
sICAM 

							Fibroblasts	+	U937	cells																																													Fibroblasts+800ng/ml	sICAM	+	U937	cells		

						Fibroblasts	+	400ng/ml	sICAM	+	U937	cells										Fibroblasts	+200ng/ml	sICAM	+U	937	cells	

							Fibroblasts	+	100ng/ml	sICAM	+	U937	cells	

U	937	cells	were	suspended	in	varying	concentrations	of	sICAM	in	DMEM	F12	HAM	medium	for	1	
hour.	These	media	were	then	used	to	incubate	growth	arrested	fibroblasts	monolayers	for	4	and	8	
hours	with	5	x	105	U937	cells	in	12	well	plates.	RNA	was	extracted	as	detailed.	mRNA	expression	for	
ICAM	1(A),	HAS	2(B),	TNF	a	(C)	and	IL	1(D)	was	assessed	using	reverse	transcription	and	Q	PCR	
techniques.	

P	values:	❋	=	0.054,	❋❋=	0.048,	#	=	0.033,	##	=	0.030	
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5.3.4 EXPRESSION OF TNF α AND IL 1β IN FIBROBLAST AND U937CELLS 
CO-CULTURE IN THE PRESENCE OF MEMBRANE INSERTS 

	
The role of TNF α and IL 1β in the fibroblast and U937 cell co-culture model was 

further evaluated, using membrane inserts as before. This was to see if preventing cell-

to-cell contact between fibroblasts and U937 cells affected the expression of TNF α and 

IL 1β, which in turn may be responsible for the differential up-regulation of ICAM 1 

and HAS  

There was a significant reduction in the expression of TNFα (p value<0.001), but no 

significant change in the up-regulation of IL 1β mRNA (p value = 0.345) or HAS 2 as 

before (p value=0.747) (Figure 5-5). This suggested that TNFα may have a greater 

role in regulation of ICAM 1 expression, which appears to be more cell-to-cell contact 

dependent than HAS 2 expression. 
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Figure	5-7:	Fibroblasts and U937 cells incubation in the presence/ absence of 0.4µ membrane inserts. 

							Fibroblasts+U937	cells								Fibroblasts+	U937	cells	in	presence	of	0.4μ	membrane	inserts	

	Growth	arrested	fibroblasts	and	5	× 	10
5
	U937	cells/ml	were	incubated	for	4	and	8	hours	as	control.	0	

.4μ	membrane	inserts	were	suspended	over	Fibroblasts	monolayer	and	5	× 	10
5
	U937	cells/ml	were	

added	into	the	insert	in	serum	free	DMEM	F12	HAM	medium.	Medium	was	added	outside	the	insert	
to	allow	contact	between	the	2	phases	to	allow	movement	of	solutes.		

Cells	were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	
before.	RT	and	qPCR	for	ICAM-1,	HAS-2	IL-1β	and	TNF	α	were	performed	and	the	results	are	expressed	
as	mean	+	SEM	of	the	measurements	corrected	for	rRNA	(n=6)	

P	value:	❋ 	<	0.001,❋❋<0.001	
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5.3.5 DETERMINATION OF IL 1β	AND	TNFα PROTEIN CONCENTRATION 
IN FIBROBLASTS AND U937 CELLS CO-CULTURE 
	

ELISA	 experiments	 were	 set	 up	 to	 evaluate	 the	 protein	 concentration	 in	 the	

fibroblast-U937	 co-culture	 and	 to	 investigate	 the	 changes	 in	 the	 concentration	

when	the	environment	was	changed,	such	as	in	the	presence	of	membrane	inserts.	

Although	I	have	shown	the	upregulation	of	TNFα	and	IL	1β	at	mRNA	level,	it	was	

important	 to	 see	 if	 the	 protein	 levels	 were	 also	 raised	 to	 cause	 or	 promote	 the	

upregulation	of	ICAM	1	and/	or	HAS	2.	Fibroblasts	were	plated	in	6	well	plates.	5	x	

105	 U937	 cells/ml	 in	 2	 ml	 medium	 were	 added	 to	 growth	 arrested	 fibroblasts.	

Medium	was	aspirated	at	set	time	points	(Time	0,	2hrs,	4hrs,	8hrs	and	24	hours).	

Similarly	experiment	was	designed	to	assess	TNFα levels in a setting where U 937 

cells were not in contact with the fibroblasts using membrane inserts as before.	

The	aspirate	was	centrifuged	at	7000rpm	for	7	minutes	and	supernatant	used	for	

ELISA	 to	 look	 for	 cytokine	 concentration.	 Enzyme linked immunosorbent assay 

(ELISA) was used to analyse TNFα  and IL 1β concentrations in cell culture. This was 

assessed by using a commerical available kit (TNFα, R&D). ELISA	 was	 done	 as	

described	in	the	methods	chapter.	

The	 results	 showed	 a	 time	 dependent	 increase	 in	 TNFα concentration and this 

induction was reduced in the presence of membrane inserts suggesting dependence of 

TNFα upregulation on cell-to-cell contact. IL 1β	 concentration	 was	 not	 reliably	

measurable	because	the	concentration	was	most	likely	below	the	threshold	for	the	

kit	used.	
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Figure	5-8:TNF estimation in fibroblast and U937 cell co-culture 

Fibroblasts	were	incubated	with	5	x	105	U937	cells/ml	in	6	well	plates.	As	control,	fibroblasts	and	
U937	cells	were	incubated	in	6	well	plates.	Medium	was	aspirated	at	0,	2,4,8	and	24	hours,	
centrifuged	and	supernatant	analysed	for	TNF	by	ELISA	as	described	in	the	methods	chapter.	(n=3)	

	
	
	
	

	
Figure	5-9: TNF estimation in Fibroblast and U937 cell co-culture and comparison with co-culture in the 
presence of membrane inserts 

Fibroblasts	were	incubated	with	5	x	105	U937	cells	in	6	well	plates	allowing	cell-to	cell	contact.	At	the	
same	time	fibroblasts	were	incubated	U937	cells	suspended	in	a	membrane	insert.	Medium	was	
aspirated	at	0,	4,	8	and	24	hours.	This	was	centrifuged	and	supernatant	used	for	protein	estimation	
using	ELISA	as	per	manufacturer’s	protocol.	(n=3)	
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Figure	5-10: IL 1β estimation in Fibroblast and U937 cell co-culture , fibroblasts and U937 cells plated 
in isolation 

Fibroblasts	were	incubated	with	5	x	105	U937	cells	in	6	well	plates	allowing	cell-to	cell	
contact.	At	the	same	time	fibroblasts	and	U937	cells	were	incubated	as	control	Medium	was	
aspirated	at	0,	4,	8	and	24	hours.	This	was	centrifuged	and	supernatant	used	for	protein	
estimation	using	ELISA	as	per	manufacturer’s	protocol.	
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5.3.6 EXPRESSION OF ICAM 1 AND HAS 2 IN FIBROBLAST AND U937 
CELL CO-CULTURE IN THE PRESENCE OF IL 1 RECEPTOR 
ANTAGONIST 

 

Fibroblast and U937 cell co-culture experiments in the presence of the IL1 receptor 

antagonist were designed to investigate the role of IL 1β in ICAM 1 and HAS 2 

upregulation. Fibroblast monolayers were co-cultured with 5 × 105 U937 cells/ml which 

had been pre-treated with varying concentrations of IL1 receptor antagonist (IL 1RA, 

Recombinant Human IL-1ra/IL-1F3,	280-RA-010/CF, R&D Systems) for an hour. After 

4h and 8h, wells were washed with PBS 3 times, RNA extracted with with tri-reagent as 

described before, and analysed for expression of ICAM 1 and HAS 2. 

One would expect that presence of IL 1RA would neutralise the IL 1β present in the co-

culture environment and therefore suppress any up-regulation of ICAM 1 and HAS 2, if 

IL 1β was responsible for the same. I was able to show a dose dependent reduction in 

HAS 2 expression (p value 0.047) but with no significant affect on ICAM 1 expression 

(Figure 5-9).  
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Figure	5-11: Co-culture in the presence of IL 1 receptor antagonist IL-1ra/il-1F3 (R&D Systems) 

							Fibroblasts	+	5	x	105	U937	cells	+	1mcg/ml	IL-1RA	

						Fibroblasts	+	5	x	105	U937	cells	+	500ng/ml	IL-1RA	

						Fibroblasts	+	5	x	105		U937	cells	

Fibroblasts	monolayer	were	co	cultured	with	5	× 	105	U937	cells/ml	which	had	been	pre	treated	with	
varying	concentrations	of	IL	1	receptor	antagonist	for	an	hour.	After	4h	and	8h	respective	wells	were	
washed	with	PBS	× 	3	times	and	subjected	to	treatment	with	tri	reagent	and	mRNA	extracted	as	
described	before.	RT	and	qPCR	data	for	ICAM	1	and	HAS	2	is	presented	as	mean	+	SEM	(n=3).	P	value	
❋=0.047		
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5.3.7 EXPRESSION OF ICAM-1 AND HAS2 IN FIBROBLAST AND U 937 
CELL CO-CULTURE IN THE PRESENCE OF ANTI TNF α 

	
As above, fibroblast and U 937 co-culture experiments were designed to analyse the 

role of TNFα by using anti TNFα antibodies. Growth arrested fibroblast monolayer was 

co-cultured with 5 x105 U937 cells/ml which had been pre-treated with varying 

concentrations of anti TNFα antibodies (AB-210-NA, R&D Systems) for 1 hour. After 

4h and 8h, respective wells were washed with PBS x 3 times and RNA extracted as 

discussed and analysed for ICAM 1 and HAS 2 expression using reverse transcription 

and Q PCR. 

A reduction in the expression of ICAM-1 was expected, based on the results from 

previous experiments. The results, however, showed more reduction in HAS2 

expression, though not statistically significant (p value	0.069, 0.094 and 0.125 with 10 

υg/ml, 5 υg/ml and 1 υg/ml of TNFα respectively) but no change in ICAM-1 mRNA 

expression.  
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Figure	5-12: Fibroblast and U937 cells Co-culture in the presence of anti TNF α antibodies 

Growth	arrested	Fibroblasts	monolayer	was	co	cultured	with	5	x105	U937	cells/ml	which	had	been	
pre	treated	with	varying	concentrations	of	anti	TNF	α	antibodies	(AB-210-NA,	R&D	Systems)	for	1	
hour.	(						1mcg/ml,					5	mcg/ml,					10mcg/ml	anti	TNF	α	)	

After	4h	and	8h	respective	wells	were	washed	with	PBS	x	3	times	and	subjected	to	treatment	with	tri	
reagent	and	mRNA	extracted	as	described.	RT	and	qPCR	data	for	ICAM	1	and	TNF	α	is	presented	as	
mean	+	SE	of	mean	(n=3).	
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5.3.8 EXPRESSION OF ICAM 1 AND HAS 2 IN FIBROBLAST AND U937 
CELL CO-CULTURE IN THE PRESENCE OF BOTH ANTI TNFα AND 
IL 1 RA 

	
The next step was to design a co-culture experiment in the presence of both anti TNFα 

antibodies and IL1RA, as there is evidence that a combination of cytokines leads to 

more significant upregulation of ICAM 1 than with individual cytokines.  

Fibroblasts monolayers were co-cultured with 5 × 105 U937 cells/ml and U937 cells 

which had been pre-treated with 5 mcg/ml anti TNF alpha antibodies (AB-210-NA, 

R&D Systems) and 500ng/ml  IL 1 RA(Recombinant Human IL-1ra/IL-1F3,	280-RA-

010/CF, R&D Systems). After 4h and 8h, respective wells were washed with PBS  3 

times and subjected to treatment with tri-reagent, mRNA extracted and analysed for 

ICAM 1 and HAS 2 expression as described. 

The results showed a trend to a reduction in the upregulation of ICAM 1 and HAS 2 

mRNA expression. This was more pronounced for HAS 2 in comparison to ICAM 1 

expression, though not statistically significant (ICAM-1 P-value  = 0.89, HAS 2 P-value 

= 0.052) (Figure 5-11). 
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Figure	5-13: Co-culture in the presence of IL 1 receptor antagonist and anti TNF α 

Fibroblasts	monolayer	were	co	cultured	with	5	×	105	U937	cells/ml		(						)and	U937	cells	which	had	
been	pre	treated	with	5	mcg/ml	anti	TNF	α	antibodies	and	500ng/ml		IL	1	RA	(				).	After	4h	and	8h	
respective	wells	were	washed	with	PBS	×	3	times	and	subjected	to	treatment	with	tri	reagent	and	
mRNA	extracted	as	described.	RT	and	qPCR	data	for	ICAM	1	and	HAS	2	is	presented	as	mean	+	SE	of	
mean	(n=3).		
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5.3.9 EXPRESSION OF TNFα AND IL 1β IN FIBROBLASTS AND 
ACTIVATED U 937 CELLS CO-CULTURE IN PRESENCE OF sICAM 1 

	
Since, in the presence of activated U937 cells, there was exponential activation of 

fibroblasts, the effect of activated U937 cells on the induction of TNFα and IL 1β 

mRNA was next assessed in the presence of sICAM-1 as before. 

There was definite exponential up-regulation of TNFα and IL 1β mRNA and of ICAM-

1 and HAS2 mRNA. This was significantly more than when the fibroblasts were 

incubated with inactive U 937 cells. The magnitude of up-regulation in the expression 

of TNF α and IL 1β was reduced in the presence of sICAM. This was more pronounced 

for TNFα and ICAM-1, potentially suggesting a greater role of cell-to-cell binding in 

the regulation of these genes (Figure 5-12 and 5-13). The reduction in expression in the 

presence of soluble ICAM-1 in the medium would again suggest a role for the 

CD18/ICAM-1 binding interaction and the lack of 100% effect could also suggest the 

inability of soluble ICAM to saturate all the integrin receptors on the surface of the 

activated U 937 cells. 
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Figure	5-14:	: Expression of TNFα and IL 1β in fibroblast and PMA activated U937 cells co-culture in the 
presence of sICAM 1  

						Fibroblasts	+	activated	U937	cells	

						Fibroblasts+800ng/ml	sICAM	+		act	U937	cells	

						Fibroblasts	+	400ng/ml	sICAM	+	act	U937	cells			

						Fibroblasts	+	200ng/ml	sICAM	+	act	U	937	cells	

					Fibroblasts	+	100	ng/ml	sICAM	+	act	U937	cells	

PMA	activated	U	937	cells	were	suspended	in	varying	concentrations	of	sICAM	containing	DMEM	F12	
HAM	medium	for	1	hour.	These	media	were	then	used	to	incubate	growth	arrested	fibroblasts	
monolayers	for	4	and	8	hours	in	12	well	plates.	RNA	was	extracted	as	detailed.	mRNA	expression	for	
ICAM	1,	HAS	2,	TNF	a	and	IL	1	was	assessed	using	reverse	transcription	and	Q	PCR	techniques.	P	values	
❋ 	=	0.015			
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Figure	5-15: Expression of ICAM 1 and HAS 2 in fibroblast and PMA activated U937 cells co-culture in 
the presence of sICAM 1  

									Fibroblasts	+	activated	U937	cells																										

									Fibroblasts+800ng/ml	sICAM	+	act	U937	cells	

									Fibroblasts	+	400ng/ml	sICAM	+	act	U937	cells			

									Fibroblasts	+	200ng/ml	sICAM	+	act	U937	cells																																																																	

									Fibroblasts	+	100	ng/ml	sICAM	+	act	U937	cells	

PMA	activated	U	937	cells	were	suspended	in	varying	concentrations	of	sICAM	containing	DMEM	F12	
HAM	medium	for	1	hour.	These	media	were	then	used	to	incubate	growth	arrested	fibroblasts	
monolayers	for	4	and	8	hours	in	12	well	plates.	RNA	was	extracted	as	detailed.	mRNA	expression	for	
ICAM	1,	HAS	2	,	TNF	and	IL	1	was	assessed	using	reverse	transcription	and	Q	PCR	techniques.	P	value	
❋ 	=	0.043, 
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5.3.10 EXPRESSION OF IL 1β IN FIBROBLASTS AND PMA ACTIVATED U 
937 CELLS CO-CULTURE IN PRESENCE OF MEMBRANE INSERTS 

	
Inactive and activated U 937 cells behave differently. I have shown that there is an 

exponential increase in IL 1β, TNFα, ICAM 1 and HAS 2 up-regulation when lung 

fibroblasts are cultured with activated U 937 cells. PMA activated U 937 cells induced 

more IL 1β (216) and also caused increased ICAM-1-dependent binding (217). It was 

therefore important to confirm the importance of cell-contact in the co-culture 

experiments.  

Insert experiments were set up as before using activated U937 cells. RNA extracted was 

then evaluated for not only IL 1β but also ICAM 1 and HAS 2. There was significant 

reduction in the expression of ICAM 1, HAS 2 and IL 1β (p value < 0.001, < 0.001 

and 0.037 respectively) (Figure 5-14 and 5-15). This again highlights the significance 

of cell-to-cell binding in the presence of activated U937 cells. 
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Figure 5-14: Il 1β expression in Fibroblasts and PMA activated U937 cells co-culture in the presence/ 
absence of 0.4µ membrane inserts. 

							Fibroblasts+	activated	U937	cells								Fibroblasts+	activated	U937	cells	in	presence	of	0.4μ	
membrane	inserts	

	Growth	arrested	fibroblasts	and	5	× 	10
5
	activated	U937	cells/ml	were	incubated	for	4	hours	as	

control.	0	.4μ	membrane	inserts	were	suspended	over	Fibroblasts	monolayer	and	5	× 	10
5
	U937	

cells/ml	were	added	into	the	insert	in	serum	free	DMEM	F12	HAM	medium.	Medium	was	added	
outside	the	insert	to	allow	contact	between	the	2	phases	to	allow	movement	of	solutes.		

Cells	were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	
before.	RT	and	qPCR	for	ICAM-1,	HAS-2	IL-1β	and	TNF	α	were	performed	and	the	results	are	expressed	
as	mean	+	SEM	of	the	measurements	corrected	for	rRNA	(n=3)	

P	value:	❋ 	<	0.001,❋❋<0.001,	❋❋❋ 	=	0.037 
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Figure 5-15: Fibroblasts and PMA activated U937 cells incubation in the presence/ absence of 0.4µ 
membrane inserts. 

							Fibroblasts+	activated	U937	cells								Fibroblasts+	activated	U937	cells	in	presence	of	0.4μ	
membrane	inserts	

	Growth	arrested	fibroblasts	and	5	× 	10
5
	activated	U937	cells/ml	were	incubated	for	4	hours	as	

control.	0	.4μ	membrane	inserts	were	suspended	over	Fibroblasts	monolayer	and	5	× 	10
5
	U937	

cells/ml	were	added	into	the	insert	in	serum	free	DMEM	F12	HAM	medium.	Medium	was	added	
outside	the	insert	to	allow	contact	between	the	2	phases	to	allow	movement	of	solutes.		

Cells	were	washed	with	PBS	(×3	times)	to	wash	the	U937	cells	off	and	mRNA	extracted	as	described	
before.	RT	and	qPCR	for	ICAM-1,	HAS-2	IL-1β	and	TNF	α	were	performed	and	the	results	are	expressed	
as	mean	+	SEM	of	the	measurements	corrected	for	rRNA	(n=3)	

P	value:	❋ 	<	0.001,❋❋<0.001,	❋❋❋ 	=	0.037 
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5.3.11 EXPRESSION OF TNFα AND IL 1β FOLLOWING ICAM 1 CROSS 
LINKING  

	
To confirm that it is the interaction with ICAM1 on the fibroblast surface that is 

inducing TNFα and IL 1β samples from the cross-linking experiments (3.3.1.) were 

analysed for TNFα and IL 1β mRNA. While there was an increase in the mRNA for 

both this was not statistically significant. 
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Figure 5-16: TNF and IL 1 expression in response to ICAM 1 crosslinking 

Fibroblasts	were	incubated	with	10-12			TNFα	for	24	hours	after	growth	arresting.	Cells	were	washed	
with	sterile	PBS	and	incubated	with	anti	–	ICAM	1	monoclonal	IgG	(10μg/ml)	in	serum	free	DMEM	F12	
HAM	for	1	hour.	Cells	were	then	washed	with	PBS	(× 	3	times)	and	primary	antibody	was	cross	linked	
using	goat	anti	mouse	IgG	antibody	at	a	concentration	of	10μg/ml.	mRNA	was	extracted	as	discussed	
in	methods.	RT	and	qPCR	for	TNFα	and	IL	1β	were	performed	and	the	results	are	expressed	as	mean	+	
SE	of	mean	of	the	measurements	corrected	for	rRNA	(n=6).	
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5.3.12 EFFECT OF Sp1 AND Sp3 KNOCKDOWN ON ICAM 1 AND HAS 2 
EXPRESSION  

	
Having investigated the roles of cell contact and soluble factors in the up-regulation of 

ICAM 1 and HAS 2, the next stage of the study was to investigate the intracellular 

mechanisms that were involved.  Various transcription factors play a role in cytokine 

mediated ICAM 1 and HAS 2 up-regulation. Sp1 and Sp3 have been proven to play an 

important role in Il 1β mediated HAS 2 expression and TNFα mediated ICAM 1 up-

regulation. The following experiment was designed to see if the up-regulation of HAS 2 

and ICAM 1 mRNA was affected if the fibroblasts lacked the ability to activate these 

transcription factors.  

The ability of siRNAs specific to Sp1 and Sp3 to knock down their respective mRNAs 

was investigated. Transient transfection of fibroblasts was performed with specific 

siRNA nucleotides (Ambion, US) targeting Sp1 and Sp3 using Lipofectamine 2000 

transfection reagent (Invitrogen) as per the manufacturer’s specified protocol. 

The incubation time for ideal knockdown of the target genes is variable. Therefore it 

was important to first confirm the optimum transfection time. Fibroblasts were 

incubated with Sp1specific SiRNA, Sp3 specific RNA or scrambled control. Medium 

was changed to serum and antibiotic free medium at 24 hours. mRNA was then 

extracted at different time points. Sp1 and Sp 3 expression was then analysed relative to 

their expression in samples treated with scrambled control SiRNA for the particular 

time point. Based on this, I decided to perform transfection for 36 hours as the 

expression of both Sp1 and Sp3 was reduced by approximately 70% or more without 

significant changes in cell morphology and viability.  

Co-culture experiments were then carried out and fibroblasts were incubated for 24 

hours in serum- and antibiotic-free medium containing the transfection complexes for 

24 hours. Medium was then aspirated and replaced with serum free and antibiotic free 
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medium for further 12 hours prior to co-culture with U 937 cells. Medium was then 

aspirated and mRNA analysed for HAS 2 and ICAM 1 as described before. 

There was approximately 80% reduction in the up-regulation of HAS 2 with both SP1 

and SP3 knockdown but this was not statistically significant. ICAM 1 upregulation, 

however, was significantly attenuated in fibroblasts with Sp1 knockdown but not Sp3 

knockdown (p value 0.015).  These results would strongly support a role for these 

transcription factors in the activation  of ICAM 1 and HAS 2 expression following 

interactions with monocytes. 
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Figure 5-17: SiRNA Optimisation 

Q-PCR	Analysis	of	Sp1	and	Sp3	mRNA	expression	following	siRNA	knockdown	of	Sp1	and	Sp3.	Relative	
expression	in	comparison	with	scrambled	negative	control	siRNA	of	Sp1	following	Sp1	siRNA	
treatment,	Sp3	following	Sp3	siRNA	treatment.	(n=3)	
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Figure 5-18: ICAM 1 and HAS 2 expression in Fibroblasts-U937 cell co-culture with Sp1 and Sp3 
knockdown 

qPCR	analysis	of	ICAM	1	and	HAS2	mRNAs	expression	following	siRNA	knockdown	of	Sp1					and		
Sp3							and	treatment	with	U	937	cells.	Relative	expression	in	comparison	with	scrambled	negative	
control	siRNA	of	ICAM	1	and	HAS	2	following	Sp1	siRNA	treatment	and	Sp3	following	Sp3	siRNA	
treatment.	Data	is	shown	as	mean	+	Standard	error	of	mean	(n=3).	P	value	❋ 	=	0.015,	#	=	0.093,	##	=	
0.056.	
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5.4 DISCUSSION 
	
I have shown in the previous chapter that there is a circulating soluble factor in 

Fibroblast and U 937 cell co-culture that influences ICAM 1 and HAS 2 up-regulation. I 

then went on to investigate whether this circulating factor could be TNFα, IL 1β or a 

combination of both based on the strong evidence I have presented in the discussion for 

chapter 4.  

I first showed that IL 1β and TNFα are capable of up-regulating mRNA expression of 

both ICAM 1 and HAS 2. I then demonstrated that IL 1β and TNFα are induced in 

fibroblasts and U937 cells co-culture. Membrane insert experiments revealed that 

ICAM 1 and TNFα induction is suppressed, but not completely absent, when cell-to-

cell contact was prevented using membrane inserts. In contrast, there was no change in 

the induction of HAS 2 and IL 1β. This would suggest a greater role of cell binding in 

the induction of ICAM 1 and TNFα. This would also suggest a link between HAS 2 

and IL 1β. The dose dependent reduction in the HAS 2 induction in the presence of IL 

1 receptor antagonist (IL-1RA), with no effect on ICAM 1 induction, again strengthens 

the evidence and favours a relation between IL 1 and HAS 2 mRNA induction. HAS 2 

induction was also suppressed in the presence of anti TNFα in a dose dependent 

manner. Surprisingly ICAM 1 induction was not suppressed in the presence of anti TNF

α.  

ICAM 1 induction in the co-culture, which had shown no change in the presence of IL -

1RA or anti TNF, was suppressed in the presence of both anti TNF and IL 1RA by 30% 

approximately. 

I was also able to show that there was a dose dependent reduction in up-regulation of 

ICAM 1, HAS 2, TNFα and IL 1β in the presence of soluble ICAM, again confirming 

the role of ICAM 1 binding in their regulation.  
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There is ample evidence to prove TNF dependent ICAM 1 up-regulation. This makes it 

difficult to explain the lack of TNFα up regulation in cross-linking experiments.  

The up-regulation of IL 1β and TNFα was exponential when PMA activated U937 

cells were used for co-culture. TNFα induction was suppressed in the presence of 

sICAM 1. 

There is strong evidence for the role of these two inflammatory cytokines in various 

inflammatory conditions. For instance, elevated levels of IL-1β and TNF-α are 

predominant in the pathogenesis of rheumatoid arthritis.(218) It has been shown that IL-

1β led to an increase in ICAM- 1 dependent monocyte binding in proximal tubular 

cells.(165) It has also been shown that IL 1β leads to up-regulation of Hyaluronan in 

proximal tubular cells.(219) Studies have demonstrated an up-regulation of TNF-α and 

ICAM-1 expression in the kidney in response to cisplatin. In animal models of cisplatin 

nephrotoxicity, blocking of ICAM-1 reduces the severity of cisplatin-induced renal 

injury.(220) The role of pro-inflammatory cytokines in macrophage and fibroblast 

interaction is well known in various inflammatory disorders involving not only kidneys, 

but also other organs and in multisystem disorders such as SLE(221). TNF-α is 

increased in various inflammatory renal diseases and in both mesangial and proximal 

tubular cells.(222, 223) TNF-α has been shown to induce a dose and time-dependent 

increase in ICAM-1 protein expression and U937 adhesion to A549 cells, which are 

alveolar epithelial cells.(126)  

I first showed that IL 1β and TNFα are capable of up-regulating mRNA expression of 

both ICAM 1 and HAS 2. It is well known that TNFα and IL 1β up-regulate ICAM 1 

expression in various cell types as previously mentioned.(209-211) For example, TNFα 

and IL-1β mediate ICAM-1 induction via microglia–astrocyte interaction in CNS 

radiation injury. (167) It has been established that various cytokines together can 

increase ICAM-1 expression greater than either cytokine alone.(123) Similar synergistic 
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action could exist for TNFα and IL 1β as revealed in the experiment when fibroblasts 

are stimulated with both these cytokines together. 

It has been shown that ICAM-1 crosslinking induces activation of the transcription 

factor AP-1 and transcription of the IL-1β gene using specific antibodies to cross-link 

ICAM-1 on a rheumatoid synovial cell line (E11 cells).(168) It has also been shown that 

ICAM-1 cross-linking leads to TNFα secretion. ICAM-1 binding induces cAMP 

accumulation and activation of the mitogen-activated protein kinase extracellular signal-

regulated kinase.(224) My experiments indicate up-regulation in expression of TNF-α 

and IL 1β mRNA in ICAM-1 cross-linking experiments that were done to mimic its 

interaction with its ligands. Similar results were seen in experiments involving lung 

fibroblast and U937 co-culture. 

 Research done elsewhere, with co-culture of differentiated U937 cells with fibroblast-

like synoviocytes, failed to release detectable levels of IL-1β and TNFα from the U937 

cells. U937 cells differentiated by phorbol ester were able to release these two cytokines 

and, in the case of the co-culture, mRNAs for both cytokines were highly 

expressed.(121) The induction of ICAM-I and VCAM-I by the co-culture of human 

umbilical cord vein endothelial cells, HUVECs and monocytes was inhibited by the 

combination of anti-IL-lα, anti-IL-lβ and anti-TNF Antibodies. This would suggest that 

the monocyte-endothelial cell interaction induces the expression of ICAM-1 and 

VCAM-I in endothelial cells partially through the production of IL-Iβ and TNFα.(152) 

This was revealed in our co-culture model, where combination of IL 1RA and anti TNF 

α showed reduced up-regulation of ICAM 1, and more significantly for HAS 2. 

Also, my experiments reveal reduced up-regulation of TNFα and ICAM-1 when 

fibroblast and U937 interaction is restricted using membrane inserts as before. IL 1β 

and HAS 2 expression were unrestricted despite the membrane inserts. This suggests 
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that ICAM 1 and TNFα expression may be regulated in a different way in comparison 

to IL 1β and HAS 2. 

Finally, I have shown that presence of soluble ICAM in the fibroblasts and U 937 cell 

co-culture leads to reduced up-regulation of ICAM 1, HAS 2, TNF α and IL 1β, again 

highlighting the role of cell-to-cell contact as well as the fact that there are other 

mechanisms involved in the above interaction responsible for some up-regulation. 

The major intracellular signal transduction pathways involved in the regulation of 

ICAM-1 expression include protein kinase C (PKC), the mitogen-activated protein 

(MAP) kinases (ERK, JNK, and p38), and the NF-κB signaling pathways.(225-227) 

Multiple transcription factors are involved in activation of ICAM-1 expression include 

AP-1, NF-κB, STAT and Sp1.(124) The ICAM-1 promoter contains Sp1 binding sites. 

The Sp1 binding site in the proximal promoter has been shown to be required for basal 

transcription of the ICAM-1 gene.(228) 

Work in our lab has shown Il-1β mediated HAS 2 up-regulation is mediated by 

transcription factors Sp1 and Sp3. The rate-limiting step in the production of IL-1β is 

transcription. I have demonstrated that sp1 an sp3 knockdown leads to reduced up-

regulation of both HAS2 and ICAM 1 in fibroblast and U 937 cell co-culture. Also, 

there is reduced up-regulation of ICAM 1 in Sp1 knockout fibroblasts. These results 

strengthen the hypothesis that TNFα and IL 1β are the likely circulating factors 

responsible for ICAM 1 and HAS 2 up-regulation. 

The abundant signaling pathways and transcription factors involved in ICAM-1 

transcription reflect the complex cell type-specific and stimulus-specific regulation of 

the ICAM-1 gene. This may also explain the inability to completely suppress the up 

regulation of ICAM 1 and HAS 2 in the fibroblast U 937 cell co-culture model in the 

presence of membrane inserts, soluble ICAM, anti TNF α antibodies and/or IL-1RA. 
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6 GENERAL DISCUSSION AND FURTHER WORK: 
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6.1 Questions answered  
 
In previous studies we have shown that cross-linkage of ICAM 1 on the surface of 

fibroblasts leads to its up-regulation (119).The aim of the current study was to extend 

these findings to fibroblast/monocyte interactions and to investigate the mechanisms 

involved.   

I have shown that the interaction of fibroblasts with U937 cells leads to up-regulation of 

ICAM 1 mRNA expression. This would suggest a role for this response in a pro-

inflammatory feedback mechanism, allowing for more inflammatory cells to be pulled 

to the site of inflammation in order to enhance and prolong the inflammatory response. I 

have also demonstrated that this interaction leads to up-regulation of HAS2, the major 

synthase implicated in the pathological generation of hyaluronan. Further experiments 

showed that the up-regulation of ICAM 1 and HAS 2 takes place even when fibroblasts 

interacted with unstimulated U937 cells. Up-regulation of ICAM 1 and HAS 2 was 

significantly increased, however, when U937 cells were activated. This has important 

implications, as it would suggest that the presence of monocytes at an inflammatory site 

might be enough to maintain an ongoing inflammatory process by promoting 

interactions that would lead to adhesion molecule expression and continuous release of 

cytokines and chemokines even after the offending stimulus has been removed. These 

cytokines and chemokines can play an important role in prolonging inflammation, 

scarring and leading to fibrosis.  

Further investigations of the potential mechanisms involved showed that cell-to-cell 

contact was important but not compulsory in the up-regulation of both ICAM 1 and 

HAS 2. Cell-to-cell contact dependent up-regulation was preferentially greater for 

ICAM 1 than for HAS 2. This was proved by using membrane inserts to prevent 

physical contact between the fibroblasts and U937 cells, and furthermore, by using 

soluble ICAM and 
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burther investigations of the potential mechanisms involved showed that cell-to-cell con

tact was important but not compulsory in the up-regulation of both ICAM 1 and HAS 2.

 Cell-to-cell contact dependent up-regulation was preferentially greater for ICAM 1 spo

nsible for the up-regulation of ICAM 1 and HAS 2 might differ, thus giving us the oppo

rtunity to manipulate the two responses independently. 

The differential up-regulation of both ICAM 1 and HAS 2 in the presence of 

conditioned medium suggests a role for a soluble factor in the up-regulation of HAS 2 

and ICAM 1. There is ample evidence for the role of TNFα and IL-1β in the up-

regulation of ICAM 1 and HAS 2 in various cell types as discussed in chapter 5. I 

therefore investigated the role of TNFα and Il 1β as possible soluble factors responsible 

for the above results. My experiments demonstrated that TNFα and IL 1β, both 

individually and together, caused up-regulation of both ICAM 1 and HAS 2.  

Cross-linking ICAM 1 on the surface of fibroblasts led to up-regulation of ICAM 1 and 

HAS 2. It also induced up-regulation of TNFα and IL 1β mRNA. While the level of up-

regulation did not appear to be sufficiently high to suggest a causal relationship in these 

samples, the superimposed effect of cell-cell contact may play a role in ensuring that 

cytokines are presented to the target cell surface efficiently.  My experiments 

demonstrated significant up-regulation of TNFα and IL 1β mRNA in the fibroblast and 

U937 cell co-culture. The up-regulation was differentially affected in the presence of 

membrane inserts with the TNFα up-regulation being reduced, and IL-1β up-regulation 

being unaffected. TNFα and IL-1β mRNA up-regulation was also exponentially 

increased in the fibroblast activated U937 cell co-culture. 

 Anti TNFα antibodies and IL-1RA were used to reduce the exposure of fibroblasts 

and U937 cells to the cytokines. This was done to assess the role of these cytokines in 

the induction of ICAM 1 and HAS 2. These experiments showed greater reduction in 

HAS 2 up-regulation in comparison to ICAM 1 mRNA expression. They also showed 
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reduced TNFα and Il 1β mRNA expression. Reduced HAS 2 expression in the 

presence of IL 1RA proves the role of IL 1β in this interaction. The failure of these 

antibodies in reducing ICAM 1 mRNA expression is not clearly explained by these 

experiments. It could be explained by a possible positive feedback loop exerted by 

ICAM 1 induction on its own up-regulation as seen in cross linking experiments. It is 

also difficult to explain the reduction in HAS 2 mRNA expression in the presence of 

anti TNFα  antibodies given the marginal increase in HAS 2 when fibroblasts were 

stimulated with TNFα (figure 5-1) 

Sp1 and Sp3 are transcription factors known to be responsible for IL 1β mediated HAS 

2 induction. I performed Sp1 and Sp3 knockdown experiments to prove that IL 1β is at 

least one of the soluble factors responsible for the up-regulation of HAS 2 in the 

fibroblast-U937 cell co-culture model. I was able to prove this by showing a significant 

reduction in the expression of HAS 2 mRNA in the co-culture model. There was also a 

noticeable reduction in ICAM 1 mRNA expression in fibroblasts with Sp1 knockdown, 

incubated with U937 cells. Sp1 is known to be one of the transcription factors 

responsible for TNFα mediated ICAM 1 up-regulation(124). This would confirm a 

causative role for TNFα and IL 1β in the up-regulation of ICAM 1 and HAS 2 mRNA 

in fibroblasts and U937 co-culture. 

 

6.2 Implications of the study 
 
Accumulation of LFA-1 (CD-11+ and CD18+) cells in areas of tubulointerstitial 

damage has been noted in experimental models, showing significant up-regulation of 

ICAM-1 in areas of renal damage. However, IL-1RA treatment resulted in a dramatic 

inhibition of interstitial ICAM-1 expression, interstitial leukocyte infiltration, and 

tubulointerstitial damage. This again highlights the importance of ICAM-1 in renal 
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disease and the role of IL -1β (146). In rat models, it has been shown that up-regulation 

of periglomerular and/ or peritubular capillary ICAM-1 expression is important for 

mononuclear cell entry into the interstitium, while interaction with fibroblast-like cells 

may facilitate movement and subsequent focal accumulation of monocytes at sites 

within the interstitium (19). Therefore, by reducing up-regulation of ICAM 1 beyond a 

certain stage, it may be possible to reduce the prolonged exposure of fibroblasts to 

inflammatory cells. 

Recent studies have shown reduced decline in renal functions among patients with 

rheumatoid arthritis (RA) and chronic kidney disease (CKD) treated with anti-TNF-α 

drugs. Anti-TNF-α drugs used in the study were adalimumab, etanercept or infliximab. 

This would suggest beneficial role of anti TNFα therapy for managing RA combined 

with CKD (229). Studies also suggest that targeted TNF-α blockades have the potential 

to improve renal function by attenuation of renal inflammation in CKD patients (230).  

Diabetic nephropathy remains a leading cause of renal disease worldwide. In different 

experimental models of DN, renal macrophage accumulation correlates with the 

severity of glomerular and tubulointerstitial injury. ICAM-1 also appears to be a critical 

promoter of nephropathy in mouse type 2 diabetes by facilitating kidney macrophage 

recruitment (231, 232). Blocking IL-1β has been shown to be effective in improving 

insulin secretion by pancreas in type 2 diabetes. The same study also showed 

improvement in the severity of joint erosions in rheumatoid arthritis (233, 234). 

Pirfenidone is an anti-fibrotic drug for the treatment of idiopathic pulmonary fibrosis. It 

works by reducing lung fibrosis through down-regulation of the production of growth 

factors. It reduces fibroblast proliferation, TGFβ production and TGFβ induced collagen 

production. Pirfenidone as a prophylactic regimen reduces proteinuria in anti-GBM 

nephritis via preservation of podocytes (235, 236). It has also been shown to reduce 

production of inflammatory mediators such as TNF-α and IL-1β.(237) 
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Combining therapy to reduce ICAM 1 up-regulation and reducing HA accumulation has 

been studied and found to be effective in inflammatory conditions such as Grave’s 

ophthalmopathy(19). Ischemia-reperfusion injury (IRI) is a major cause of renal 

dysfunction in both native kidneys and renal allografts.  ICAM 1 is known to play a 

significant role in inflammation in ischaemic reperfusion injury models (238). This has 

been postulated to be mediated in part by TNFα and IL-1β (239). The amount of 

accumulated HA also increases with increasing duration of ischemia and the gene 

expression of HAS2 is elevated (240). HA is said to contribute to oedema in the 

transplanted kidney and cause delayed graft function. Combining anti ICAM 1 therapy 

and reducing HA accumulation in this model of ischaemic reperfusion injury as seen in 

delayed graft function post renal transplant, offers a potential therapeutic option. 

 

6.3 LIMITATIONS OF STUDY  

6.3.1 Estimation of protein concentration of ICAM 1 and HAS 2 
 
Although I have been able to show induction of HAS2 and ICAM1 at the messenger 

RNA level, it would be important to see if this message was transcribed into protein to 

cause functional changes. It would also be helpful to measure ICAM 1 to evaluate its 

functional implications.  

 

6.3.2 Estimation of TNF α and IL 1β concentration 
 
An ELISA to look into TNFα concentrations did confirm induction above the detectable 

threshold and reduced concentration in the presence of inserts. However, the experiment 

analysing IL 1β concentrations was unable to show detectable levels of IL 1β induction 

above the threshold. This could not be repeated due to time and funding constraints 

towards the end of my research period.  
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6.3.3 HA type and concentration 
	
As mentioned in the introduction, HA is synthesised by three synthases, HAS1, HAS2 

and HAS3(73). Of the three, HAS 2 is the predominant synthase involved in HA 

production.  

HAS 2 has been found to be the primary synthase whose expression is elevated in 

pathological diseases such as diabetes, ischaemic reperfusion injury, renal transplant 

rejection etc. In animal models it has been shown that HAS 2 expression is increased in 

diabetic animals with an increased medullary HA concentration(97).  

It was therefore reasonable to look into the induction of HAS 2 in my model. Although I 

have shown the increased expression of HAS 2 in the fibroblast-monocyte co-culture 

model, I did not get an opportunity to characterise the hyaluronan produced. It is well 

known that HMW HA and LMW HA serve different purposes in inflammatory 

conditions. High-molecular-weight preparations of HA are without effect; however, 

when high-molecular-weight preparations of HA are digested with hyaluronidase, an 

adhesion-molecule-inducing activity can be elicited. Very small HA molecules such as 

HA hexamers, which represent the minimal binding motif for CD44, are also without 

effect on ICAM-1(153).  

It would therefore be useful to confirm HA production. Once confirmed it would be 

useful to quantify and characterise the HA produced, on the basis of its molecular 

weight and distribution on cell surface.  

 

6.3.4 Signalling pathways involved: 
	
It is well known that ICAM 1, in addition to acting as an adhesion molecule, acts as a 

signal transducer. In various studies it has been demonstrated that ICAM 1 shows cell-

type specific “outside-in” signalling. Multiple intracellular signal transduction pathways 
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are involved in the regulation of ICAM-1 expression include protein kinase C (PKC), 

the mitogen-activated protein (MAP) kinases (ERK, JNK, and p38), and the NF-κB 

signalling. In a study using a rheumatoid synovial cell line, cross-linking of ICAM-1 

activated the transcription factor AP-1 and subsequently induced IL-1β transcription 

(168). ERK1/ERK2, as well as p38 MAPK, are activated upon ligation of ICAM-1 in 

astrocytes (241). ICAM-1 cross-linking demonstrated increase in TNFα-mediated 

RANTES (Regulated on Activation, Normal T-cell Expressed and Secreted) production 

involving activation of ERK in airway epithelial cells (242). However, work published 

from our lab has shown induction of p38, ERK1, and ERK2 MAP kinases were 

activated in a calcium dependent manner, with only p38 activation being essential for 

ICAM 1 induction (119). The abundant signalling pathways and transcription factors 

involved in ICAM-1 transcription reflect the complex cell type-specific and stimulus-

specific regulation of the ICAM-1 gene. It is therefore important to try and ascertain the 

pathways involved in the fibroblast-monocyte interaction induced ICAM 1 activation. 

This could also suggest a link to the HAS 2 induction, thereby providing another point 

for possible intervention. I started looking into the role of MAP kinases, ERK 

(Extracellular-signal-regulated-kinases) and p38 Kinases. Initial experiments were 

suggestive of an ERK dependent activation. Results are attached in Appendix 1. I also 

investigated the role of NF-κB activation in the up-regulation of ICAM 1 and HAS 2 

but I decided to omit this result for now as this was only one experiment with n=1 and 

needs confirmation. 

6.3.5 Role of CD44 receptors 
	
The major HA receptor is CD44, a 90kDa cell surface molecule. In normal kidney these 

are found in the dendritic interstitial cells but in pathological conditions it is expressed 

significantly in the tubular epithelial cells and glomerular crescents (243). Cross-linking 

of CD44 on the cell surface of tubular epithelial cells has been shown to lead to up-
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regulation of ICAM-1 and VCAM-1 (153). Subsequent to my work, our laboratory has 

shown that IL 1β dependent stimulation of fibroblasts leads to spiculated protrusions of 

the HA coat on the cell surface. These spiculations co-localize CD44 and ICAM 1. 

Functionally, these HA-rich structures appear to enhance ICAM-1 and monocyte 

interactions and promote fibroblast-monocyte binding (244). It would therefore be 

interesting to evaluate CD44 dependent binding in my co-culture model, considering 

that I hypothesized IL 1β to be one of the possible factors responsible for HAS 2 and 

ICAM 1 induction. 
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6.4 CONCLUSION 
 
In conclusion the work presented shows a possible mechanism where unstimulated 

fibroblasts and mononuclear cells up-regulate ICAM 1 and HAS 2, thus providing a 

mechanism to perpetuate inflammation in the absence of an overt inflammatory 

stimulus. The mechanism responsible involves cell-to-cell contact using ICAM 1 

dependent binding but also pathways independent of cell contact. There is a soluble 

factor that plays an important role in the interaction leading to ICAM 1 and HAS 2 

induction in addition to cell-to-cell contact. Pro-inflammatory cytokines may play a role 

in this interaction in the form of these soluble factors. 

I also demonstrated a significant increase in ICAM 1, HAS 2, IL 1β and TNFα 

induction in the presence of activated/stimulated U937 cells, a surrogate of activated 

monocytes in inflammation. Cell-to-cell contact seems to play a more significant role in 

this model of interaction. It is possible that other receptors involved in cell-to-cell 

contact such as CD44 may have a role in this interaction but this needs to be evaluated. 

This study therefore gives us an opportunity to develop novel ways of intervening in the 

continuous process of inflammation and eventual fibrosis by therapeutically targeting 

different points in this interaction.   
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APPENDIX 1 
 

Role of MAP Kinases in induction of ICAM 1 and HAS 2 
 
As discussed, extensive literature exists supporting role of MAP Kinases in the 

induction of HAS 2 and ICAM 1. There involvement of p38 and ERK has been shown 

to vary depending on the cells interacting with the monocytes and the environment they 

interact in. I looked into the role of these kinases in the induction of ICAM 1 and HAS 2 

in fibroblast-U937 cells interaction. Work in our lab had previously shown p38 MAP 

Kinase activation , not ERK, is involved in ICAM 1 upregulation in ICAM 1 

crosslinking experiments (119) 

Fibroblasts were growth arrested when near confluence for 48 hours. U 937 cells co-

incubated with varying concentrations of p38 inhibitor ( SB203580, Cell Signalling 

technologies,Inc). Fibroblasts and fibroblasts with co-incubated with untreated U937 

cells were used as control. Similarly Fibroblasts were incubated with U937 cells 

pretreated with ERK inhibitor (PD98059, Cell Signalling technologies,Inc.).  Two 

concentrations were used, 10microM and 50 microM). RNA was extracted as discussed 

in methods chapter at 4 hours and mRNA assessed using RT and Q PCR. 

The experiments showed almost 70% reduction in ICAM 1 and HAS 2 induction in the 

presence of ERK inhibition at both concentrations used but this was not statistically 

significant ( p value= 0.34 with 10microM and 0.142 with 50microM ERK inhibitor) 

No significant reduction in the induction of ICAM 1 and Has 2 was seen with p38 

inhibitors (SB 203580) 
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Figure	A-0-1:	Inhibition	of	ICAM	1	and	HAS	2	induction	in	the	presence	of	ERK	inhibitor	

Fibroblasts	were	grown	to	near	confluence	in	6	well	plates.	They	were	growth	arrested	for	48	hours	
before	incubation	with	5	x	105	U937	cells/ml	pre	treated	with	ERK	inhibitor	(PD98059).						Fibroblast	and						
fibroblast	incubated	with	U937	cells			were	used	as	control.	Two	concentrations	of	inhibitor	for	
pretreating	the	U937	cells	were	used.					10microM	ERK	inhibitor	and							50microM	were	used.	After	4	
hours	the	cells	were	washed	with	PBS	x	3	times	and	mRNA	extracted	as	in	Methods.	Q	PCR	results	for	
ICAM	1	are	represented	as	mean	+	SE	of	mean	(n=6).	
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Figure	A-0-2	Inhibition	of	ICAM	1	and	HAS	2	in	the	presence	of	p38	Inhibitor	

Fibroblasts	were	grown	to	near	confluence	in	6	well	plates.	They	were	growth	arrested	for	48	hours	
before	incubation	with	5	x	105	U937	cells/ml	pre	treated	with	p38	inhibitor	(SB203580).						Fibroblast	
and							fibroblast	incubated	with	U937	cells			were	used	as	control.	Two	concentrations	of	inhibitor	for	
pretreating	the	U937	cells	were	used.					500	nM	inhibitor	and										1microM	SB203580	were	used.	After	
4	hours	the	cells	were	washed	with	PBS	x	3	times	and	mRNA	extracted	as	in	Methods.	Q	PCR	results	for	
ICAM	1	are	represented	as	mean	+	SE	of	mean	(n=3).	
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