
Abstract. Angiogenesis is an essential aspect of tumour
growth and metastasis. Solid tumours cannot grow beyond 2-
3 mm in diameter without inducing the formation of new
blood vessels to support the energetic requirements of
tumour cells. Angiogenesis is stimulated by cancer cells
through a wide variety of cell-to-cell communication means.
Cancer cells can induce endothelial changes by directly
targeting cells via soluble factors, adhesion receptors, gap
junctions and vesicles. They also can stimulate endothelial
signaling pathways in an indirect way, e.g. by activating
stromal cells, by secreting proteases into the extracellular
space or even by changing the pH, temperature and
availability of oxygen and nutrients. Anti-angiogenic drugs
appear to be an effective cancer treatment in animal models
but have been shown to have a limited effect in the long term.
Resistance to anti-angiogenic therapies has been attributed
to the ability of cancer cells to induce angiogenesis in a
different way. We propose that cancer cells also change the
way they communicate with endothelial cells in order to
escape therapies that inhibit angiogenesis and that a better
knowledge of this phenomenon will help us design more
efficient drugs. 

Cell-to-cell communication is necessary for proper
coordination of cell activity. It has been long known that the
failure of cell communication can lead to severe diseases,
such as immune disorders (1) and heart failure (2). Cells can
send signals which can activate their own receptors

(autocrine), target a neighbouring cell (paracrine) or target a
distant cell (endocrine). There also exist different means of
cell communication: it can occur through soluble factors,
adhesion contacts, cell junctions or through vesicles (3). 

Tumours are comprised not only of tumour cells but also
of other cell types, called stromal cells, creating the perfect
microenvironment for tumour development. Fibroblasts and
macrophages are the two most common stromal cells in the
tumour microenvironment. Tumour cells are able to attract
and transform these stromal cells via communicating with
them. Studies have shown that the aggressiveness and growth
of tumours decreases when these communications are
reduced or stopped (4, 5). For this reason, the development
of strategies to block the communication between tumour
and stromal cells has been an important area in cancer
research. 

Endothelial cells are another stromal cell type present in
the tumour microenvironment. It has been shown that
tumours cannot grow beyond 2-3 mm in diameter without
proper vasculature to fulfil tumour cell energetic
requirements. In order to continue their growth, tumour cells
induce formation of new blood vessels from an existing one,
which is called angiogenesis. Tumour angiogenesis not only
provides the tumour cells with nutrients and oxygen, and
allows removal of metabolic wastes, but also presents the
metastatic tumour cells with points of entry to the circulatory
system. The signal exchange between tumour and endothelial
cells is critical to the development of tumour angiogenesis.
The interruption of this signal exchange can lead to reduced
vasculature within the tumour and reduced tumour size (6).
This might serve as an additional target for anti-angiogenic
strategy, even though the idea of anti-angiogenic therapy has
been a long-standing area of interest (7).

In this mini-review, we summarize the different means by
which tumour cells can communicate with endothelial cells
in terms of tumour angiogenesis. We also briefly touch on
the issues of anti-angiogenic therapy and drug resistance. 
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Direct Cell-to-cell Communication

In this section, we review the different ways that cancer cells
can target endothelial cells in a direct way through soluble
factors, activation of a receptor by physical contact, gap
junctions and vesicles (Figure 1).

Soluble factors. The most common means of cell
communication is through soluble factors, where a signaling
cell secretes a protein into the extracellular space which
targets a neighbouring cell or travels through the bloodstream
and targets a cell at a distant site. The soluble factor usually
binds to a tyrosine kinase receptor and triggers an
intracellular response but they can also activate ion channels.
The vascular endothelial growth factors (VEGFs) are a very
well-known family of vascular development modulators (8).
There are five VEGF proteins secreted in mammals
(VEGFA, -B, -C and -D and placental growth factor) that can
bind to three tyrosine kinase receptors (VEGFR1, -2 and -3)
(9). In vascular endothelial cells, VEGFA is the most well-
studied ligand and as a result we have a clear idea of its role
in cells. VEGFA binds to its receptors, VEGFR1 and
VEGFR2, triggering an intracellular response that is
responsible for modulating the proliferation, migration,
permeability and tip cell filopodia induction (10).
Interestingly, VEGFA has a high affinity to bind VEGFR1,
but this receptor has a weak response to this ligand,
generating weak tyrosine auto-phosphorylation (11).
Endothelial cells can also express two different isoforms of
this receptor, one that is the normal receptor localized in the
membrane that can generate an intracellular signaling
pathway, and a second one that is secreted into the
extracellular space, binding VEGFA and working as an anti-
angiogenic mechanism by inhibiting VEGFA (12). 

Almost all tumours express VEGFA that it is considered
the most significant angiogenic factor in tumours (7, 13).
Since tumour angiogenesis is dependent on VEGFA, many
drugs have been developed to target this pathway, among
them, bevacizuma (Avastin®). This medication, which is an
antibody against VEGFA, has limited effects in the majority
of advanced malignancies. However, the administration of
this drug in combination with chemotherapy has shown an
improvement in the treatment (14, 15). 

A study using frog mesenteric microvessels showed that
VEGF increases the concentration of intracellular calcium,
that was accompanied by an increase in endothelial
permeability. The use of two activators of transient receptor
potential channel 6 (TRPC6), 1-oleoyl-2-acetylglycerol and
flufenamic acid, had the same effect, suggesting that VEGF
might activate TRPC6 and increase calcium influx. TRPC6
and -7 have been identified in endothelial cells of human
lung artery and both these channels are permeable to
magnesium. Calcium and magnesium are both known to

regulate endothelial functional, including angiogenesis (16).
These findings suggest that VEGFA might regulate the
activation of these channels in cancer, therefore contributing
to angiogenesis. 

Adhesion contacts/adhesion receptors. Under normal
conditions, cells interact with their microenvironment, e.g.
the extracellular matrix (ECM) and neighbouring cells. Cell
adhesion receptors are essential proteins that contribute not
only to the adhesive process between cells but also to the
activation of intracellular signaling pathways. These
receptors can activate enzymatic proteins located by the
intracellular fragment of the receptor, and can also bind to
adaptor proteins and to the cellular cytoskeletal. Adhesion
receptors are regulated by intracellular signals as they exist
in protein complexes that are dynamically adjusted in
response to a stimulus, being translocated into the membrane
sites of the adhesion. Adhesion receptors are critical in the
regulation of migration. Therefore, the dynamic regulation
of these adhesion complexes is a crucial feature of
angiogenesis. 

Another example of the importance of adhesion receptors
in communication between cancer cells and endothelial cells
is its role in tumour angiogenesis. Osteoprotegerin (OPG) is
a pro-angiogenic protein that was found overexpressed in
breast cancer tissue (17). In vitro studies showed that the
direct contact between breast cancer cells and endothelial
cells is partially responsible for the increase in endothelial
OPG through integrin ανβ3 ligation and nuclear factor-kappa
B activation (18). Chen et al. also demonstrated in vitro that
JAGGED1 transmembrane protein expressed in breast cancer
tumour cells can activate the NOTCH receptor in endothelial
cells and trigger an angiogenic cascade (19). 

Gap junctions. Another way that neighbouring cells can
communicate with each other is through gap junctions,
where they can exchange ions and small metabolites,
providing a connection between the cytoplasm of the two
cells (20, 21). Connexin is the primary group of proteins that
form these channels. The connexin family comprises of 21
different proteins that have a tissue and cell type specific
expression pattern. Connexin has been reported to have a
part in tumour progression, but its role it is still not clear
(22). The down-regulation of connexin 26 (CX26) has been
shown to increase the aggressiveness of melanoma cells (23)
and the knockdown of CX43 increased the growth and
migration of breast cancer cells (24). Breast cancer cells
treated with ACT1, a compound that stabilises CX43 gap
junctions, had an adverse effect on the proliferation and
survival of cancer cells (25). Although these studies suggest
that gap junctions in cancer cells could be a good prognostic
marker, CX26 and CX43 immunohistochemical analysis of
breast cancer samples might complicate this assumption (26).
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Most primary tumours presented cytoplasmic expression of
CX26, but not membranous. Although primary tumours
exhibited cytoplasmic and membranous expression of CX43,
it was predominantly cytoplasmic. When the expression of
both connexins was evaluated in the matched metastases,
membranous expression of CX43 was enhanced in the lymph
node metastases and membranous CX26 was only present in
the metastatic site (26). These findings suggest that
connexins might have various roles in the different stages of
the tumour progression. Several studies have shown that
connexins are important in the adhesion of cancer cells to
vessels and in the intravasation of cancer cells, suggesting
that gap junctions between cancer cells and endothelial cells
might be an important aspect of tumour progression (27-29).
Confocal images confirmed that CX43 connections between
cancer cells and endothelial cells are formed under in vitro
and in vivo conditions and that those connections correspond
to functional gap junctions, capable of exchanging fluid
between the two types of cells (27-29). Moreover, Zang and
collaborators demonstrated that glioma cells can establish
gap junctions with endothelial cells, enhancing tube
formation in vitro (30). Gap junctions can also propagate
electrical signals between neighbouring cells and it has been
shown that electrical stimulation induces angiogenic
responses in endothelial cells by activating VEGFR (31, 32).

In summary, gap junctions between cancer cells and
endothelial cells occur and seem to be important in the

adherence of cancer cells to vessels and in the intravasation
of cancer cells. Despite the lack of evidence that gap
junctions between cancer cells and endothelial cells have an
impact on tumour angiogenesis, they might play a significant
role in the initiation of metastasis. 

Vesicles. Recently, a different means of cell communication
has been described which consists of secreted membrane
vesicles that merge into target cells. There are several types
of vesicles, including microvesicles, ectosomes, membrane
particles and exosomes. Exosomes are one of the most
studied vesicle types. They have an endosomal origin and are
30-100 nm in diameter. In the signalling cell, exosomes are
present in multivesicular bodies which are released into the
extracellular space, then merge with the plasma membranes
of the recipient cells. These vesicles can have different cargo
molecules, such as proteins, lipids and RNAs (33). The
function of exosomes is still unclear, especially in the
context of cancer. Many studies have demonstrated a role of
exosomes in different aspects of cancer progression, such as
angiogenesis, promotion of metastasis and modulation of the
immune system (reviewed in 34). The role of exosomes
seems to depend highly on their composition (35). 

Several studies have shown that exosomes derived from
cancer cells induce angiogenesis, in vitro and in vivo.
Exosomes purified from leukaemia cells under hypoxic
conditions induced approximately two-fold endothelial cell
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Figure 1. Schematic representation of the different means of communication between cancer and endothelial cells. ECM: extracellular matrix;
VEGF: vascular endothelial growth factor.



tubule formation than those purified from leukaemia cells
under normoxic conditions. MicroRNA-210 (miR-210) was
shown to be up-regulated in exosomes from hypoxic
leukaemia cells. The exosomal miR-210 was able to directly
down-regulate the expression of the anti-angiogenic protein
Ephrin-A3 by reducing its promotor activity (35). This
demonstrates that exosomes carry functional molecules
capable of modulating gene expression in the target cell. It
also shows that the exosome cargo can differ according to
the stress of the signalling cell. Exosomes can target
neighbouring cells, but they also can travel through the
bloodstream and modulate the gene expression of cells at
distant sites. Human renal carcinoma cells expressing CD105
(stem cell marker) secrete exosomes that have been shown
to trigger in vitro and in vivo angiogenesis (36). Profiling of
exosomes revealed the presence of many pro-angiogenic
mRNAs and microRNAs (36). Intravenous daily injection of
exosomes into mice for 5 days enhanced lung metastasis
which had been induced by injection of renal carcinoma cells
(36). This could be due to angiogenesis stimulation which
facilitates intravasation of cancer cells and also supports
tumour growth. These findings demonstrate that exosomes
induce angiogenesis and are important in the formation of
pre-metastatic niches. 

Urinary exosomes isolated from patients with high-grade
bladder cancer promoted angiogenesis and cell migration (in
vivo) (37). Epidermal growth factor-like repeats and
discoidin I-like domains 3 (EDIL3) protein is overexpressed
in many cancer types and has been associated with poor
prognosis (37). This protein was found in exosomes derived
from bladder cancer cell lines and patients. EDIL3
knockdown demonstrated that this protein is essential for
exosomes to promote angiogenesis in vitro. EDIL3 can
activate epidermal growth factor receptor (EGFR) signaling
and by using the EGFR kinase inhibitor Ag1478, it was
demonstrated that exosomal bladder cancer cells induce
angiogenesis in an EGFR-dependent way (37). 

Tumour cells use exosomes as a way to modulate
endothelial gene expression and induce angiogenesis.
Furthermore, as exosomes are found in blood and urine, and
they can reflect the aggressiveness of cancer, they have been
studied as a predictive marker. 

Indirect Cell-to-cell Communication

Tumour cells can also induce angiogenesis in an indirect way
via stromal cells or by changing the tumour microenvironment,
such as by secreting proteases into the ECM (Figure 1). 

Stromal cells. For many decades, researchers had focused on
cancer cells themselves, but nowadays we know that tumours
comprise of tumour parenchyma and stroma, both distinct
parts that communicate with each other to stimulate tumour

progression. Growing evidence shows that stromal cells play
an important role in tumour initiation, progression and
metastasis. The most abundant stromal cells in connective
tissues are fibroblasts, which secrete molecules into the
ECM. Fibroblasts have been found to be activated in wound
healing and fibrosis, which are characterized by an increase
in the expression of alpha-smooth muscle actin and extra
domain A (ED-A) splice of fibronectin (38). Recently,
fibroblasts have been found to be activated within the tumour
microenvironment. These fibroblasts are called cancer-
associated fibroblasts (CAFs) and interestingly, they are very
similar to those found in wounds and inflammatory sites
(39). The origin of CAFs is still unclear but some studies
suggest that they are activated local fibroblasts, bone
marrow-derived mesenchymal stem cells or cancer cells after
epithelial–mesenchymal transition. Cancer cells can activate
fibroblasts by targeting them with cancer-secreted factors,
such as transforming growth factor-β and C-X-C motif
chemokine 12 (CXCL12)/ stromal cell-derived factor-1 (40). 

There are many studies showing the involvement of CAFs
in tumour angiogenesis, for example, Tang and collaborators
(41) showed that CAFs highly express galectin-1, a pro-
angiogenic protein. Co-culture experiments demonstrated
that CAFs increase human umbilical vein endothelial cell
(HUVEC) proliferation, migration, tube formation and
VEGFR2 phosphorylation in a galectin-1-dependent manner.
They also showed that galectin-1 accelerated tumour growth
and promoted angiogenesis in vivo. 

Proteases. The ECM is the structural support of endothelial
cells, which under normal physiological conditions induces
stable vessels by inhibiting angiogenesis through activation
of endothelial receptors. In solid cancer, cancer cells and
activated stromal cells secrete not only proteins into the
ECM but also proteases which degrade ECM proteins (42).
This way, a change in the composition of the ECM induced
by cancer cells leading to a change in the endothelial
phenotype, can be interpreted as another way of
communication between these two cell types. 

VEGF, as discussed above, is an essential pro-angiogenic
molecule in cancer. It has been shown in vitro that most
VEGF bind to ECM proteins secreted by cancer cells (43,
44) and the degradation of ECM proteins is required for
access of VEGF to the endothelial cells in order to induce
angiogenesis. Matrix metalloproteinases (MMPs) are the
main group of proteases secreted by cancer and stromal cells
that are capable of degrading ECM proteins. Many MMPs
have been implicated in this process, for example, VEGF
forms a complex with connective tissue growth factor
(CTGF) and MMP3 and MMP7 were able to release VEGF
from this complex by degrading CTGF (43). Interestingly, a
set of in vivo experiments demonstrated that different
concentrations of VEGF can regulate various aspects of
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tumour angiogenesis (45), giving an even more important
role to proteases in this process. 

Degradation of collagen type IV, CXC chemokines and
thrombospondin 1 also produces peptides that can have pro-
or anti-angiogenic properties (46, 47). 

The studies described above show that proteases have a
major role in tumour angiogenesis and are an important
method of communication between cancer and endothelial
cells. 

Other forms of indirect communication. Solid tumours are
characterised by inadequate perfusion and high metabolic
rates, leading to a transiently or chronically hypoxic and
acidic environment. The pH of the tissue is usually related to
glucose consumption (48). These changes in the
microenvironment are created by the high metabolic rate of
tumour cells and not as a means of communication, at least in
our current understanding. However, these conditions will
constrain and even change the behaviour of stromal cells
within the tumour microenvironment. If we take the example
of a single cancer cell that invades a new organ, it will create
an acidic and hypoxic microenvironment that will affect the
cells around it; this phenomenon could be interpreted as cell
communication. For instance, Jiang et al. showed that
culturing HUVECs under hypoxic conditions for 25 days
completely changed the gene-expression profile of these cells
and, more importantly, these cells enhanced their response to
fibroblast growth factor 2 and VEGFA, essential angiogenic
proteins regarding cell migration and proliferation (49). 

Another characteristic of the microenvironment of tumours
is the deprivation of nutrients, which has been shown to
change the response of endothelial cells to other stimuli, such
as tumor necrosis factor-alpha (TNFα). HUVECs increase
superoxide production under starvation conditions, but more
interestingly, the production of superoxide is even more
increased if cells are treated with TNFα. However, TNFα
alone does not affect the production of superoxide under
standard conditions (50). The temperature is also increased in
the tumour microenvironment and endothelial cells have
temperature-sensing receptors that can modulate calcium
influx or NO release (51). 

We support the idea that a change in the tumour
microenvironment, even as the secondary effect of cancer cell
metabolism, can be interpreted as a means of communication
and its role in cancer angiogenesis should be investigated. 

Anti-angiogenic Therapy and Drug Resistance

The awareness that anti-angiogenic therapies could be one
major step towards the prevention of cancer progression
arose after studies showing that angiogenesis is essential for
the growth of primary solid tumours and metastasis. Hypoxic
cancer cells activate hypoxia-inducible factor-1α that triggers

a signaling pathway inducing cells to express growth factors,
e.g. VEGF, FGF2 and platelet- derived growth factor. VEGF
can be up-regulated in cancer cells by oncogenes, such as
RAS (52, 53), or after loss of tumour suppressors, such as
phosphatase and tensin homolog (PTEN) and Von Hippel-
Lindau (VHL) (54, 55). Growth factors can then target
endothelial cells and induce proliferation, migration and
capillary formation. The newly formed microvessels bring
oxygen and nutrients to feed the cancer cells, allowing the
tumour to grow. 

As already mentioned, VEGFA plays a significant role in
this process and many drugs have been developed to target
its pathway. The most studied VEGFA drug is bevacizumab,
which is a recombinant humanized monoclonal IgG1
antibody. It binds to VEGFA, neutralizing it and preventing
it from activating its receptor. This antibody was capable of
slowing tumour growth in animal models (56). Interestingly,
it had a more beneficial effect when used in combination
with chemotherapy (57), by increasing the stability of the
tumour vasculature, contributing to better cytotoxic drug
delivery (58). 

Despite the efforts towards creating drugs to inhibit the
VEGF signalling pathway, clinical trials showed that these
drugs do not constrain angiogenesis for a long time. Anti-
angiogenic treatments usually do not prolong the overall
survival of patients with breast (59), renal cell carcinoma
(60) or colon (61, 62) cancer. Moreover, an animal study
demonstrated that anti-angiogenic drugs can actually increase
the aggressiveness of tumours (63). A possible explanation
for this is given by Conley and collaborators (64). They
showed that when they used anti-angiogenic drugs, tumour
cells activated hypoxia responses but more importantly, they
activated the protein kinase B–β-catenin pathway which is
involved in cell growth, making tumours more aggressive.
Fascinatingly, tumours that were first sensitive to a therapy
but developed resistance have been shown to become
sensitive to that therapy following treatment with a different
agent (65). This suggests that tumour resistance to therapy is
an adaptation and not a result of a gene mutation or
amplification. Another consideration regarding the use of this
kind of agent is that studies conducted in mouse models
showed that anti-angiogenic drugs increased the invasive
potential of cancer cells from the primary site, increasing the
number of metastases that occurred (66). This could be
explained by the fact that a hypoxic environment is hostile
to cancer cells, which might cause them to migrate to other
tissues (67).

Tumours that respond well to single anti-angiogenic
therapy might suggest that the tumour vasculature is very
sensitive to that particular drug and also that the tumour cells
are very dependent on the supply of oxygen and nutrients.
The vasculature can also be sensitive to the drug but cancer
cells adapt to the new conditions in order to survive. Lastly,
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anti-angiogenic therapy may have no significant effect on
tumour vasculature. The disease can be controlled for a
period of time after anti-angiogenic therapy, but this is
followed by tumour progression. In this case, at least one of
two things happened, the tumour found a different way to
drive angiogenesis, or tumour cells adapted to a less-
vascularized environment (6). 

Adaptation of tumours to anti-angiogenic drugs can be due
to the switch of the VEGF pathway to a different pro-
angiogenic pathway. Many other molecules secreted by
cancer cells have been described as being pro-angiogenic,
such as EGF (68), FGF2 (69) and interleukin-8 (70). Another
mechanism used by tumours to overcome the effect of these
drugs is to recruit stromal cells; fibroblasts have also been
shown to confer resistance to anti-angiogenic drugs (71). 

The type of cell-to-cell communication established
between cancer cells and endothelial cells should also be
considered in the phenomenon of drug resistance. Connexins
have an important role in the development and progression
of breast cancer. However, their role varies according to the
type of connexin, type of cancer and stage of cancer
progression. The prognostic potential of connexins was
evaluated in a study involving patients with breast cancer,
where high CX26 expression was correlated with a poor
prognosis and low CX26 and high CX46 correlated with a
good prognosis. The expression pattern of these connexions
was also shown to change after chemotherapy (72). These
findings suggest that cell communication, gap junctions in
this case, is involved in the aggressiveness of the tumour and
might be important in the prediction of prognosis. More
importantly, it suggests that tumours can change their way
of communicating after a treatment, perhaps enabling them
to overcome therapeutic inhibition. 

Conclusion and Future Directions

Herein we revised the different ways that cancer cells can
communicate with endothelial cells and induce angiogenesis
in order to fulfil the energetic requirements of tumour cells.
We showed that cancer cells have a wide and complex
variety of means of communicating with endothelial cells.
Based on the information presented in this review, we argue
that not only is a better understanding of the pathways of
angiogenesis activated within tumour needed, but also a
more comprehensive knowledge of how cancer cells trigger
these pathways is essential. Furthermore, the investigation of
the role of cell-to-cell communication between cancer and
endothelial cells in different types of cancers and in the
different stages of tumour progression will enable the
development of better therapies. Finally, we also support the
idea that cancer cells might change their type of cell-to-cell
communication targeting endothelial cells in order to
overcome anti-angiogenic therapy. 
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