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1. Introduction

A non-negative, densely defined symmetric operator T acting in a Hilbert
space H, has two distinguished self-adjoint extensions, namely the Friedrichs
extension TF and the Krein extension TN ; for a strictly positive operator
T , as will be the case in this paper, TN coincides with the von Neumann
extension of T and is accordingly called the Krein–von Neumann extension.
These extensions are extremal in the sense that all non-negative self-adjoint
extensions T̃ of T satisfy TN ≤ T̃ ≤ TF in the form sense; recall that if
T1, T2 are non-negative self-adjoint operators with associated quadratic forms
t1[·], t2[·] and form domains Q(T1), Q(T2) respectively, then T1 ≤ T2 in the
form sense if Q(T2) ⊂ Q(T1) and 0 ≤ t1[u] ≤ t2[u] for all u ∈ Q(T2). The
abstract theory was initiated by Krein in [13,14] and developed further by
Vishik in [18] and then by Birman in [6]; we shall refer to the work of the
three authors in the cited papers as the Krein–Vishik–Birman theory. In the
first, and main, part of this paper we determine all the positive self-adjoint
extensions when T is the minimal operator generated by the general Sturm–
Liouville expression

τu :=
1
k

{−(pu′)′ + qu}
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on the interval [a,m),−∞ < a < m ≤ ∞, with the coefficients subject to the
following minimal conditions:

1. k, p > 0 a.e. on [a,m); k, 1/p ∈ L1
loc[a,m);

2. q ∈ L1
loc[a,m) real-valued.

We are assuming that a is a regular end-point of the interval, but m is allowed
to be singular, i.e., at least one of the following is possible:

m = ∞;
∫ m

kdx = ∞;
∫ m 1

p
dx = ∞;

∫ m

qdx = ∞.

The case of a a singular end-point can be treated similarly.
Let H denote the weighted space L2(a,m; k) with inner-product and

norm

(f, g) :=
∫ m

a

f(x)g(x)k(x)dx, ‖f‖ := (f, f)1/2.

The minimal operator T generated by τ in H is the closure of T ′ defined by

T ′u = τu; D(T ′) = {u : u ∈ D(τ), u(a) = pu′(a) = 0, u = 0 in (X,m),
for some X > a} (1.1)

where

D(τ) := {u : u ∈ ACloc[a,m) ∩ H, pu′ ∈ ACloc[a,m), τu ∈ H}.

If m is regular, then T has domain

D(T )={u : u, pu′ ∈ AC[a,m], τu ∈ H,u(a) = pu′(a) = u(m) = pu′(m) = 0}.
(1.2)

The adjoint T ∗ of T is the maximal operator defined by

T ∗u = τu; D(T ∗) = {u : u ∈ D(τ) ∩ H}. (1.3)

In the main part of the paper, dealing with a symmetric T and its self-
adjoint extensions, we shall be assuming that T is positive, i.e., T ≥ μ > 0,
meaning

(Tu, u) ≥ μ‖u‖2, u ∈ D(T ), μ > 0,

and our objective is to contribute to the classical problem of characterising
all the positive self-adjoint extensions of T . Our results extend previous ones
in that we assume only the minimal requirements on the coefficients of τ
and that T is positive. In order to achieve this degree of generality we use a
theorem of Kalf in [11] in which he gives necessary and sufficient conditions
for T to be bounded below, and a general characterisation of the Friedrichs
extension of Sturm–Liouville operators in terms of weighted Dirichlet inte-
grals. Kalf’s result on the semi-boundedness of T is a consequence of a result
of Rellich in [16] equating the lower semi-boundedness to the disconjugacy of
the equation τu = λu near m. Rellich proves that if

τu = λu (1.4)

is non-oscillatory near m for some λ ∈ R then T is bounded below, while con-
versely, if T is bounded below with lower bound α, then (1.4) is disconjugate
for every λ < α, i.e. any solution u 	= 0 of (1.4) with λ ≤ α has at most one
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zero. Before quoting Kalf’s result, we recall that if (1.4) is non-oscillatory at
m, there exist linearly independent solutions f, g with the following proper-
ties:
1. f(x) > 0, g(x) > 0 in [s,m) for some s ∈ (a,m);
2. pf ′, pg′ ∈ AC[a,m);
3.

∫ m

s
1

pf2 dx = ∞;
∫ m

s
1

pg2 dx < ∞;

4. limx→m
f(x)
g(x) = 0.

The functions f, g are called the principal and non-principal solutions of
(1.4), respectively. Kalf’s theorem implies the following when a is regular;
see Corollary 2 in [17]:
Theorem (Kalf) The operator T is bounded below if and only if there exist
μ ∈ R and a function h ∈ ACloc[a,m) which is such that ph′ ∈ ACloc[a,m), h
> 0 in [s,m) for some s ∈ (a,m),

∫ m

s
1

ph2 dx = ∞ and

q ≥ (ph′)′

h
+ μk in [s,m).

The Friedrichs extension TF of T has domain

D(TF ) =

{
u : u ∈ D(τ), u(a) = 0,

∫ m

s

ph2

∣∣∣∣
(u

h

)′∣∣∣∣
2

dx < ∞
}

. (1.5)

It follows that the sesquilinear form associated with TF is

tF [v, w] =
∫ m

a

{
ph2

( v

h

)′ (w

h

)′
+ qhvw

}
dx, (1.6)

where qh = q − (ph′)′

h .
We shall assume that μ > 0 so that T is positive. Kalf also allows for a

to be singular. It is observed in [11] that the principal solution assumption on
h can be replaced by a non-principal solution assumption, i.e.,

∫ m

s
1

ph2 dx = ∞
can be replaced by

∫ m

s
1

ph2 dx < ∞, in which case

D(TF )=

{
u :u ∈ D(τ), u(a) = 0, lim

x→m

|u(x)|
h(x)

=0,

∫ m

s

ph2

∣∣∣∣
(u

h

)′∣∣∣∣
2

dx < ∞
}

.

(1.7)
Our principal tool is the result from the Krein–Vishik–Birman theory,

that there is a one to one correspondence between the set of all positive
self-adjoint extensions of T and the set of all pairs {NB , B}, where NB is a
subspace of ker T ∗, and B is a positive self-adjoint operator in NB ; the Krein–
von Neumann extension corresponds to B = 0 and the Friedrichs extension to
B = ∞,(i.e., B acts (trivially) in a 0-dimensional vector space). The reader is
referred to [9] for a comprehensive treatment, and in particular to section 2 of
[10] in which an account is given of earlier works of the author; the latter are
acknowledged in the addendum [2] to the survey article [1]. If T̃ is a positive
self-adjoint extension of T , then T̃ = TB for some B, where TB is associated
with a form tB [·] which satisfies

tB = tF + b, Q(TB) = Q(TF ) � Q(B) (1.8)
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and b[·] is the form of B; we use the notation Q(A) to denote the form domain
of a positive operator A, i.e., the domain of the associated form a[·]. Thus any
v ∈ Q(TB) can be written v = u + η, where u ∈ Q(TF ) and η ∈ Q(B) � N .
Furthermore

tB [v] = tF [u] + (Bη, η); (1.9)

see [6,8,9] and [1]. The Friedrichs and Krein–von Neumann extensions have
important roles in the application of the theory of symmetric operators. The
Friedrichs extension has an acknowledged natural part to play in quantum
mechanics, while in [10], Grubb describes an intimate connection between the
eigenvalues of the Krein–von Neumann extension of a minimal elliptic differ-
ential operator of even order and those of a higher order problem concerning
the buckling of a clamped plate. An abstract version of the latter connection
is given in [5], establishing the Krein–von Neumann extension as a natural
object in elasticity theory.

The last section of the paper is concerned with the more general problem
of characterising all the coercive m-sectorial extensions of a coercive sectorial
minimal operator T generated by the expression τ with a complex coefficient
q. The same problem is discussed by Arlinskii in [3], Theorem 3.1, where
previously determined abstract results are applied to a general second-order
differential operator on [0,∞) with L∞[0,∞) coefficients. Theorems 2.1 and
2.2 below are analogous results for τ under the minimal conditions assumed
here. In [8], Grubb developed methods of Birman and Vishik to characterise
extensions of adjoint pairs of operators with bounded inverses and applied
the results to elliptic partial differential operators.

An important tool in Kalf’s paper, as well as in this paper, is the Jacobi
factorisation identity

− (pu′)′ +
(ph′)′

h
u = − 1

h

[
ph2

(u

h

)′]′
. (1.10)

2. Self-Adjoint Extensions

2.1. The Limit-Point Case at m

Since a is regular and T ≥ μ > 0, the deficiency index of (T − λ), and
hence the dimension of ker(T ∗ − λ), is constant for all λ ∈ R \ [μ,∞). In
the limit-point case of τu = λu at m it therefore follows, in particular, that
N := ker(T ∗) is of dimension 1, and so, any η ∈ N can be written η = cψ,
where ψ ∈ L2[a,m; k) is real, c ∈ C and τψ = 0. Our main result in the
limit-point case is

Theorem 2.1. Let τ be in the limit point case at m. Then there is a one-one
correspondence between the positive self-adjoint extensions of T and the one-
parameter family of operators {Tl}, 0 ≤ l ≤ ∞, where Tl is the restriction of
T ∗ to the domain

D(Tl) :=
{

v : v ∈ D(T ∗), (pv′)(a) = [p(a)ψ′(a) + l ‖ψ‖2]v(a)
}

. (2.1)
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The operator T0 is the Krein–von Neumann extension and T∞ is the Friedrichs
extension.

Proof. If ψ(a) = 0, then ψ is an eigenfunction at zero of the self-adjoint
extension T0 of T determined by the Dirichlet boundary condition u(a) = 0.
Thus N = ker T0 and D(T ) � N ⊆ D(T0). Since D(T ) � N is the domain
of TN (see [1], Example 3.2.), it follows that T0 = TN . However by [19,
Theorem 5 ], T0 is the Friedrichs extension of T and therefore has no null
space. Consequently ψ(a) = 0 is not possible.

Thus we may assume hereafter that ψ(a) 	= 0 and, without loss of
generality, that

ψ(a) = 1 (2.2)
Consequently, from (1.8), any v = u + η ∈ Q(TB) is uniquely expressible as

v(x) = v(x) − v(a)ψ(x) + v(a)ψ(x)

with

u(x) = v(x) − v(a)ψ(x) ∈ Q(TF )

and

η(x) = v(a)ψ(x) ∈ Q(B).

Also, from (1.9)

tB [v] =
∫ m

a

{ph2

∣∣∣∣
(u

h

)′∣∣∣∣
2

+ qh|u|2}dx + l|v(a)|2 ‖ψ‖2

where qh = q − (ph′)′

h
and b[η] = (Bη, η) = l ‖η‖2 , 0 ≤ l ≤ ∞. Moreover, for

ϕ = θ + ξ = ϕ − ϕ(a)ψ + ϕ(a)ψ ∈ Q(TB), the sesquilinear form identity for
tB[v, ϕ] associated with (1.9) is

tB[v, ϕ] =
∫ m

a

{
ph2

(
v − v(a)ψ

h

)′ (
ϕ − ϕ(a)ψ

h

)′

+ qh(v − v(a)ψ)
(
ϕ − ϕ(a)ψ

)}
dx

+ lv(a)ϕ(a) ‖ψ‖2 ,

=
∫ m

a

{
ph2

( v

h

)′ (ϕ

h

)′
+ qhvϕ

}
dx

−ϕ(a)
∫ m

a

{
ph2

( v

h

)′ (ψ

h

)′
+ qhvψ

}
dx

− v(a)
∫ m

a

{
ph2

(
ψ

h

)′ (
ϕ − ϕ(a)ψ

h

)′

+ qh(ψ)(ϕ − ϕ(a)ψ)
}

dx

+ lv(a)ϕ(a) ‖ψ‖2
=: I1 + I2 + I3 + I4. (2.3)
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By (1.10),

τψ = − 1
h

[
ph2

(
ψ

h

)′]′
+ qhψ = 0.

It follows on integration by parts, and since θ(a) = ϕ(a)−ϕ(a)ψ(a) = 0, that

I2 = −
[
ph2

( v

h

)(
ξ

h

)′]m

a

, ξ = ϕ(a)ψ,

I3 = − v(a)

[
ph2

(
ψ

h

)′ (
ϕ − ϕ(a)ψ

h

)]m

a

= − v(a)

[
ph2

(
ψ

h

)′ (
ϕ − ϕ(a)ψ

h

)]
(m).

For v ∈ D(TB) ⊂ D(T ∗) we have by (1.10)

tB[v, ϕ] = (TBv, ϕ) =
∫ m

a

{(−(pv′)′ + qv)ϕ} dx

=
∫ m

a

{
− 1

h
[ph2

( v

h

)′
]′ + qhv

}
ϕdx

= −
[
ph2

( v

h

)′ (ϕ

h

)]m

a

+ I1. (2.4)

Thus

−
[
ph2

( v

h

)′ (ϕ

h

)]m

a

= −ϕ(a)

[
ph2

( v

h

)(
ψ

h

)′]m

a

− v(a)

[
ph2

(
ψ

h

)′ (
ϕ − ϕ(a)ψ

h

)]
(m)

+ lv(a)ϕ(a) ‖ψ‖2

and

0 = ph2

[( v

h

)′ (ϕ

h

)
−

( v

h

)(
ϕ(a)ψ

h

)′]
(m)

− v(a)

[
ph2

(
ψ

h

)′ (
ϕ − ϕ(a)ψ

h

)]
(m)

− ph2

[( v

h

)′ (ϕ

h

)
−

( v

h

)(
ϕ(a)ψ

h

)′]
(a)

+ lv(a)ϕ(a) ‖ψ‖2 . (2.5)
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The value at m of the right-hand side of (2.5) is

ph2

[{( v

h

)′ (ϕ

h

)
−

( v

h

)(
ϕ

h

)′}
+

( v

h

)(
θ

h

)′
−

(η

h

)′ ( θ

h

)]

= ph2

[{( v

h

)′ (ϕ

h

)
−

( v

h

)(
ϕ

h

)′}

+

{(η

h

)(
θ

h

)′
−

(η

h

)′ ( θ

h

)}
+

(u

h

)(
θ

h

)′]

= p[v′ϕ − vϕ′](m) + p[ηθ
′ − η′θ](m) +

[
ph2

(u

h

)(
θ

h

)′]
(m).

Suppose now that ϕ ∈ (TB). Then the functions v, u, η, ϕ, θ, ξ are members
of D(T ∗) and thus

p[v′ϕ − vϕ′](m) = p[ηθ
′ − η′θ](m) = 0,

since we have assumed the limit-point condition at m; see [7], Theorem
III.10.13 or [15], Section 18.3. Hence the value of the right-hand side of (2.5)
at m is [

ph2

(
θ

h

)′ (u

h

)]
(m).

Since u, θ ∈ D(TF ), we have

(TF θ, u) =
∫ m

a

{
ph2

(
θ

h

)′ (
u

h

)′
+ qhθu

}
dx =: I5.

But as u(a) = θ(a) = 0,

(TF θ, u) =
∫ m

a

{
− 1

h

[
ph2

(
θ

h

)′]′
+ qhθ

}
udx =

[
ph2

(
θ

h

)′ (
u

h

)]
(m) + I5.

Therefore, it follows that[
ph2

(
θ

h

)′ (
u

h

)]
(m) = 0. (2.6)

Hence, we infer from (2.5) that if v ∈ D(TB), then ∀ϕ ∈ D(TB)

ϕ(a)
{

(pv′)(a) − v(a)p(a)ψ′(a) − lv(a) ‖ψ‖2
}

= 0.

If TB is not the Friedrichs extension of T we have from [19] that there ∃ϕ ∈
D(TB) such that ϕ(a) 	= 0. Hence we have that any v ∈ D(TB) satisfies the
boundary condition

(pv′)(a) = [p(a)ψ′(a) + l ‖ψ‖2]v(a). (2.7)

The real constants l parameterise the operators TB : l = 0 corresponds to B =
0 and thus the Krein–von Neumann extension of T , while l = ∞ corresponds
to B = ∞ and hence the Friedrichs extension.
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2.2. The Case of m Regular or Limit Circle, and τu = 0 Non-Oscillatory
at m

Let f, g be the principal and non-principal solutions respectively of τu = 0.
From Remark 3 in [11],

u

g
(m) := lim

x→m

u(x)
g(x)

= 0, ∀u ∈ Q(TF ), (2.8)

and from Corollary 1 in [17]

u

f
(m) := lim

x→m

u(x)
f(x)

exists, ∀u ∈ Q(TF ). (2.9)

We still have that u(a) = 0 for u ∈ Q(TF ), and both

tF [u] =
∫ m

a

⎧⎨
⎩ph2

∣∣∣∣∣
(

u

g

)′∣∣∣∣∣
2

+ qg|u|2
⎫⎬
⎭ dx, (2.10)

where qg = q − (pg′)′

g
> 0, and

tF [u] =
∫ m

a

⎧⎨
⎩ph2

∣∣∣∣∣
(

u

f

)′∣∣∣∣∣
2

+ qf |u|2
⎫⎬
⎭ dx, (2.11)

where qf = q − (pf ′)′

f
> 0, are valid.

We now have dimN = 2, and {f, g} is a fundamental system of solutions
of τu = 0. The self-adjoint operators B act in subspaces NB of N which
therefore may be of dimension 1 or 2. In the case dimNB = 2 of the next
theorem, {ψ1, ψ2} is a real orthonormal basis of NB .

Theorem 2.2. The positive self-adjoint extensions of T which correspond to
operators B in the Krein–Vishik–Birman theory with dimNB = 1 form a
one-parameter family Tβ of restrictions of T ∗ with domains

D(Tβ) :=

{
v ∈ D(T ∗) :

[
pg2

{(
v

g

)(
ψ

g

)′
−

(
v

g

)′ (
ψ

g

)}]m

a

=βv(a)‖ψ‖2
}

,

(2.12)
where ψ is a real basis of NB with ψ(a) = 1.

The self-adjoint extensions corresponding to operators B with dimNB =
2 form a family Tβ, where now β is a matrix (bj,k)j,k=1,2 of parameters, and
the Tβ are restrictions of T ∗ to domains

D(Tβ) :=

{
v ∈ D(T ∗) :

[
pg2

{(
v

g

)(
ψk

g

)′
−

(
v

g

)′ (
ψk

g

)}]m

a

=
2∑

j=1

bk,jcj , k = 1, 2

}
, (2.13)
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where c1 and c2 are determined by the values of v at a and m by,

v

g
(a) =

2∑
j=1

cj
ψj

g
(a)

v

g
(m) =

2∑
j=1

cj
ψj

g
(m). (2.14)

Proof. The case dimNB = 1
Let the real function ψ be a basis of NB , and Bη = β cψ for β ∈ R+

and η = cψ ∈ NB , c ∈ C. Then, ψ = c1f + c2g for some c1, c2 ∈ R, and
limx→m

ψ(x)
g(x) = c2. Suppose that ψ(a) = 1.

Let v, ϕ ∈ Q(TB); then v = u+η, ϕ = θ+ξ, where u, θ ∈ Q(TF ), η, ξ ∈
Q(B) and as

v = v − v(a)ψ + v(a)ψ, ϕ = ϕ − ϕ(a)ψ + ϕ(a)ψ,

we have that

u = v − v(a)ψ, η = v(a)ψ, θ = ϕ − ϕ(a)ψ, ξ = ϕ(a)ψ.

We now have from (1.8) that

tB [v, ϕ] =
∫ m

a

{
pg2

(
u

g

)′ (
θ

g

)′
+ qguθ

}
dx + b(η, ξ). (2.15)

The argument following (2.3) can be repeated, with g replacing h and using
the facts that now

(
u
g

)
(m) =

(
θ
g

)
(m) = 0, as well as u(a) = θ(a) = 0. The

term corresponding to I3 is now zero and the result is that

tB [v, ϕ] =
∫ m

a

{
pg2

(
v

g

)′ (
ϕ

g

)′
+ qgvϕ

}
dx

−ϕ(a)

[
pg2

(
v

g

)(
ψ

g

)′]m

a

+ βv(a)ϕ(a)‖ψ‖2. (2.16)

If v ∈ D(TB), since TB ⊂ T ∗,

tB [v, ϕ] = (TBv, ϕ) =
∫ m

a

(τv)ϕdx

=
∫ m

a

{
−1

g
[pg2

(
v

g

)′
]′ + qgv

}
ϕdx

= −
[
pg2

(
v

g

)′ (
ϕ

g

)]m

a

+
∫ m

a

{
pg2

(
v

g

)′ (
ϕ

g

)′
+ qgvϕ

}
dx

= −
[
pg2

(
v

g

)′ (
ξ

g

)]m

a

+
∫ m

a

{
pg2

(
v

g

)′ (
ϕ

g

)′
+ qgvϕ

}
dx,

(2.17)
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since θ
g (a) = θ

g (m) = 0. We conclude from (2.16) and (2.17) that
[
pg2

{(
v

g

)(
ϕ(a)

ψ

g

)′
−

(
v

g

)′ (
ϕ(a)

ψ

g

)}]m

a

= βv(a)ϕ(a)‖ψ‖2.

Since ϕ(a) = dψ(a) = d for arbitrary d ∈ C, it follows that
[
pg2

{(
v

g

)(
ψ

g

)′
−

(
v

g

)′ (
ψ

g

)}]m

a

= βv(a)‖ψ‖2. (2.18)

The case dim(NB) = 2 Let {ψ1, ψ2} be a real orthonormal basis for N . Then

Bψj =
2∑

k=1

bk,jψk, j = 1, 2,

where

bj,k = bk,j , (Bψj , ψk) = bk,j .

If η =
∑2

j=1 cjψj , ξ =
∑2

j=1 djψj , then

(Bη, ξ) =
2∑

j,k=1

bk,jcjdk, (η, ξ) =
2∑

j=1

cjdj .

Furthermore, for some μjk ∈ R, j, k = 1, 2,

ψj = μj,1f + μj,2g, j = 1, 2, (2.19)

so that
ψj

g
(m) = μj,2, j = 1, 2. (2.20)

From (2.15) and (2.17), we now have
[
pg2

{(
v

g

)(
ξ

g

)′
−

(
v

g

)′ (
ξ

g

)}]m

a

= (Bη, ξ) =
2∑

j,k=1

bk,jcjdk

and so
2∑

k=1

dk

[
pg2

{(
v

g

)(
ψk

g

)′
−

(
v

g

)′ (
ψk

g

)}]m

a

= (Bη, ξ)

=
2∑

j,k=1

bk,jcjdk. (2.21)

Since d1 and d2 are arbitrary, we have
[
pg2

{(
v

g

)(
ψk

g

)′
−

(
v

g

)′ (
ψk

g

)}]m

a

=
2∑

j=1

bk,jcj , k = 1, 2. (2.22)
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In (2.22), c1 and c2 are determined by the values of v at a and m, for
v(a) = η(a) and

(
v
g

)
(m) =

(
η
g

)
(m) by (2.8). To be specific,

v

g
(a) =

2∑
j=1

cj
ψj

g
(a)

v

g
(m) =

2∑
j=1

cj
ψj

g
(m).

(2.23)

Remark. If in the case dimNB = 1 of the preceding theorem ψ = c1f , then
ψ
g (m) = 0 and the boundary condition becomes

(pv′)(a) =
(
β‖ψ‖2) v(a),

with no contribution from m as in the LP case. We could then repeat the
above analysis with g replaced by f to get[

pf2

{(
v

f

)(
ϕ

f

)′
−

(
v

f

)′ (
ϕ

f

)}]m

a

= βv(a)ϕ(a)‖ψ‖2, (2.24)

where ϕ
f (m) = θ

f (m) + c1. The equation (2.24) has to be satisfied for all
θ ∈ Q(TF ).

3. Coercive Sectorial Operators

3.1. m-Sectorial Extensions

Let

τu :=
1
k

{−(pu′)′ + qu} , q = q1 + iq2,

and

τ+u :=
1
k

{−(pu′)′ + qu} , q = q1 − iq2,

on the interval [a,m). Each of the expressions τ and τ+ has a minimal and
maximal operator associated with it, and the notation has to indicate this;
the minimal operators T (τ), T (τ+) will be denoted by T, T+ respectively.
We shall assume that q1 satisfies the minimal conditions 1. and 2. of the
introduction and that

q1,h := q1 − (ph′)′

h
≥ νk, |q2| ≤ (tan α)

{
q1 − (ph′)′

h

}
, (3.1)

for some ν > 0 and α ∈ (0, π/2). The minimal operators T, T+ are then
coercive and sectorial, i.e., the numerical range of T ,

Θ(T ) := {(Tu, u) : u ∈ D(T )}
lies in the sector

Θ(α, ν) := {z = x + iy ∈ C : x ≥ ν > 0, |y| ≤ tan α(x − ν)}
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and the same is true for T+ and its numerical range. The maximal operators
are the adjoints of the minimal operators, and T, T+ form an adjoint pair
in the sense that

T ⊂ (T+)∗; T+ ⊂ T ∗. (3.2)

Furthermore, T, T+ are J-symmetric with respect to the conjugation J : u →
u, i.e.,

JTJ ⊂ T ∗, J(T+)J ⊂ (T+)∗.

We denote by TF and TN the Friedrichs and Krein–von Neumann exten-
sions of T , respectively, and use a similar notation for T+. We recall that the
Friedrichs extension TF of a sectorial operator T is an m-sectorial operator
associated with the closure of the sesquilinear form t[u, v] = (Tu, v), and is
coercive if T is coercive. The form domain is Q(T ) = Q(TF ) = Q(TR

F ), where
TR

F is the real part of T , i.e. the positive self-adjoint operator associated with
the form tR[u, v] := �t[u, v] := 1

2 (t[u, v] + t∗[u, v]) , where t∗[u, v] := t[v, u];
see [12] for details.

In Arlinskii’s construction of the m-sectorial extensions of a coercive
sectorial operator T , the Krein–von Neumann extension TN has an important
role. We refer to [4] for the definition of TN and a comprehensive treatment.
From Theorem 3.6 in [4],

Q(TN ) = Q(T ) � N, N = ker T ∗ (3.3)

and
tN [u, v] = t[Pu, Pv], ∀u, v ∈ Q(TN ), (3.4)

where P is the projection of Q(TN ) onto Q(T ) with respect to the decompo-
sition (3.3). Furthermore

D(TN ) = D(T ) � N ; TN (f + v) = Tf, f ∈ D(T ), v ∈ N. (3.5)

The identities (3.3) - (3.5) also have exact analogues for T+.
From Edmunds/Evans Theorem III.10.7,

2 ≤ def T + def T+ ≤ 4, (3.6)

and since def T and def T+ are equal, being the dimensions of the kernels of
T ∗, (T+)∗ respectively, we have that

1 ≤ dim(ker T ∗) = dim(ker (T+)∗) ≤ 2. (3.7)

3.2. The Case dim(ker T ∗) = 1
Theorem 3.1. Let dim(ker T ∗) = 1 and let ψ ∈ ker T ∗ be such that ψ(a) = 1.
Then the Krein–von Neumann extension of T has domain

D(TN ) := {v : v − v(a)ψ ∈ D(TF ), v′(a) − v(a)ψ′(a) = 0} , (3.8)

and for all v ∈ D(TN ),

TNv = τ (v − v(a)ψ) . (3.9)

Moreover, the form domain of TN is

Q(TN ) = {v : u = v − v(a)ψ ∈ Q(T )} (3.10)
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and

tN [v] = t[u] =
∫ m

a

{
ph2

∣∣∣∣
(u

h

)′∣∣∣∣
2

+ qh|u|2
}

dx, u = v − v(a)ψ. (3.11)

Proof. Any v ∈ Q(TN ) can be written

v = v − v(a)ψ + v(a)ψ.

Hence, since u(a) = 0 for all u ∈ Q(TF ), we have from (3.3) the unique
representation v = u + ξ, where u = v − v(a)ψ, ξ = v(a)ψ. It follows from
(3.4) that

tN [v, ϕ] = tF [u, θ], (3.12)

for all ϕ ∈ Q(TN ), with Pϕ = θ = ϕ − ϕ(a)ψ. Thus

tN [v] = tF [u] =
∫ m

a

{
ph2

∣∣∣∣
(u

h

)′∣∣∣∣
2

+ qh|u|2
}

dx, u = v − v(a)ψ. (3.13)

From (3.5), and since u(a) = (pu′)(a) = 0 for u ∈ D(T ), we have that
v ∈ D(TN ) satisfies the boundary condition

v′(a) − v(a)ψ′(a) = 0, ∀v = v − v(a)ψ + v(a)ψ ∈ D(TN ). (3.14)

Also

TNv = T (v − v(a)ψ) = τ(v − v(a)ψ). (3.15)

We shall now follow Arlinskii’s analysis in [3, Section 3.1], to characterise
all coercive m-sectorial extension of T . Arlinskii considers a more general
second-order differential expression to generate his operator T , but with L∞

coefficients, and not the minimal conditions we impose on ours.
Let X0 denote Q(T ), with norm

‖u‖X1
=

{∫ m

a

ph2|
(u

h

)′
|2 + q1,h|u|2

}1/2

=: tR[u]1/2

and

X1 = {u : u ∈ ACloc(a,m) : ‖u‖X1
< ∞},

with the norm ‖ · ‖X1 .
Arlynskii expresses T in divergence form; this requires T to be put in

the form

T = L∗
2QL1,

where

1. L1, L2 are closed, densely defined operators with domains in H :=
L2(a,m; k) and ranges in H := H ⊕ H;

2. Q is a bounded and coercive operator on H;
3. D(L1) ∩ D(L∗

2QL2) is dense in D(L1).
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In our application,

D(L1) = X0; L1u =
[

u

hp1/2
(

u
h

)′
]

;

D(L2) = X1; L2u =
[

u

hp1/2
(

u
h

)′
]

;

Q =
1
k

[
qh 0
0 1

]

where qh = q − (ph′)′

h . The adjoint operators are given by

D(L∗
1) = H ⊕ X1, D(L∗

2) = H ⊕ X0;

L∗
j

1
k

[
f1
f2

]
= f1 − 1

h

(
hp1/2f2

)′
, for j = 1, 2,

Then

L∗
1Q

∗L2u = qhu − 1
h

[
ph2

(u

h

)′]′
u = τ+u = T ∗u.

Arlinskii’s approach yields the following result; ψ is the solution of τ+ ψ = 0
with ψ(a) = 1.

Theorem 3.2. The formulae

D(T̃ ) = {v ∈ X1 : v − (ψ − 2y)v(a) ∈ D(TF ); [pv′ − p(ψ′ − 2y′)v(a)
−(ψ − 2y)v(a)] (a) = wv(a)},

T̃ v = τ(v − (ψ − 2y)v(a)),

establish a one to one correspondence between all coercive m-sectorial exten-
sions T̃ of T , excepting TF and TN , and the set of all pairs < w, y >, where
w is a complex number with a positive real part, and y ∈ X0 satisfies

max{� [
tR[(2y − ϕ,ϕ)], ϕ ∈ X0}

]
< �w.

The associated closed form is given by

t̃[v] = tR[v − (ψ − 2y)v(a), v] + wv(a)v(a), v ∈ X1.

The Friedrichs and Krein–von Neumann extensions are determined by
the pairs < ∞, 0 > and < 0, 0 > respectively.

3.3. The Case dim(ker T ∗) = 2

Let {ψ1, ψ2} be a basis for ker T ∗ and let ψ =
∑2

j=1 cjψj be such that
ψ(a) = 1. This determines a vector in ker T ∗, and the complex number w
in the open right half plane determines a one- dimensional coercive operator
W (λψ) = λwψ. In general, the parameter w can be a 2×2 sectorial/coercive
matrix (as in Theorem 2.2) which determines a linear operator and in this
case y is a linear operator.
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[16] Rellich, F.: Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ord-
nung. Math. Ann. 122, 343–368 (1951)

[17] Rosenberger, R.: A new characterization of the Friedrichs extension of semi-
bounded Sturm-Liouville operators. J. Lond. Math. Soc. (2) 31(3), 501–
510 (1985)

[18] Vishik, M.: On general boundary conditions for elliptic differential operators.
Trudy Moskov. Mat. Obsc (Russian) (English translation in Am. Math. Soc.
Transl. 24, 107–172), pp. 187–246 (1952)

[19] Yao, S., Sun, J., Zettl, A.: The Sturm–Liouville Friedrichs extension. Appl.
Math. 60(3), 299–320 (2015)

B. M. Brown (B)
Cardiff School of Computer Science and Informatics
Cardiff University
Queen’s Buildings
5 The Parade, Roath
Cardiff CF24 3AA, UK
e-mail: malcolm@cs.cf.ac.uk

W. D. Evans
School of Mathematics, Cardiff University
Senghennydd Road
Cardiff CF24 4AG, UK

Received: April 2, 2016.

Revised: April 7, 2016.


	Selfadjoint and m Sectorial Extensions of Sturm--Liouville Operators
	Abstract
	1. Introduction
	2. Self-Adjoint Extensions
	2.1. The Limit-Point Case at m
	2.2. The Case of m Regular or Limit Circle, and τu=0 Non-Oscillatory at m

	3. Coercive Sectorial Operators
	3.1. m-Sectorial Extensions
	3.2. The Case dim(kerT*) =1
	3.3. The Case dim( kerT*) =2

	Open Access
	References




