
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/89506/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Pepelyshev, Andrey and Polunchenko, Alexey 2017. Real-time financial surveillance via quickest change-
point detection methods. Statistics and Its Interface 10 (1) , pp. 93-106. 10.4310/SII.2017.v10.n1.a9 

Publishers page: http://dx.doi.org/10.4310/SII.2017.v10.n1.a9 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Statistics and Its Interface Volume 0 (2015) 1–14

Real-time financial surveillance via quickest
change-point detection methods

Andrey Pepelyshev and Aleksey S. Polunchenko

We consider the problem of efficient financial surveil-
lance aimed at “on-the-go” detection of structural breaks
(anomalies) in “live”-monitored financial time series. With
the problem approached statistically, viz. as that of multi-
cyclic sequential (quickest) change-point detection, we pro-
pose a semi-parametric multi-cyclic change-point detection
procedure to promptly spot anomalies as they occur in the
time series under surveillance. The proposed procedure is
a derivative of the likelihood ratio-based Shiryaev–Roberts
(SR) procedure; the latter is a quasi-Bayesian surveillance
method known to deliver the fastest (in the multi-cyclic
sense) speed of detection, whatever be the false alarm fre-
quency. We offer a case study where we first carry out, step
by step, a preliminary statistical analysis of a set of real-
world financial data, and then set up and devise(a) the pro-
posed SR-based anomaly-detection procedure and (b) the
celebrated Cumulative Sum (CUSUM) chart to detect struc-
tural breaks in the data. While both procedures performed
well, the proposed SR-derivative, conforming to the intu-
ition, seemed slightly better.

AMS 2000 subject classifications: Primary 62L10,
62L15; secondary 62P05.
Keywords and phrases: CUSUM chart, Financial
surveillance, Sequential analysis, Shiryaev–Roberts proce-
dure, Quickest change-point detection.

1. INTRODUCTION

The world’s history of economic crises, including the lat-
est and still-ongoing global financial meltdown and reces-
sion that started in 2008–2009, provides graphic evidence
of the importance of efficient methods for continuous fi-
nancial surveillance [7, 8]. By allowing to detect anomalous
patters early and reliably, such methods form a foundation
for active risk management [20]. This paper examines the
possibility of approaching the problem of financial moni-
toring statistically. Specifically, the principal idea is to ex-
ploit the machinery of sequential (quickest) change-point
detection. The subject is concerned with the development
and evaluation of “watch dog”-type of procedures for early
yet reliable detection of unanticipated changes (structural
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breaks) that may occur in the statistical profile of a “live”-
monitored time series. For an introduction into the subject,
see, e.g., [44, 59, 1, 36, 55], or [47, Part II], and the references
therein.

One of the first comprehensive expositions of nonpara-
metric change-point detection-based methods for online fi-
nancial surveillance was offered by Brodsky and Dark-
hovsky [2, 3]. More recently, the machinery of Singular Spec-
trum Analysis (SSA) has also been utilized in [10, 23, 58, 11].
In particular, it was demonstrated via numerous case studies
involving intricate real-world data that the SSA-based ver-
sion of Page’s [25] celebrated Cumulative Sum (CUSUM)
“inspection scheme” is able to efficiently detect changes of
rather complicated structure (e.g., in the frequency of a pe-
riodic component of the time series of interest).

However, nearly all of the research on the subject done
to date revolves around only three change-point detec-
tion methods: the Shewhart X̄-chart [40, 41], the CUSUM
“inspection scheme” [25], and the Exponentially Weighted
Moving Average (EWMA) chart [38]. Over the years, the
three have de facto become the detection tools in applied
sequential analysis, especially in quality control. Part of
the reason is the methods’ simplicity, and another part
is their theoretically established strong optimality proper-
ties [24, 37, 29]. By contrast, the focus of this paper is on
the Shiryaev–Roberts (SR) procedure [42, 43, 39, 44]. Al-
though the SR procedure is only slightly “younger” than the
CUSUM and EWMA charts, it has heretofore been largely
neglected by practitioners as well as by statisticians. Con-
sequently, examples of applications of the SR procedure to
real-world data are extremely rare. However, the SR pro-
cedure has been recently discovered [30, 31, 45] to possess
strong optimality properties in Shiryaev’s [42, 43, 44] multi-
cyclic setting, which is a setting adequate in many real-world
applications. Motivated by this, the authors of [35, 52] have
successfully applied the SR procedure in the area of cyber-
security, namely for online detection of anomalies (caused,
e.g., by intrusions) in computer networks. The present paper
is intended to provide yet another example of an SR-type
anomaly-detection algorithm capable of operating on real-
world financial data. Due to the exact multi-cyclic optimal-
ity of the SR procedure, the proposed algorithm is expected
to compare favorably to other detection schemes, in partic-
ular the multi-cyclic CUSUM procedure.

We would like to remark that, to the best of our knowl-
edge, the only other attempt to apply the SR procedure to
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real-world financial data would be that made previously by
Ergashev [6]. Specifically, Ergashev [6] was concerned with
the problem of early detection of the “turning points” in
the US business cycles. These cycles, also known as the US
economic cycles, are alternating periods of recession and re-
covery, manifested in fluctuations of the US economic activ-
ity around its long-term potential level. Hence, the “turn-
ing points” effectively signify the onset of either recession
(contraction) or recovery (expansion) of the US economy.
To detect these “turning points”, Ergashev [6] applied the
SR procedure and the CUSUM and EWMA charts to the
series of Composite Leading Indicators (CLIs); the CLIs
are updated monthly by the Organisation for Economic
Co-operation and Development (OECD; see on the Web
at http://www.oecd.org) to provide early signals of “turn-
ing points” in the US business cycles. Through experiments
involving the actual CLIs series, Ergashev [6] demonstrated
the SR procedure to be better (i.e., quicker) at detecting
the US business cycles’ “turning points” than the CUSUM
and EWMA charts with the same level of the “false positive”
risk. In this work we too provide experimental evidence that
the SR procedure might be superior to the CUSUM chart
when it comes to detecting structural breaks in time series
of real-world stock prices.

The rest of the paper is organized as follows. We start
in Section 2 with a brief introduction to the area of quick-
est change-point detection and provide a short overview of
the state-of-the-art in the field. Next, in Section 3 we of-
fer an SR-based anomaly-detection algorithm suitable to
operate on real-world data. Section 4 is devoted to a case
study where we devise the proposed algorithm to perform
anomaly-detection in a real-world financial time series. The
conclusions follow in Section 5 which sums up the entire
paper.

2. PRELIMINARY BACKGROUND ON
QUICKEST CHANGE-POINT

DETECTION

The aim of this section is two-fold:(a) to provide a short
but formal introduction to the problem of quickest change-
point detection and (b) to give a brief account of the state-
of-the-art in the field. This is necessary as background for
the later sections. For lack of space, we shall only consider
the basic iid version of the quickest change-point detection
problem. For a thorough treatment the general non-iid case,
see, e.g., [44, 49, 34] or [47, Part II].

Suppose one is able to sequentially observe a time series,
{Xn}n≥1, where Xi’s are independent. Suppose further that
the statistical structure of the series is such that X1, . . . , Xν

are each distributed according to a known probability den-
sity function (pdf) f(x), while Xν+1, Xν+2, . . . each have a
pdf g(x) 6≡ f(x), also known. The basic iid quickest change-
point detection problem is to detect, as one gathers more
and more data, that the baseline pdf of the data is no longer

f(x), and do so in an optimal manner. The challenge is that
the time index ν, which is referred to as the change-point,
is not known in advance and may take place at any time
0 ≤ ν ≤ ∞; here and onward, the notation ν = 0 (ν = ∞)
is to be understood as the case when the change is in ef-
fect from the get-go (or never, respectively). The minimax
version of the problem assumes that ν is unknown (but not
random). This is different from the Bayesian version of the
problem which regards ν as random [42, 43, 44]. In this work
we shall focus only on the minimax case.

Statistically, the problem is to sequentially test the hy-
potheses Hk : ν = k, 0 ≤ k < ∞ (i.e., that the pdf of the
observations changes at epoch k) against the alternative hy-
pothesis H∞ : ν =∞ (i.e., that the pdf never changes); note
that Hi ∩Hj = ∅, i 6= j, and that ∪j≥0Hj = Ω.

The first step to test Hk against H∞ is to construct the
corresponding likelihood ratio (LR). To that end, assuming
X1, X2, . . . , Xn have been sampled, the LR is of the form

Λk:n ,
n∏

j=k+1

Λj , where Λj ,
g(Xj)

f(Xj)

for k < n and Λk:n ≡ 1 for k ≥ n; the latter condition merely
means that the change has not yet happened. The sequence
{Λk:n}1≤k≤n has to be updated “on-the-go” incorporating
new data points as they become available.

Once constructed, the LR is turned into a detection statis-
tic to be subsequently used for actual decision-making. Bas-
ing the detection statistic on the LR ensures that the former
is sensitive to whether the sample drawn so far is statisti-
cally homogeneous or not. There are generally two funda-
mentally different ways to utilize the LR to design a “good”
detection statistic: either exploit the maximum likelihood
principle or take the (generalized) Bayesian approach. This
is shown schematically in Figure 1.

STATISTICAL INFERENCE
X1, . . . , Xn

MAXIMUM LIKELIHOOD APPROACH
DECISION STATISTIC OF THE FORM

maxk φk(X1, . . . , Xk)

(GENERALIZED) BAYESIAN APPROACH
DECISION STATISTIC OF THE FORM∑

k φk(X1, . . . , Xk)

Figure 1: Two different approaches to statistical inference:
maximum likelihood and (generalized) Bayesian.

The idea of the maximum likelihood approach is to
sequentially maximize {Λk:n}1≤k≤n with respect to the
change-point ν = k, where k = 1, 2, . . . , n. Specifically, the
corresponding detection statistic is

(1) Vn , max
1≤k≤n

Λk:n, n ≥ 1,

which is the famous CUSUM statistic [25]. We note that
the maximization with respect to k in the right-hand side
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of (1) is possible because the change-point ν = k is assumed
unknown (nonrandom).

By contrast, the Bayesian approach treats the change-
point as a random number, possessing a certain prior dis-
tribution [9, 42, 43, 49, 34]. However, since we agreed to
assume that ν is unknown (nonrandom), the corresponding
quasi-Bayesian (or generalized Bayesian) detection statistic
can be defined as

(2) Rn ,
n∑

k=1

Λk:n, n ≥ 1,

i.e., Rn is effectively the average of {Λk:n}1≤k≤n taken with
respect to the change-point ν = k, 1 ≤ k ≤ n assuming
that it follows an (improper) uniform prior distribution; see,
e.g., [9, 42, 43, 49, 34].

Statistics (1) and (2) are the two main choices in all
of quickest change-point detection. Both lead to efficient
sequential detection procedures. Specifically, a sequential
detection procedure is identified with a stopping time, T ,
which is a functional of the observed data, {Xn}n≥1. The
meaning of T is that after observing X1, . . . , XT it is de-
clared that apparently the change is in effect. This need not
be the case, and if it is not the case, then T ≤ ν and the
detection procedure T is said to have sounded a false alarm.
A “good” (i.e., optimal or nearly optimal) detection proce-
dure is one that minimizes (or nearly minimizes) the desired
detection delay penalty-function, subject to a constraint on
the false alarm risk. For an overview of the major optimality
criteria, see, e.g., [49, 34, 32, 55], or [47, Part II].

Let Pk(·), 0 ≤ k ≤ ∞, denote the probability measure
assuming that ν = k, 0 ≤ k ≤ ∞ (so that P∞(·) corresponds
to the case when ν = ∞). Let Ek[·], 0 ≤ k ≤ ∞, be the
corresponding expectation.

Page [25] and then also Lorden [21] proposed to mea-
sure the “false alarm” risk through the Average Run Length
(ARL) to false alarm ARL(T ) , E∞[T ]. This metric cap-
tures the average number of observations that the procedure
samples before it triggers a false alarm. The higher (lower)
the level of the ARL to false alarm, the lower (higher) the
actual level of the “false alarm” risk.

A practical approach to quantify the detection speed is
to use the “worst-case” (Supremum) Average Delay to De-
tection (ADD), conditional on a false alarm not having been
previously occurred, i.e.,

SADD(T ) , max
0≤k<∞

ADDk(T ),

where ADDk(T ) , Ek[T−k|T > k], 0 ≤ k <∞. This metric
was introduced by Pollak [26].

Let

∆(γ) ,
{
T : ARL(T ) ≥ γ

}
, γ > 1,

i.e., be the class of procedures with the ARL to false alarm
of at least γ > 1, an a priori chosen level. Then Pollak’s [26]

minimax quickest change-point detection problem is to find
Topt ∈ ∆(γ) such that SADD(Topt) = infT∈∆(γ) SADD(T )
for all γ > 1. This problem is still an open one, and al-
though there has been a continuous effort to solve it, the
exact solution has been obtained in only two special cases
(see [33, 51]) and, in general, only asymptotic (as γ → ∞)
solutions have been obtained so far [26, 50].

As was mentioned earlier, Page’s [25] CUSUM chart has
been one of the main tools for change-point detection. Part
of the reason is the fact that the CUSUM chart is strictly
minimax with respect to Lorden’s [21] criterion for every γ >
1; see [24, 37]. The CUSUM chart is based on the maximum
likelihood principle: it iteratively maximizes Ln , log Λn,
i.e., the log-likelihood ratio (LLR), with respect to the
change-point ν, and stops as soon as the running maximum
exceeds a certain threshold. More specifically, the CUSUM
chart is based on the statistic Wn , max{0, log Vn}, where
Vn is as in (1). Note that Wn satisfies the recurrence

(3) Wn , max{0,Wn−1 + Ln}, n ≥ 1, W0 = 0.

The corresponding stopping rule is

(4) Ch , min{n ≥ 1: Wn ≥ h},

where h > 0 is a detection threshold preset so as to achieve
the desired level γ > 1 of the ARL to false alarm, and thus
guarantee Ch ∈ ∆(γ). Since ARL(Ch) ≥ eh for any h > 0
(see [21] for a proof), setting h = hγ ≥ log γ is sufficient to
ensure Ch ∈ ∆(γ). A more accurate approximation (men-
tioned, e.g., in [35]) for ARL(Ch) is as follows:

(5) ARL(Ch) ≈ eh

Igζ2
− h

If
− 1

Igζ
,

where If , −E∞[L1] and Ig , E0[L1] denote the Kullback–
Leibler information numbers (here and throughout the rest
of this section it is to be assumed that 0 < If <∞ and 0 <
Ig <∞). The indices If and Ig that appear in the right-hand
side of (5) are quantitative measures of the “contrastness”
of the change, and play an important role in change-point
detection.

To define ζ, let {Zn}n≥0 be the random walk Zn ,∑n
j=1 Lj , n ≥ 1, with Z0 = 0. For a ≥ 0, introduce the

one-sided stopping time τa , inf{n ≥ 1: Zn ≥ a} and let
κa , Zτa−a denote the overshoot (i.e., the excess of Zn over
the level a at stopping). Then ζ , lima→∞ E0[e−κa ], which
is the limiting exponential overshoot. This model-dependent
constant falls within the scope of nonlinear renewal theory,
and it can be shown that

(6) ζ =
1

Ig
exp

{
−
∞∑

k=1

1

k

[
P∞(Zk > 0) + P0(Zk ≤ 0)

]
}

;

cf., e.g., [57, Chapters 2 & 3] and [46, Chapter VIII].
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Define also κ , lima→∞ E0[κa], which is the limiting
overshoot. By methods of nonlinear renewal theory it can
also be shown that

(7) κ =
E0[Z2

1 ]

2E0[Z1]
+

∞∑

k=1

1

k
E0[min{0, Zk}];

cf., e.g., [57, Chapters 2 & 3] and [46, Chapter VIII]. In
practice, ζ and κ are usually computed numerically using (6)
and (7), respectively.

It can be shown (see, e.g., [46]) that for the basic iid
change-point problem SADD(Ch) ≡ E0[Ch]. Let h = hγ ,
where hγ is the solution of the equation ARL(Chγ ) = γ.
Then

(8) SADD(Chγ ) =
1

Ig
(hγ + κ + β0) + o(1) as γ →∞,

where β0 , E0[minn≥0 Zn]. This property of the CUSUM
chart is known as second order asymptotic SADD(T )-
optimality. Expansion (8) was first obtained in [4] for the
single-parameter exponential family. However, it holds in a
more general case as well, as long as certain mild conditions
imposed on L1 are satisfied. See [48], where it is also shown
that

(9) lim
k→∞

ADDk(Chγ ) =
1

Ig
(hγ +κ−β∞)+o(1) as γ →∞,

where β∞ , limn→∞ E∞[Zn − min0≤k≤n Zk]. In practice,
constants β0 and β∞ are also usually computed numerically
(e.g., by Monte Carlo simulations). We also note that the
two asymptotics (8) and (9) are inversely proportional to
the Kullback-Leibler information number Ig. This number
is sensitive to how faint or contrast the change is. Specifi-
cally, Ig is small for faint changes, and is large otherwise.
Therefore, according to (8) and (9), the average delay to
detection turns out to be large for faint changes and small
otherwise, which makes perfect sense.

Consider now a context in which it is of utmost impor-
tance to detect the change as quickly as possible, even at
the expense of raising many false alarms (using a repeated
application of the same stopping rule) before the change oc-
curs. Put otherwise, in exchange for the assurance that the
change will be detected with maximal speed, we agree to go
through a “storm” of false alarms along the way (the false
alarms are ensued from repeatedly applying the same detec-
tion rule, starting from scratch after each false alarm). This
scenario is shown in Figure 2.

Formally, let T1, T2, . . . be sequential independent repeti-
tions of the stopping time T , and let Tj , T1 +T2 + · · ·+Tj ,

j ≥ 1, be the time of the j-th alarm. Define Iν , min{j ≥
1: Tj > ν}. In other words, TIν is the time of detection of a
true change that occurs at ν after Iν − 1 false alarms have
been raised. Write

STADD(T ) , lim
ν→∞

Eν [TIν − ν]

for the limiting value of the average delay to detection
referred to as the Stationary Average Delay to Detection
(STADD). The multi-cyclic change-point detection prob-
lem is to find Topt ∈ ∆(γ) such that STADD(Topt) =
infT∈∆(γ) STADD(T ) for every γ > 1. Since in this setup
ARL(T ) is effectively the average distance between succes-
sive false alarms, the reciprocal 1/ARL(T ) can be inter-
preted as the frequency of false alarms. The “intrinsic as-
sumption” of the multi-cyclic change-point detection prob-
lem is that the process under surveillance is not expected to
be affected by change “for a while”, i.e., the change-point,
ν, is large. This is a reasonable assumption, e.g., in the area
of computer network anomaly detection (see, e.g., [35, 52])
and in financial surveillance.

As has been shown in [30, 31, 45], the Shiryaev–Roberts
(SR) procedure [42, 43, 39] is exactly optimal for every
γ > 1 with respect to the stationary average detection delay
STADD(T ). Thus, in the multi-cyclic setting the SR proce-
dure is a better alternative to the popular CUSUM chart.

The SR rule calls for stopping at epoch

(10) SA , min{n ≥ 1: Rn ≥ A},

where the SR statistic {Rn}n≥0 is given by the recursion

(11) Rn = (1 +Rn−1) Λn, n ≥ 1, R0 = 0;

cf. [42, 43] and [39]; here A > 0 is a detection threshold set
a priori so as to ensure SA ∈ ∆(γ) for a desired γ > 1. It can
be easily shown [27] that ARL(SA) ≥ A for all A > 0. Hence,
setting Aγ = γ is sufficient to guarantee SA ∈ ∆(γ). A more
accurate asymptotic approximation is ARL(SA) ≈ A/ζ, as
A→∞; see [27].

Let R∞ be a random variable that has the P∞-limiting
(stationary) distribution of Rn as n → ∞, i.e., QST(x) ,
limn→∞ P∞(Rn ≤ x) = P∞(R∞ ≤ x). Let U ,

∑∞
k=1 e

−Zk

and Q̃(x) , P0(U ≤ x).
A straightforward argument shows that, for the SR pro-

cedure considered under the basic iid change-point setup, if
A = Aγ is the solution of the equation ARL(SAγ ) = γ, then
SADD(SAγ ) ≡ E0[SAγ ], and

(12) SADD(SAγ ) =
1

Ig
(logAγ +κ−C0)+o(1) as γ →∞,

where

C0 , E[log(1 + U)] =

∫ ∞

0

log(1 + x) dQ̃(x);

cf. [50]. The asymptotic expansion (12) shows that the SR
procedure is also asymptotically second-order SADD(T )-
minimax. In general, constant C0 and distribution Q̃(x)
are amenable to numerical treatment. For cases where both
can be computed analytically and in a closed form see [50]
and [34].
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Figure 2: Multi-cyclic change-point detection in a stationary regime.

For the multi-cyclic setting we have

STADD(SAγ ) =
1

Ig
(logAγ + κ − C∞) + o(1) as γ →∞,

where

C∞ , E[log(1 +R∞ + U)]

=

∫ ∞

0

∫ ∞

0

log(1 + x+ y) dQST(x) dQ̃(y);

cf. [50].

We conclude this section with a remark that the exact

multi-cyclic optimality property of the SR procedure (11)–

(10) depends heavily on the assumption that the pre- and

post-change densities f(x) and g(x) are fully known. The

consequences of setting up the SR procedure to detect the

“wrong” change have been recently made clear in [5] where,

apparently for the first time in the literature, it was demon-

strated experimentally that, if ignored altogether, paramet-

ric uncertainty in g(x) may severely affect the STADD de-

livered by the SR procedure: the relative loss in performance

can be on the order of hundreds of percent.

3. APPLICATION TO FINANCIAL
SURVEILLANCE

Since anomalous events in financial series happen at un-
known points in time, and entail changes in the series’ statis-
tical properties, it is intuitively appealing to devise a quick-
est change-point detection method to detect the onset of
such changes as rapidly as possible, while maintaining the
false alarm risk at a tolerable level. This section is intended
to show how quickest change-point detection can be applied
to detect anomalies in “live” streams of financial data.

The main difficulty in applying either the CUSUM
chart (3)–(4) or the SR procedure (11)–(10) to real-world
data is that the pre- and post-anomaly distributions of the
data are poorly understood, if known at all. As a result, any
LR-based approach is effectively rendered useless. Hence, a
nonparametric approach might be in order. To that end, let
us first analyze how the LR exploited by both the CUSUM
chart (3)–(4) and the SR procedure (11)–(10) allows the two
procedures to sense the presence of a change. To that end,
consider the behavior of Ln , log Λn prior to the change
and under the change. Before the change, the LLR has
a negative expectation, i.e., E∞[Ln] < 0. This causes the
CUSUM statistic to gravitate toward zero in the pre-change
regime, and causes the SR statistic to grow slower than it

Financial surveillance via change-point detection methods 5



would if the process had already undergone a change. How-
ever, as soon as Xν+1—the first “anomalous” data point—
is recorded, the expectation of the LLR switches its sign
to positive, i.e., Eν [Ln] > 0, 0 ≤ ν < n. As a result, the
CUSUM statistic starts to drift away from zero up toward
the detection threshold, and the SR statistic’s claim rate
increases compared to what it would be had there been no
change. This difference in the behavior of each one of the two
statistics under the pre-change regime and under the post-
change regime is the main reason why the CUSUM chart
and the SR procedure are able to sense the presence of a
change in the observations to begin with.

The above suggests that when it is impossible to con-
struct a LR, the latter can be replaced with a computable
score function Sn , Sn(X1, . . . , Xn) such that E∞[Sn] < 0
for all n ≥ 1 and Eν [Sn] > 0 for all 0 ≤ ν < n with n ≥ 1.
This is the key element of the nonparametric approach, and
in the context of quickest change-point detection this idea
has been previously suggested and explored, e.g., by McDon-
ald [22], Lai [18], Gordon and Pollak [12, 13], and recently
also by Pollak [28]. A thorough exposition of the nonpara-
metric approach to change-point detection has been offered
by Brodsky and Darkhovsky [2, 3].

To be more specific, McDonald [22] suggested to base
surveillance on the series of sequential ranks Un ,∑n
k=1 1l{Xk<Xn} where 1l{·} denotes the indicator function.

The corresponding score function can be taken to be of
the form Sn = Un − C, where C > 0 is a design param-
eter selected according to the expected type of change and
the desired level of the ARL to false alarm. That is, Mc-
Donald’s [22] version of the CUSUM chart (3)–(4) signals
an alarm according to the stopping time C∗h = min{n ≥
1: W ∗n ≥ h}, where W ∗n = max{0,W ∗n−1 + Sn}, n ≥ 1,
and h ≥ 0 is the detection threshold. If the observations
{Xn}n≥1 are all iid, then the sequential ranks Un are ap-
proximately uniform, whatever be the observations’ com-
mon baseline distribution. However, if effective the ν-th data
point, Xν , the baseline distribution switches to a stochasti-
cally larger distribution, the sequential ranks become larger
causing the rank-based CUSUM chart to trigger an alarm.
This idea of McDonald [22] was then extended to the SR
procedure by Gordon and Pollak [12, 13] and by Pollak [28].

More generally, for any appropriately designed score func-
tion Sn, the original SR statistic {Rn}n≥0 given by (11) can
be replaced with

(13) R̃n = (1 + R̃n−1)eSn , n ≥ 1, R̃0 = 0,

so that the corresponding SR stopping time is the form

(14) S̃A , min{n ≥ 1: R̃n ≥ A},

where A > 0 is the detection threshold. Likewise, for
the CUSUM chart, the original CUSUM statistic {Wn}n≥0

given by (3) can be replaced with

(15) W̃n = max{0, W̃n−1 + Sn}, n ≥ 1, W̃n = 0,

so that the corresponding CUSUM stopping time becomes

(16) C̃h , min{n ≥ 1: W̃n ≥ h},

where h > 0 is again the detection threshold.
In order for the score-function-based SR procedure (13)–

(14) and CUSUM chart (15)–(16) to work well, the score
function Sn , Sn(X1, . . . , Xn) has to be carefully de-
signed, incorporating the type of change expected. To il-
lustrate this point, suppose we are interested in detect-
ing a change in both the mean and variance of the ob-
servations. Let µ∞ , E∞[Xn] and σ2

∞ , Var∞[Xn], and
µ , E0[Xn] and σ2 , Var0[Xn] denote the pre- and post-
anomaly mean values and variances, respectively. Introduce
X̃n , (Xn − µ∞)/σ∞, i.e., the centered and standardized
n-th data point. In real-world applications the pre-change
parameters µ∞ and σ2

∞ can usually be estimated in advance
(e.g., using training data) and then periodically re-estimated
to account for the nonstationary nature of the data. To deal
with the uncertainty in µ and σ2, consider the following
linear-quadratic score function

(17) Sn(X̃n) = C1X̃n + C2X̃
2
n − C3,

where C1, C2 and C3 are design parameters; cf. [52]. Se-
lecting C1, C2 and C3 to be positive would make this score
function sensitive to increases in the mean and variance. In
the case when the variance either does not change at all
or changes relatively insignificantly compared to the magni-
tude of the change in the mean, the coefficient C2 may be
set equal to zero. This appears to be typical for many cyber-
security applications [53, 54, 52]. In the opposite case when
the mean changes only slightly compared to the variance,
one may take C1 = 0.

Note that the score function Sn given by (17) with

(18) C1 = δq2, C2 =
1− q2

2
, C3 =

δ2q2

2
− log q,

where q = σ∞/σ, δ = (µ − µ∞)/σ∞, is optimal if the pre-
and post-change distributions are Gaussian with known µ
and σ2. This is true because the score function Sn given
by (17) is then simply nothing but the LLR. If one has reason
to believe that the time series of interest can be accurately
described by the Gaussian model, then selecting q = q0 and
δ = δ0 with some design values q0 and δ0 would lead to
decent performance of the procedure for q < q0 and δ > δ0
and optimal (i.e., best) performance for q = q0 and δ = δ0.
However, it is important to emphasize that the proposed
score-based “tweak” of SR procedure does not require the
observations to be Gaussian, whether pre- or post-change.

For examples of score-functions that exploit SSA, see,
e.g., [10, 23, 58, 11].

Another way to deal with parametric uncertainty in the
observations’ post-change distribution is to employ the gen-
eralized likelihood ratio (GLR) approach. However, the ob-
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vious problem with this approach is that the recursive eval-
uation of the running LR—either as in (1) or as in (11)—
might get computationally too difficult to carry out, be-
cause now the LR has to be also maximized with respect
to the unknown parameter. As a way around this, Will-
sky and Jones [56] and then also Lai [18, 19] suggested to
restrict attention to a certain limited number of the most
recent observations, and, based on that idea, introduced the
appropriate “window-limited” modification of the CUSUM
chart. The main question here, however, is how to choose the
size of the window, i.e., the optimal number of the most re-
cent observations to take into account. On the one hand,
if that number is too large, the corresponding “window-
limited” CUSUM statistic might still be too computation-
ally demanding. On the other hand, basing the decision on
too small a number of the latest observations is likely to lead
to an increase in the detection delay. To optimize the trade-
off between the computational tractability and the speed of
detection, Lai [18, 19] showed that the “best” strategy is to
factor in the latest Mγ observations with Mγ being of the
order O(log γ/Ig) where γ > 1 is the desired level of the

ARL to false alarm and Ig , E0[L1] is the Kullback–Leibler
information number.

4. A CASE STUDY

We now consider a case study where we employ the pro-
posed change-point detection methodology to “sniff out”
structural breaks in a real-world financial time series. Specif-
ically, our intent is two-fold: to first provide the steps neces-
sary to configure our change-point detection procedures and
then, once the latter are properly set up, to also demonstrate
and discuss their performance.

4.1 Data description

The time series we would like to study is the daily stock
prices (at closing) of Host Hotel & Resorts, Inc. (see on
the Web at www.hosthotels.com) for the period from Jan-
uary 3, 2000 through March 30, 2007. Host Hotel & Resorts,
Inc. is the largest American lodging and real estate invest-
ment trust (or REIT) headquartered in Bethesda, Mary-
land, USA. An S&P 500 and Fortune 500 company, Host
Hotel & Resorts, Inc. is also one of the biggest owners of
luxury and upper-upscale hotels. Its hotels are operated un-
der such reputable brand names as Marriott, Ritz–Carlton,
Four Seasons, Hyatt and Hilton. Its stock is traded on the
New York Stock Exchange (NYSE) under the ticker HST.
Our interest in the company is due to its leading position
in the industry and the significant size of its assets: as of
December 31, 2014, its reported total assets were over $ 12
billion (with liabilities and debt totaling to about $ 4.6 bil-
lion) [17, p. 88].

Historical data for the HST stock for any period since the
stock began trading on the NYSE are freely available on the
Internet (e.g., via Yahoo.Finance; see www.finance.yahoo.

com). We used the Machine Learning Data Set Repository
(see on the Web at www.mldata.org). The total length of
the series is N = 1812 data points. The choice to focus on
the period between January 3, 2000 and March 30, 2007 was
because the company’s history was very eventful during that
time period: the tragic events that took place in New York
City on September 11, 2001, and the decade-long global eco-
nomic unrest that followed caused considerable turbulence
in the company’s financial well-being. As a result, one would
expect the HST stock statistical dynamics within the cho-
sen time frame to experience multiple changes. This makes
change-point analysis of the data both interesting and chal-
lenging.

4.2 Preliminary statistical analysis

To perform basic statistical analysis of the data, the nat-
ural point of departure would be to graph the data against
time. This is done in Figure 3. A mere eye examination of
the plot suggests several observations.
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Figure 3: Daily stock prices (at closing) for the Host & Hotel
Resorts, Inc. (NYSE: HST) for the period from January 3,
2003 through March 30, 2007.

First note that, as expected, the series appears to be rife
with structural breaks of various scale and type. The follow-
ing three are particularly notable: one occurring toward the
end of the third quarter of the year 2001, followed by one
more occurring around the end of the first quarter of the
year 2002, followed by yet another one occurring in 2003,
around the end of the first quarter.

The first of these break-points, viz. the one occurring in
2001, appears to be a crash-type event, as at that point
the stock price essentially plummets, from being about
$ 13/share right before the break to being roughly $ 7/share
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shortly after the break. The reason for such a huge loss in
value is not hard to figure out: it was the result of the 9/11
terrorist attacks on the World Trade Center (WTC) Tow-
ers in New York City. Specifically, in addition to destroying
the Towers, the attacks also destroyed the New York World
Trade Center Marriott hotel owned and operated by Host
Hotel & Resorts, Inc. To boot, the company also sustained
considerable damage to its second property located nearby,
the New York Marriott Financial Center hotel. However,
by the end of 2001, the company received the property and
business interruption insurance for the two hotels [14], and
the stock began to claim up.

The second of the above three major break points,
namely, the 2002 one, also appears to be a negative event
in the Company’s history. According to the company’s 2002
annual report [15], the company’s revenue for the year was
negatively affected by the overall weakness of the US and
global economies, which in particular resulted in business
and leisure travel dropping below historic level in 2002.

The third break-point (the one occurring around the first
quarter of the year 2003) appears to be a “turning point” for
the company, because following this break-point, the stock
begins to exhibit a consistent upward trend that lasts for
years. The specific date of this “turning point” is March
14, 2003. According the company’s 2003 annual report [16],
2003 was indeed a year of recovery for the company: they
collected additional insurance on the hotels that were de-
stroyed during the 9/11 attacks in 2001, sold hotels that
had been found to be inefficient, and used the proceeds to
substantially lessen the corporate debt.

Another observation that can be made from Figure 3 is
that the HST stock appears to have a seasonal component.
This should not come as a surprise, since for the hotel in-
dustry seasonal effects are common and, in fact, natural.
However, dealing with such effects statistically is somewhat
orthogonal to the objective of our study. Nevertheless, we
would like to mention that the numerous and extensive case
studies offered, e.g., in [10, 23, 11], suggest that the SSA
methodology can be rather efficient in the analysis of sea-
sonal and cyclic patterns.

To reinforce the observations made so far, Figure 4 shows
the behavior of the daily returns di , Xi+1 − Xi, i =
1, . . . , N − 1, on the HST stock. The returns provide a dif-
ferent prospective onto the behavior of the stock itself. As
a matter of fact, it is the returns that are usually used as
the input data to perform statistical inference on the under-
lying stock itself. Therefore, we also shall proceed with the
returns being the series of interest.

One can clearly see a large down-pointing spike around
the third quarter of the year 2001. This spike corresponds
to the HST stock loosing approximately half of its value
as the result of the 9/11 terrorist attacks in NYC. While
this spike is extremely contrast, there is no apparent change
in the daily return distribution corresponding to the 2003
structural break. Nevertheless, as we shall see shortly, the
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Figure 4: Daily returns on the stock (evaluated at closing) of
the Host & Hotel Resorts, Inc. (NYSE: HST) for the period
from January 3, 2003 through March 30, 2007.

2003 break-point is detectable. More importantly, in spite
of the steady growth of the stock after the 2003 break-point
shown in Figure 3, the behavior of the return series does not
confirm any shift in the mean.

4.3 Offline structural break detection

We now perform a more thorough statistical analysis
of the data. Specifically, we would like to devise a sta-
tistical procedure to detect the aforementioned structural
breaks. Toward this goal, the first step is to analyze the
series retrospectively so as to not only detect the changes,
but also to estimate their locations. One such “offline”
change-point detection-estimation statistic is the Brodsky–
Darkhovsky statistic proposed and studied in [2, 3]. The
Brodsky–Darkhovsky statistic is defined as

(19) YN (n) ,

√
n(N − n)

N2

[
1

n

n∑

i=1

Xi −
1

N − n
N∑

i=n+1

Xi

]
,

where 1 ≤ n ≤ N − 1. As can be seen from the structure
of the statistic, it is effectively the difference between two
sample means: one computed off the first n ≥ 1 data points
(i.e., X1, . . . , Xn), and one computed off the remaining N−n
data points (i.e., Xn+1, . . . , XN ) in a chunk of N ≥ n + 1
observations X1, . . . , XN . Therefore the statistic (19) is tai-
lored specifically to detect deviations in the observations’
mean. The actual detection procedure consists in compar-
ing |YN (n)| indexed by n = 1, . . . , N − 1 against a thresh-
old selected according to the desired significance level. More
importantly, the statistic can also be used to estimate the
actual change-point, ν, i.e., the time moment at which the

8 A. Pepelyshev and A.S. Polunchenko



series’ baseline mean (apparently) changes. Specifically, this
is accomplished by first identifying the set of values of n for
which |YN (n)| is maximized, and then using any such n as
an estimator of the actual change-point, that is,

(20) ν̂N , arg max
1≤n≤N−1

|YN (n)| .

It has been shown in [2] that such an estimator enjoys strong
consistency (as N → ∞) with exponential rate of conver-
gence.

We have applied the Brodsky–Darkhovsky approach to
the returns {di}1≤i≤N , and the obtained behavior of YN (n)
for 1 ≤ n ≤ N − 1 is shown in Figure 5. It can be seen from
the figure that the statistic exhibits a whole series of local yet
fairly contrast maxima. The unique and rather strong ab-
solute maximum occurring around the first quarter of 2003
reinforces the observation made earlier that the HST stock
undergoes a structural break at that time. The specific lo-
cation of the absolute maximum corresponds to March 14,
2003, which is the Brodsky–Darkhovsky estimate of the ac-
tual change-point. We note that this date is precisely the
2003 break-point.
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Figure 5: Behavior of the Brodsky–Darkhovsky statistic for
the HST stock series.

To continue our analysis of the Brodsky–Darkhovsky
statistic shown in Figure 5, the spike occurring in the sec-
ond half of 2001 can be attributed to the 2001 HST stock
crash caused by the 9/11 attacks in NYC. The specific value
of the Brodsky–Darkhovsky estimate of this change-point is
September 18, 2001, which is within the same week of the
9/11 attacks. This estimate can be refined using the follow-
ing strategy. Once the absolute maximum of the Brodsky–
Darkhovsky statistic is identified, the series is partitioned

into two nonoverlapping segments: one composed of the ob-
servations up to the change-point and one consisting of the
observations following the change-point. Then the Brodsky–
Darkhovsky detection-estimation method is applied again
individually to each of the two data chunks. It is argued
in [2, 3] that this “divide and conquer” type of an approach
also yields a strongly consistent (as the sample size gets in-
finitely large) estimator of the change-point.

We now follow this strategy and analyze each piece of
data separately. To that end, for the data segment to the left
of the 2003 break-point the sample mean and standard devi-
ation are µ̂∞ ≈ −0.0029 and σ̂∞ ≈ 0.2266, respectively. The
same sample characteristics for data segment to the right of
the 2003 break-point turned out to be µ̂0 ≈ 0.0199 and
σ̂0 ≈ 0.2306. Therefore, the 2003 break-point changes not
only the mean but also the variance. However, the change
in the mean is far more contrast than the change in the
variance. This could be part of the reason for the excellent
performance of the Brodsky–Darkhovsky statistic (19).

Figures 6 show the empirical probability densities (his-
tograms) for the returns before (see Figure 6a) and after
(see Figure 6b) the 2003 event. Each of the two figures is
also accompanied with a Gaussian fit with the mean and
variance set to the respective estimated values. Since the
two histograms are close to the Gaussian fits, there is only
one conclusion to draw: the returns do behave as if they
were generated by a Gaussian process.

The same conclusion can be drawn from an eye inspection
of the corresponding Q-Q plots (quantile-quantile) shown in
Figure 7. Specifically, the Q-Q plot for the distribution of
the daily returns before the onset of the drift is shown in
Figure 7a and the Q-Q plot for the distribution with the
drift in effect is shown in Figure 7b. Since both plots use
centered and scaled data, the fitted Gaussian distribution is
the standard normal distribution. The fact that both plots
are effectively a straight line is evidence of the “Gaussian-
ness” of the return distribution before and after the drift.

Another important question to be examined about the
time series at hand concerns the series’ correlation structure.
To that end, Figure 8 shows the correlation plot for the HST
stock daily return series. Specifically, the plot distinguishes
whether the data are before the 2003 event or after the 2003,
and shows the autocorrelation function for the former piece
in black and for the latter one in gray. It is clear from the plot
that the data are essentially random throughout the entire
set, as they exhibit no strong structure or correlation.

To reinforce the “no-correlation” conclusion arrived at
from Figure 8, Figure 9 provides a selection of lag plots for
the data, for lags equal to 1, 2, 3, 11, and 13. According
to Figure 8, these are the lags at which the data correlation
function may be considered statistically significant (with the
level of significance being 95 %). To clear this out, the scat-
ter plots shown in Figures 9 are to offer additional insight
into the correlation structure of the time series under con-
sideration. As in Figure 8 above, in Figure 9 the data are
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(b) Lag-2 plot.
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(c) Lag-3 plot.
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(d) Lag-11 plot.
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(e) Lag-13 plot.

Figure 9: Lag plots (scatter plots) for the HST stock returns.

also split into two categories—before the 2003 event and
after—and the two categories are distinguished using black
color for the first category (before the 2003 event) and gray
for the second one (after the 2003 event). The lack of any
apparent patters in any of the five lag plots is an indication
that the HST stock daily return series exhibits no temporal
correlation.

4.4 Online structural break detection

We are now in a position to devise the change-point de-
tection methodology of Section 3 to detect changes in the
statistical pattern of the HST returns. To assess the perfor-
mance of our detection methods, we will measure the de-
tection delay relative to the change-point estimated by the
Brodsky–Darkhovsky estimator (20) above. Recall that we
are interested in comparing two score-based change-point
detection procedures: the CUSUM chart given by (15)–(16)
and the Shiryaev–Roberts (SR) procedure given by (13)–
(14). Selecting the score function as in (17)–(18) for either
procedure, we have implemented both detection methods
in MATLAB, the well-known scientific computing platform
developed by MathWorks, Inc. (see on the Web at http:

//www.mathworks.com). Since the above analysis of the
data resulted in the conclusion that the data do follow a

Gaussian model (before as well as after the change), to set
up the detection threshold of the CUSUM chart and the SR
procedure we assumed the Gaussian model with the param-
eters chosen as estimated in the above analysis. Via a simple
Monte Carlo experiment we estimated that setting A ≈ 60
and h ≈ 0.3 ensures that the ARL to false alarm of either
procedure is approximately 7 samples, which is roughly a
week, since the timescale is working days.

The detection process is illustrated in Figure 10. Specifi-
cally, Figure 10a shows the behavior of the SR statistic in a
short time window covering March 13, 2003, i.e., the date at
which the HST stock underwent the change we would like to
detect. Such a “zoomed-in” scale is to better illustrate the
dynamics of the detection statistic around the change-point.
Figure 10b shows the same but for the CUSUM statistic. We
see that both procedures successfully detect the onset of the
drift (occurring on March 13, 2003), and the detection de-
lays are about one day each.

To draw a line under this section, we would like to re-
mark that the dynamics of the CUSUM statistic is gener-
ally more informative than the dynamics of the SR statis-
tic; compare, e.g., Figure 10b showing the CUSUM statis-
tic and Figure 10a showing the corresponding SR statistic.
Specifically, a mere eye examination of the behavior of the
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(a) Before the 2003 event.
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(b) After the 2003 event.

Figure 6: Empirical probability densities for the HST stock
returns with Gaussian fits.

CUSUM statistic as a function of time allows not only to
see whether the change has occurred or not, but to also
estimate the time of its occurrence, i.e., the change-point:
it is likely to be somewhere between the time instance the
CUSUM statistic last hit zero and the point at which the
statistic hit (or went above) the detection threshold (i.e.,
the point of alarm). Indeed, on the one hand, the change-
point is unlikely to be past the point of alarm. On the other
hand, as we discussed in the previous section, the CUSUM
statistic is effectively a random walk with the “instanta-
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(a) Before the 2003 event.
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(b) After the 2003 event.

Figure 7: Q-Q plots for the HST stock return distribution
vs. the standard Gaussian distribution.

neous” LLRs being the increments. Since the LLRs are, on
average, negative if no change is in effect, and positive oth-
erwise, the drift of the random walk the CUSUM chart uses
for its decision-making is negative before the change and
positive after. As a result, the CUSUM statistic effectively
estimates zero in the pre-change regime, because zero is its
reflection barrier: every time the CUSUM statistic hits zero
it resets itself completely “forgetting” everything it had pre-
viously “learned” about the data. This equips the CUSUM
chart with a built-in resetting mechanism: if after a suffi-
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Figure 8: Autocorrelation function for the HST stock re-
turns.

ciently long period of surveillance the data have given no
indication of a change, the CUSUM statistic will likely reset
itself (by hitting zero), i.e., it will discard the entire history
of observations made up to that point and start completely
anew. Hence, the change-point is unlikely to be to the left of
the latest point at which the CUSUM statistic visited zero.
This intrinsic self-restarting feature is the main reason for
the exact minimax optimality (in the sense of Lorden [21])
of the CUSUM chart established in [24, 37]. By contrast,
the SR statistic when plotted against time does not offer
this kind of convenience of interpretation, for the SR pro-
cedure’s decision-making mechanism uses entirely different
principles. Nevertheless, the SR procedure is exactly multi-
cyclic optimal, and the CUSUM chart is not. Therefore,
when it comes to monitoring processes that are unlikely to
undergo a structural break for a long period of time, so that
change-point detection has to be performed in cycles, basing
surveillance on the SR procedure might be a better option
than going with the CUSUM chart.

5. CONCLUSION

We considered the problem of rapid but reliable anomaly
detection in “live” financial data. We treated the problem
statistically, viz. as that of quickest change-point detection,
and proposed an anomaly-detection method that derives
from the multi-cyclic (repeated) Shiryaev–Roberts (SR) de-
tection procedure. We decided to go with this largely ne-
glected near-coeval of the celebrated CUSUM and EWMA
charts because of the strong multi-cyclic optimality proper-
ties that the SR procedure was recently discovered to have
under the basic iid change-point detection setup; no such
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Figure 10: Detection of the 2003 anomaly in the HST stock
by the SR and CUSUM procedures.

properties are exhibited by either the “good old” CUSUM
“inspection scheme” or the EWMA chart. To handle real-
world financial data, the proposed SR-derivative utilizes the
information contained in the data in the SR-like Bayesian
manner with the likelihood ratio replaced with a change-
sensitive score function. This simple idea allowed the pro-
posed procedure to preserve the low computational com-
plexity of its prototype—the original SR procedure. More
importantly, we carried out a case study where the proposed
procedure was devised to detect an anomaly in a real-world
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financial time series, and the obtained experimental results
indicated that our procedure may have also preserved the
great “false alarm risk”-vs.-“detection speed” capabilities of
the original SR procedure.
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