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Abstract— The task of Simultaneous Localization and Map-
ping (SLAM) is regularly performed in network spaces con-
sisting of a set of corridors connecting locations in the space.
Empirical research has demonstrated that such spaces generally
exhibit common structural properties relating to aspects such
as corridor length. Consequently there exists potential to
improve performance through the placement of priors over
these properties. In this work we propose an appearance-based
SLAM method which explicitly models the space as a network
and in turn uses this model as a platform to place priors
over its structure. Relative to existing works, which implicitly
assume a network space and place priors over its structure, this
approach allows a more formal placement of priors. In order to
achieve robustness, the proposed method is implemented within
a multi-hypothesis tracking framework. Results achieved on two
publicly available datasets demonstrate the proposed method
outperforms a current state-of-the-art appearance-based SLAM
method.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is a
problem in the field of robotics which concerns modelling,
or mapping, the geometry of the space within which a robot
is located, while simultaneously localizing within this model
[1]. SLAM methods can broadly be considered as belonging
to two categories commonly referred to as appearance-based
and metric SLAM methods which are distinguished by the
types of properties they model. Appearance-based SLAM
methods model the set of discrete locations in a space and
the existence of paths between these locations [2]. On the
other hand, metric SLAM methods (specifically a pose-graph
formulation [3]) model the set of discrete locations in a
space, the existence of paths between these locations and the
metric transformations between all locations. As alluded to,
both categories of methods are not distinct and in fact metric
SLAM methods commonly use appearance-based methods as
a front-end which proposes loop-closures.

SLAM is regularly performed in network spaces consisting
of a set of corridors connecting locations in space. Such
spaces include street networks and building interiors. A
number of empirical studies have demonstrated that such
networks generally exhibit common structural properties [4],
[5]. For example, corridors are generally not of small length.
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Also, it is uncommon to have more than four corridors
meeting at a single point. Consequently, when it is known a
priori that SLAM is being performed in a network space,
priors may be placed on the properties of the space. In
this work we propose an appearance-based SLAM method
which explicitly models the space as a network which in turn
allows a formal placement of priors. Specifically, the space is
modelled as a graph G = (V,E) where V is a set of vertices
modelling points where corridors meet and E is a set of
edges modelling corridors connecting adjacent vertices. Each
edge is in turn modelled as a sequence of interior points, or
poses, where the number interior points represents the length
of the edge. We place a prior over the space of graphs such
that those graphs of lesser complexity are assigned a higher
relative probability. The complexity of a graph is quantified
in terms of the number of vertices and edges of small
length it contains. This prior represents an implementation
of Occam’s razor [6]. Inference with respect to this model
is performed using recursive Bayesian estimation. In order
to achieve robustness, this is implemented within a multi-
hypothesis tracking framework.

This approach represents a formalization of existing
appearance-based SLAM methods which implicitly assume
a network space and place priors over its structure [7], [8].
These methods assume that valid loop-closures occur in
sequences which is in fact a consequence of one’s trajectory
being constrained to visit the same sequence of locations
when it retraverses a network corridor. The advantage of
the proposed formalization is that it allows the placement
of specific priors in a formal way.

The layout of this paper is as follows. Section II reviews
related work. Section III describes in detail the proposed
network model of space. Section IV describes the recursive
Bayesian estimation formulation used. Section V describes
the multi-hypothesis tracking framework implemented. Fi-
nally in sections VI and VII we present results and draw
conclusions respectively.

II. RELATED WORK

Given the vast literature in the SLAM domain, in this
section we only consider those SLAM methods which are
appearance-based, place priors over the structure of the space
or perform multi-hypothesis tracking. A number appearance-
based SLAM methods determine loop closures using solely
appearance information [2], [8]. It has been demonstrated
that augmenting appearance information with metric infor-
mation can improve performance. In [9], [7] the authors
augment appearance information with local geometric infor-
mation relating to the spatial configuration of features. In



[10], [11] the authors augment appearance information with
metric robot pose information.

The placement of priors over the structure of a space when
performing SLAM has recently been considered by a number
of authors. Salas-Moreno et al. [12] proposed a method for
performing SLAM in man-made spaces by placing a prior
over the fact that such spaces contain many planes. In this
work we propose a SLAM method for network spaces and
place priors over the structure of this space. A number of
existing SLAM methods implicitly assume a network space
and place priors over its structure. These methods assume
that valid loop-closures occur in sequences or groups which
is in fact a consequence of one’s trajectory being constrained
to visit the same sequence of locations when it retraverses
a network corridor. We now consider these works. Latif et
al. [13] proposed a metric SLAM method called Realizing,
Reversing, Recovering (RRR) where sequences of loop-
closers are proposed and subsequently accepted or rejected
depending on whether they are consistent or inconsistent
with odometry measurements respectively. Galvez-Lopez and
Tardos [7] proposed an appearance-based SLAM method
which contains a verification step that rejects loop-closures
if they do not occur in a sequence. Milford [8] proposed an
appearance-based SLAM method which uses dynamic time
warping to find sequences of loop closures. Finally it is worth
noting that the appearance-based SLAM method of FabMap
by Cummins and Newman [2] does explicitly assume that
valid loop-closures occur in sequences. However it does
incorporates a weak motion prior such that the likelihood
of matching to adjacent locations is slightly higher. These
methods are constrained by the fact that they do not allow
the formal placement of specific priors.

Multi-hypothesis tracking has previously been used by
SLAM methods in order to achieve robustness [14] [15].
However the authors believe it has yet to be considered in
the context of appearance-based SLAM.

III. NETWORK AND LOCATION MODELS

Existing appearance-based SLAM methods model the
space as a graph where the set of vertices model points
in space and the set of edges model the existence of paths
between adjacent vertices. Within this model one’s location
is modeled as corresponding to an individual vertex. Toward
illustrating this model, consider the environment represented
in Figure 1(a) which contains an upper, a middle and a
lower corridor where a and b indicate where the individual
corridors meet. Now consider the case where one begins at a,
traverses the middle path to b, then traverses the lower path to
a, then traverses the middle path to b and finally traverses the
upper path to a. If we assume the ability to detect the events
of encountering previously visited and unvisited vertices, the
estimated set of vertices and edges would correspond to that
illustrated in Figure 1(b). Appearance information is stored
for each vertex and this allows the events of encountering
previously visited and unvisited vertices to be detected.

In this work we model the space as a graph G = (V,E).
The set of vertices V = {v1, . . . , vn} model the points
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Fig. 1. An environment containing three corridors represented by lines
is illustrated in (a). Corresponding traditional and proposed graph models
of this environment are illustrated in (b) and (c) respectively where circles,
lines and x’s represent vertices, edges and edge interior points respectively.

where corridors meet. The set of edges E = {e1, . . . , em}
model corridors connecting adjacent vertices. Each ei ∈ E
is in turn modeled as a sequence of interior points ei =
{ei1, . . . , eik} where the order corresponds to that in which the
points are encountered as one traverses the edge in a given
direction. One’s location L is modeled as corresponding to
an individual edge interior point; that is L = eij for some i
and j. Toward illustrating this model consider again the space
represented in Figure 1(a) and the same trajectory through
this space described above. If we assume the ability to
robustly detect the events of encountering previously visited
and unvisited edge interior points, the estimated graph would
correspond to that illustrated in Figure 1(c). For each point
eij appearance information is stored and denoted A(eij); see
section IV-C for specific details regarding how appearance
is modelled. We do not perform inference with respect to
the connectivity between individual corridors; upon exiting
any corridor the probability of entering all corridors is equal.
Consequently, we do not explicitly model this connectivity
and instead model the graph as a set of edges.

Consider a hypothesis at time t − 1 and corresponding
hypothesis extension at time t denoted (Gt−1, Lt−1) and
(Gt, Lt) respectively. The location Lt−1 in Gt is denoted
T

Gt−1

Gt
(Lt−1). To illustrate this term consider the sample hy-

pothesis (Gt−1, Lt−1) and corresponding extension (Gt, Lt)
illustrated in Figure 2(a) and 2(b) respectively. The extension
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Fig. 2. A hypothesis (Gt−1, Lt−1) and corresponding extension (Gt, Lt)
are illustrated in (a) and (b) respectively.

in question corresponds to the splitting of the single edge
in Gt−1 into two edges, the addition of a new vertex to
Gt−1 and the assignment of Lt. In this case TGt−1

Gt
(Lt−1)

corresponds to that location illustrated in Figure 2(b).

IV. RECURSIVE BAYESIAN ESTIMATION

Let (Gi−1, Li−1) and (Gi, Li) denote a hypothesis at time
i − 1 and a corresponding extension of this hypothesis at
time i respectively. We make the Markov assumption that the
probability of (Gi, Li) given (Gi−1, Li−1) is conditionally
independent of (Gi−j , Li−j) for j > 1. Let Zi be a
sensor appearance measurement at time i which will be
described in section IV-C. We assume that Zi is dependent
only upon (Gi, Li). Based on these assumptions the joint
distribution over (Gi, Li) given Zi for i from time 0 to
the current time t can be factored as Equation 1. In this
work we are interested in estimating only (Gi, Li). We
therefore factor Equation 1 as the recursive estimation of
the joint distribution over Gt and Lt of Equation 2. This
factorization contains the following four terms: a data term
P (Zt|Gt, Lt, Gt−1, Lt−1), a graph term P (Gt|Gt−1, Lt−1),
a location term P (Lt|Gt, Gt−1, Lt−1) and a prior term
P (Gt−1, Lt−1). For a given hypothesis H , the product of
the corresponding graph, location and data terms equals the
hypothesis likelihood and is denoted L(H). The following
three subsections describe the estimation of each of these
terms.

P (G0, L0, . . . , Gt, Lt|Z0, . . . , Zt) =

P (G0, L0)

t∏
i=1

P (Zi|Gi, Li)P (Gi, Li|Gi−1, Li−1) =

P (G0, L0)

t∏
i=1

P (Zi|Gi, Li)P (Li|Gi, Gi−1, Li−1)

P (Gi|Gi−1, Li−1) (1)

P (Gt, Lt|Zt, Gt−1, Lt−1) = P (Zt|Gt, Lt)

P (Lt|Gt, Gt−1, Lt−1)P (Gt|Gt−1, Lt−1)P (Gt−1, Lt−1)
(2)

A. Graph Term

In this section we describe how the graph term
P (Gt|Gt−1, Lt−1) is evaluated. This term models the prob-
ability that the graph Gt−1 was transformed into Gt. It is

designed such that a greater relative probability is assigned
to those graphs Gt which represent a lesser increase in com-
plexity relative to Gt−1. This represents an implementation
of Occam’s razor. The graph term is defined in Equation 3
to be the probability of the graph Gt = (Vt, Et) which is in
turn factored to be a product of the probability of Vt and Et

which we now describe.

P (Gt|Gt−1, Lt−1) = P (Gt) = P (Vt)P (Et) (3)

The probability distribution P (Vt) is defined in Equation
4 where pv is a specified model parameter in the range
[0, 1) and α is a normalization constant corresponding to an
infinite geometric series that may be computed easily [16].
This distribution assigns a higher relative probability to those
graphs G with fewer vertices. Choosing a specific pv value
has the effect of placing a specific prior over the degree to
which the number of vertices measures the complexity of the
graph in question.

P (Vt) = αp|Vt|
v ∼ p|Vt|

v (4)

The probability distribution P (Et) is defined in Equation
5 where pe is a specified model parameter in the range [0, 1)
and β is a normalization constant. Computing the normal-
ization constant in this case is intractable. For a given edge
e the value 1−p|e|l approaches 1 as |e| approaches ∞ where
the rate of convergence is a function of pe. This distribution
assigns a higher relative probability to those graphs G with
fewer edges containing a small number of points and in turn
corresponds to a model of lesser complexity. Choosing a
specific pe value has the effect of placing a specific prior
over the degree to which the number of edges of small length
measures the complexity of the graph in question.

P (Et) = β
∏
e∈Et

1− p|e|e ∼
∏
e∈Et

1− p|e|e (5)

In this work our goal is to compute the most probable
graph Gt and not its actually probability. Therefore it is only
necessary to specify the probability distribution P (Gt) up to
a constant term. This is achieved in Equation 6 by combining
Equations 3, 4 and 5.

P (Gt) ∼
(
p|Vt|
v

)(∏
e∈Et

1− p|e|e

)
(6)

Evaluating the graph term P (Gt|Gt−1, Lt−1) up to a
constant using Equation 6 has two potential issues. Firstly,
as a consequence of the fact that it is an unnormalized
probability value, the evaluation of Equation 6 will approach
zero as the number of graph vertices or edges approaches
infinity. This will in turn result in arithmetic underflow.
Secondly, since the set of vertices and edges within a graph
will not change significantly from one time step to the
next, the evaluation of Equation 6 will result in repeated
computation.

In order to overcome these issues the following solution is
implemented. Firstly, at each time t we normalize the set of



hypotheses being tracked such that the sum of their posterior
probabilities, P (Gt, Lt|Zt, Gt−1, Lt−1), is 1. Secondly, we
evaluate the graph term P (Gt|Gt−1, Lt−1) up to a constant
using Equation 7 where ∆V and ∆E are the set of vertices
and edges respectively added to Gt−1 to obtain Gt. We now
describe how the terms P (∆Vt) and P (∆Et), which we refer
to as the delta vertex and delta edge terms respectively, are
evaluated.

P (Gt|Gt−1, Lt−1) ∼ P (∆Vt)P (∆Et)P (Gt−1) (7)

1) Delta Vertex:
The term P (∆Vt) is computed using Equation 8 where
pv is the parameter specified in section IV-A. The form
of this equation is a consequence of the fact that within
our environment model vertices may only be added but not
removed at each time step.

P (∆Vt) = p|∆Vt|
v (8)

2) Delta Edge:
The term P (∆Et) is computed using Equation 9 where
the term P (e) specifies the probability that the edge e was
added. If e is an entirely new edge then P (e) is evaluated
using Equation 10. If e is a new edge resulting from an
existing edge being split into two distinct edges then P (e)
is computed using Equation 11 where s corresponds to the
edge being split. The factor of 2 in the denominator is a
consequence of the fact that we can make the assumption
that within a given time step a single edge will only ever be
split into two distinct edges.

P (∆Et) =
∏

e∈∆Et

P (e) (9)

P (e) = 1− p|e|e (10)

P (e) =
1− p|e|e

(1− p|s|e )/2
(11)

To illustrate the Delta Edge term consider Figure 2(a)
which displays a graph containing a single edge which we
entitle e1. Now consider the situation where e1 is split into
two edges as displayed in Figure 2(b) which we entitle e2

and e3. In this case ∆Et = {e2, e3} and s = e1.

B. Location Term

In this section we describe how the location term
P (Lt|Gt, Gt−1, Lt−1) is evaluated. This term models the
probability that one traversed a path from T

Gt−1

Gt
(Lt−1) to Lt

in Gt. There are an infinite number of possible paths between
these locations each having a different probability. In order
to avoid the problem of attempting to evaluate the probability
of all such paths, we use a simple proposal distribution
which proposes the single path satisfying the following three
assumptions. Firstly we assume that each edge in Gt is
always traversed in the same direction. This assumption
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Fig. 3. The direction corresponding to each edge is represented by a
dashed arrow. A path from T

Gt−1

Gt
(Lt−1) to Lt is returned by the proposal

distribution.

is justified by the fact that a monocular camera sensor
is assumed and therefore a corridor traversed in opposite
directions will appear visually distinct. In turn each traversal
direction will be represented by a distinct edge in Gt which
is always traversed in the same direction. Consequently each
edge can be considered to have a head and tail. Secondly, we
assume that when traversing from T

Gt−1

Gt
(Lt−1) to Lt one

always takes the shortest path where the length of a path
is defined below. Finally we assume that when exiting one
edge there is no restriction regarding which edges may be
subsequently entered. To illustrate this proposal distribution
consider the hypothesis (Gt, Lt), where the direction that
each edge may be traversed is indicated by a dashed arrow,
and the location T

Gt−1

Gt
(Lt−1) of Figure 3. The graph Gt

contains an upper, a middle and a lower edge. The proposed
path corresponds to traversing the end of the upper edge
followed by traversing the start of the middle edge.

Given the proposed path from T
Gt−1

Gt
(Lt−1) to Lt in Gt,

we next compute the probability of this path. Toward this
goal, we define a step as moving from one point in a graph G
to a neighboring point, and the length of a path as the number
of steps it contains. Let TGt−1

Gt
(Lt−1) = eab and Lt = ecd;

see section III for definitions of these terms. The length of
the proposed path from T

Gt−1

Gt
(Lt−1) to Lt in Gt, denoted

l
(
T

Gt−1

Gt
(Lt−1), Lt

)
, is evaluated using Equation 12. For

example the length of the proposed path corresponding to
Figure 3 is 3.

l
(
T

Gt−1

Gt
(Lt−1), Lt

)
= |ea|+ d (12)

The probability distribution P (Lt|Gt, Gt−1, Lt−1) is de-
fined in Equation 13 where pl is a specified model parameter
and δ is a normalization constant corresponding to an infinite
geometric series that may be computed easily. In this work
our goal is to compute the most probable location Lt and
not its actual probability. Therefore we only evaluate the
probability distribution up to a constant term. The form of



this distribution is motivated by the fact that we assume the
camera sensor is moving at close to uniform velocity and
therefore the closer the length of a path is to 1 the higher
the relative probability it will be assigned.

P (Lt|Gt, Gt−1, Lt−1) = δp
l
(
T

Gt−1
Gt

(Lt−1),Lt

)
−1

l

∼ p
l
(
T

Gt−1
Gt

(Lt−1),Lt

)
−1

l (13)

C. Data Term

In this section we describe the evaluation of the data term
P (Zt|Gt, Lt) where Zt is the appearance at time t. Let eij
be the value of Lt and A(eij) the corresponding appearance.
This term models the probability that Zt is similar to A(eij).
It is evaluated using two distinct approaches depending on
whether Lt is a previously visited or unvisited location. We
now describe how each of these cases is evaluated.

1) Previously visited location:
We quantify Zt and A(eij) using a 64-dimensional SURF
feature based Bag-of-words representation [7]. We weigh
words using tf-idf and measure the similarity between two
bag of words using the L1-score. Let s be the L1-score
between Zt and A(eij). The data term is evaluated using
Equation 14 which maps the score to a probability using a
sigmoid function. The variables α and β are both parameters.
This sigmoid function is commonly used by the machine
learning community to map scores to probabilities [17].

P (Zt|Gt, Lt) =
1

1 + exp(αs+ β)
(14)

2) Previously unvisited location:
Let Ht be the set of hypotheses at t as described in
section III. This set can be partitioned into two sets Hv

t and
Hu

t where the corresponding Lt is a previously visited or
unvisited location respectively. We evaluate the data term
for a previously unvisited location using Equation 15. The
motivation for this expression is the fact that in the case
of a previously unvisited location the corresponding set of
hypotheses in Hv

t will have a low likelihood.

P (Zt|Gt, Lt) = max
H∈Hv

t

(1− L(H)) (15)

V. MULTI-HYPOTHESIS TRACKING

In order to achieve robustness to noise a multi-hypothesis
tracking framework was implemented. Toward illustrating
how robustness is achieved consider again the environment in
Figure 1(a) and the case where one begins at a, traverses the
middle path to b, then traverses the lower path to a followed
by the middle path to b. Assuming correct inference, the
hypothesis with largest posterior probability at this time will
correspond to that hypothesis illustrated in Figure 4(a). Now
consider the case where one begins to traverse the upper
path to a in Figure 1(a). The correct hypothesis in this
case corresponds to that illustrated in Figure 4(b). However
due to the fact that this hypothesis contains an additional
vertex and a short edge relative to the hypothesis of Figure
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Fig. 4. The hypothesis in (a) is extended in (b) and subsequently extended
further in (c).

4(a) it will have a corresponding low likelihood and in
turn low posterior probability. Only when the corridor in
question has been traversed further will an extension of this
hypothesis, such as that illustrated in Figure 4(c), have a high
corresponding posterior probability. This has the effect of
achieving robust inference because the posterior probability
of particular hypothesis will not become large unless it is
supported by multiple observations. At each time step the
set of hypotheses being tracked is pruned keeping only those
w hypotheses with the greatest posterior probability. The ith
hypothesis at time t is denoted (Gi

t, L
i
t).

Consider a hypothesis (Gi
t−1, L

i
t−1) and a sensor appear-

ance measurement Zt. Determining the hypothesis (Gj
t , L

j
t )

given (Gi
t−1, L

i
t−1) and Zt with greatest posterior prob-

ability, as defined by Equation 2, represents a difficult
combinatorial optimization problem; the search space is that
of all possible graphs and locations within these graphs. In
order to overcome this challenge a proposal distribution is
used which, using simple heuristics, proposes a small subset
of all potential hypothesis. Although there is no guarantee
that this set contains a hypothesis with maximum or close
to maximum posterior probability, empirical results suggest
that it generally does. The proposal distribution contains two
steps which we describe in the following subsections.

A. Location Proposal

First a set of locations, denoted PL = {L0
t , . . . L

m
t }, is

proposed which correspond to the most probable locations in
Gi

t−1 at time t given (Gi
t−1, L

i
t−1) and Zt. This set contains

those locations in Gi
t−1 where the corresponding appearance

information A(.), as described in section III, is most similar
to Zt. To allow fast querying an inverse index is used [7].
The set PL also contains those locations adjacent to Li

t−1 and



a location corresponding to a previously unvisited location.

B. Graph Proposal

Next for each element Lj
t in PL a corresponding set

of graphs, denoted PG = {G0
t , . . . G

r
t}, is proposed. This

set will contain the following four subsets if the graphs
in question can be realized. We refer to Li

t−1 and Lj
t

as previously unvisited locations if they were previously
unvisited locations at times t− 1 and t respectively.
1) If Li

t−1 and Lj
t are both previously visited locations:

- The graph Gi
t−1.

- Gi
t−1 following the introduction of a single new vertex

immediately after Li
t−1. This has the effect of adding a

new vertex and replacing an existing edge with two shorter
edges. This case is illustrated in Figure 5.
- Gi

t−1 following the introduction of a vertex immediately
before Lj

t . This has the effect of adding a new vertex and
replacing an existing edge with two shorter ones.
- Gi

t−1 following the introduction of a vertex immediately
after Li

t−1 and a vertex immediately before Lj
t . This has

the effect of adding two new vertices and replacing each
of the edges in question with two shorter ones.

2) If Li
t−1 and Lj

t are previously visited and unvisited
locations respectively:

- Gi
t−1 following the introduction of a new vertex im-

mediately after Li
t−1 where this vertex is at the tail of

new edge containing Lj
t . This has the effect of adding a

new vertex, replacing an existing edge with two shorter
ones and adding a new edge of length one. This case is
illustrated in Figure 6.
- Gi

t−1 following the introduction of new edge containing
Lj
t . This has the effect of adding a new edge of length

one.
3) If Li

t−1 and Lj
t are previously unvisited and visited

locations respectively:
- Gi

t−1 following the introduction of a new vertex immedi-
ately before Lj

t . This has the effect of adding an additional
vertex to the graph and replacing an existing edge with two
shorter ones.
- Gi

t−1 following the introduction of a new vertex immedi-
ately after Li

t−1. This has the effect of adding an additional
vertex to the graph.

4) If Li
t−1 and Lj

t are both previously unvisited locations:
- Gi

t−1 following the insertion of Lj
t immediately after

Li
t−1. This has the effect of replacing an existing edge

with a longer one.
After completion of the above location and graph proposal

steps the set of proposed hypotheses is created by pairing
each element Gl

t in each of the sets PG with T
Gi

t−1

Gl
t

(Lj
t ).

VI. EVALUATION

In this section we present an evaluation of the proposed
appearance-based SLAM method. This evaluation is per-
formed with respect to the following dimensions. Section
VI-A describes the datasets used within the evaluation.
Section VI-B presents a quantitative performance evaluation
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Fig. 5. The graph in (a) contains two edges and four vertices which are
labelled a, b, c and d. In (b) the vertex e has been added immediately after
Li
t−1 and splits the edge (a, b) into two shorter edges.
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Fig. 6. The graph in (a) contains one edge and two vertices which are
labelled a and b. In (b) the vertex c has been added immediately after Li

t−1;
this vertex is also at the tail of new edge containing Lj

t .

of the proposed method relative to an existing state-of-the-
art method. Finally, section VI-C presents an analysis of the
proposed method in terms of execution time and number of
hypothesis simultaneously tracked.

A. Datasets

In order to perform an evaluation of the proposed
appearance-based SLAM method the New College dataset
[18] and City Centre Dataset [2] were used. Each of these
datasets was captured in a network space and therefore
fulfils the assumption of such a space made by the proposed
method. We now describe each of these datasets in turn.

The New College dataset contains a sequence of stereo
images sampled at 20 Hz while the robot in question
traverses a path of 2.2km. In this work we only consider
the right stereo images following their conversion to grey-
scale. This sequence was down-sampled by keeping only
every 20th image to give an effective sampling rate of 1
Hz. A subset of this sequence of images, necessary for
construction of a dictionary for use in a visual bag-of-words
representation, was selected as follows. We down-sampled
the original sequence keeping every 20th image using an
offset of 10 frames relative to the down-sampling described
above. Finally, we selected 25% of these images at random.

The City Centre dataset contains a sequence of images
captured using a camera mounted on a pan-tilt which collects
images to the left and right of the robot. An image is captured
every 1.5m travelled, which is determined using odometry,
for a distance of 2.0km. In this work we only consider the left



images following their conversion to a grey-scale. A subset
of this sequence of images, necessary for construction of a
dictionary, was selected by choosing one third of the images
at random.

The performance of an appearance-based SLAM method
is generally quantified in terms of precision and recall with
respect to loop-closure detection. In order to compute these
metrics a corresponding ground truth dataset was constructed
for each dataset as follows. For a given sequence of images,
for every fifth image in that sequence we determined a set
containing all intervals in the sequence which corresponded
to valid loop-closures.

B. Comparison to DBoW

In this section we present an evaluation of the proposed
appearance-based SLAM method relative to the state-of-the-
art method of DBoW [7]. Within this method individual loop
closures are detected using a visual bag-of-word followed
by a geometric verification. As discussed in section II, this
method implicitly assumes a network space by rejecting
loop-closures if they do not occur in a sequence.

DBoW has the following parameters: α which is a thresh-
old on visual similarly used to determine whether or not a
loop closure has occurred and k which represents the length
of a sequence of loop closures which must occur in order for
the final loop closure in the sequence to be considered valid.
In our evaluation we assigned k a value 3 as recommended
by the original authors. The parameter α was varied in order
to generate precision-recall curves.

The proposed appearance-based SLAM method has the
following parameters: pv (defined in Equation 4), pe (defined
in Equation 5), pl (defined in Equation 13), α and β (defined
in Equation 14) and w (the number of hypothesis tracked
as defined in section V). These parameters were optimized
using cross validation and the parameter β was subsequently
varied in order to generate precision-recall curves.

Both the proposed appearance-based SLAM method and
DBoW require the provision of a dictionary for use in
a visual bag-of-words representation. For each dataset a
corresponding dictionary containing 100, 000 words was
constructed using the corresponding sets of images described
in section VI-A. The same dictionary was used for both the
proposed method and DBoW. This represents an important
point because, as a consequence, relative performance is a
function of solely the inference methods in question.

Figures 7 and 8 display the precision-recall curves for the
New College and City Centre datasets respectively. The max-
imum recall with 100% precision achieved by the proposed
method and DBoW on the New College dataset was 86%
and 67% respectively. Toward illustrating this high recall
achieved by the proposed method, consider Figures 9(a)
and 9(b) which display the corresponding visual odometry
and visual odometry overlaid with detected loop closures
respectively. It is evident from these figures that the proposed
method detected loops closure with high recall. The maxi-
mum recall with 100% precision achieved by the proposed
method and DBoW on the City Centre dataset was 93%

Fig. 7. Precision/Recall curves for the New College dataset.

Fig. 8. Precision/Recall curves for the City Centre dataset.

and 56% respectively. In summary, the proposed appearance-
based SLAM method significantly outperforms the method
of DBoW on both datasets considered.

C. Execution Time and Number of Hypothesis

In this section we examine the relationship existing be-
tween w (the number of hypothesis tracked), the performance
in terms of precision and recall, and execution time. The
proposed method was implemented in C++ and runs on a
single CPU core. All experiments were performed using a
laptop containing an Intel Core i7 2.70GHz processor. For
different values of w, Table I displays the corresponding
execution time and maximum recall achieved for 100%
precision on the New College dataset. A maximum recall
is achieved when w is assigned a value of 20; no increase in
recall is achieved through the assignment of a larger value.
A significantly lower recall is achieved when w is assigned a
value of 1; this result justifies the use of a multi-hypothesis
tracking framework. In Table I execution time in expressed
in terms of mean frequency per second, or Hz, over the entire
dataset. It is evident that w and Hz are inversely related.

TABLE I
NUMBER OF HYP. w VS. MAX RECALL FOR 100 % PRECISION AND HZ.

w 1 5 10 15 20 25
Recall 0.24 0.43 0.54 0.71 0.86 0.86
Hz 8.0 3.1 1.3 0.7 0.4 0.3



(a)

(b)

Fig. 9. Visual odometry and visual odometry with detected loop closures
represented by red lines are displayed in (a) and (b) respectively. The high
density of red lines indicates a high recall.

VII. CONCLUSIONS AND FUTURE WORK

SLAM is regularly performed in network spaces where
priors may potentially be placed over the structure of the
space. In this work we propose an appearance-based SLAM
method which explicitly models the space as a network and
uses this model as a platform for the placement of such pri-
ors. Specifically, we place a prior over the space of networks
such that those networks of lesser complexity are assigned a
higher probability. Relative to some existing SLAM meth-
ods, which implicitly assume a network space and place
priors over its structure, this approach allows a more formal
placement of priors. This method is implemented within a
multi-hypothesis tracking framework. Results achieved on
two publicly available datasets demonstrate that the proposed
method achieves high precision and recall with respect to
loop closure detection and in turn outperforms a current state-
of-the-art appearance-based SLAM method.

Despite these achievements there exists much potential for
future expansion and improvement of the current method.
One of the major disadvantages of using a multi-hypothesis

tracking framework is that it increases execution time. How-
ever since distinct hypothesis are independent, this issue
could be addressed through the use of a parallel computing
paradigm as opposed to the serial computing paradigm which
is currently used.

In this work we place a prior over the complexity of the
network structure. There exists potential for the placement
of priors over other aspects. For example, in most network
spaces it is uncommon for more than four edges to meet
at a single point. This fact could be exploited through the
placement of an appropriate prior.
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