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Abstract

The dissemination of Electronic Health Record (EHR) data, beyond the originat-

ing healthcare institutions, can enable large-scale, low-cost medical studies that

have the potential to improve public health. Thus, funding bodies, such as the

National Institutes of Health (NIH) in the U.S., encourage or require the dissem-

ination of EHR data, and a growing number of innovative medical investigations

are being performed using such data. However, simply disseminating EHR data,

after removing identifying information, may risk privacy, as patients can still be

linked with their record, based on diagnosis codes. This paper proposes the first

approach that prevents this type of data linkage using disassociation, an opera-

tion that transforms records by splitting them into carefully selected subsets. Our

approach preserves privacy with significantly lower data utility loss than exist-

ing methods and does not require data owners to specify diagnosis codes that may

lead to identity disclosure, as these methods do. Consequently, it can be employed

when data need to be shared broadly and be used in studies, beyond the intended
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ones. Through extensive experiments using EHR data, we demonstrate that our

method can construct data that are highly useful for supporting various types of

clinical case count studies and general medical analysis tasks.

Keywords: privacy, electronic health records, disassociation, diagnosis codes

1. Introduction

Healthcare data are increasingly collected in various forms, including Elec-

tronic Health Records (EHR), medical imaging databases, disease registries, and

clinical trials. Disseminating these data has the potential of offering better health-

care quality at lower costs, while improving public health. For instance, large

amounts of healthcare data are becoming publicly accessible at no cost, through

open data platforms [4], in an attempt to promote accountability, entrepreneur-

ship, and economic growth ($100 billion are estimated to be generated annually

across the US health-care system [11]). At the same time, sharing EHR data can

greatly reduce research costs (e.g., there is no need for recruiting patients) and al-

low large-scale, complex medical studies. Thus, the National Institutes of Health

(NIH) calls for increasing the reuse of EHR data [7], and several medical analytic

tasks, ranging from building predictive data mining models [8] to genomic studies

[14], are being performed using such data.

Sharing EHR data is highly beneficial but must be performed in a way that

preserves patient and institutional privacy. In fact, there are several data sharing

policies and regulations that govern the sharing of patient-specific data, such as

the HIPAA privacy rule [46], in the U.S., the Anonymization Code [6], in the

U.K., and the Data Protection Directive [3], in the European Union. In addi-

tion, funding bodies emphasize the need for privacy-preserving healthcare data
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sharing. For instance, the NIH requires data involved in all NIH-funded Genome-

Wide Association Studies (GWAS) to be deposited into a biorepository, for broad

dissemination [44], while safeguarding privacy [1]. Alarmingly, however, a large

number of privacy breaches, related to healthcare data, still occur. For example,

627 privacy breaches, which affect more than 500 and up to 4.9M individuals

each, are reported from 2010 to July 2013 by the U.S. Department of Health &

Human Services [15].

One of the main privacy threats when sharing EHR data is identity disclosure

(also referred to as re-identification), which involves the association of an identi-

fied patient with their record in the published data. Identity disclosure may occur

even when data are de-identified (i.e., they are devoid of identifying information).

This is because publicly available datasets, such as voter registration lists, contain

identifying information and can be linked to published datasets, based on poten-

tially identifying information, such as demographics [51], diagnosis codes [33],

and lab results [9]. The focus of our work is on diagnosis codes, because: (i) they

pose a high level of re-identification risk [33], and (ii) ensuring that diagnosis

codes are shared in a privacy-preserving way, is challenging, due to their charac-

teristics [54, 25, 28]. For example, more than 96% of 2700 patient records that

are involved in an NIH-funded GWAS were shown to be uniquely re-identifiable,

based on diagnosis codes, and, applying popular privacy-preserving methods, dis-

torts the published data to the point that they lose their clinical utility [33].

To see how identity disclosure may occur, consider the de-identified data in

Fig. 1. In these data, each record corresponds to a distinct patient and contains

the set of diagnosis codes that this patient is associated with. The description of

the diagnosis codes in Fig. 1 is shown in Fig. 2. An attacker, who knows that a
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patient is diagnosed with Bipolar I disorder, single manic episode, mild (denoted

with the code 296.01) and Closed dislocation of finger, unspecified part (denoted

with 834.0), can associate an identified patient with the first record, denoted with

r1, in the data of Fig. 1, as the set of codes {296.01, 834.0} appears in no other

record. Notice that, in this work, we consider ICD-9 codes1, following [35, 34].

However, our approach can be applied to other standardized codes, such as Com-

mon Procedure Terminology (CPT) codes.

ID Records

r1 {296.00, 296.01, 296.02, 834.0, 944.01}
r2 {296.00, 296.02, 296.01, 401.0, 944.01, 692.71, 695.10}
r3 {296.00, 296.02, 692.71, 834.0, 695.10}
r4 {296.00, 296.01, 692.71, 401.0}
r5 {296.00, 296.01, 296.02, 692.71, 695.10}
r6 {296.03, 295.04, 404.00, 480.1}
r7 {294.10, 296.03, 834.0, 944.01}
r8 {294.10, 295.04, 296.03, 480.1}
r9 {294.10, 295.04, 404.00}
r10 {294.10, 295.04, 296.03, 834.0, 944.01}

Figure 1: Original dataset D.

Diagnosis code Description

294.10 Dementia in conditions classified elsewhere without behavioral disturbance
295.04 Simple type schizophrenia, chronic with acute exacerbation
296.00 Bipolar I disorder, single manic episode, unspecified
296.01 Bipolar I disorder, single manic episode, mild
296.02 Bipolar I disorder, single manic episode, moderate
296.03 Bipolar I disorder, single manic episode, severe, without mention of psychotic behavior
401.0 Malignant essential hypertension

404.00 Hypertensive heart and chronic kidney disease, malignant, without heart failure and with
chronic kidney disease stage I through stage IV, or unspecified

480.1 Pneumonia due to respiratory syncytial virus
692.71 Sunburn
695.10 Erythema multiforme, unspecified
834.0 Closed dislocation of finger, unspecified part

944.01 Burn of unspecified degree of single digit (finger (nail) other than thumb

Figure 2: Diagnosis codes in D and their description.

1http://www.cdc.gov/nchs/data/icd9/icdguide10.pdf
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1.1. Motivation

Preventing identity disclosure based on diagnosis codes is possible by apply-

ing the methods proposed in [35, 34]. Both methods transform diagnosis codes

to ensure that the probability of performing identity disclosure, based on speci-

fied sets of diagnosis codes, will not exceed a data-owner specified parameter k.

Data transformation is performed using generalization (i.e., by replacing diagno-

sis codes with more general, but semantically consistent, ones) and suppression

(i.e., by deleting diagnosis codes). Furthermore, both methods aim at transform-

ing data in a way that does not affect the findings of biomedical analysis tasks

that the data are intended for. These tasks are specified by data owners and used

to control the potential ways diagnosis codes are generalized and/or suppressed.

For example, applying the CBA algorithm [34], which outperforms the method in

[35] in terms of preserving data utility, to the data in Fig. 1, produces the data

in Fig. 3a. In this example, CBA was applied using k = 3 and with the goal

of (i) thwarting identity disclosure, based on all sets of 2 diagnosis codes, and

(ii) preserving the findings of studies u1 to u5 in Fig. 3b, which require count-

ing the number of patients diagnosed with any combination of codes in them.

Observe that the codes 294.10, 295.04, and 296.00 to 296.03 are generalized to

(294.10, 295.04, 296.00, 296.01, 296.02, 296.03), which is interpreted as any non-

empty subset of these codes, and that 7 out of 13 distinct codes are suppressed.

The result of CBA thwarts identity disclosure (i.e., all combinations of 2 diagnosis

codes appear at least 3 times in Fig. 3a) and allows performing u1 and u3 accu-

rately. To see why this is the case, consider u3, for example. Note that 4 patients

are associated with a combination of the codes {401.0, 404.00} in u3, in both Fig.

1 and in Fig. 3a). However, the studies u2, u4, and u5 can no longer be performed
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accurately, as some of their associated diagnosis codes have been suppressed.

ID Records

r1 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 834.0, 944.01

r2 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00), 944.01, 692.71, 695.10

r3 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 692.71, 834.0, 695.10

r4 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00), 692.71

r5 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 692.71, 695.10

r6 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00), 480.1

r7 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 834.0, 944.01

r8 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 480.1

r9 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), (401.0, 404.00)
r10 (294.10, 295.04, 296.00, 296.01, 296.02, 296.03), 834.0, 944.01

(a) Anonymized dataset DA produced by CBA (suppressed codes appear in gray).

ID Utility constraints

u1 {294.10, 295.04, 296.00, 296.01, 296.02, 296.03}
u2 {692.71, 695.10}
u3 {401.0, 404.00}
u4 {480.1}
u5 {834.0, 944.01}

(b) Utility constraints.

Figure 3: CBA example.

In fact, the methods in [35, 34] assume a setting in which data owners possess

domain expertise that allows them to specify: (i) sets of diagnosis codes that lead

to identity disclosure, and (ii) sets of diagnosis codes that model analytic tasks that

the published data are intended for. The ability of the published data to support

these tasks is a strong requirement, and suppression is used when this requirement

cannot be satisfied2. As can be seen in Fig. 3a, the fact that u2 = {692.71, 695.10}

was not satisfied led CBA to suppress both 692.71 and 695.10. The setting consid-

ered in [35, 34] can model some real data sharing scenarios, such as the sharing of

data between collaborating researchers, who perform specific analytic tasks [35].

However, it is important to consider a different setting, where data are shared

more broadly and may be used for studies beyond those that are specified by

2Due to the computational complexity of the problem, no guarantees that these requirements

will be satisfied are provided by the methods in [35, 34].
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data owners. This setting becomes increasingly common, as databanks (e.g.,[2,

5]) host a wide range of patient-specific data and grow in size and popularity.

Addressing this setting calls for developing methods that offer strong privacy and

permit the publishing of data that remain useful, for analytic tasks that cannot

be predetermined, in addition to any intended ones. In fact, the aforementioned

methods [35, 34] are not suitable for this setting, because their application would

cause excessive loss of data utility, as it will become clear later.

1.2. Contributions

In this paper, we propose the first approach for the privacy-preserving sharing

of diagnosis codes under this new setting. Our approach allows data owners to

share data that prevent identity disclosure, and does not incur excessive informa-

tion loss or harm the usefulness of data in medical analysis. This work makes the

following specific contributions.

First, we develop an effective algorithm that prevents identity disclosure, based

on all sets of m or fewer diagnosis codes, by limiting its probability to 1
k
, where k

and m are data-owner specified parameters. To achieve this, the algorithm trans-

forms data using disassociation, an operation that splits the records into care-

fully constructed subrecords, containing original (i.e., non-transformed) diagnosis

codes. Thus, strong privacy requirements can be specified, without knowledge of

potentially identifying diagnosis codes, and they can be enforced with low infor-

mation loss. In addition, analytic tasks that published data are intended for can

still be performed highly accurately. For instance, as can be seen in Fig. 4, ap-

plying our algorithm to the data in Fig. 1, using k = 3 and m = 2, achieves the

same privacy, but significantly better data utility, than CBA, whose result is shown

in Fig. 3a. This is because, in contrast to CBA, our algorithm does not suppress
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diagnosis codes and retains the exact counts of 8 out of 13 codes (i.e., those in u1

and u3). Moreover, our algorithm is able to preserve the findings of the first two

studies in Fig. 3b.

Second, we experimentally demonstrate that our approach preserves data util-

ity significantly better than the state-of-the-art method [34]. Specifically, when

applied to a large EHR dataset [8], our approach allows up to 16 times more ac-

curate query answering and generates data that are highly useful for supporting

various types of clinical case count studies and general medical analysis tasks.

1.3. Paper organization

The remainder of the paper is organized as follows. Section 2 reviews re-

lated work and Section 3 presents the concepts that are necessary to introduce

our method and formulate the problem we consider. In Sections 4 and 6, we dis-

cuss and experimentally evaluate our algorithm, respectively. Subsequently, we

explain how our approach can be extended to deal with different types of medical

data and privacy requirements in Section 7. Last, Section 8 concludes the paper.
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r1 {296.00, 296.01, 296.02}
r2 {296.00, 296.01, 296.02} {692.71, 695.10} 834.0, 401.0,
r3 {296.00, 296.02} {692.71, 695.10} 944.01
r4 {296.00, 296.01} {692.71}
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r8 {294.10, 295.04, 296.03} 480.1, 834.0, 944.01
r9 {294.10, 295.04}
r10 {294.10, 295.04, 296.03}

Figure 4: Anonymized dataset DA using our DISSASSOCIATION method. The dataset is com-

prised of two clusters, and each record is comprised of a number of subrecords, called chunks.
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2. Related work

We focus on preventing identity disclosure in a non-interactive data sharing

scenario that involves broad data dissemination to potentially unknown data recip-

ients. This scenario has many benefits [23] and allows wider and more effective

use of the shared data. However, the fact that data are disseminated beyond a small

number of authorized recipients poses new privacy challenges, which cannot be

addressed by access control [50] and encryption-based [47, 55, 22, 10] methods.

We also assume that data must be shared at a patient level, which is crucial to

enable clinical studies in several fields, such as those in epidemiology [42] and

genetics [35].

The threat of identity disclosure in medical data publishing was firstly pointed

out by Sweeney [49], and it has since attracted significant research interest [26, 19,

41, 17, 20, 18, 43]. Although other threats have been considered [40, 39, 56, 38],

“all the publicly known examples of re-identification of personal information have

involved identity disclosure” [18]. The majority of works focus on preventing

identity disclosure via relational data (i.e., data in which a patient is associated

with a fixed, and typically small number of attributes), which naturally model

patient demographics. Attacks based on demographics can be thwarted using k-

anonymity [49, 51], which requires each record in the shared dataset to have the

same values with at least k-1 other records in potentially identifying attributes

(also known as quasi-identifiers). To enforce k-anonymity, suppression [49, 51],

which deletes certain values prior to data sharing, or generalization [49, 51, 30],

which replaces values with more general, but semantically consistent values, can

be applied. Different from this line of research, we consider data containing di-

agnosis codes, which require different handling than relational data, and apply
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disassociation, which generally incurs lower information loss than generalization

and suppression.

Anonymizing diagnosis codes can be achieved by modeling them using a

transaction attribute and enforcing a privacy model for transaction data [36, 38,

28, 54, 58, 52, 37]. The value in a transaction attribute is a set of items (item-

set), which, in our case, corresponds to a patient’s diagnosis codes. In [28], He

et al. proposed complete k-anonymity to prevent an attacker from linking an in-

dividual to fewer than k records in the published dataset, even when the attacker

knows all items of a transaction. To enforce this principle, He et al. [28] proposed

a generalization-based algorithm, called Partition. Terrovitis et al. [28] argued

that attackers are unlikely to know all items of an individual and proposed km-

anonymity to guard against attackers who know up to m items. The authors of

[28] designed the Apriori algorithm, which operates in a bottom-up fashion, be-

ginning with 1-itemsets (items) and subsequently considering incrementally larger

itemsets. In each iteration, Apriori enforces km-anonymity using the full-subtree,

global generalization model [57]. Xu et al. [58] proposed a privacy model that

treats (public) items similarly to km-anonymity and a suppression-based algorithm

to enforce it. The algorithm of [58] discovers all unprotected itemsets of minimal

size and protects them by iteratively suppressing the item contained in the greatest

number of those itemsets.

Loukides et al. [35] showed that the algorithms proposed in [28, 54, 58] are

not suited to anonymizing diagnosis codes. This is because, they explore a small

number of possible ways to anonymize diagnosis codes, and they are inadequate

to generate data that support biomedical analysis tasks. In response, they proposed

two algorithms for anonymizing diagnosis codes [35, 34]. The first of these algo-
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rithms, called Utility-Guided Anonymization of Clinical Profiles (UGACLIP) ap-

plies generalization to sets of diagnosis codes that may lead to identity disclosure

in a way that: (i) limits the probability of identity disclosure, based on these sets

of codes, (ii) aims at preserving the intended analysis tasks, which are modeled as

associations between diagnosis codes using utility constraints, and (iii) incurs a

minimal amount of information loss. The sets of potentially identifying diagnosis

codes, as well as utility constraints, are specified by data owners and given as input

to UGACLIP. However, UGACLIP may overdistort diagnosis codes that are not

contained in the specified associations, which limits the ability to use the gener-

ated data in tasks that are not related to the specified associations [34]. To address

these limitations, an algorithm, called Clustering-Based Anonymizer (CBA) was

proposed in [34]. CBA uses the same privacy and utility model as UGACLIP but

employs a more effective heuristic both in terms of supporting the intended medi-

cal analysis tasks and in terms of incurring a small amount of information loss. As

discussed in Introduction, our approach is developed for a different data sharing

scenario than that of [35, 34], and it applies a different privacy model and data

transformation technique.

Another privacy model, called differential privacy [16], has attracted signif-

icant attention [45, 29, 21] and has recently been applied to medical data [24].

Differential privacy ensures that the outcome of a calculation is insensitive to any

particular record in the dataset. This offers privacy, because the inferences that can

be made about an individual will be (approximately) independent of whether any

individuals record is contained in the dataset or not. Differential privacy makes

no assumptions about an attacker’s background knowledge, unlike km-anonymity,

although its enforcement does not guarantee the prevention of all attacks [12].
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However, differential privacy allows either noisy answers to a limited number of

queries, or noisy summary statistics to be released, and there are a number of

limitations regarding its application on healthcare data [13]. In addition, differen-

tially private data may be of much lower utility compared to km-anonymous data

produced by disassociation, as shown in [53].

3. Background

In the previous sections, we highlighted how a patient can be identified by

simply tracing records that contain unique combinations of diagnosis codes. Here,

we present a concrete attack model and an effective data transformation operation,

called disassociation. Disassociation can be used to guarantee patient privacy with

respect to this model, while incurring minimal data utility loss. To quantify the

loss of data utility caused by disassociation, we also discuss two measures that

capture different requirements of medical data applications.

3.1. Attack Model and Privacy Guarantee

We assume a dataset D of records (transactions), each of which contains a set

of diagnosis codes (items) from a finite domain T . The number of records in D

is denoted with |D|. Each record in D refers to a different patient and contains

the set of all diagnosis codes associated with them. An example of a dataset is

shown in Fig. 1. Each record in this dataset contains some diagnosis codes, and

the domain of diagnosis codes is shown in Fig. 2. In contrast to the traditional

attack models for relational data [40, 32], we do not distinguish between sensitive

(unknown to the attacker) and non-sensitive items in a record. Instead, we assume

that any item is a potential quasi-identifier and, hence, it may lead to identity

disclosure. Besides the dataset D we also assume a set of utility constraints U
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[35], also referred to as utility policy. As discussed in Section 2, utility constraints

model associations between diagnosis codes that anonymized data are intended

for. Each utility constraint u in U is a set of items from T , and all constraints in

U are disjoint. Fig. 3b illustrates an example of a set of utility constraints.

We now explain the attack model considered in this work. In this model, an

attacker knows up to m items of a record r in D, where m ≥ 1. The case of

attackers with no background knowledge (i.e., m = 0) is trivial, and it is easy

to see that the results of our theoretical analysis are applicable to this setting as

well. Note that, different from the methods in [35, 34], the items that may be

exploited by attackers are considered unknown to data owners. Also, there may

be multiple attackers, each of which knows a (not necessarily distinct) set of up to

m items of a record r. Other attacks and the ability of our method to thwart them

are discussed in Section 7.

Based on their knowledge, an attacker can associate the identified patient with

their record r, breaching privacy. To thwart this threat, our work employs the

privacy model of km-anonymity [54]. km-anonymity is a conditional form of k-

anonymity, which ensures that an attacker with partial knowledge of a record r,

as explained above, will not be able to distinguish r from k−1 other records in

the published dataset. In other words, the probability that the attacker performs

identity disclosure is upperbounded by 1
k
. More formally:

Definition 1. An anonymized dataset DA is km-anonymous if no attacker with

background knowledge of up to m items of a record r in DA can use these items

to identify fewer than k candidate records in DA.

For the original dataset D and its anonymized counterpart DA, we define two

transformations A and I. The anonymization transformation A takes as input

13



a dataset D and produces an anonymized dataset DA. The inverse transforma-

tion I takes as input the anonymized dataset DA and outputs all possible (non-

anonymized) datasets that could produce DA, i.e., I(DA) = {D′ | DA = A(D)}.

Obviously, the original dataset D is one of the datasets in I(A(D)). To achieve

km-anonymity (Definition 1) in our setting, we enforce the following privacy guar-

antee (from [53]).

Guarantee 1. Consider an anonymized dataset DA and a set S of up to m items.

Applying I(DA), will always produce at least one dataset D′ ∈ I(DA) for which

there are at least k records that contain all items in S .

Intuitively, an attacker, who knows any set S of up to m diagnosis codes about

a patient, will have to consider at least k candidate records in a possible original

dataset. We provide a concrete example to illustrate this in the next subsection.

3.2. Overview of the disassociation transformation strategy

In this section, we present disassociation, a data transformation strategy that

partitions the records in the original dataset D into subrecords, following the basic

principles of the strategy presented in [53]. The goal of our strategy is to “hide”

combinations of diagnosis codes that appear few times in D, by scattering them

in the subrecords of the published dataset. The particular merit of disassociation

is that it preserves all original diagnosis codes in the published dataset, in contrast

to generalization and suppression. This is important to preserve data utility in

various medical analysis tasks that cannot be predetermined, as explained in the

introduction and will be verified experimentally.

To illustrate the main idea of disassociation, we use Fig. 4, which shows a

disassociated dataset produced from the original dataset D of Fig. 1. Observe
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that the dataset in Fig. 4 is divided into two clusters, P1 and P2, which contain

the records r1−r5 and r6−r10, respectively. Furthermore, the diagnosis codes

in a cluster are divided into subsets, and each record in the cluster is split into

subrecords according to these subsets. For example, the diagnosis codes in P1 are

divided into subsets T1 ={296.00, 296.01, 296.02}, T2 ={692.71, 695.10}, and

TT ={834.0, 401.0, 944.01}, according to which r1 is split into three subrecords;

{296.00, 296.01, 296.02}, an empty subrecord {}, and {834.0, 944.01}. The

collection of all subrecords of different records that correspond to the same subset

of diagnosis codes is called a chunk. For instance, the subrecord {296.00, 296.01,

296.02} of r1 goes into chunk C1, the empty subrecord goes into chunk C2, and

the subrecord {834.0, 944.01} goes into chunk CT . In contrast to C1 and C2

which are record chunks, CT is a special, item chunk, containing a single set of

diagnosis codes. In our example, CT contains the set {834.0, 401.0, 944.01},

which represents the subrecords from all r1−r5 containing these codes. Thus,

the number of times each diagnosis code in CT appears in the original dataset

is completely hidden from the attacker, who can only assume that this number

ranges from 1 to |Pi|, where |Pi| is the number of records in Pi.

In addition, the order of the subrecords that fall into a chunk is randomized,

which implies that the association between subrecords in different chunks is hid-

den from the attacker. In fact, the original dataset D may contain any record that

could be reconstructed by a combination of subrecords from the different chunks

plus any subset of diagnosis codes from CT . For example, {296.00, 296.01, 834.0,

944.01} in Fig. 5 is a reconstructed record, which is created by taking {296.00,

296.01} from C1, the empty subrecord {} from C2, and {834.0, 944.01} from

CT . Observe that this record does not appear in the original dataset of Fig. 1.
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The disassociated dataset DA amounts to the set of all possible original datasets

I(DA) (see Guarantee 1). In other words, the original dataset D is hidden, among

all possible datasets that can be reconstructed from DA. A dataset, which is re-

constructed from the disassociated dataset in Fig. 4, is shown in Fig. 5. Note that

reconstructed datasets can be greatly useful to data analysts, because (i) they have

similar statistical properties to the original dataset from which they are produced,

and (ii) they can be analyzed directly, using off-the-shelf tools (e.g., SPSS), in

contrast to generalized datasets that require special handling (e.g., interpreting a

generalized code as an original diagnosis code, with a certain probability).

As an example, consider the dataset in Fig. 4, which satisfies Guarantee 1, for

k = 3 and m = 2. Observe that an attacker, who knows up to m = 2 codes from

a record r of the original dataset in Fig. 1, must consider a reconstructed dataset

that has at least 3 records containing the codes known to them. We emphasize

that each of these codes can appear in any chunk of a cluster in DA, including

the item chunk. For instance, an attacker, who knows that the record of a patient

contains 296.01 and 834.0, must consider the dataset in Fig. 5. In this dataset, the

combination of these codes appears in the records r1, r2, and r3.

ID Records

r1 {296.00, 296.01, 834.0, 944.01}
r2 {296.02, 296.01, 692.71, 834.0}
r3 {296.00, 296.01, 296.02, 692.71, 695.10, 834.0}
r4 {296.00, 296.02, 692.71, 695.10}
r5 {296.00, 296.01, 296.02, 692.71, 695.10, 401.0}
r6 {296.02, 295.04, 480.1}
r7 {294.10, 296.02, 404.00, 834.0, 944.01}
r8 {294.10, 295.04, 296.02, 480.1, 834.0}
r9 {294.10, 295.04, 404.00, 834.0}
r10 {294.10, 295.04, 296.02, 834.0, 944.01}

Figure 5: A possible dataset D′ reconstructed from DA of Figure 4.

16



3.3. Measuring Data Utility

Different datasets that can be produced by an original dataset, using disas-

sociation, do not offer the same utility. In addition, most existing measures for

anonymized data using generalization and/or suppression, such as those proposed

in [54, 58, 35, 34], are not applicable to disassociated datasets. Therefore, we

measure data utility using the accuracy of: (i) answering COUNT queries on dis-

associated data, and (ii) estimating the number of records that are associated with

any set of diagnosis codes in a utility constraint (i.e., matched to the constraint).

The first way to measure data utility considers a scenario in which data recipi-

ents issue queries to perform case counting (i.e., discover the number of patients

diagnosed with a set of one or more diagnosis codes, using COUNT queries).

Alike other transformation strategies, disassociation may degrade the accuracy of

answering COUNT queries [35, 53]. Thus, a utility measure must capture how

accurately such queries can be answered using disassociated data. The second

way to quantify data utility considers a scenario in which various analytic tasks,

simulated through different utility policies, are performed by data recipients. To

the best of our knowledge, there are no measures that can capture data utility in

this scenario.

To quantify the accuracy of answering a workload of COUNT queries on dis-

associated data, we use the Average Relative Error (ARE) measure, a standard

data utility indicator [35, 34, 53], which reflects the average number of trans-

actions that are retrieved incorrectly as part of query answers. The following

definition explains how ARE can be computed.

Definition 2. LetW be a workload of COUNT queries q1, ..., qn, and CA and CO

be functions which count the number of records answering a query qi, i ∈ [1, n]
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on the anonymized dataset D′ and on the original dataset D, respectively. The

ARE measure forW is computed as

ARE(W) = avg∀i∈[1,n]
|CA(qi)− CO(qi)|

CO(qi)

Thus, ARE is computed as the mean error of answering all queries in the query

workloadW . Clearly, a zero ARE implies that the anonymized dataset D′ are as

useful as the original dataset in answering the queries in W , and low scores in

ARE are preferred.

To capture data utility in the presence of specified utility policies, we propose

a new measure, called Matching Relative Error (MRE). The computation of MRE

is illustrated in the following definition.

Definition 3. Let u be a utility constraint in U , and MA and MO be functions,

which return the number of records that match u in the anonymized dataset D′

and in the original dataset D, respectively. The MRE for u is computed as

MRE(u) =
MO(u)−MA(u)

MO(u)

Thus, a zero MRE implies that an anonymized dataset can support u as well as

the original dataset does, and MRE scores close to zero are preferred. For clarity,

we report MRE as a percentage (i.e., the percent error). For example, an MRE

in the interval [−5%, 5%] implies that the number of transactions that match the

utility constraint in the anonymized dataset is no more than 5% different (larger
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or smaller) than the corresponding number in the original dataset.

It is easy to see that ARE and MRE are applicable to several different work-

loads and utility constraints, respectively. For instance, in our experiments (Sec-

tion 6), we used workloads containing sets of diagnosis codes that a certain per-

centage of all patients have, and utility constraints that model semantic relation-

ships between diagnosis codes. Also, Definitions 2 and 3 refer to an anonymized

dataset D′, without restricting the data transformation strategy applied to produce

it. For instance, D′ can be a reconstructed dataset, such as the dataset in Fig. 5, or

a generalized dataset, such as the dataset in Fig. 3a.

4. Disassociation algorithm

This section presents our disassociation-based algorithm for anonymizing di-

agnosis codes, which is referred to as DISASSOCIATION. This algorithm performs

three operations: (i) horizontal partitioning, (ii) vertical partitioning, and (iii) re-

fining. Horizontal partitioning brings together similar records with respect to di-

agnosis codes into clusters. As will be explained, performing this operation is

important to preserve privacy with low utility loss. Subsequently, the algorithm

performs vertical partitioning. This operation, which is the heart of our method,

disassociates combinations of diagnosis codes that require protection and creates

chunks. DISASSOCIATION differs from the method of [53] in that it aims at pro-

ducing data that satisfy utility constraints and hence remain useful in medical

analysis. Specifically, the horizontal and vertical partitioning phases in our al-

gorithm treat codes that are contained in utility constraints as first-class citizens,

so that they are preserved in the published dataset to the largest possible extent.

Last, our algorithm performs the refining operation, to further reduce information
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loss and improve the utility of the disassociated data, A high-level pseudocode of

DISASSOCIATION is given in Fig. 6. In addition, Fig. 7 summarizes the notation

used in our algorithm and in the algorithms that perform its operations.

Algorithm: DISASSOCIATION

Input : Original dataset D,

parameters k and m

Output : Disassociated dataset DA

1 Split D into disjoint clusters by applying Algorithm HORPART;

2 for every cluster P produced do

3 Split P vertically into chunks by applying Algorithm VERPART;

4 Refine clusters;

5 return DA;

Figure 6: DISASSOCIATION algorithm.

Symbol Explanation

D, DA Original, anonymized dataset

T The set of all diagnosis codes in D

U Set of utility constraints

TU The set of all diagnosis codes in U

s(a) Support of diagnosis code a
P , P1 . . . Clusters

TP Domain of cluster

C, C1, . . . Record chunks

T1, T2, . . . Domain of record chunk

CT Item chunk

TT Domain of item chunk

Figure 7: Notation used in our DISASSOCIATION algorithm and in the algorithms HORPART and

VERPART.

In the following, we present the details of the horizontal partitioning, vertical

partitioning, and refining operations of our algorithm.

Horizontal partitioning. This operation groups records of the original dataset D

into disjoint clusters, according to the similarity of diagnosis codes. For instance,

cluster P1 is formed by records r1−r5, which have many codes in common, as
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can be seen in Fig. 4. The creation of clusters is performed with a light-weight,

but very effective heuristic, called HORPART. The pseudocode of HORPART is

provided in Fig. 8. This heuristic aims at creating coherent clusters, whose records

will require the least possible disassociation, during vertical partitioning.

To achieve this, the key idea is to split the dataset into two parts, D1 and D2,

according to: (i) the support of diagnosis codes in D (the support of a diagnosis

code a, denoted with s(a), is the number of records in D in which a appears), and

(ii) the participation of diagnosis codes in the utility policy U . At each step, D1

contains all records with the diagnosis code a, whereas D2 contains the remaining

records. This procedure is applied recursively, to each of the constructed parts,

until they are small enough to become clusters. Diagnosis codes that have been

previously used for partitioning are recorded in a set ignore and are not used again.

In each recursive call, Algorithm HORPART selects a diagnosis code a, in lines

3-10. In the first call, a is selected as the most frequent code (i.e., the code with

the largest support), which is contained in a utility constraint. At each subsequent

call, a is selected as the most frequent code, among the codes contained in u (i.e.,

the utility constraint with the code chosen in the previous call) (line 4). When all

diagnosis codes in u have been considered, a is selected as the most frequent code

in the set {T−ignore}, which is also contained in a utility constraint (line 6). Of

course, if no diagnosis code is contained in a utility constraint, we simply select a

as the most frequent diagnosis code (line 9).

Horizontal partitioning reduces the task of anonymizing the original dataset

to the anonymization of small and independent clusters. This way the privacy

guarantee can be achieved more efficiently, since the disassociation process is

restricted in the scope of each created cluster, as described below.
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Algorithm: HORPART

Input : Dataset D,

set of diagnosis codes ignore (initially empty),

a utility constraint u ∈ U (initially empty)

Output : A HORizontal PARTitioning of D, i.e., a set of clusters

Param. : The maximum cluster size maxClusterSize

1 Let T be the set of diagnosis codes in D, and TU be the set of diagnosis codes

appearing in the utility constraints of U ;

2 if |D| < maxClusterSize then return {{D}};
3 if {T − ignore}

∩

u ̸= {} then

4 Find the most frequent diagnosis code a in {T − ignore}
∩

u;

5 else if {T − ignore}
∩

TU ̸= {} then

6 Find the most frequent diagnosis code a in {T − ignore}
∩

TU ;

7 u← the constraint a belongs to;

8 else

9 Find the most frequent diagnosis code a in {T − ignore};
10 u← {};

11 D1 ← the set of all records of D that have a;

12 D2 ← D −D1;

13 return HORPART(D1, ignore ∪ a, u)∪HORPART(D2, ignore, {})

Figure 8: HORPART algorithm.

Vertical partitioning. This operation partitions the clusters into chunks, using a

greedy heuristic that is applied to each cluster independently. The intuition behind

the operation of this heuristic, called VERPART, is twofold. First, the algorithm

tries to distribute infrequent combinations of codes into different chunks to pre-

serve privacy, as in [53]. Second, it aims at satisfying the utility constraints, in

which the diagnosis codes in the cluster are contained. To achieve this, the algo-

rithm attempts to create record chunks, which contain as many diagnosis codes

from the same utility constraint as possible. Clearly, creating a record chunk that

contains all the diagnosis codes of one or more utility constraints is beneficial, as

tasks involving these codes (e.g., clinical case count studies) can be performed as
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accurately as in the original dataset.

Algorithm: VERPART

Input : A cluster P , parameters k and m

Output : A km-anonymous VERtical PARTitioning of P

1 Let TP be the set of diagnosis codes of P ;

2 for every diagnosis code t ∈ TP do

3 Compute the support s(t);

4 Move all diagnosis codes with s(t) < k from TP into TT ; //TT is finalized

5 Identify the groups of diagnosis codes in TP that belong to the same utility

constraint of U , sort the diagnosis codes of each group in decreasing s(t), and then

sort the groups in decreasing s(t) of their first diagnosis code;

6 i← 0;

7 Tremain ← TP ;

8 while Tremain ̸= {} do

9 Tcur ← {};
10 for every diagnosis code t ∈ Tremain do

11 Create a chunk Ctest by projecting to Tcur ∪ {t} ;

12 if Ctest is km-anonymous then

13 Tcur ← Tcur ∪ {t};
14 keep track of the constraint in which t is contained (if any);

15 for every diagnosis code t ∈ Tcur do

16 if t belongs to a constraint u, which is different from the constraint of the

first diagnosis code added to Tcur and not all diagnosis codes of u are

added to Tcur then

17 Tcur ← Tcur − {t};

18 i← i+ 1 ;

19 Ti ← Tcur ;

20 Tremain ← Tremain − Tcur ;

21 Create record chunks C1, . . . , Cv by projecting to T1, . . . , Tv;

22 Create item chunk CT using TT ;

23 return {C1, . . . , Cv, CT }

Figure 9: VERPART algorithm.

The pseudocode of VERPART is provided in Fig. 9. This algorithm takes as

input a cluster P , along with the parameters k and m, and returns a set of km-

anonymous record chunks C1, . . . , Cv, and the item chunk CT of P . Given the
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set of diagnosis codes T P in P , VERPART computes the support s(t) of every

code t in P and moves all diagnosis codes having lower support than k from T P

to a set TT (lines 2-4). As the remaining codes have support at least k, they will

participate in some record chunk. Next, it orders T P according to: (i) s(t), and

(ii) the participation of the codes in utility constraints (line 5). Specifically, the

diagnosis codes in P that belong to the same constraint u in U form groups, which

are ordered two times; first in decreasing s(t), and then in decreasing s(t) of their

first (most frequent) diagnosis code.

Subsequently, VERPART computes the sets T1, . . . , Tv (lines 6-20). To this

end, the set Tremain , which contains the ordered, non-assigned codes, and the set

Tcur , which contains the codes that will be assigned to the current set, are used.

To compute Ti (1 ≤ i ≤ v), VERPART considers all diagnosis codes in Tremain

and inserts a code t into Tcur , only if the Ctest chunk, constructed from Tcur ∪{t},

remains km-anonymous (line 13). Note that the first execution of the for loop in

line 10, will always add t into Tcur, since Ctest = {t} is km-anonymous. If the

insertion of t to Tcur does not render Tcur ∪ {t} k
m-anonymous, t is skipped and

the algorithm considers the next code. While assigning codes from Tremain to Tcur ,

VERPART also tracks the utility constraint that each code is contained in (line 14).

Next, VERPART iterates over each code t in Tcur and removes it from Tcur , if two

conditions are met: (i) t is contained in a utility constraint u that is different from

the constraint of the first code assigned to Tcur , and (ii) all codes in u have also

been assigned to Tcur (lines 16-17). Removing t enables the algorithm to insert

the code into another record chunk (along with the remaining codes of u) in a

subsequent step. After that, VERPART assigns Tcur to Ti, removes the diagnosis

codes of Tcur from Tremain , and continues to the next set Ti+1 (lines 18-20).
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Last, the algorithm constructs and returns the set {C1, . . . , Cv, CT} (lines 21-

23). This set consists of the record chunks C1, . . . , Cv, and the item chunk CT ,

which are created in lines 21 and 22, respectively.

Refining. This operation focuses on further improving the utility of the disas-

sociated dataset, while maintaining Guarantee 1. To this end, we examine the

diagnosis codes that reside in the item chunk of each cluster. Consider, for exam-

ple, Fig. 4. The item chunk of the cluster P1 contains the diagnosis codes 834.0

and 944.01, because the support of these codes in P1 is 2 (i.e., lower than k = 3).

For similar reasons, these diagnosis codes are also contained in the item chunk of

P2. However, the support of these codes in both clusters P1 and P2 is not small

enough to violate privacy (i.e., the combination of 834.0 and 944.01 appears as

many times as the one of 296.03 and 294.10 which is in the record chunk of P2).

To handle such situations, we introduce the notion of joint clusters by allowing

different clusters to have common record chunks. Given a set T s of refining codes

(e.g., 834.0 and 944.01 in the aforementioned example), which commonly appear

in the item chunks of two or more clusters (e.g., P1 and P2), we can define a joint

cluster by (i) constructing one or more shared chunks after projecting the original

records of the initial clusters to T s and (ii) removing all diagnosis codes in T s

from the item chunks of the initial clusters. Fig. 10 shows a joint cluster, created

by combining the clusters P1 and P2 of Fig. 4, when T s={834.0, 944.01}.

Furthermore, large joint clusters can be built by combining smaller joint clus-

ters. Note that the creation of shared chunks is performed similarly to the method

of [53], but shared chunks are created by our VERPART algorithm, which also

takes into account the utility constraints.

We now provide an analysis of the time complexity of our algorithm.
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Record Item Shared

P1 cluster

{834.0,944.01}
{944.01}
{834.0}

{834.0,944.01}

{834.0,944.01}

{296.00, 296.01, 296.02}
{296.00, 296.01, 296.02} {692.71, 695.10} 401.0
{296.00, 296.02} {692.71, 695.10}
{296.00, 296.01} {692.71}
{296.00, 296.01, 296.02} {692.71, 695.10}
P2 cluster

{296.03, 295.04}
{294.10, 296.03} 404.00,
{294.10, 295.04, 296.03} 480.1
{294.10, 295.04}
{294.10, 295.04, 296.03}

Figure 10: Disassociation with a shared chunk.

Time Complexity. We first consider each operation of DISASSOCIATION sepa-

rately. The worst-case time complexity of the horizontal partitioning operation is

O(|D|2). This is because HORPART works similarly to the Quicksort algorithm,

but instead of a pivot, it splits each partition by the selecting the code a. Thus, in

the worst case, HORPART performs |D| splits and at each of them it re-orders |D|

records. The time complexity of vertical partitioning depends on the domain T P

of the input cluster P , and not on the characteristics of the complete dataset. The

most expensive operation of VERPART is to ensure that a chunk is km-anonymous,

which requires examining
(

|TP |
m

)

combinations of diagnosis codes. Thus, VER-

PART takes O(|T P |!) time, where T P is small in practice, as we regulate the size

of the clusters. Last, the complexity of the refining operation is O(|D|2). This is

because, in the worst case, the number of passes over the clusters equals the num-

ber of the clusters in D. Thus, the behavior of DISASSOCIATION is dominated

by that of HORPART, as the dataset size grows. Note that this analysis refers to

a worst-case and that, in practice, our algorithm is as efficient as the method in

[53]. This demonstrates that, taking into account utility constraints, has minimal

runtime overhead.
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5. Example of disassociation

This section presents a concrete example of applying DISASSOCIATION to the

dataset D of Fig. 1. The input parameters are k = 3 and m = 2, and that the

maxClusterSize parameter of HORPART is set to 6 3.

Horizontal partitioning. First, DISASSOCIATION performs the horizontal parti-

tioning operation on the original dataset D, using the HORPART algorithm. The

latter algorithm selects 296.00, which participates in constraint u1 of Fig. 3b and

has the largest support. It then splits D into two parts, D1 and D2. D1 consists

of the records containing 296.00 (i.e., r1-r5), whereas D2 contains the remaining

records r6-r10. At this point, 296.00 is moved from the domain T of D1 into the

set ignore, so that it will not be used in subsequent splits of D1. Moreover, the

next call of HORPART for D1 (line 13) is performed with the utility constraint u1

as input. Thus, HORPART tries to further partition D1, using the codes of this con-

straint. On the contrary, an empty ignore set and no utility constraint are given

as input to HORPART, when it is applied to D2. As the size of both D1 and D2 is

lower than maxClusterSize (condition in line 2 of 8), HORPART produces the

dataset in Fig. 11. This dataset is comprised of the clusters P1 and P2, which

amount to D1 and D2, respectively.

Vertical partitioning. Then, DISASSOCIATION performs vertical partitioning op-

eration, by applying VERPART to each of the clusters P1 and P2. The latter al-

gorithm computes the support of each code in P1, and then moves 401.0, 834.0

and 944.01, from the cluster domain TP into the set TT (line 4 in VERPART).

3This parameter could be set to any value at least equal to the value of k. However, it is fixed

to 2·k, because we have observed that this leads to producing good clusters.
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ID Records

r1 {296.00, 296.01, 296.02, 834.0, 944.01}
r2 {296.00, 296.02, 296.01, 401.0, 944.01, 692.71, 695.10}
r3 {296.00, 296.02, 692.71, 834.0, 695.10}
r4 {296.00, 296.01, 692.71, 401.0}
r5 {296.00, 296.01, 296.02, 692.71, 695.10}

ID Records

r6 {296.03, 295.04, 404.00, 480.1}
r7 {294.10, 296.03, 834.0, 944.01}
r8 {294.10, 295.04, 296.03, 480.1}
r9 {294.10, 295.04, 404.00}
r10 {294.10, 295.04, 296.03, 834.0, 944.01}

Figure 11: Output of horizontal partitioning on D.

The codes are moved to TT , which corresponds to the domain of the item chunk,

because they have a lower support than k = 3. Thus, TP now contains {296.00,

296.01, 296.02, 692.71, 695.10}, and it is sorted according to the support of these

codes in P1 and their participation in a utility constraint of U . Specifically, for the

utility constraints of Fig. 3b, we distinguish two groups of codes in TP ; a group

{296.00, 296.01, 296.02}, which contains the codes in u1, and another group

{692.71, 695.10} with the codes in u2. Next, VERPART sorts the first group in

descending order of the support of its codes. Thus, 296.00 is placed first and fol-

lowed by 296.01 and 296.02. The second group is sorted similarly. After that, the

two groups are sorted in descending order of the support of their first code. Thus,

the final ordering of TP is {296.00, 296.01, 296.02, 692.71, 695.10}.

Subsequently, VERPART constructs the record chunks of P1 (lines 10-14), as

follows. First, it selects 296.00 and checks whether the set of projections of the

records r1-r5 on this code is 32-anonymous. This holds, as 296.00 appears in all

records of P1. Thus, VERPART places 296.00 into the set Tcur, which will later

be used to define the record chunk C1. Then, the algorithm selects 296.01 and

checks whether the projections of all records r1-r5 on {296.00, 296.01} are also

32-anonymous. As this is true, 296.01 is moved to Tcur, and the same procedure
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is performed, for each of the codes 296.02, 692.71, and 695.10. When the projec-

tions of the records r1-r5 are found to be 32-anonymous, the corresponding code is

added to Tcur. Otherwise, it is left in a set Tremain to be used in a subsequent step.

Notice that 296.02 and 692.71 are added into Tcur, but the code 695.10 is not.

This is because the combination of codes 296.01 and 695.10 appears in only two

records of P1 (i.e., r2 and r5), hence, the projections of records r1-r5 on {296.00,

296.01, 296.02, 692.71, 695.10} are not 32-anonymous.

After considering all codes in TP , VERPART checks whether the codes of a

constraint u ∈ U are only partially added to Tcur. This is true for 692.71, which

is separated from 695.10 of the same constraint u2. Hence, 692.71 is moved from

Tcur back to Tremain (line 17), so that it can be added to the chunk C2 of P1 along

with 695.10. After that, the algorithm finalizes the chunk C1, according to Tcur,

empties the latter set, and proceeds to creating C2. By following this procedure

for the cluster P2, VERPART constructs the dataset DA in Fig. 4.

Refining. During this operation, DISASSOCIATION constructs the shared chunks,

which are shown in Figure 10, as follows. It inspects the item chunks of P1 and

P2 in Fig. 4, and it identifies that each of the codes 834.0 and 944.01 appears in

two records of P1, as well as in two records of P2. Note that the actual supports of

codes in item chunks are available to the algorithm after the vertical partitioning

operation, although they are not evident from Fig. 4 (because they are completely

hidden in the published dataset). Since the total support of 834.0 and 944.01 in

both clusters is 2 + 2 = 4 > k = 3, the algorithm reconstructs the projections

of r1-r5 and r6-r10 on the item chunk domain of P1 and P2 respectively, and calls

VERPART, which creates the shared chunk of Fig. 10.
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6. Experimental evaluation

6.1. Experimental data and setup

We implemented all algorithms in C++ and applied them to the INFORMS

dataset [8], whose characteristics are shown in Table 1. This dataset was used in

INFORMS 2008 Data Mining contest, whose objective was to develop predictive

methods for identifying high-risk patients, admitted for elective surgery. In our

experiments, we retained the diagnosis code part of patient records only.

We evaluated the effectiveness of our DISASSOCIATION algorithm, referred to

as Dis, by comparing to CBA, the state-of-the-art generalization-based algorithm

for preventing identity disclosure based on diagnosis codes. The default parame-

ters were k=5 and m=2, and the hierarchies used in CBA were created as in [34].

All experiments ran on an Intel Xeon at 2.4 GHz with 12 GB of RAM.

Dataset |D| Distinct codes Max, Avg # codes/record

INFORMS 58302 631 43, 5.11

Table 1: Description of the dataset.

To evaluate data utility, we employed the ARE and MRE measures, discussed

in Section 3.3. For the computation of ARE, we used two different types of query

workloads. The first workload type, referred to as W1, contains queries asking

for sets of diagnosis codes that a certain percentage of all patients have. In other

words, these queries retrieve frequent itemsets (i.e., sets of diagnosis codes that

appear in at least a specified percentage of transactions, expressed using a mini-

mum support threshold). Answering such queries accurately is crucial in various

biomedical data analysis applications [34], since frequent itemsets serve as build-

ing blocks in several data mining models [31]. The second workload type we

considered is referred to asW2 and contains 1000 queries, which retrieve sets of

30



diagnosis codes, selected uniformly at random. These queries are important, be-

cause it may be difficult for data owners to predict many of the analytic tasks that

will be applied to anonymized data by data recipients.

In addition, we evaluated MRE using three classes of utility policies: hierarchy-

based, similarity-based, and frequency-based. The first two types of policies

have been introduced in [34] and model semantic relationships between diagno-

sis codes. For hierarchy-based policies, these relationships are formed using the

ICD hierarchy. Specifically, hierarchy-based utility policies are constructed by

forming a different utility constraint for all 5-digit ICD codes that have a com-

mon ancestor (other than the root) in the ICD hierarchy. The common ancestor

of these codes is a 3-digit ICD code, Section, or Chapter4, for the case of level

1, level 2, and level 3 hierarchy-based policies, respectively. The similarity-based

utility policies are comprised from utility constraints that contain the same num-

ber of sibling 5-digit ICD codes in the hierarchy. Specifically, we considered

similarity-based constraints containing 5, 10, 25, and 100 codes and refer to their

associated utility policies as sim 5, 10, 25, and 100, respectively. Last, we con-

sidered frequency-based utility policies that model frequent itemsets. We mined

frequent itemsets using the FP-Growth algorithm [27], which was configured with

a varying minimum support threshold in {0.625, 1.25, 2.5, 5}. Thus, the generated

utility constraints contain sets of diagnosis codes that appear in at least 0.625%,

1.25%, 2.5%, and 5% percent of transactions, respectively. The utility policies

associated with such constraints are denoted with sup 0.625, 1.25, 2.5, and 5, re-

spectively. Unless otherwise stated, we use level 1, sim 10, and sup 0.625, as the

4Sections and Chapters are internal nodes in the ICD hierarchy, which model aggregate con-

cepts http://www.cdc.gov/nchs/data/icd9/icdguide10.pdf.
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default hierarchy, similarity, and frequency based utility policy, respectively.

6.2. Feasibility of identity disclosure

The risk of performing identity disclosure was quantified by measuring the

number of records that share a set (combination) of m diagnosis codes. This

number is equal to the inverse of the probability of performing identity disclosure

using any subset of these codes. The result in Fig. 12 shows that more than 17% of

all sets of 2 diagnosis codes appear in one record. Consequently, more than 17% of

patients are uniquely re-identifiable, based on these sets of codes, if the dataset is

released intact. Furthermore, fewer than 5% of records contain a diagnosis code

that appears at least 5 times. Thus, approximately 95% of records are unsafe,

as the corresponding patients are identifiable with probability that exceeds 0.2,

the threshold typically used in privacy-preserving medical data publishing [19].

Moreover, observe that the number of times a set of diagnosis codes appears in the

dataset increases with m. For example, 96% of sets containing 5 diagnosis codes

appear only once. As we will see shortly, our algorithm can guard against attackers

with such knowledge, by enforcing km-anonymity with m = 5, and at the same

time preserve data utility. This is in contrast to CBA and most generalization-based

methods (e.g., [54]).

6.3. Comparison with CBA

In this set of experiments, we demonstrate that our method can enforce km-

anonymity, while allowing more accurate query answering than CBA.

We first report ARE for query workloads of type W2 and for the following

utility policies: level 1 (hierarchy-based), sim 10 (similarity-based), and sup 1.25

(frequency-based). For a fair comparison, the diagnosis codes retrieved by all
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Figure 12: Number of records in which a percentage of combinations, containing 2 to 5 diagnosis

codes, appears.

queries are among those that are not suppressed by CBA. Fig. 13a illustrates

the results for the level 1 policy. The ARE for Dis is 6 times smaller on av-

erage, and up to 16 times smaller, than that of CBA. This shows that the use

of disassociation instead of generalization allows enforcing km-anonymity with

low information loss. Figs. 13b and 13c show the corresponding results for the

similarity-based and frequency-based policies, respectively. Again, our method

outperformed CBA, achieving ARE scores that are 4.5 and 7.4 times better, on

average. Quantitatively similar results were obtained for query workloads of type

W1 (omitted, for brevity).

Next, we report the number of distinct diagnosis codes that are suppressed

when k is set to 5, m varies in [2, 3], and the utility policies of the previous exper-

iment are used. The results in Fig. 14 show that CBA suppressed a relatively large

number of diagnosis codes, particularly when strong privacy is required and the

utility constraints are stringent. For instance, 23.6% (i.e., 149 out of 631) of dis-

tinct diagnoses codes were suppressed, when m = 3 and the level 1 utility policy

was used. On the contrary, our method released all diagnoses codes intact, as it
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(a) level 1 (b) sim 10 (c) sup 1.25

Figure 13: Comparison with CBA with respect to ARE for query workloads of type W2 and for

different utility policies.

Figure 14: Percentage of distinct diagnosis codes that are suppressed by CBA (no diagnosis codes

are suppressed by our method, by design).

does not employ suppression. This is particularly useful for medical studies (e.g.,

in epidemiology), where a large number of codes are of interest.

Having established that our method outperforms CBA in terms of achieving

km-anonymity with low information loss, we do not include results for CBA in the

remainder of the section.

6.4. Supporting clinical case count studies

In the following, we demonstrate the effectiveness of our method at producing

data that support clinical case count studies.

Fig. 15a illustrates the results for all three hierarchy-based policies and for
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query workloads of type W1. These workloads require retrieving a randomly

selected set of 1 to 4 diagnosis codes. For consistency, a set of c diagnosis codes

is built (extended) by adding a random code to its subset containing c−1 codes.

Observe that the error in query answering is fairly small and increases with the

size of sets of diagnosis codes. This is because larger sets appear in few records

and are more difficult to preserve in km-anonymous data [53]. Furthermore, it

can be seen that low ARE scores are achieved, even for the level 1 utility policy,

which is difficult to satisfy using generalization (e.g., CBA suppressed 14.3% of

distinct diagnosis codes to satisfy this policy when m = 2, as shown in Fig. 14).

Similar observations can be made from Figs. 15b and 15c, which show the results

for similarity-based and frequency-based constraints, respectively.
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Figure 15: ARE for query workloads of type W1 that retrieve 1 to 4 diagnosis codes and for

different utility policies.

Fig. 16a shows the results with respect to ARE, for hierarchy-based con-

straints and query workloads of typeW2. The corresponding results for similarity-

based and frequency-based constraints are reported in Figs. 16b and 16c, respec-

tively. Note that ARE scores are very low, in all tested cases. In addition, queries

involving more frequent sets of diagnosis codes (i.e., sets mined with a higher

minimum support threshold) can be answered highly accurately, which helps pre-
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serve data utility in various data mining tasks.
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Figure 16: ARE for query workloads of typeW2 and for different utility policies.

Next, we examined the impact of k on ARE by varying this parameter in

[5, 25], setting m to 2, and considering the level 1, sim 10, and sup 2.5 utility

policies. The results, reported in Fig. 17, show that ARE increases with k. This is

because it is more difficult to retain associations between diagnosis codes, when

clusters are large. However, the ARE scores are low (i.e., no more than 0.05),

which confirms that our method permits accurate query answering, even for large

k values that offer more privacy.
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Figure 17: ARE for varying k in [5, 25] and for different utility policies.

6.5. Effectiveness in medical analytic tasks

In this set of experiments, we evaluate our method in terms of its effectiveness

at supporting different utility policies. Given a utility policy, we measure MRE,
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for all constraints in the policy, and report the percentage of constraints, whose

MRE falls into a certain interval. Recall from Section 6.1 that intervals whose

endpoints are close to zero are preferred.

Fig. 18 reports the results with respect to MRE for the level 1 utility policy. As

can be seen, the MRE of all constraints in this policy is in [−24%, 5%), while the

MRE of the vast majority of constraints falls into much narrower intervals. For

instance, 81% and 90% of these constraints have an MRE in [−2.5%, 2.5%) and in

[−5%, 5%), respectively. Furthermore, the percentage of constraints with an MRE

score close to zero is generally higher compared to those with MRE is far from

zero. For example, 37.6% of the constraints have MRE in [−2.5%, 0%], whereas

only 3.7% of them have an MRE in [−24%,−10%). This confirms that the data

produced by our method can support the intended analytic tasks, in addition to

permitting accurate query answering.
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Figure 18: MRE for level 1 utility policy.

Next, we performed a similar experiment for similarity-based and frequency-

based utility policies. The results for the sim 5 policy are shown in Fig. 19.

Note that 81% and 90% of the utility constraints in this policy have an MRE in

[−2.5%, 2.5%] and in [−5%, 5%), respectively and only 3.6% of them have an

MRE in [−21%,−10%). The results for the sup 0.625 utility policy are quantita-
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tively similar, as can be seen in Fig. 20. That is, all constraints in this policy have

an MRE in a narrow range [−10%, 5%). These results together with those in Figs.

18 and 19 suggest that the data produced by our method can support different

types of utility policies fairly well.
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Figure 19: MRE for the sim 5 utility policy.
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Figure 20: MRE for the sup 0.625 utility policy.

In addition, we examined the impact of k on MRE, for different classes of

utility policies. Figs. 21, 22, and 23 illustrate the results for hierarchy-based,

similarity-based, and frequency-based policies, respectively. It can be seen that,

lowering k, helps the production of data that support the specified utility policies.

For instance, 95.3% of hierarchy-based constraints have an MRE in [−5%, 5%)
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when k = 2, but 53% of such constraints have an MRE in this interval when

k = 25. The corresponding percentages are 100% and 33% for similarity-based

utility constraints, and 95% and 59% for frequency-based utility constraints. This

is expected due to the utility/privacy trade-off. However, the MRE of most of the

constraints (i.e., 75.7, 72.3, and 85.9% on average, for the tested k values, in the

case of hierarchy-based, similarity-based, and frequency-based constraints) falls

into [−5%, 5%). Thus, our method is effective at supporting the intended medical

analytic tasks.
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Figure 21: MRE for hierarchy-based utility policies and for varying k in [2, 25].
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Last, we investigated the effectiveness of our method with respect to MRE,

when m is set to 5. It is interesting to examine data utility in this setting, because

39



0

20

40

60

80

100
(%

)
o
f

u
ti

li
ty

co
n
st

ra
in

ts

[-10,-5) [-5,2.5) [-2.5,0) 0 (0,2.5) [5,10)

intervals of MRE

k=2 k=5 k=10 k=15 k=25

Figure 23: MRE for frequency-based utility policies and for varying k in [2, 25].

a patient’s record in discharge summaries, which may be used in identity disclo-

sure attacks, often contains 5 diagnosis codes, which are assigned during a single

hospital visit. Thus, enforcing km-anonymity, using m = 5, provides protection

from such attacks, assuming a worst case scenario in which data owners do not

know which diagnoses codes may be used by attackers. In our experiments, we

considered different classes of utility policies (namely, level 1, sim 10, and sup

2.5) and report the results in Fig. 24. Notice that the data produced by our method

remain useful for supporting the utility policies, as 89%, 93%, and 100% of the

tested hierarchy-based, similarity-based, and frequency-based constraints have an

MRE in [−5%, 5%), respectively.
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7. Discussion

This section explains how our approach can be extended to deal with different

types of medical data and privacy requirements.

7.1. Dealing with data of different types

Our work considers records comprised of a set of diagnosis codes, following

[33, 35, 34]. However, some applications require different types of data. For

example, applications that aim at identifying phenotypes in the context of ge-

netic association studies, require data in which a record contains repeated diag-

nosis codes (i.e., a multiset of diagnosis codes). Dealing with these applications

is straightforward, as it requires a pre-processing in which different instances of

the same diagnosis code in the dataset, and the utility constraints, are mapped to

different values (e.g., the first occurrence of 250.01 is mapped to 250.011, the

second to 250.012 etc.) [34]. Other applications require releasing data that con-

tains both diagnosis codes and demographics. Anonymizing this type of data has

been considered very recently [48], although the proposed methodology employs

generalization and is not directly applicable to releasing patient information. Ex-

tending our approach, so that it can be used as a component of this methodology

is an interesting direction for future work.

7.2. Dealing with different privacy requirements

Our work focuses on preventing identity disclosure which is the most impor-

tant privacy requirement in the healthcare domain. It ensures that an attacker with

background knowledge of up to m codes in a record cannot associate this record

with fewer than k candidate patients. However, the anonymization framework we

propose is not restricted to guarding against attackers with only partial knowledge

41



of the codes in a record in D. In fact, by setting m to the maximum number of

codes in a record of D, data owners can prevent attacks based on knowledge of

all codes in a record. This is because the dataset that is produced by our method

in this case satisfies Guarantee 1. Regardless of the specific values of k and m,

we do not consider collaborative attacks, where two or more attackers combine

their knowledge in order to re-identify a patient nor attackers with background

knowledge of multiple records in D. Such powerful attack schemes can only be

handled within stronger privacy principles, such as differential privacy (see Sec-

tion 2). However, applying these principles usually results in significantly lower

utility, compared to the output of our method, which offers a reasonable tradeoff.

Furthermore, we do not assume any distinction between sensitive and non-

sensitive diagnosis codes (see Section 3). Instead, we treat all codes as poten-

tially identifying. However, when there is clear distinction between sensitive and

non-sensitive codes in a record, i.e., data owners know that some codes (the sen-

sitive ones) are not known to any attacker, then our framework allows thwarting

attribute disclosure as well. An effective principle for preventing attribute dis-

closure is ℓ-diversity [40]. Enforcing ℓ-diversity using our framework is rather

straightforward, as it simply requires (i) ignoring all sensitive codes during the

horizontal partitioning operation, and (ii) placing all sensitive codes in the item

chunk during vertical partitioning. This produces a dataset DA, in which all sen-

sitive codes are contained in the item chunks. This dataset limits the probability

of any association between sensitive codes and any other subrecord or code to 1
|P |

,

where |P | is the size of the cluster. Clearly, the desired degree of ℓ-diversity can

be achieved in this case, by adjusting the size of the clusters.

In general, protection from attribute disclosure within our framework tends
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to incur higher information loss than simply protecting from identity disclosure.

This is because sensitive codes are not necessarily infrequent, i.e., they may ap-

pear more than k times in a cluster. Thus, the frequent sensitive codes that would

be placed in a km-anonymous record chunk, when only identity disclosure is pre-

vented, are now placed in the item chunk and each of them is completely disas-

sociated from any other. In this case, the utility constraints that include sensitive

codes are not preserved in the published dataset to the extent they would be pre-

served when only guarding against identity disclosure is required. Of course, this

does not hold for the remaining utility constraints. The evaluation of our method

with protection from both identity and attribute disclosure is left as future work.

8. Conclusions

Ensuring that diagnosis codes cannot be used in identity disclosure attacks is

necessary but challenging, particularly when data need to be shared broadly and to

support a range of medical analytic tasks that may not be determined prior to data

dissemination. To this end, we proposed a novel, disassociation-based approach

that enforces km-anonymity with low information loss. Our approach does not

require data owners to specify diagnosis codes, as existing methods do, and takes

into account analytic tasks that published data are intended for. Extensive exper-

iments using EHR data confirm that our approach can produce data that permit

various types of clinical case count studies and general medical analysis tasks to

be performed accurately.
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