
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/89640/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Loukides, Grigorios and Gwadera, Robert 2015. Optimal event sequence sanitization. Presented at: SIAM
International Conference on Data Mining, Vancouver, Canada, 30 April - 2 May 2015. Published in:

Ventakatasubramanian, Suresh and Ye, Jieping eds. Proceedings of the 2015 SIAM International Conference
on Data Mining. Society for Industrial and Applied Mathematics, pp. 775-784.

10.1137/1.9781611974010.87

Publishers page: http://dx.doi.org/10.1137/1.9781611974010.87

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Optimal event sequence sanitization

Grigorios Loukides∗ Robert Gwadera†

Abstract

Frequent event mining is a fundamental task to extract in-

sight from an event sequence (long sequence of events that

are associated with time points). However, it may expose

sensitive events that leak confidential business knowledge or

lead to intrusive inferences about groups of individuals. In

this work, we aim to prevent this threat, by deleting occur-

rences of sensitive events, while preserving the utility of the

event sequence. To quantify utility, we propose a model that

captures changes, caused by deletion, to the probability dis-

tribution of events across the sequence. Based on the model,

we define the problem of sanitizing an event sequence as an

optimization problem. Solving the problem is important to

preserve the output of many mining tasks, including frequent

pattern mining and sequence segmentation. However, this is

also challenging, due to the exponential number of ways to

apply deletion to the sequence. To optimally solve the prob-

lem when there is one sensitive event, we develop an efficient

algorithm based on dynamic programming. The algorithm

also forms the basis of a simple, iterative method that opti-

mally sanitizes an event sequence, when there are multiple

sensitive events. Experiments on real and synthetic datasets

show the effectiveness and efficiency of our method.

1 Introduction

Applications in various domains, including marketing,
web analysis, and medicine, feature event sequences.
Event sequences are usually associated with a large
number of time points and have a segmental structure
(i.e., they are comprised of segments of differing prob-
ability distributions). Such sequences are often pro-
duced by monitoring systems, or from aggregating de-
tailed data to a desired time granularity (e.g., days or
weeks). A fundamental step to extract insight from an
event sequence is mining frequent events. These are
events whose relative frequency, measured in the entire
sequence, is at least equal to a specified threshold [9, 16].
For example, frequent events represent profitable prod-
ucts, popular search queries, or prevailing symptoms in
patient populations. In addition, mining frequent events
is required to perform other frequent pattern mining
tasks (e.g., partial order mining [4]). However, frequent

∗Cardiff University, email: g.loukides@cs.cf.ac.uk
†EPFL, email: robert.gwadera@epfl.ch

event mining may also result in the exposure of sensi-
tive events. These events represent confidential knowl-
edge, such as business secrets, sensitive religious beliefs
of groups of individuals, or health-related information
of patient subpopulations that may cause unwarranted
concerns (e.g., flu-associated hospitalizations). Thus,
data owners must ensure that sensitive events are not
discovered, when frequent event mining is applied us-
ing a specified threshold [24, 23, 19, 3, 11, 14]. As a
motivation, consider the following example.

Example 1. To improve supply and demand planning,
a supermarket collaborates with a marketing company.
The latter requested last year’s weekly sales of products
to perform common business intelligence tasks, such as
identifying popular products, at various weekly time pe-
riods starting from the beginning of the year, and mining
temporal trends of product sales. Thus, the supermar-
ket creates an event sequence, by aggregating detailed
sales data, and shares it with the marketing company.
The sequence is comprised of products (events) that are
associated with weeks (time points). In each week, prod-
ucts are sold one or more times. However, certain prod-
ucts, which account for a “high” percentage of the total
sales, at several time periods starting from the beginning
of the year, provide competitive advantage to the super-
market (sensitive events). Thus, the supermarket wants
to prevent the mining of these products using a specified
threshold, from each prefix of the sequence, so that confi-
dential knowledge will not leak to competitors or used by
the marketing company to their advantage. In addition,
the utility of the sequence must be preserved, to allow
business intelligence tasks to be performed accurately.

In this work, we aim to prevent the exposure of
sensitive events from an event sequence. This can be
achieved by deleting occurrences of sensitive events, so
that their relative frequency, measured in each prefix of
the sequence, is below a specified threshold. Deletion is
also employed by existing sanitization methods, which
are applied to a collection of transactions (sets of events)
[23, 24, 19], sequences (multisets of events that are not
associated with time points) [3, 11], or trajectories (lists
of spatiotemporal points) [3]. However, arbitrary dele-
tion can significantly reduce the utility of the sequence.
This is because deleting occurrences of a sensitive event

({a.1, b.4, c.5, d.0}, t1) ({a.2, b.4, c.7, d.7}, t2) ({a.8, b.7, c.1, d.4}, t3) ({a.12, b.13, c.5, d.0}, t4) ({a.7, b.3, c.10, d.0}, t5)
(a)

({a.0, b.4, c.5, d.0}, t1) ({a.0, b.4, c.7, d.7}, t2) ({a.5, b.7, c.1, d.4}, t3) ({a.7, b.13, c.5, d.0}, t4) ({a.5, b.3, c.10, d.0}, t5)
(b)

Period Rel. freq. of a
(weeks) in Fig. 1(b)

t1 0
t1 to t2 0
t1 to t3 0.11
t1 to t4 0.17
t1 to t5 0.19

(c) sensitive event a

t1 t2 t3 t4 t5

(d) event b

t1 t2 t3 t4 t5

(e) event c

t1 t2 t3 t4 t5

(f) event d

Figure 1: (a) Event sequence (.x is the number of occurrences of an event). (b) Sanitized event sequence. (c) Relative
frequency of a, measured from week t1. (d)-(f) Relative frequencies of b, c, and d, measured at each week.

that are associated with a time point t affects the rela-
tive frequency of all events, in any part of the sequence
that contains t. Thus, the output of tasks which require
measuring relative frequency in such parts may change.
Examples of such tasks are frequent pattern mining, se-
quence segmentation [13], and temporal trend mining.

Therefore, sanitizing an event sequence while pre-
serving utility is important. It is also challenging, be-
cause: (I) the number of ways to delete occurrences of
sensitive events is exponential in the number of time
points in the sequence, and (II) sanitized event se-
quences are often used in tasks that are difficult to deter-
mine a priori. For instance, one may apply segmentation
to a sequence and then frequent event mining to certain
prefixes, to discover actionable knowledge [9, 16].

Our work makes the following contributions:

First, we propose a model for quantifying the utility
of a sanitized event sequence. Our model captures the
impact of deletion on the relative frequency of all events,
across the entire sequence. This is achieved by measur-
ing the change to the probability of each event, at each
time point. Thus, the model penalizes drastic changes
in large parts of the sequence, which affect its segmen-
tal structure (i.e., significantly change the probability
distribution of events along the sequence) and the out-
put of the aforementioned mining tasks. For instance,
it avoids the deletion of all occurrences of a sensitive
event, from parts in which it is typically frequent (e.g.,
car antifreeze in winter) and the excessive increase of
the relative frequency of typically rare events.

Second, we formally define the optimization prob-
lem of Event Sequence Sanitization (ESS). The problem
requires preventing the mining of sensitive events using
a specified threshold, from each prefix of the sequence,
while optimizing utility according to our model. This
ensures that sensitive events are not exposed when fre-
quent event mining is applied to prefixes, as is typical
in practice [9, 16].

Third, we develop ODESA, an optimal algorithm
for solving the ESS problem, when there is one sensitive
event. We observe that simply deleting the minimum
number of occurrences required to sanitize a prefix, from
each prefix, may not lead to an optimal solution. This
is because deleting occurrences from a prefix in this
way may incur large changes to the relative frequency
of events in the corresponding overlapping prefixes.
Thus, we need to find the exact number of occurrences
that must be deleted from each prefix, to optimize
the utility of the event sequence. However, directly
computing the utility of each way of sanitizing the
sequence is prohibitive. This follows from the fact that
there are O(

(

n+m−1
m−1

)

) ways to delete n occurrences
from a sequence containing m time points (each way
is a weak composition of n into m parts [6]), and
n and m are very large. Thus, ODESA applies a
dynamic programming equation that finds the best way
of deleting i occurrences from a prefix ending at a time
point t, by deleting k occurrences associated with t and
i− k occurrences from the prefix ending at t− 1, for all
possible k values. The equation is applied recursively,
to increasingly longer prefixes. This allows ODESA to
find an optimal solution in linear time and space (in the
number of events and the number of time points of the
event sequence, respectively).

Example 2. Fig. 1(a) shows a part of the event
sequence of Example 1, which records the sales of a to d,
over weeks t1 to t5. Each product is sold at a quantity,
denoted after the “.”, during a week (products not sold
are for illustration only). The supermarket wants to
prevent the marketing company from discovering that
a accounts for at least 20% of the total sales, at each
time period starting from t1. ODESA sanitized the
event sequence, as shown in Fig. 1(b). The mining
of a, from any prefix, has been prevented (see Fig.
1(c)). Furthermore, utility has been preserved, as the
relative frequency of nonsensitive events did not change

significantly at any time point (see Figs. 1(d), 1(e), and
1(f)). Moreover, the output of frequent event mining did
not change and temporal trends were preserved.

Fourth, we develop ESSA, an optimal algorithm
for solving the ESS problem, when there are multiple
sensitive events. The algorithm works by applying
ODESA iteratively and scales linearly with the number
of sensitive events in practice. Experiments on real and
synthetic datasets demonstrate that ESSA can produce
sanitized event sequences that permit accurate mining,
and that it has low time and space requirements.

The rest of the paper is organized as follows. Sec-
tion 2 discusses preliminary concepts. Section 3 presents
our utility model and problem formulation. Section 4
presents our sanitization algorithms and Section 5 the
experimental evaluation. Section 6 discusses related
work and Section 7 concludes the paper.

2 Preliminaries

Let A be a finite set of events and T a set of time points.
Each event e ∈ A is associated with a time point ti ∈ T .
A Simultaneous Event Multiset (SEM) is defined as a
multiset of events, which occur at the same time point.
The set of events in an SEMM is denoted with EM , and
the length (i.e., number of events) of M is denoted with
|M |. The notation e.x denotes that an event e occurs x
times in an SEM (events with zero occurrences are for
illustration, and they are not released).

An event sequence D = [(M1, t1), . . . , (M|T |, t|T |)]
is an ordered sequence of SEMs, each of which is
associated with a different time point. The length of D,
denoted with |D|, is equal to the sum of the lengths of all
SEMs in D. Given an event sequence D and integers
i, j, such that i ≤ j, an event subsequence D[i, j] =
[(Mi, ti), . . . , (Mj, tj)] of D is an event sequence that
contains all SEMs, occurring between time points ti
and tj . The length of D[i, j], denoted with |D[i, j]|, is
equal to the sum of the lengths of all SEMs in D[i, j].
The event subsequence D[1, j] is referred to as the j-
prefix of D and denoted with Dj . We may omit j from
a j-prefix, when it is clear from the context.

The frequency (number of occurrences) of an event e
in an SEM M is denoted with fr(e,M) and its relative
frequency with P (e,M). The frequency and relative
frequency of e in an event sequence D are denoted with
fr(e,D) and P (e,D), respectively.

A sanitized SEM M ′ is obtained by deleting zero
or more event occurrences from an SEM M . A san-
itized event sequence D′ = [(M ′1, t1), . . . , (M

′
|T |, t|T |)]

is obtained by deleting zero or more event occur-
rences from each SEM in an event sequence D =
[(M1, t1), . . . , (M|T |, t|T |)]. We use deletion, as most

sanitization methods [23, 3, 11, 24, 19] do, because it
preserves data semantics, unlike noise addition and gen-
eralization. That is, the sanitized event sequence is a
part of the event sequence, which can be mined without
obtaining fake or generalized (aggregate) events. This
is important in many applications [15, 25].

Given a threshold δ, an event e is frequent in an
event sequence D, if P (e,D) ≥ δ.

3 Utility model and problem formulation

This section presents a model for quantifying the impact
of deletion on the utility of an event sequence. The
model captures changes to the relative frequency of
events at each time point, since deletion at a time point
t affects the relative frequency of all events, in any
part of the sequence that contains t. The changes at
a time point are captured by measuring the difference
between the probability of events, before and after
deletion. Subsequently, these differences are summed
up across the entire sequence, to capture its utility. In
the following, we explain how the model computes the
probability of events and the overall utility.

Assigning probabilities to events. A utility model
should: (I) be applicable to any event sequence, and
(II) heavily penalize event sequences from which many
event occurrences have been deleted. However, a utility
model that computes the probability of an event as its
relative frequency, in an SEM M or a sanitized SEM
M ′, does not satisfy these properties. This model is the
maximum likelihood estimate (MLE) that is not suitable
for event sequences, because it assigns zero probabilities
to the events that are not contained in M (resp., M ′)
and overestimates the probabilities of the events in M

(resp., M ′) [8]. In particular, the relative frequency of
e is undefined, when M ′ is empty, and equal to 1, when
M ′ is produced by deleting any number of occurrences
from an SEM M that contains a single event.

To overcome these problems, we apply addi-
tive smoothing with the commonly-used constant 0.5
[8]. Specifically, we assign a probability P̂ (e,M) to
an event e in an SEM M , which is computed as

fr(e,M)+0.5∑
ê∈A(fr(ê,M)+0.5)

, where ê is an event in the set of

events A, including e. The probability P̂ (e,M ′) of e in
a sanitized SEM M ′ is computed similarly. We will re-
fer to a probability computed using additive smoothing
as AS-probability. Note that a non-zero AS-probability
is assigned to every event, not just to an event in M or
M ′. Thus, P̂ (e,M ′) can be defined when M ′ is empty
and decreases as more occurrences of e are deleted, when
M ′ contains only e. This is because the function a−x

b−x ,
where a and b are the numerator and denominator of
P̂ (e,M ′) and x is the number of deleted occurrences of

e, is decreasing for any x ∈ [1, a).
By assigning an AS-probability P̂ (e,M) to each

event e in A, we associate a probability mass function
(pmf), denoted with P̂M , with M . Similarly, we obtain
a pmf P̂M ′ , associated with a sanitized SEM M ′.

Comparing probability distributions. We now
measure utility based on the impact of deletion on
the probability distribution of events. Specifically, the
impact of deletion on an SEM M that is sanitized to
M ′ can be quantified, based on the distance between
the pmf s P̂M and P̂M ′ . This distance is denoted with
E(M) and computed as

∑

e∈A(P̂M (e) − P̂M ′(e))2. We
will also refer to E(M) as the sanitization error for M .

Based on the sanitization error for M , the impact
of deletion on an event sequence D that is sanitized to
D′ is quantified as E(D) =

∑

i∈[1,|T |]E(Mi). E(D) will
also be referred to as the sanitization error for D.

We use Squared Euclidean distance to compute
E(M) and E(D), as it is effective for measuring the
similarity of event sequences [17], although there are
alternatives, such as KL-divergence. Clearly, the sani-
tization error for an event sequence favors the deletion
of: (I) a small number of occurrences of sensitive events,
and (II) occurrences from a small number of SEMs (i.e.,
few time points). Consequently, our model can be used
to avoid the deletion of all occurrences of a sensitive
event and changes to the segmental structure of the se-
quence, which affect the output of mining tasks. Also,
the sanitization error can be computed efficiently, even
when A is large, as the AS-probability for each event
that is not contained in the SEM (resp., in the sanitized
SEM) is the same.

Problem formulation. The Event Sequence Saniti-
zation (ESS) problem is defined as follows.

Problem. (Event Sequence Sanitization (ESS))
Given an event sequence D, a threshold δ and a set of
sensitive events S (selected by data owners), construct
a sanitized event sequence D′ from D, such that: (I)
P (e,D′j) < δ, for each event e ∈ S and each j-prefix
of D′, where j ∈ [1, |T |], and (II) the sanitization error
E(D) is minimum.

The problem requires constructing a sanitized event
sequence D′, so that: (I) no sensitive event is frequent,
in any j-prefix of D′, for a specified threshold δ, and
(II) D′ has optimal utility, according to our model.

We aim to prevent the mining of sensitive events,
from any prefix of D′ (the longest prefix, D′|T |, is D′

itself), because mining is often applied to prefixes [9, 16].
We opt for protecting all prefixes, as it is difficult
to know which of them will be mined, in a certain
application. Enforcing requirement (I) also prevents the
exposure of sensitive events, through mining for sets

of events, using a threshold δ. This is because sets
that contain sensitive events cannot be mined using a
threshold δ, due to the anti-monotonicity property of
the relative frequency. Note that we treat sensitive
events as not exposed, when their relative frequency
is lower than δ. This approach aims to minimize the
impact of deletion on data utility and is adopted by most
sanitization methods [23, 3, 11, 14, 24, 19]. It makes the
reasonable assumption that sensitive knowledge is not
actionable, when it is mined at a lower threshold than δ.
A different approach that provides stronger protection,
but lower data utility [26], can also be adopted by our
method (see Supplementary document [1]).

ESS is weakly NP-hard [20], when S contains one
sensitive event, as shown in Theorem 3.1 (the proof is in
the Supplementary document [1]). Clearly, the problem
remains weakly NP-hard, when |S| > 1.

Theorem 3.1. The ESS problem is weakly NP-hard,
when S contains one sensitive event.

4 Event sanitization method

This section details our method for solving the ESS
problem. We first present a dynamic programming
equation, used to delete a given number of occurrences
from a prefix, in a way that minimizes the sanitization
error of the prefix. Next, we present the ODESA
algorithm, which uses the equation to optimally solve
ESS for a single sensitive event. ODESA forms the
basis of an algorithm that solves ESS optimally. This
algorithm is called ESSA and is presented subsequently.

4.1 Optimal deletion from a prefix using dynamic

programming. Consider a prefix Dj+1 that must be
sanitized by deleting i occurrences of a sensitive event
s. The prefix can be sanitized optimally, using the
following dynamic programming equation:

(4.1) C[i][j] = min
∀k∈[0,fr(s,Mj+1)], k≤i

(C[i− k][j− 1]+E(Mk
j+1))

where j ≥ 0 and

• C[i][j] is the optimal error of sanitizing Dj+1

• C[i−k][j−1] is the error incurred by deleting i−k

occurrences of s from the prefix Dj , and
• E(Mk

j+1) is the error incurred by deleting k occur-
rences of s from the last SEM of Dj+1.

Eq. 4.1 selects the optimal way of deleting i occurrences
from Dj+1, by computing the error of all ways of
deleting i − k occurrences from Dj and k occurrences
from the last SEM of Dj+1. This avoids bias towards
specific parts of the event sequence (e.g., the first few
prefixes where s may be “too” frequent).

4.2 ODESA: Optimal Dynamic-programming

Event SAnitization. The ODESA algorithm works in
three phases: (I) it identifies the minimum number of
occurrences of a sensitive event that must be deleted,
from each prefix of the event sequence D, (II) it com-
putes the optimal sanitization error of D, by finding the
exact number of occurrences that must be deleted from
each prefix, and (III) it performs the sanitization of D
with the optimal error. The pseudocode of ODESA
describes these phases.

Phase I (Steps 1-6). The algorithm identifies all
prefixes of D in which the sensitive event s is frequent
(Step 1). Then, for each identified prefix, it computes
the minimum number of occurrences, whose deletion
would make s infrequent in the prefix, and it assigns
the maximum of these numbers to b (Steps 3-6). The
number corresponding to a prefix Dj is denoted with bj ,

and it is computed by solving P (s,Dj) =
fr(s,Dj)−bj
|Dj |−bj

<

δ, when fr(s,Dj) < |Dj| (otherwise, bj = fr(s,Dj)).

Phase II (Steps 7-21). The algorithm computes
the optimal sanitization error of the event sequence D.
Observe that the error will be optimal, if at least bj
occurrences are deleted from each prefix Dj , in a way
that minimizes the sanitization error of the sequence.
As D is essentially the prefix D|T |, the optimal error
can be computed using Eq. 4.1.

The process begins by creating the array C, which
will store the results of computing Eq. 4.1, and the
array I, which will store information about the number
of the corresponding deleted occurrences (Steps 7-8).
Then, the cells of C that correspond to deleting no
occurrences of the sensitive event from a prefix are set
to zero (Steps 9-11). Next, ODESA computes the error
of deleting i occurrences from the prefix D1, for each
i ∈ [b1, fr(s,D1)], and it stores the error values in C and
the number of deleted occurrences that correspond to
these values in I (Steps 12-15). Following that, ODESA
uses Eq. 4.1 to compute the optimal error of deleting
i occurrences from Dj+1, for each i ∈ [1, b] and each
j ∈ [1, |T | − 1], and it updates C and I (Steps 16-21).
Thus, all ways of deleting at least bj occurrences from
a prefix Dj are considered.

Phase III (Steps 22-34). In this phase, ODESA
sanitizes D with the optimal error and returns its
sanitized counterpart. Before explaining the process, let
us examine the information of the tuple in I[b][|T | − 1].
The first element of this tuple contains the number of
occurrences of the sensitive event that must be deleted
from the last SEM of D, as part of the optimal solution,
while the second element serves as an index to the cell
of C that stores the optimal error for the prefix D|T |−1.
Thus, the information in I can be used to construct

Algorithm: ODESA
Input: Event sequence D, threshold δ, sensitive event s

Output: Sanitized event sequence D′

// Phase I: identification of minimum number of
occurrences that must be deleted

1 D ← set of j-prefixes of D such that, for each Dj in the set,
P (s,Dj) ≥ δ

2 B ← ∅

3 foreach Dj ∈ D do

4 bj ← the minimum integer that is larger than

⌈
fr(s,Dj)−δ·|Dj |

1−δ
⌉ and at most fr(s,Dj)

5 B ← B ∪ {bj}

6 b← the maximum element of B
// Phase II: optimal sanitization error computation

7 C ← a 2D-array with b + 1 rows, |T | columns, and each cell
initialized to ∞

8 I ← a 2D-array with b + 1 rows, |T | columns, and each cell
initialized to 〈−1,−1〉

9 foreach j = 0 to |T | − 1 do

10 if P (s, Dj+1) < δ then

11 C[0][j]← 0

12 foreach i = 1 to b do

13 if i ∈ [b1, fr(s,D1)] then

14 C[i][0]← E(Mi
1) /* the error of deleting i

occurrences from M1 */

15 I[i][0]← 〈i,−1〉

16 foreach j ← 1 to |T | − 1 do

17 foreach i = 1 to b do

18 C[i][j]← min
∀k∈[0,fr(s,Mj+1)], k≤i

(C[i− k][j − 1]

+ E(Mk
j+1))

19 if C[i][j] 6=∞ then

20 k′ ← argmin
∀k∈[0,fr(s,Mj+1)], k≤i

(C[i− k][j − 1]

+ E(Mk
j+1))

21 I[i][j]← 〈k′, i− k′〉

// Phase III: sanitized event sequence construction

22 D′ ← D
23 h← |T | − 1
24 σ ← the cell I[b][h] of array I

25 if σ[0] 6= −1 then // σ[0] denotes the first element of σ
26 Delete σ[0] occurrences of s from the last SEM of the

prefix D′
h+1

27 else

28 return D′

29 if σ[1] 6= −1 then // σ[1] denotes the second element of σ
30 h← h− 1
31 σ ← the cell I[σ[1]][h] of array I

32 goto Step 25

33 else

34 return D′

the sanitized event sequence by a backtracking process,
which is performed in Steps 23-34.

Specifically, in Steps 23-28, ODESA considers the
tuple in I[b][|T | − 1] and deletes the number of occur-
rences specified by its first element, from the last SEM
of D′|T |, or it returns the sanitized event sequence, if
no deletion is required. Thus, the last SEM of D is
sanitized, as dictated by the optimal solution. Then,
in Steps 29-34, ODESA considers the second element of
the tuple in I[b][|T | − 1] and backtracks to the cell that
is specified by this element, or it returns the sanitized
event sequence, if no further event deletion is required.

Complexity. ODESA needs O
(

|D|+ |T | · b2 · |A|
)

time and O (|T | · (b + |A|)) space (see Supplementary
document [1]). Thus, both its time and space complex-
ity are pseudopolynomial [20] in b.

i \ j 0 1 2 3 4

0 0 0 ∞

1 9.2 · 10−3 2.4 · 10−3 ∞

2 ∞ 1.1 · 10−2 3.6 · 10−3

.

13 . . . 6 · 10−2

(a)

i \ j 0 1 2 3 4

0 〈−1,−1〉 〈−1,−1〉 〈−1,−1〉

1 〈1,−1〉 〈1, 0〉 〈−1,−1〉

2 〈−1,−1〉 〈2, 0〉 〈1, 1〉

.

13 . . . 〈2, 11〉

(b)

I[1][0] = 〈1,−1〉 I[3][1] = 〈2, 1〉 I[6][2] = 〈3, 3〉 I[11][3] = 〈5, 6〉 I[13][4] = 〈2, 11〉

(c)

Figure 2: (a) Array C (the cells contain error values). (b) Array I (the cells contain information about the number of
deleted events). (c) Cells of the array I that are considered from right to left, during backtracking.

Example of applying ODESA. We apply ODESA
to the event sequence D in Fig. 1(a). The sensitive
event is a and the threshold δ is set to 0.2.

Phase I: The algorithm identifies the prefixes D3, D4,
and D5, in which a is frequent. Then, it computes
the minimum number of occurrences of a that must be
deleted from D3 to make the event infrequent in the
prefix. This yields b3 = 2. Similarly, ODESA computes
b4 = 9, b5 = 13, and b = max(b3, b4, b5) = 13.

Phase II: ODESA constructs and initializes the arrays
C and I, and then sets C[0][0] = 0 and C[0][1] = 0,
because a is infrequent in D1 and in D2 (Steps 7-11).
Next, the algorithm computes the error of deleting 1
occurrence of a from D1 (Steps 12-15). The error is
stored in C[1][0], as shown in Fig. 2(a), and I[1][0] is set
to 〈1,−1〉, as shown in Fig. 2(b). After that, ODESA
computes the error of deleting 1 to 13 occurrences from
D2 and updates C and I (Steps 16-21). The error
for D3, D4 and D5 is also computed and C and I

are updated accordingly, as shown in Fig. 2. Thus,
C[13][4] contains the optimal sanitization error of D5

and I[13][4] = 〈2, 11〉.

Phase III: ODESA performs backtracking based on the
cells of I which correspond to the optimal solution and
are shown in Fig. 2(c). Since I[13][4] = 〈2, 11〉, the
algorithm deletes 2 occurrences of a from the last SEM
and backtracks to I[11][3] (Steps 25-32). The same
process is repeated for all other cells in Fig. 2(c) (from
right to left), and then ODESA returns the sequence in
Fig. 1(b) (Step 34).

4.3 ESSA: Event Sequence SAnitization. The
ESSA algorithm optimally sanitizes an event sequence,
when there are multiple sensitive events. As can be seen
in the pseudocode, the algorithm simply applies ODESA
to each sensitive event iteratively (Step 3). That is, the
result for a sensitive event is given as input to the next
iteration. This is performed until the event sequence
satisfies the requirement (I) of the ESS problem, at
which point the loop in Step 2 terminates. Last, the
sanitized event sequence is returned (Step 5).

Algorithm: Event Sequence SAnitization (ESSA)
Input: Event sequence D, threshold δ, set of sens. events S

Output: Sanitized event sequence D′

1 D′ ← D

2 while there is s ∈ S such that P (s,D′
j) ≥ δ, for any D′

j do

3 foreach event s ∈ S do

4 D′ ← ODESA(D′, δ, s)

5 return D′

Theorem 4.1 establishes that ESSA optimally solves
the ESS problem.

Theorem 4.1. ESSA finds an optimal solution to the
ESS problem.

Proof. (Sketch) The proof is based on three properties:
(1) P (s, D̃′j) ≤ P (s,D′j), where D̃

′
j is a prefix, produced

by applying ODESA to s, and D′j is a sanitized prefix

in the output of ESSA. This holds because |D̃′j | ≥ |D′j|.
(2) No more occurrences of s than those required by
the condition (I) of the ESS problem are deleted, in
an iteration of the loop in Step 2. This follows from
property (1) and the fact that the minimum number
of occurrences of a single sensitive event is deleted by
ODESA in an iteration, whereas condition (I) applies to
any sensitive event. (3) P (s, D̃′j) can only increase in an
iteration of the loop in Step 2, when an occurrence of
s is deleted from D̃′j, and P (s, D̃′j) = P (s,D′j) ≥ δ,
for each s ∈ S, when the loop terminates. Thus,
P (s, D̃′j) becomes equal to P (s,D′j), by deleting the
minimum number of occurrences of s, for any s ∈ S
and any j ∈ [1, |T |], and the error E(D) is minimum.
Consequently, the ESS problem is solved optimally. ✷

Note that ESSA will always terminate, because the
loop in Step 2 can be executed at most O(fr(s1, D) +
. . . + fr(s|S|, D)) times, when S = {s1, . . . , s|S|}. This
corresponds to the case when all occurrences of sensitive
events must be deleted and only one occurrence is
deleted, in an iteration of the loop.

Complexity. ESSA needs O(c · (|D| + |T | · b2 · |A|))
time andO (|T | · (b + |A|)) space, as it executes ODESA
c times. While c = O(|D|), in practice c ≈ |S| ·α, where
α is the average number of occurrences of a sensitive
event in D, as shown in our experiments.

(a) (b) (c)
Figure 3: Sanitization error (y-axis) vs. number of sensitive events (x-axis), for varying threshold δ, in: (a) ADL, (b) ENT,
and (c) SYN .

(a) (b) (c)
Figure 4: Percentage of deleted events (y-axis) vs. number of sensitive events (x-axis), for varying threshold δ, in: (a)
ADL, (b) ENT, and (c) SYN .

5 Experiments

In this section, we evaluate ESSA in terms of data utility
and efficiency. We do not compare against existing
sanitization methods, because they cannot be used to
solve our problem (see Section 6).

To capture data utility, we measure the sanitization
error, the percentage of deleted events, and the percent-
age of ghost events. A nonsensitive event e is ghost, if
it is infrequent in a j-prefix of an event sequence D,
but it is frequent in the sanitized counterpart of the
prefix. Ghost events model knowledge that cannot be
mined from the prefix but can be mined from its sani-
tized counterpart. Thus, fewer ghosts imply that data
utility is higher. The notion of ghost events appears in
[14] but here we adapt it to event sequences.

We implemented ESSA in C++ and applied it to
the ADL and Entree (ENT) datasets (available at http:
//archive.ics.uci.edu/ml/), as well as to a synthetic
dataset (SYN), created using the IBM data generator
[5]. Table 1 shows the characteristics of the datasets
and the thresholds we used. The default parameters
were δ = 0.1% and |S| = 200, and the sensitive events
were selected randomly. All experiments ran on an Intel
Xeon at 2.4 GHz with 12GB of RAM.

Dataset |D| |A| |T | Avg. Max. Threshold
|M1| |Mi| δ (%)

ADL 1,448 10 443 3.26 17 0.2, 0.5, 1, 2.5
ENT 239,790 5,005 50,364 4.76 116 0.1, 0.2, 0.5, 1
SYN 1,784,984 909 97,280 18.35 52 0.2, 0.5, 1, 2.5

Table 1: Characteristics of datasets and thresholds δ.

Data utility. We first measured data utility, based on
our utility model. The sanitization error of all datasets,
for varying number of sensitive events (i.e., |S|) and

threshold δ is reported in Fig. 3. The error increases
when there are more sensitive events and decreases when
δ is larger. This is because more event occurrences need
to be deleted in such cases. Furthermore, the errors were
larger for ADL, because its length and domain size are
small. For instance, half of the events are treated as
sensitive and each sensitive event must occur at most 2
times in any prefix of ADL, when |S| = 5 and δ = 0.2%.

Next, we report, in Fig. 4, the percentage of deleted
event occurrences. Note that the percentage was low in
all cases (the median percentage was 2%, 9 ·10−3%, and
2 · 10−4%, for ADL, ENT , and SYN , respectively, and
the maximum percentage was 8.4%) and that it follows
the same trend with the error in Fig. 3. This is expected
because ESSA optimizes the sanitization error, which
increases with the amount of event deletion.

In addition, we demonstrate that ESSA permits ac-
curate frequent event mining. This is because, sanitiz-
ing ADL as in the previous experiment, did not cre-
ate ghost events and event occurrences were not deleted
from most SEMs (see Fig. 5(a)). Thus, there were min-
imal changes in the set of frequent events and in their
relative frequency. Specifically, the percentage of ghost
events for ENT and SYN was low (the median percent-
age was 0.56% and 0.49%, respectively) and follows the
same trend with the error in Fig. 3. This shows that op-
timizing the error helps preventing ghosts, which occur
when many occurrences are deleted from a prefix.

Efficiency. We measured the runtime of ESSA using
random event subsequences of increasing length, whose
events were contained in all longer subsequences. The
results are reported in Fig. 6. It can be seen that ESSA
scaled better than quadratically and close to linearly,

Event id Non-affected SEMs (%)

0 100%
1 100%
2 99.7%
3 95.72%
4 82.43%

(a) (b) (c)
Figure 5: (a) SEMs in which no deletion was applied, for each nonsensitive event in ADL, when |S| = 5 and δ = 0.2%.
Percentage of ghost events (y-axis) vs. number of sensitive events (x-axis), for varying δ, in: (b) ENT, and (c) SYN .

|S| = 200, δ = 0.1%

|D|

(a)

|S| = 200, δ = 0.1%

|D|

(b)

|D| = 200K, δ = 0.1%

|S| · α

(c)

|D| = 1M, δ = 0, 1%

|S| · α

(d)
Figure 6: Runtime in seconds (y-axis) vs. event sequence length (x-axis) for: (a) ENT , and (b) SYN . Runtime vs. number
of sensitive events (x-axis), for: (c) ENT , and (d) SYN .

with the length of the event sequence (Figs. 6(a) and
6(b)) and sublinearly with |S| · α (Figs. 6(c) and 6(d)),
as predicted by our analysis in Section 4.3. The impact
of the threshold δ can be seen in Figs. 7(a) and 7(b).
More time was needed when δ was smaller, as more
occurrences of sensitive events had to be deleted (all
sensitive events had a relative frequency of at least δ in
the event sequence). However, ESSA needed less than
10 seconds, in all tested cases.

We also measured the peak memory consumption
of ESSA. The results in Figs. 7(c) and 7(d) show that
ESSA scaled well, with respect to the length of the
event sequence, and that it required less than 30 MBs of
memory. Longer event sequences needed more memory
to be sanitized, as they contain more time points.

6 Related work

Data sanitization (also known as knowledge hiding) is an
important direction in privacy-preserving data mining
that aims to prevent the mining of sensitive knowledge.
Existing sanitization approaches are applied to a col-
lection (multiset) of transactions [23, 24, 19], sequences
[3, 11, 14], or trajectories [3]. Most approaches pre-
vent the mining of frequent sensitive patterns [23, 3, 11]
or association rules [24, 19], by applying deletion. To
preserve utility, these approaches attempt to minimize
the total number of deleted items (events) [11] and/or
changes in the frequency of nonsensitive patterns [3], as
well as in the output of frequent pattern [23, 11, 14]
or association rule [24, 19] mining. On the contrary,
we consider a long sequence of events that are associ-
ated with time points and follow differing probability
distributions, in different parts of the sequence. Conse-
quently, the utility of the event sequence in mining tasks

cannot be preserved based on the number of deleted
events, or the frequency of events in the entire sequence,
as in existing sanitization methods. To achieve this, our
approach minimizes changes in the probability distribu-
tion of events, across the sequence. Furthermore, sensi-
tive events may be exposed by applying frequent event
mining to prefixes of an event sequence. Therefore, our
approach sanitizes each prefix of the sequence, unlike
existing methods, which cannot prevent this threat.

Anonymization is a different direction in privacy-
preserving data mining. Most anonymization ap-
proaches are applicable to a collection of transactions
[7], trajectories [2], or sequences (with [22] or without
[18] time points), each of which is associated with a
different individual. Another category of approaches
anonymizes an individual’s time-series [21] or event se-
quence [12], using differential privacy [10]. Anonymiza-
tion approaches guard against the disclosure of an in-
dividual’s identity [2, 18] and/or sensitive information
[7, 2, 22, 21, 12]. However, they cannot be applied to
prevent the mining of sensitive events, from each pre-
fix of an event sequence. This is because their privacy
models do not limit the relative frequency of sensitive
events, in the prefixes of the sequence.

Suppressing sensitive patterns from an infinite event
sequence has been studied in [15, 25]. These works
aim to achieve privacy by minimizing the number of
occurrences of sensitive patterns, while preserving the
occurrences of certain nonsensitive patterns that are
specified by data owners. Both types of patterns are
sets of events. However, these works are not applicable
to our problem, because they do not aim to prevent the
mining of sensitive events and do not consider the utility
of the event sequence in mining tasks.

|D| = 200K, |S| = 200

(a)

|D| = 1M, |S| = 200

(b)

|S| = 200, δ = 0.1%

(c)

|S| = 200, δ = 0.1%

(d)
Figure 7: Runtime in seconds (y-axis) vs. threshold δ (x-axis), for: (a) ENT , and (b) SYN . Memory consumption in MBs
(y-axis) vs. event sequence length (x-axis) for: (c) ENT , and (d) SYN .

7 Conclusions

Frequent event mining is a fundamental task in ap-
plications that feature event sequences. However, it
may lead to the exposure of sensitive events. In this
work, we studied how to prevent this threat by delet-
ing events, while preserving the utility of the event se-
quence. To quantify utility, we proposed a model that
captures changes, caused by deletion, to the probability
distribution of events across the sequence. Based on the
model, we introduced the ESS problem, which seeks to
sanitize an event sequence with optimal utility. To solve
the problem, we developed an optimal method based on
dynamic programming that is effective and efficient, as
shown in our experiments.

8 Acknowledgments

The work was supported by a RAENG Research Fellow-
ship (Grigorios Loukides) and the EU OpenIOT project
(Robert Gwadera).

References

[1] Supplementary document. http://users.cs.cf.ac.

uk/G.Loukides/sdm15s.pdf.
[2] O. Abul, , F. Bonchi, and M. Nanni. Never walk alone:

Uncertainty for anonymity in moving objects databases.
In ICDE, pages 376–385, 2008.

[3] O. Abul, F. Bonchi, and F. Giannotti. Hiding sequen-
tial and spatiotemporal patterns. TKDE, 22(12):1709–
1723, 2010.

[4] A. Achar, S. Laxman, R. Viswanathan, and P.S. Sas-
try. Discovering injective episodes with general partial
orders. DMKD, 25(1):67–108, 2012.

[5] R. Agrawal and R. Srikant. Mining sequential patterns.
In ICDE, pages 3–14, 1995.

[6] M. Bona. A walk through combinatorics. World
Scientific, 2006.

[7] R. Chen, N. Mohammed, B. C. M. Fung, B. C. Desai,
and L. Xiong. Publishing set-valued data via differen-
tial privacy. PVLDB, 4(11):1087–1098, 2011.

[8] S.F. Chen and J. Goodman. An empirical study of
smoothing techniques for language modeling. In ACL,
pages 310–318, 1996.

[9] G. Cormode and M. Hadjieleftheriou. Finding frequent
items in data streams. PVLDB, 1(2):1530–1541, 2008.

[10] C. Dwork. Differential privacy. In ICALP, pages 1–12,
2006.

[11] A. Gkoulalas-Divanis and G. Loukides. Revisiting
sequential pattern hiding to enhance utility. In KDD,
pages 1316–1324, 2011.

[12] M. Götz, S. Nath, and J. Gehrke. Maskit: Privately
releasing user context streams for personalized mobile
applications. In SIGMOD, pages 289–300, 2012.

[13] R. Gwadera, A. Gionis, and H. Mannila. Optimal
segmentation using tree models. In ICDM, pages 244–
253, 2006.

[14] R. Gwadera, A. Gkoulalas-Divanis, and G. Loukides.
Permutation-based sequential pattern hiding. In
ICDM, pages 241–250, 2013.

[15] Y. He, S. Barman, D. Wang, and J. F. Naughton.
On the complexity of privacy-preserving complex event
processing. In PODS, pages 165–174, 2011.

[16] R. M. Karp, S. Shenker, and C. H. Papadimitriou.
A simple algorithm for finding frequent elements in
streams and bags. ACM TODS, 28(1):51–55, 2003.

[17] H. Mannila and J. K. Seppänen. Finding similar situa-
tions in sequences of events via random projections. In
SDM, pages 1–16, 2001.

[18] A. Monreale, D. Pedreschi, R. G. Pensa, and F. Pinelli.
Anonymity preserving sequential pattern mining. Artif.
Intell. Law, 22(2):141–173, 2014.

[19] S. R. M. Oliveira and O. R. Zäıane. Protecting sensitive
knowledge by data sanitization. In ICDM, pages 211–
218, 2003.

[20] C. H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994.

[21] V. Rastogi and S. Nath. Differentially private aggrega-
tion of distributed time-series with transformation and
encryption. In SIGMOD, pages 735–746, 2010.

[22] R. Sherkat, J. Li, and N. Mamoulis. Efficient time-
stamped event sequence anonymization. ACM Trans.

Web, 8(1):4:1–4:53, 2013.
[23] X. Sun and P.S. Yu. A border-based approach for

hiding sensitive frequent itemsets. In ICDM, pages 426–
433, 2005.

[24] V. S. Verykios, A. K. Emagarmid, E. Bertino, Y. Say-
gin, and E. Dasseni. Association rule hiding. TKDE,
16(4):434–447, 2004.

[25] D. Wang, Y. He, E. Rundensteiner, and J. F. Naughton.
Utility-maximizing event stream suppression. In SIG-

MOD, pages 589–600, 2013.
[26] Z. Zhu and W. Du. K-anonymous association rule

hiding. In ASIACCS, pages 305–309, 2010.

Optimal event sequence sanitization – Supplementary Document

Grigorios Loukides∗ Robert Gwadera†

1 Proof of Theorem 3.1 (Sketch)

We first show that the following Constrained Multiple-
choice Subset Sum Problem (CMSSP) is weakly NP-
hard. Then, we reduce our ESS problem, when |S| = 1,
from CMSSP.

CMSSP is defined as:

(1.1) min

m
∑

i=1

∑

∀j∈Ni

wij · xij

subject to:

• (1.2)
∑q

i=1

∑

∀j∈Ni
wij · xij ≥ cq, q = 1, . . .m,

• (1.3)
∑

j∈Ni
xij = 1, i = 1, . . .m, and

• (1.4) xij = {0, 1}, i = 1, . . . ,m, j ∈ Ni.

In CMSSP, we are given a set of elements subdivided
into m, mutually exclusive classes N1, ..., Nm, and a
knapsack. Each class Ni has |Ni| elements. Each
element j ∈ Ni has an integer weight wij ≥ 0. The
goal is to minimize the total weight (Eq. 1.1) by filling
the knapsack with elements whose weights satisfy the
constraints of Eq. 1.2, where cq ≥ 0, q ∈ [1,m], and
each of these elements belongs to a different class (Eq.
1.3). The variable xij takes a value 1, if the element
j is chosen from class Ni and 0 otherwise. CMSSP
can be restricted to the weakly NP-hard Minimization
Multiple-choice Subset Sum Problem [4] by allowing
only instances where cq = 0, for each q ∈ [1,m− 1].

We can map an instance of CMSSP to an instance
of the ESS problem, when |S| = 1, in polynomial
time, as follows. We consider an event e ∈ S with
wi1 + wi2 + . . . + wi|Ni| occurrences in Mi, for each
i ∈ [1,m]. Thus, selecting xij in CMSSP, which incurs a
weight wij , corresponds to deleting wij occurrences of e
from Mi. Also, each constant cq, q ∈ [1,m], corresponds
to the number of occurrences of e that need to be deleted
from the prefix Dq. So, a δ that is larger than any
fr(e,Dq)−cq

|Dq|−cq
, where q ∈ [1,m], must be chosen.

In the following, we will prove that a sanitized event
sequenceD′ is a solution to the ESS problem, if and only
if it corresponds to a solution of CMSSP. Assume that

∗Cardiff University, email: g.loukides@cs.cf.ac.uk
†EPFL, email: robert.gwadera@epfl.ch

D′ is an optimal solution to ESS, which is produced
by deleting at least w1j1 occurrences from the prefix
D1, at least w2j2 occurrences from D2, . . ., at least
wmjm occurrences from Dm. As the sanitization error
E(D) is minimum, the total weight of the corresponding
elements in CMSSP (i.e., w1j1 ·x1j1 + . . .+wmjm ·xmjm)
will be minimum as well, hence Eq. 1.1 holds. Also, the
total weight of the corresponding elements in Ni will be
at least wiji . Thus, Eq. 1.2 holds, with cq = w1j1 +
. . .+wqjq , for each q ∈ [1,m]. In addition, Eqs. 1.3 and
1.4 hold, since exactly one element is selected from each
class and all elements are 0 or 1. Thus, D′ corresponds
to a solution of CMSSP. Furthermore, a solution to
CMSSP corresponds to a solution of the ESS problem,
when S contains a single event. This is because: (I)
the sanitization error E(D) is minimum, since Eq. 1.1
holds, and (II) we delete at least w1j1 occurrences from
D1, at least w1j1 + w2j2 from D2, . . ., and at least
w1j1 + . . .+ wmjm occurrences from Dm, since Eq. 1.2

holds. Thus, P (e,D′
q) =

fr(e,Dq)−
∑q

i=1 wqjq

|Dq|−
∑q

i=1 wqjq

, for each

q ∈ [1, |T |]. So, the solution to CMSSP corresponds
to a solution to the ESS problem, when |S| = 1 and
δ is larger than maxq∈[1,|T |](P (e,D′

q)). Thus, the ESS
problem is weakly NP-hard, when |S| = 1. ✷

2 Complexity analysis for ODESA

ODESA needs O
(

|D|+ |T | · b2 · |A|
)

time, in the worst
case. Steps 1-6 need O(|D|) time, because they involve
computing fr(s,Dj), for each Dj , j ∈ [1, |T |]. Steps
16-21 need O(|T | · b2 · |A|) time, because Step 18 is
executed O(|T | · b) times. In each execution of Step
18, the min is calculated O(b) times and E(Mk

j+1)
is computed in O(|A|) time, using a hashtable with
key e and value a list [fr(e,M1), . . . , fr(e,M|T |)], for
each e ∈ A. The worst-case space complexity of
ODESA is O (|T | · (b+ |A|)), because the hashtable
needs O(|T | · |A|) space, and each of the arrays I and C

needs O(|T | · b) space. Thus, both the time and space
complexity of ODESA are pseudopolynomial [6] in b.

3 An alternative to the minimum harm
approach

Our work avoids the exposure of sensitive events by
upper-bounding their relative frequency, in each j-

prefix of a sanitized event sequence D′ (see Section 3).
This approach is followed by most existing sanitization
methods [7, 1, 2, 3, 8, 5] and is referred to as the
minimum harm approach.

It is also worth noting that our method can be
modified to follow an alternative approach, which offers
stronger protection but lower data utility [9]. In our
setting, this approach requires ensuring that there is a
set N of at least k − 1 nonsensitive events so that, for
each event e′ ∈ N and each prefix D′

j of the sanitized
event sequence, it holds that P (e′, D′

j) = P (e,D′
j). This

approach aims to prevent an attacker from discovering
that e is sensitive, when its relative frequency in a prefix
is lower than δ but higher than that of all other events.
Specifically, the approach limits the probability that the
attacker will identify e as sensitive to 1

k
, where k is

a parameter specified by data owners. To follow this
approach, we can easily modify the ODESA algorithm,
by limiting the minimum number of deleted occurrences
from each SEM.

References

[1] O. Abul, F. Bonchi, and F. Giannotti. Hiding sequen-
tial and spatiotemporal patterns. TKDE, 22(12):1709–
1723, 2010.

[2] A. Gkoulalas-Divanis and G. Loukides. Revisiting
sequential pattern hiding to enhance utility. In KDD,
pages 1316–1324, 2011.

[3] R. Gwadera, A. Gkoulalas-Divanis, and G. Loukides.
Permutation-based sequential pattern hiding. In
ICDM, pages 241–250, 2013.

[4] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack

problems. Springer, 2004.
[5] S. R. M. Oliveira and O. R. Zäıane. Protecting sensitive

knowledge by data sanitization. In ICDM, pages 211–
218, 2003.

[6] C. H. Papadimitriou. Computational complexity.
Addison-Wesley, 1994.

[7] X. Sun and P.S. Yu. A border-based approach for
hiding sensitive frequent itemsets. In ICDM, pages 426–
433, 2005.

[8] V. S. Verykios, A. K. Emagarmid, E. Bertino, Y. Say-
gin, and E. Dasseni. Association rule hiding. TKDE,
16(4):434–447, 2004.

[9] Z. Zhu and W. Du. K-anonymous association rule
hiding. In ASIACCS, pages 305–309, 2010.

	sdm_odesa_crc
	sdm_odesa._supplement

