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Abstract. We develop a model of abduction in abstract argumenta-
tion, where changes to an argumentation framework act as hypothe-
ses to explain the support of an observation. We present dialogical
proof theories for the main decision problems (i.e., finding hypothe-
ses that explain skeptical/credulous support) and we show that our
model can be instantiated on the basis of abductive logic programs.

1 Introduction

In the context of abstract argumentation [12], abduction can be seen
as the problem of finding changes to an argumentation framework
(or AF for short) with the goal of explaining observations that can
be justified by making arguments accepted. The general problem of
whether and how an AF can be changed with the goal of changing the
status of arguments has been studied by Baumann and Brewka [3],
who called it the enforcing problem, as well as Bisquert et al. [4],
Perotti et al. [5] and Kontarinis et al. [15]. None of these works,
however, made any explicit link with abduction. Sakama [20], on the
other hand, explicitly focused on abduction, and presented a model
in which additions as well as removals of arguments from an abstract
AF act as explanations for the observation that an argument is ac-
cepted or rejected.

While Sakama did address computation in his framework, his
method was based on translating abstract AFs into logic programs.
Proof theories in argumentation are, however, often formulated as
dialogical proof theories, which aim at relating the problem they ad-
dress with stereotypical patterns found in real world dialogue. For
example, proof theories for skeptical/credulous acceptance have been
modelled as dialogues in which a proponent persuades an opponent
to accept the necessity/possibility of an argument [17], while credu-
lous acceptance has also been related to Socratic style dialogue [9].
Thus, the question of how decision problems in abduction in argu-
mentation can similarly be modelled as dialogues remains open.

Furthermore, argumentation is often used as an abstract model for
non-monotonic reasoning formalisms. For example, an instantiated
AF can be generated on the basis of a logic program. Consequences
can then be computed by looking at the extensions of the instantiated
AF [12]. In the context of abduction, one may ask whether a model
of abduction in argumentation can similarly be seen as an abstraction
of abductive logic programming. Sakama, however, did not explore
the instantiation of his model, meaning that this question too remains
open.
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This brings us to the contribution of this paper. We first present a
model of abduction in abstract argumentation, based on the notion of
an AAF (abductive argumentation framework) that encodes different
possible changes to an AF, each of which may act as a hypothesis to
explain an observation that can be justified by making an argument
accepted. We then do two things:

1. We present sound and complete dialogical proof procedures for
the main decision problems, i.e., finding hypotheses that explain
skeptical/credulous acceptance of arguments in support of an ob-
servation. These proof procedures show that the problem of ab-
duction is related to an extended form of persuasion, where the
proponent uses hypothetical moves to persuade the opponent.

2. We show that AAFs can be instantiated by ALPs (abductive logic
programs) in such a way that the hypotheses generated for an ob-
servation by the ALP can be computed by translating the ALP into
an AAF. The type of ALPs we focus on are based on Sakama and
Inoue’s model of extended abduction [13, 14], in which hypothe-
ses have a positive as well as a negative element (i.e., facts added
to the logic program as well as facts removed from it).

In sum, our contribution is a model of abduction in argumentation
with dialogical proof theories for the main decision problems, which
can be seen as an abstraction of abduction in logic programming.

The overview of this paper is as follows. After introducing the nec-
essary preliminaries in section 2 we present in section 3 our model
of abduction in argumentation. In section 4 we present dialogical
proof procedures for the main decision problems (explaining skep-
tical/credulous acceptance). In section 5 we show that our model of
abduction can be used to instantiate abduction in logic programming.
We discuss related work in section 6 and conclude in section 7.

2 Preliminaries

An argumentation framework consists of a set A of arguments and a
binary attack relation � over A [12]. We assume in this paper that
A is a finite subset of a fixed set U called the universe of arguments.

Definition 1. Given a countably infinite set U called the universe
of arguments, an argumentation framework (AF, for short) is a pair
F = (A,�) where A is a finite subset of U and� a binary relation
over A. If a � b we say that a attacks b. F denotes the set of all
AFs.

Extensions are sets of arguments that represent different view-
points on the acceptance of the arguments of an AF. A semantics
is a method to select extensions that qualify as somehow justifiable.
We focus on one of the most basic ones, namely the complete seman-
tics [12].
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Definition 2. Let F = (A,�). An extension of F is a set E ⊆
A. An extension E is conflict-free iff for no a, b ∈ E it holds that
a � b. An argument a ∈ A is defended by E iff for all b such that
b � a there is a c ∈ E such that c � b. Given an extension E,
we define DefF (E) by DefF (E) = {a ∈ A | E defends a}. An
extension E is admissible iff E is conflict-free and E ⊆ DefF (E),
and complete iff E is conflict-free and E = DefF (E). The set of
complete extension of F will be denoted by Co(F ). Furthermore,
the grounded extension (denoted by Gr(F )) is the unique minimal
(w.r.t. ⊆) complete extension of F .

An argument is said to be skeptically (resp. credulously) accepted
iff it is a member of all (resp. some) complete extensions. Note
that the set of skeptically accepted arguments coincides with the
grounded extension. Furthermore, an argument is a member of a
complete extension iff it is a member of a preferred extension, which
is a maximal (w.r.t. ⊆) complete extension. Consequently, credulous
acceptance under the preferred semantics (as studied e.g. in [17]) co-
incides with credulous acceptance under the complete semantics.

3 Abductive AFs

Abduction is a form of reasoning that goes from an observation to a
hypothesis. We assume that an observation translates into a set X ⊆
A. Intuitively, X is a set of arguments that each individually support
the observation. If at least one argument x ∈ X is skeptically (resp.
credulously) accepted, we say that the observation X is skeptically
(resp. credulously) supported.

Definition 3. Given an AF F = (A,�), an observation X ⊆ A
is skeptically (resp. credulously) supported iff for all (resp. some)
E ∈ Co(F ) it holds that x ∈ E for some x ∈ X .

The following proposition implies that checking whether an obser-
vation X is skeptically supported can be done by checking whether
an individual argument x ∈ X is in the grounded extension.

Proposition 1. Let F = (A,�) and X ⊆ A. It holds that F skep-
tically supports X iff x ∈ Gr(F ) for some x ∈ X .

Proof of proposition 1. The if direction is immediate. For the only
if direction, assume F = (A,�) explains skeptical support for X .
Then for every complete extension E of F , there is an x ∈ X s.t. x ∈
E. Define G by G = (A∪{a, b},� ∪{(x, a) | x ∈ X}∪{(a, b)}),
where a, b �∈ A. Then for every complete extension E of G it holds
that b ∈ E, hence b ∈ Gr(G). Thus x ∈ Gr(G) for some x ∈ X .
But Gr(F ) = Gr(G) ∩A, hence x ∈ Gr(F ) for some x ∈ X .

It may be that an AF F does not skeptically or credulously support
an observation X . Abduction then amounts to finding a change to F
so that X is supported. We use the following definition of an AAF
(Abductive AF) to capture the changes w.r.t. F (each change repre-
sented by an AF G called an abducible AF) that an agent considers.
We assume that F itself is also an abducible AF, namely one that
captures the case where no change is necessary. Other abducible AFs
may be formed by addition of arguments and attacks to F , removal
of arguments and attacks from F , or a combination of both.

Definition 4. An abductive AF is a pair M = (F, I) where F is an
AF and I ⊆ F a set of AFs called abducible such that F ∈ I .

Given an AAF (F, I) and observation X , skeptical/credulous sup-
port for X can be explained by the change from F to some G ∈ I

that skeptically/credulously supports X . In this case we say that G
explains skeptical/credulous support for X . The arguments/attacks
added to and absent from G can be seen as the actual explanation.

Definition 5. Let M = (F, I) be an AAF. An abducible AF G ∈ I
explains skeptical (resp. credulous) support for an observation X iff
G skeptically (resp. credulously) supports X .

One can focus on explanations satisfying additional criteria, such
as minimality w.r.t. the added or removed arguments/attacks. We
leave the formal treatment of such criteria for future work.

Example 1. Let M = (F, {F,G1, G2, G3}), where F,G1, G2 and
G3 are as defined in figure 1. Let X = {b} be an observation. It
holds that G1 and G3 both explain skeptical support for X , while
G2 only explains credulous support for X .
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Figure 1. The AFs of the AAF (F, {F,G1, G2, G3}).

Remark 1. The main difference between Sakama’s [20] model of
abduction in abstract argumentation and the one presented here, is
that he takes an explanation to be a set of independently selectable
abducible arguments, while we take it to be a change to the AF that is
applied as a whole. In section 5 we show that this is necessary when
applying the abstract model in an instantiated setting.

4 Explanation dialogues

In this section we present methods to determine, given an AAF
M = (F, I) (for F = (A,�)) whether an abducible AF G ∈ I
explains credulous or skeptical support for an observation X ⊆ A.
We build on ideas behind the grounded and preferred games, which
are dialogical procedures that determine skeptical or credulous ac-
ceptance of an argument [17]. To sketch the idea behind these games
(for a detailed discussion cf. [17]): two imaginary players (PRO and
OPP) take alternating turns in putting forward arguments according
to a set of rules, PRO either as an initial claim or in defence against
OPP’s attacks, while OPP initiates different disputes by attacking the
arguments put forward by PRO. Skeptical or credulous acceptance is
proven if PRO can win the game by ending every dispute in its favour
according to a “last-word” principle.

Our method adapts this idea so that the moves made by PRO are
essentially hypothetical moves. That is, to defend the initial claim
(i.e., to explain an observation) PRO can put forward, by way of hy-
pothesis, any attack x � y present in some G ∈ I . This marks a
choice of PRO to focus only on those abducible AFs in which the at-
tack x� y is present. Similarly, PRO can reply to an attack x� y,
put forward by OPP, with the claim that this attack is invalid, marking
the choice of PRO to focus only on the abducible AFs in which the
attack x� y is not present. Thus, each move by PRO narrows down
the set of abducible AFs in which all of PRO’s moves are valid. The
objective is to end the dialogue with a non-empty set of abducible
AFs. Such a dialogue represents a proof that these abducible AFs
explain skeptical or credulous support for the observation.
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Alternatively, such dialogues can be seen as games that deter-
mine skeptical/credulous support of an observation by an AF that
are played simultaneously over all abducible AFs in the AAF. In this
view, the objective is to end the dialogue in such a way that it repre-
sents a proof for at least one abducible AF. Indeed, in the case where
M = (F, {F}), our method reduces simply to a proof theory for
skeptical or credulous support of an observation by F .

Before we move on we need to introduce some notation.

Definition 6. Given a set I of AFs we define:
• AI = ∪{A | (A,�) ∈ I},
• �I= ∪{�| (A,�) ∈ I},
• Ix�y = {(A,�) ∈ I | x, y ∈ A, x� y},
• IX = {(A,�) ∈ I | X ⊆ A}.

We model dialogues as sequences of moves, each move being of a
certain type, and made either by PRO or OPP.

Definition 7. Let M = (F, I) be an AAF. A dialogue based on M is
a sequence S = (m1, . . . ,mn), where each mi is either:
• an OPP attack “OPP: x� y”, where x�I y,
• a hypothetical PRO defence “PRO: y �+ x”, where y �I x,
• a hypothetical PRO negation “PRO: y �− x”, where y �I x,
• a conceding move “OPP: ok”,
• a success claim move “PRO: win”.

We denote by S · S′ the concatenation of S and S′.

Intuitively, a move OPP: y � x represents an attack by OPP on
the argument x by putting forward the attacker y. A hypothetical
PRO defence PRO: y �+ x represents a defence by PRO who puts
forward y to attack the argument x put forward by OPP. A hypo-
thetical PRO negation PRO: y �− x, on the other hand, represents
a claim by PRO that the attack y � x is not a valid attack. The
conceding move OPP: ok is made whenever OPP runs out of pos-
sibilities to attack a given argument, while the move PRO: win is
made when PRO is able to claim success.

In the following sections we specify how dialogues are structured.
Before doing so, we introduce some notation that we use to keep
track of the abducible AFs on which PRO chooses to focus in a di-
alogue D. We call this set the information state of D after a given
move. While it initially contains all abducible AFs in M, it is re-
stricted when PRO makes a move PRO: x�+ y or PRO: x�− y.

Definition 8. Let M = (F, I) be an AAF. Let D = (m1, . . . ,mn)
be a dialogue based on M. We denote the information state in D after
move i by J(D, i), which is defined recursively by:

J(D, i) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I if i = 0,

J(D, i− 1) ∩ Ix�y if mi = PRO: x�+ y,

J(D, i− 1) \ Ix�y if mi = PRO: x�− y,

J(D, i− 1) otherwise.
We denote by J(D) the information state J(D,n).

4.1 Skeptical explanation dialogues

We define the rules of a dialogue using a set of production rules that
recursively define the set of sequences constituting dialogues. (The
same methodology was used by Booth et al. [7] in defining a dia-
logical proof theory related to preference-based argumentation.) In
a skeptical explanation dialogue for an observation X , an initial ar-
gument x ∈ X is challenged by the opponent, who puts forward all
possible attacks OPP: y � x present in any of the abducible AFs

present in the AAF, followed by OPP: ok. We call this a skeptical
OPP reply to x. For each move OPP: y � x, PRO responds with a
skeptical PRO reply to y � x, which is either a hypothetical defence
PRO: z �+ y (in turn followed by a skeptical OPP reply to z) or a
hypothetical negation PRO: y �− x. Formally:

Definition 9 (Skeptical explanation dialogue). Let F = (A,�),
M = (F, I) and x ∈ A.
• A skeptical OPP reply to x is a finite sequence (OPP: y1 � x) ·

S1 · . . . · (OPP: yn � x) ·Sn · (OPP: ok) where {y1, . . . , yn} =
{y | y �I x} and each Si is a skeptical PRO reply to yi � x.

• A skeptical PRO reply to y � x is either: (1) A sequence
(PRO: z �+ y) · S where z �I y and where S is a skeptical
OPP reply to z, or (2) The sequence (PRO: y �− x).

Given an observation X ⊆ A we say that M generates the skeptical
explanation dialogue D for X iff D = S · (PRO: win), where S is a
skeptical OPP reply to some x ∈ X .

The following theorem establishes soundness and completeness.

Theorem 1. Let M = (F, I) be an AAF where F = (A,�). Let
X ⊆ A and G ∈ I . It holds that G explains skeptical support for X
iff M generates a skeptical explanation dialogue D for X such that
G ∈ J(D).

Due to space constraints we only provide a sketch of the proof.

Sketch of proof. Let M = ((A,�), I), X ⊆ A and G ∈ I . (Only
if:) Assume x ∈ Gr(G) for some x ∈ X . By induction on the
number of times the characteristic function [12] is applied so as to
establish that x ∈ Gr(G), it can be shown that a credulous OPP
reply D to x exists (and hence a dialogue D · (PRO: win) for X)
s.t. G ∈ J(D · (PRO: win)). (If:) Assume M generates a skeptical
explanation dialogue D for X s.t. G ∈ J(D). By induction on the
structure of D it can be shown that x ∈ Gr(G) for some x ∈ X .

Example 2. The listing below shows a skeptical explanation dia-
logue D = (m1, . . . ,m8) for the observation {b} that is generated
by the AAF defined in example 1.

i mi J(D, i)

1 OPP: c� b {F,G1, G2, G3}
2 PRO: e�+ c {G1, G3}
3 OPP: ok {G1, G3}
4 OPP: a� b {G1, G3}
5 PRO: e�+ a {G1}
6 OPP: ok {G1}
7 OPP: ok {G1}
8 PRO: win {G1}

The sequence (m1, . . . ,m7) is a skeptical OPP reply to b, in
which OPP puts forward the two attacks c � b and a � b. PRO
defends b from both c and a by putting forward the attacker e (move
2 and 5). This leads to the focus first on the abducible AFs G1, G3 (in
which the attack e � c exists) and then on G1 (in which the attack
e� a exists). This proves that G1 explains skeptical support for the
observation {b}. Another dialogue is shown below.

i mi J(D, i)

1 OPP: c� b {F,G1, G2, G3}
2 PRO: e�+ c {G1, G3}
3 OPP: ok {G1, G3}
4 OPP: a� b {G1, G3}
5 PRO: a�− b {G3}
6 OPP: ok {G3}
7 PRO: win {G3}
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Here, PRO defends b from c by using the argument e, but defends b
from a by claiming that the attack a� b is invalid. This leads to the
focus first on the abducible AFs G1, G3 (in which the attack e � c
exists) and then on G3 (in which the attack a � b does not exist).
This dialogue proves that G3 explains skeptical support for {b}.

4.2 Credulous explanation dialogues

The definition of a credulous explanation dialogue is similar to that of
a skeptical one. The difference lies in what constitutes an acceptable
defence. To show that an argument x is skeptically accepted, x must
be defended from its attackers by arguments other than x itself. For
credulous acceptance, however, it suffices to show that x is a member
of an admissible set, and hence x may be defended from its attackers
by any argument, including x itself. To achieve this we need to keep
track of the arguments that are, according to the moves made by PRO,
accepted. Once an argument x is accepted, PRO does not need to
defend x again, if this argument is put forward a second time.

Formally a credulous OPP reply to (x, Z) (for some x ∈ AI and
set Z ⊆ AI used to keep track of accepted arguments) consists of all
possible attacks OPP: y � x on x, followed by OPP: ok when all
attacks have been put forward. For each move OPP: y � x, PRO re-
sponds either by putting forward a hypothetical defence PRO: z �+

y which (this time only if z �∈ Z) is followed by a credulous OPP
reply to (z, Z ∪ {z}), or by putting forward a hypothetical nega-
tion PRO: y �− x. We call this response a credulous PRO reply to
(y � x, Z). A credulous explanation dialogue for a set X consists
of a credulous OPP reply to (x, {x}) for some x ∈ X , followed by
a success claim PRO: win.

In addition, arguments put forward by PRO in defence of the ob-
servation may not conflict. Such a conflict occurs when OPP puts
forward OPP: x� y and OPP: y � z (indicating that both y and z
are accepted) while PRO does not put forward PRO: y �− z. If this
situation does not occur we say that the dialogue is conflict-free.

Definition 10 (Credulous explanation dialogue). Let F = (A,�),
M = (F, I), x ∈ A and Z ⊆ A.
• A credulous OPP reply to (x, Z) is a finite sequence (OPP: y1 �

x)·S1 ·. . .·(OPP: yn � x)·Sn ·(OPP: ok) where {y1, . . . , yn} =
{y | y �I x} and each Si is a credulous PRO reply to (yi �
x, Z).

• A credulous PRO reply to (y � x, Z) is either: (1) a sequence
(PRO: z �+ y) ·S such that z �I y, z �∈ Z and S is a credulous
OPP reply to (z, Z ∪ {z}), (2) a sequence (PRO: z �+ y) such
that z �I y and z ∈ Z, or (3) the sequence (PRO: y �− x).

Given a set X ⊆ A we say that M generates the credulous expla-
nation dialogue D for X iff D = S · (PRO: win), where S is a
credulous OPP reply to (x, {x}) for some x ∈ X . We say that D
is conflict-free iff for all x, y, z ∈ AI it holds that if D contains
the moves OPP: x � y and OPP: y � z then it contains the move
PRO: y �− z.

The following theorem establishes soundness and completeness.

Theorem 2. Let M = (F, I) be an AAF where F = (A,�). Let
X ⊆ A and G ∈ I . It holds that G explains credulous support for
X iff M generates a conflict-free credulous explanation dialogue D
for X such that G ∈ J(D).

Sketch of proof.. Let M = ((A,�), I), X ⊆ A and G ∈ I . (Only
if:) Assume for some x ∈ X and E ∈ Co(G) that x ∈ E. Using
the fact that E ⊆ DefG(E) one can recursively define a credulous

OPP reply D to (x, Z) for some Z ⊆ A and hence a credulous ex-
planation dialogue D · (PRO: win). Conflict-freeness of E implies
conflict-freeness of D. (If:) Assume M generates a credulous expla-
nation dialogue D · (PRO: win) for X such that G ∈ J(D). Then
D is a credulous OPP reply to (a, {a}) for some a ∈ X . It can be
shown that the set E = {a} ∪ {x | PRO: x �+ z ∈ D} satisfies
E ⊆ DefG(E). Conflict-freeness of D implies conflict-freeness of
E. Hence a ∈ E for some E ∈ Co(G).

Example 3. The listing below shows a conflict-free credulous expla-
nation dialogue D = (m1, . . . ,m6) for the observation {b} gener-
ated by the AAF defined in example 1.

i mi J(D, i)

1 OPP: c� b {F,G1, G2, G3}
2 PRO: b�+ c {F,G1, G2, G3}
3 OPP: a� b {F,G1, G2, G3}
4 PRO: a�− b {G2, G3}
5 OPP: ok {G2, G3}
6 PRO: win {G2, G3}

Here, the sequence (m1, . . . ,m5) is a credulous OPP reply to
(b, {b}). PRO defends b from OPP’s attack c� b by putting forward
the attack b � c. Since b was already assumed to be accepted, this
suffices. At move m4, PRO defends itself from the attack a � b by
negating it. This restricts the focus on the abducible AFs G2 and G3.
The dialogue proves that these two abducible AFs explain credulous
support for the observation {b}. Finally, the skeptical explanation
dialogues from example 2 are also credulous explanation dialogues.

5 Abduction in logic programming

In this section we show that AAFs can be instantiated with abductive
logic programs, in the same way that regular AFs can be instanti-
ated with regular logic programs. In sections 5.1 and 5.2 we recall
the necessary basics of logic programming and the relevant results
regarding logic programming as instantiated argumentation. In sec-
tion 5.3 we present a model of abductive logic programming based
on Sakama and Inoue’s model of extended abduction [13, 14], and in
section 5.2 we show how this model can be instantiated using AAFs.

5.1 Logic programs and partial stable semantics

A logic program P is a finite set of rules, each rule be-
ing of the form C ← A1, . . . , An,∼B1, . . . ,∼Bm where
C,A1, . . . , An, B1, . . . , Bm are atoms. If m = 0 then the rule is
called definite. If both n = 0 and m = 0 then the rule is called a fact
and we identify it with the atom C. We assume that logic programs
are ground. Alternatively, P can be regarded as the set of ground in-
stances of a set of non-ground rules. We denote by AtP the set of all
(ground) atoms occurring in P . The logic programming semantics
we focus on can be defined using 3-valued interpretations [19]:

Definition 11. A 3-valued interpretation I of a logic program P is
a pair I = (T, F ) where T, F ⊆ AtP and T ∩ F = ∅. An atom
A ∈ AtP is true (resp. false, undecided) in I iff A ∈ T (resp. A ∈ F ,
A ∈ AtP \ (T ∪ F )).

The following definition of a partial stable model is due to Przy-
musinski [19]. Given a logic program P and 3-valued interpretation
I of P , the GL-transformation P

I
is a logic program obtained by re-

placing in every rule in P every premise ∼B such that B is true (resp.
undecided, false) in I by the atoms 0 (resp. 1

2
, 1), where 0 (resp. 1

2
,
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1) are defined to be false (resp. undecided, true) in every interpreta-
tion. It holds that for all 3-valued interpretations I of P , P

I
is definite

(i.e., consists only of definite rules). This means that P
I

has a unique
least 3-valued interpretation (T, F ) with minimal T and maximal F
that satisfies all rules. That is, for all rules C ← A1, . . . , An, in P

I
,

C is true (resp. not false) in (T, F ) if for all i ∈ {1, . . . , n}, Ai is
true (resp. not false) in (T, F ). Given a 3-valued interpretation I , the
least 3-valued interpretation of P

I
is denoted by Γ(I). This leads to

the following definition of a partial stable model of a logic program,
along with the associated notions of consequence.

Definition 12. [19] Let P be a logic program. A 3-valued interpre-
tation I is a partial stable model of P iff I = Γ(I). We say that an
atom C is a skeptical (resp. credulous) consequence of P iff C is true
in all (resp. some) partial stable models of P .

It has been shown that the above defined notion of skeptical con-
sequence coincides with the well-founded semantics [19].

5.2 Logic programming as argumentation

Wu et al. [22] have shown that a logic program P can be transformed
into an AF F in such a way that the consequences of P under the
partial stable semantics can be computed by looking at the complete
extensions of F . The idea is that an argument consists of a conclusion
C ∈ AtP , a set of rules R ⊆ P used to derive C and a set N ⊆
AtP of atoms that must be underivable in order for the argument to
be acceptable. The argument is attacked by another argument with
a conclusion C′ iff C′ ∈ N . The following definition, apart from
notation, is due to Wu et al. [22].

Definition 13. Let P be a logic program. An instantiated argument
is a triple (C,R,N), where C ∈ AtP , R ⊆ P and N ⊆ AtP . We
say that P generates (C,R,N) iff either:

• r = C ← ∼B1, . . . ,∼Bm is a rule in P , R = {r} and N =
{B1, . . . , Bm}.

• (1) r = C ← A1, . . . , An,∼B1, . . . ,∼Bm is a rule in P , (2)
P generates, for each i ∈ {1, . . . , n] an argument (Ai, Ri, Ni)
such that r �∈ Ri, and (3) R = {r} ∪ R1 ∪ . . . ∪ Rn and N =
{B1, . . . , Bm} ∪N1 ∪ . . . ∪Nn.

We denote the set of arguments generated by P by AP . Furthermore,
the attack relation generated by P is denoted by�P and is defined
by (C,R,N)�P (C′, R′, N ′) iff C ∈ N ′.

The following theorem states that skeptical (resp. credulous) ac-
ceptance in (AP ,�P ) corresponds with skeptical (resp. credulous)
consequences in P as defined in definition 12. It follows from theo-
rems 15 and 16 due to Wu et al. [22].

Theorem 3. Let P be a logic program. An atom C ∈ AtP is a
skeptical (resp. credulous) consequence of P iff some (C,R,N) ∈
AP is skeptically (resp. credulously) accepted in (AP ,�P ).

5.3 Abduction in logic programming

The model of abduction in logic programming that we use is based on
the model of extended abduction studied by Inoue and Sakama [13,
14]. They define an abductive logic program (ALP) to consist of a
logic program and a set of atoms called abducibles.

Definition 14. An abductive logic program is a pair (P,U) where
P is a logic program and U ⊆ AtP a set of facts called abducibles.

Note that, as before, the set U consists of ground facts of the form
C ← (identified with the atom C) and can alternatively be regarded
as the set of ground instances of a set of non-ground facts. A hy-
pothesis, according to Inoue and Sakama’s model, consists of both a
positive element (i.e., abducibles added to P ) and a negative element
(i.e., abducibles removed from P ).

Definition 15. Let ALP = (P,U) be an abductive logic program. A
hypothesis is a pair (Δ+,Δ−) such that Δ+,Δ− ⊆ U and Δ+ ∩
Δ− = ∅. A hypothesis (Δ+,Δ−) skeptically (resp. credulously)
explains a query Q ∈ AtP if and only if Q is a skeptical (resp.
credulous) consequence of (P ∪Δ+) \Δ−.

Note that Sakama and Inoue focus on computation of explanations
under the stable model semantics of P , and require P to be acyclic
to ensure that a stable model of P exists and is unique [14]. We,
however, define explanation in terms of the consequences according
to the partial stable models of P , which always exist even if P is not
acyclic [19], so that we do not need this requirement.

The following example demonstrates the previous two definitions.

Example 4. Let ALP = (P,U) where P = {(p ← ∼s, r), (p ←
∼s,∼q), (q ← ∼p), r} and U = {r, s}. The hypothesis
({s}, ∅) skeptically explains q, witnessed by the unique model I =
({r, s, q}, {p}) satisfying I = Γ(I). Similarly, ({s}, {r})) skepti-
cally explains q and (∅, {r})) credulously explains q.

5.4 Instantiated abduction in argumentation

In this section we show that an AAF (F, I) can be instantiated on the
basis of an abductive logic program (P,U). The idea is that every
possible hypothesis (Δ+,Δ−) maps to an abducible AF generated
by the logic program (P ∪ Δ+) \ Δ−. The hypotheses for a query
Q then correspond to the abducible AFs that explain the observation
X consisting of all arguments with conclusion Q. The construction
of (F, I) on the basis of (P,U) is defined as follows.

Definition 16. Let ALP = (P,U) be an abductive logic program.
Given a hypothesis (Δ+,Δ−), we denote by F(Δ+,Δ−) the AF
(A(P∪Δ+)\Δ− ,�(P∪Δ+)\Δ−). The AAF generated by ALP is de-
noted by MALP and defined by MALP = ((AP ,�P ), IALP), where
IALP = {F(Δ+,Δ−) | Δ+,Δ− ⊆ U,Δ+ ∩Δ− = ∅}.

The following theorem states the correspondence between the ex-
planations of a query Q in an abductive logic program ALP and the
explanations of an observation X in the AAF MALP.

Theorem 4. Let ALP = (P,U) be an abductive logic program,
Q ∈ AtP a query and (Δ+,Δ−) a hypothesis. Let MALP = (F, I).
We denote by XQ the set {(C,R,N) ∈ AP | C = Q}. It holds that
(Δ+,Δ−) skeptically (resp. credulously) explains Q iff F(Δ+,Δ−)

skeptically (resp. credulously) explains XQ.

Proof of theorem 4. Via theorem 3 and definitions 15 and 16.

This theorem shows that our model of abduction in argumentation
can indeed be seen as an abstraction of abductive logic programming.

Example 5. Let ALP = (P,U) be the ALP as de-
fined in example 4. All arguments generated by ALP are:
a = (p, {(p ← ∼s, r), r}, {s}) d = (r, {r}, ∅)
b = (q, {(q ← ∼p)}, {p}) e = (s, {s}, ∅)
c = (p, {(p ← ∼s,∼q)}, {s, q})
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Given these definitions, the AAF in example 1 is equivalent to MALP.
In example 4 we saw that q is skeptically explained by ({s}, ∅) and
({s}, {r}), while (∅, {r}) only credulously explains it. Indeed, look-
ing again at example 1, we see that G1 = F({s},∅) and G3 =
F({s},{r}) explain skeptical support for the observation {b} = Xq ,
while G2 = F(∅,{r}) only explains credulous support.

Remark 2. This method of instantiation shows that, on the abstract
level, hypotheses cannot be represented by independently selectable
abducible arguments. The running example shows e.g. that a and d
cannot be added or removed independently. (Cf. remark 1.)

6 Related work

We already discussed Sakama’s [20] model of abduction in argumen-
tation and mentioned some differences. Our approach is more gen-
eral because we consider a hypothesis to be a change to the AF that
is applied as a whole, instead of a set of independently selectable
abducible arguments. On the other hand, Sakama’s method supports
a larger range semantics, including (semi-)stable and skeptical pre-
ferred semantics. Furthermore, Sakama also considers observations
leading to rejection of arguments, which we do not.

Some of the ideas we applied also appear in work by Wakaki et
al. [21]. In their model, ALPs generate instantiated AFs and hypothe-
ses yield a division into active/inactive arguments.

Kontarinis et al. [15] use term rewriting logic to compute changes
to an abstract AF with the goal of changing the status of an argument.
Two similarities to our work are: (1) our production rules to generate
dialogues can be seen as a kind of term rewriting rules. (2) their ap-
proach amounts to rewriting goals into statements to the effect that
certain attacks in the AF are enabled or disabled. These statements
resemble the moves PRO: x �+ y and PRO: x �− y in our sys-
tem. However, they treat attacks as entities that can be enabled or
disabled independently. As discussed, different arguments (or in this
case attacks associated with arguments) cannot be regarded as inde-
pendent entities, if the abstract model is instantiated.

Goal oriented change of AFs is also studied by Baumann [2], Bau-
mann and Brewka [3], Bisquert et al. [4] and Perotti et al. [5]. Fur-
thermore, Booth et al. [8] and Coste-Marquis et al. [11] frame it as
a problem of belief revision. Other studies in which changes to AFs
are considered include [6, 10, 16, 18].

7 Conclusions and Future work

We developed a model of abduction in abstract argumentation, in
which changes to an AF act as explanations for skeptical/credulous
support for observations. We presented sound and complete dialog-
ical proof procedures for the main decision problems, i.e., finding
explanations for skeptical/credulous support. In addition, we showed
that our model of abduction in abstract argumentation can be seen as
an abstract form of abduction in logic programming.

As a possible direction for future work, we consider the incorpo-
ration of additional criteria for the selection of good explanations,
such as minimality with respect to the added and removed argu-
ments/attacks, as well as the use of arbitrary preferences over dif-
ferent abducible AFs. An interesting question is whether the proof
theory can be adapted so as to yield only the preferred explanations.
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