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The Einstein Telescope is a conceived third-generation gravitational-wave detector that is envisioned to
be an order of magnitude more sensitive than advanced LIGO, Virgo, and Kagra, which would be able to
detect gravitational-wave signals from the coalescence of compact objects with waveforms starting as low
as 1 Hz. With this level of sensitivity, we expect to detect sources at cosmological distances. In this paper
we introduce an improved method for the generation of mock data and analyze it with a new low-latency
compact binary search pipeline called gstlal. We present the results from this analysis with a focus on
low-frequency analysis of binary neutron stars. Despite compact binary coalescence signals lasting hours in
the Einstein Telescope sensitivity band when starting at 5 Hz, we show that we are able to discern various
overlapping signals from one another. We also determine the detection efficiency for each of the analysis
runs conducted and show a proof of concept method for estimating the number signals as a function of
redshift. Finally, we show that our ability to recover the signal parameters has improved by an order of
magnitude when compared to the results of the first mock data and science challenge. For binary neutron
stars we are able to recover the total mass and chirp mass to within 0.5% and 0.05%, respectively.

DOI: 10.1103/PhysRevD.93.024018

I. INTRODUCTION

Second-generation gravitational-wave (GW) detectors
(aLIGO [1] and AdVirgo [2]) are planned to improve
the sensitivity over first-generation detectors (LIGO [3] and
Virgo [4]) by an order of magnitude. aLIGO has recently
begun operations and AdVirgo is currently in the commis-
sioning stage with plans to join operations in 2016. It is
expected that the first direct detection of gravitational
waves will be made before the end of this decade.
The Einstein Telescope (ET) is a conceived third-

generation gravitational-wave detector that is currently in
the design stage [5] and is planned to be operational after
∼2025. This detector will have an improvement in sensi-
tivity by an order of magnitude over that of the second-
generation detectors that will allow for the detection of a
large number of GW signals from a variety of processes,
out to large distances. These include, but are not limited to,
events such as the formation of neutron stars or black holes
from core-collapse supernovae [6–9], rotating neutron stars
[10,11], and the merger of compact binary systems [12,13].
ET is expected to yield a significant number of detections

and the interpretation of the results will allow us to answer
questions about astrophysics, cosmology, and fundamental

interactions [14]. In order to prepare and test our ability to
extract valuable information from the data, we initiated a
series of mock data and science challenges (MDSCs), with
increasing degrees of sophistication and complexity with
each subsequent challenge. These challenges consist of first
simulating ET data that includes a population of sources
expected to be detectable via different astrophysical mod-
els. This is then analyzed with a variety of current data-
analysis algorithms, each searching for a specific signal
type contained within the data. Unlike advanced detectors,
ET data is expected to be dominated by many overlapping
signals which increases the complexity of the data analysis.
An important goal of the MDSC is to test the ability of
different analysis algorithms in efficiently detecting signals
and discriminating different signal populations. Finally, we
consider the interpretation of these results to investigate
different areas of astrophysics and cosmology.
For the first ET MDSC [15], we produced one month of

mock data containing simulated Gaussian colored noise,
produced using a plausible ET noise power spectral density
(PSD), and the GW signals from a set of compact binary
coalescence (CBC), in this case a population of binary
neutron stars (BNS) in the redshift range z ∈ ½0; 6�. Using a
modified version of the LIGO/Virgo data analysis pipeline
ihope [16–19], which was the main matched filtering
analysis pipeline during the initial detector era, we showed*Duncan.Meacher@ligo.org
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that it is possible to employ the use of a matched filtering
algorithm to search for GW signals when there is a large
amount of overlap of their waveforms. Using this pipeline
we were also able to recover the observed chirp mass
(Mz) and observed total mass (Mz) of the injected signals
with an error of less than 1% and 5%, respectively.1We also
analyzed the data with the standard isotropic cross-
correlation statistic and measured the amplitude of an
astrophysical stochastic GW background (SGWB)
[20–22] created by the population of background BNS
signals with an accuracy better than 5%. Finally, we were
able to verify the existence of a null stream, created by the
closed-loop detector layout which results in the complete
canceling of GW signals and gives an acceptable estimate
of the noise PSD of the detectors. By subtracting the null
stream from the data, we showed that we could recover the
expected shape of the PSD of the astrophysical SGWB.
After the success of the first challenge, we extended our

data-generation package to conduct a second MDSC. The
second ET MDSC contains a larger selection of sources
over that of the first, including BNS, neutron star–black
holes (NSBH), binary black holes (BBH), and binary
intermediate mass black holes (IMBH) [23], as well as
several burst sources. In the second MDSC we have taken
the intrinsic mass distributions and time delays (the time
between the formation and merger of the binary systems)
from the population synthesis code StarTrack [24–27],
as opposed to selecting the component masses from a
Gaussian distribution in the first MDSC. With this mock
data set several investigations have been carried out, each
focusing on a different scientific aspect of the MDSC. The
first of these investigations, on the measurement of a
SGWB from astrophysical sources, has already been
completed [28], while others are ongoing.
In this paper we investigate the application of a new

low-latency matched filtering analysis pipeline, gstlal
[29–32], which is built using gstreamer multimedia
processing technology. The analysis will be run multiple
times, searching for low-mass systems, using a low-
frequency cutoff of 25, 10, and 5 Hz, on both the main
mock data set as well as a noise-only data set that is used to
make estimates of the background. The 25 and 10 Hz runs
will be conducted on the full data set while the 5 Hz analysis
will be run on 10% of the data. This is due to the fact that
starting at 5 Hz, there are more templates produced for the
analysis and the waveform for low-mass systems will be of
the order of a few hours long, both of which significantly
increase the computational cost of the analysis.
Once the analyses have been run, we compare the list of

detections that are reported in each of the three ET detectors

against the list of injected signals. Using a small window in
both coalescence time ðtcÞ and the observed (redshifted)
chirp mass (Mz) we produce a list of matched detections.
We will then make a comparison of the recovered detection
parameters (tc, Mz and Mz) against the true injected
parameters.
The rest of this paper is divided into the following

sections. In Sec. II we introduce the methods by which we
produce the mock data used for this investigation. In
Sec. III we discuss the analysis methods that are used as
well as our reasons for choosing a new analysis pipeline. In
Sec. IV we present our results from the analysis runs that
are conducted, with a focus on both event detection and
parameter measurements. In Sec. V we highlight possible
areas that can be investigated in future MDSCs. Finally, in
Sec. VI we discuss the results shown in the last section and
make a conclusion to this investigation.

II. MOCK DATA

In this section we describe how we go about generating
the ET mock data used in this investigation. Here we use
the same data-generation package as was used in the first
ET MDSC [15], which has since been updated to simulate
more sources [28,33]. We first explain the generation of the
colored noise and then we introduce and describe each of
the steps that are used to simulate the GW inspiral signals
that are injected into the noise. For this we describe how the
cosmological model and star formation rate (SFR) are used
to determine the rate of coalescence of compact binary
objects as a function of redshift and how the signal
parameters are selected as well as the waveform models
used in the simulation.

A. Simulation of the noise

The current design of the Einstein Telescope is envi-
sioned to consist of three independent V-shaped Michelson
interferometers with 60 degree opening angles, arranged in
a triangle configuration, and placed underground to reduce
the influence of seismic noise [34,35]. Here we make the
assumption that there will be no instrumental or environ-
mental correlated noise between the detectors so that the
noise is simulated independently for each of the three ET
detectors: E1, E2, and E3 [36,37]. This is done by
generating a Gaussian time series that has a mean of zero
and unit variance. This time series is then Fourier trans-
formed into the frequency domain, colored with the noise
PSD of the ET detector, and then inverse Fourier trans-
formed back into the time domain. In order to remove any
potential discontinuities between adjacent data segments,
we gradually taper away the noise spectral density to zero at
frequencies above 4096 Hz and below 5 Hz, which we set
as the low-frequency cutoff for the generation of the noise
and GW signals. For this MDSC, we consider the sensi-
tivity given by ET-D rather than ET-B that was used in the

1The observed mass parameters (Mz and Mz) differ from
the intrinsic parameters (M andM) by a factor of (1þ z), due to
the redshifting of the GW frequencies from the expansion of the
Universe, which is the equivalent of observing heavier masses.
These are denoted with a subscript z, such thatMz ≡Mð1þ zÞ.
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first MDSC, as shown in the left-hand plot in Fig. 1. ET-B
is a simpler design with just one interferometer in each Vof
the equilateral triangle, but due to high stored power it
suffers from enhanced radiation pressure noise at lower
frequencies. ET-D is a design that includes two interfer-
ometers in each V (a high-frequency, high-power interfer-
ometer to mitigate photon shot noise and a low-frequency,
low-power, cryogenics interferometer to mitigate thermal
noise) and achieves a very good high-frequency sensitivity
without compromising the low-frequency sensitivity.

B. Simulation of the GW signals from BNS

We employ the use of Monte Carlo (MC) simulation
techniques for the generation of the mock data. The process
that we use to generate the various parameters is very
similar to that used in the first ET MDSC [15], except here
we take the intrinsic mass distribution of the component
masses, m1 and m2, and the time delay td (i.e., the interval
between the formation of a binary and its eventual merger)
from the stellar evolution code StarTrack [24–27].
As was done in the first MDSC, we adopt a ΛCDM
cosmological model with the Hubble parameter
H0 ¼ 70 km s−1Mpc−1, Ωm ¼ 0.3, and ΩΛ ¼ 0.7, and
the SFR of Ref. [38]. We first consider the coalescence
rate for BNS per unit volume, as a function of redshift,

_ρcðz; tdÞ ∝
_ρ�ðzfðz; tdÞÞ

1þ zfðz; tdÞ
; with _ρcð0Þ ¼ _ρ0; ð1Þ

where z is the redshift of the source at the point of
coalescence, zf is the redshift of the source at the point
at which the binary formed, _ρ� is the SFR, and _ρ0 is the
local coalescence rate. A factor of ð1þ zfÞ

−1 is used to

convert the rate from the source’s frame of reference to the
observer’s frame of reference.
The redshifts z and zf are connected to each other via the

delay time td, which is the total time that it takes between
the initial formation of the binary system, through its
evolution into a compact binary, and finally the merging
time to the point of coalescence due to the emission of
gravitational radiation using

td ¼
1

H0

Z

zf

z

dz0

ð1þ z0ÞEðz0Þ
; ð2Þ

where

EðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ωmð1þ zÞ3 þΩΛ

q

: ð3Þ

The coalescence rate per redshift bin is given by

dR
dz

ðz; tdÞ ¼ _ρcðz; tdÞ
dV
dz

ðzÞ; ð4Þ

where dV=dz is the comoving volume element given by

dV
dz

ðzÞ ¼ 4π
c

H0

r2ðzÞ

EðzÞ
; ð5Þ

where c is the speed of light in vacuum and rðzÞ, the proper
distance, is given by

rðzÞ ¼
c

H0

Z

z

0

dz0

Eðz0Þ
: ð6Þ

The average time between the arrival of events, which we
define as λ, is given by taking the inverse of the coalescence
rate [Eq. (4)] and integrating over all redshifts

FIG. 1. Left: Projected design noise power spectral density for advanced LIGO (dot-dot green), advanced Virgo (dot-dashed black),
ET-B (dashed red), and ET-D (solid blue). Right: Normalised distribution of the redshift for all BNS events, using redshift bins of size
Δz ¼ 0.1, as provided by StarTrack.
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λ ¼

�
Z

zmax

0

dR
dz

ðz; tdÞdz

�

−1

: ð7Þ

Once we have a value for the average waiting time
between events we then produce the parameters for each
CBC source as follows.

(i) The arrival time tc of injection i is selected assuming
a Poisson distribution, where the difference in arrival
time, τ ¼ tic − ti−1c , is drawn from an exponential
distribution PðτÞ ¼ expð−τ=λÞ.

(ii) The average time between all events is set to
λ ¼ 20 s, which is comparable to the realistic rate
given in Ref. [39] where different coalescence rates
for BNS, NSBH, BBH, and IMBH are taken into
account.2 This gives a total of 159 302 events which
are split up into the following proportions: 80.47%
BNS (128 244), 2% NSBH (3190), 12.46% BBH
(19,766) (provided from Table 3 in Ref. [40]), and
5.07% IMBH (8102).

(iii) The binary’s component masses m1 and m2 (shown
in Fig. 2) and the time delay td are selected from a
list of compact binaries generated by StarTrack.
For the given delay time and a particular model for
the cosmic SFR, we construct a redshift probability
distribution pðz; tdÞ by normalizing the coalescence
rate in the interval z ¼ ½0; 10�, where

pðz; tdÞ ¼ λ
dR
dz

ðz; tdÞ: ð8Þ

In the right-hand plot of Fig. 1 we show the
normalized redshift distribution for BNS, produced
by using redshift bins of size Δz ¼ 0.1.

(iv) The sky position Ω̂, the cosine of the inclination
angle ι, the polarization angle ψ , and the phase at
the coalescence ϕ0 are selected from uniform
distributions.

(v) The two GW polarization amplitudes, hþðtÞ and
h×ðtÞ, and the antenna response functions to the two
polarizations for each of the three ET detectors,
FA
þðt; Ω̂;ψÞ and FA

×ðt; Ω̂;ψÞ (where A ¼ 1, 2, 3 is
the index representing one of the three ET detectors),
are then calculated. The detector responses

hAðtÞ ¼ FA
þðt; Ω̂;ψÞhþðtÞ þ FA

×ðt; Ω̂;ψÞh×ðtÞ ð9Þ

are then added to the detector output time series for
E1, E2, and E3, where the modulation of the signal
due to the rotation of Earth is taken into account. In
this MDSC we have chosen to use the TaylorT4
waveforms [41], which are accurate to 3.5 post-
Newtonian order [42] in phase and the most
dominant lowest post-Newtonian order term in
amplitude, for the generation of the BNS and NSBH
signals. For the BBH signals we choose the
EOBNRv2 waveforms [43] that include the merger
and quasinormal ring-down phases of the signal, and
they are accurate to the fourth post-Newtonian order
in phase and lowest order in amplitude [41].

For the sake of testing and to determine the number of
background detections we might expect to have, we have
also produced a second, noise-only data set that is produced
with the same Gaussian noise as the main data set.

III. ANALYSIS

The analysis method used here to search for the CBC
signals is generally the same as was used in the first MDSC
though we are now using a newly developed pipeline,
gstlal. This is a coincident analysis pipeline where the
data streams from each of the separate detector’s are
analyzed individually via matched filtering with the use
of a large bank of templates. The template bank is produced
using a TaylorF2 waveform [44], which is generated in the
frequency domain to the second post-Newtonian order and
terminates at the frequency of the last stable circular orbit,
where flsco ≃

c3

63=2πGMz
. This waveform generator is selected

as it is relatively fast to generate (compared to the TaylorT4
waveform) and reduces the computational cost of the
analysis which is performed in the frequency domain.
The analysis produces a list of matched triggers that exceed
a given SNR threshold, ρT; each trigger is a list that
contains the SNR and the parameters of the template that
produced the trigger, such as the epoch of merger and
component masses of the binary. These are then checked
against triggers from the other two detectors for coinci-
dence. Any double or triple coincident triggers that result
from the same template are then reported as potential GW
detections though in this investigation we only consider the
results from triple coincident events.

A. Analysis stages

The different stages for this analysis pipeline are
described here.

(i) Estimation of PSD: The gstlal analysis estimates
the noise PSD as a function of time during filtering.
The method is a modified version of Welch’s method
[45] with two main differences. First, each periodo-
gram is derived from choosing the geometric mean

2The original data sets as presented in Ref. [28] consisted of a
year’s worth of data that had an average time between all
injections of λ ¼ 200 s, provided from Table 3 in Ref. [40] using
the BZ model. In order to reduce the computational cost of
running the analysis with a very low cutoff frequency we have
reduced the amount of data by a factor of 10 while increasing the
coalescence rate by the same factor. This means that the same
injections are present within both sets while the time of arrival
between successive events has decreased, resulting in more
overlap of the waveforms. It has already been shown in Ref. [15]
that this overlap does not affect the ability of a matched filtering
algorithm to detect overlapping signals.
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of the last seven periodograms, and second, the
periodograms are weighted averages that weigh the
present periodogram slightly more than the past
ones. The result is a PSD estimate with an effective
average over a few hundred seconds with 1=16 Hz
resolution.

(ii) Generation of template bank: A bank of GW inspiral
signals are produced that are used to search the data.
This bank needs to cover the full mass parameter
range that is being considered. Because we know the
mass distributions of the signals being injected we
are able to tailor the mass parameter limits that are
used to generate the template banks in order to cover
the full range of masses while keeping the number of
templates produced to a minimum. A new template
bank is generated for each search that is conducted,
with the mass parameter ranges given in Table I.

(iii) Matched filtering: This is implemented with the
LLOID (Low Latency Online Inspiral Detection)
method, which uses singular value decomposition
(SVD) to compress the waveform parameter space
and multirate time-domain filtering [31]. It provides
the same result as standard matched filtering [46] to
within <1%. The matched filtering of each SVD
bank against each detector data stream produces an
SNR time series ρðtÞ.

(iv) Trigger generation: As templates are filtered against
data streams, if any SNR time series passes a
threshold value ρT, then it is considered as a trigger.
Generally, using a lower SNR threshold value is
better as it allows for the possibility of detecting
weaker signals but it also results in an increase in the
number of triggers produced from background
noise. Here we set the single detector threshold to
be SNR ¼ 4 as this is the lowest we can go without
having a trigger rate that becomes difficult to
deal with.

(v) Coincidence between detectors: Triggers from dif-
ferent detectors are then compared against each
other. Any that are coincident in time (within a
5 ms window to account for small time delays for the
time of flight between detectors) and have the same

masses are considered as either double or triple
coincident triggers. The SNR for a network of
detectors is given by

ρ2 ¼
X

A

ρ2A: ð10Þ

For triple coincident triggers this gives a mini-
mum SNR of ∼6.928.

(vi) Clustering of triggers: The list of double and triple
coincident triggers is then clustered, where any
coincident events that occur within a 4 s time
window of a coincident event with a higher SNR
are deleted. This is done as the same event will be
detected by multiple templates, some with a certain
degree of mismatch in the signal parameters. This
results in the reporting of the best-matched template.

The output of gstlal, containing all clustered triple
coincident triggers, is then compared against the list of
injections in order to “match” any potential detections. For
this we apply a time and chirp mass window to each
detection and if an injection is found within this two-
dimensional window then we determine it to be a found
injection. If two injections are found within the same two-
dimensional window then the injection with the smallest
redshift is assumed to be the more likely event. The chirp
mass is selected because (as was found in the first MDSC
and as is shown later) it is better constrained than the total
mass by the analysis. Here a time window of �100 ms and
a chirp mass window of 1% of the observed chirp mass for
BNS is used.

B. Searches

Compared to the standard advanced detector searches
there are several differences that we implement here. The
first is a low-frequency cutoff used to produce the signal
templates. An advanced detector will only be sensitive
down to ∼20 Hz for the first couple of years of operation,
eventually reduced to ∼10 Hz when the detectors begin to
operate at the design sensitivity [47]. Starting at these
frequencies, low-mass systems will have waveform lengths

TABLE I. A list of all searches carried out in this investigation. The first column gives the identity of the search. The second column
indicates if the analysis was run on the noise-only or main data set. The third column gives the low-frequency cutoff used for the analysis
run. The fourth column gives the total length of the search in seconds. The fifth column gives the total mass range used for the search.
The sixth column gives the symmetric mass ratio range used. The final column gives the total number of templates produced given the
previous search parameters before the singular value decomposition is applied.

Search Data fmin (Hz) Length (s) Mtotal range (M⊙) η range Ntemplates

1 Noiseþ Signals 25 3072000 2.6–12.3 0.2475–0.25 3603
2 Noiseþ Signals 10 3072000 2.6–12.3 0.2475–0.25 25252
3 Noiseþ Signals 5 307200 2.6–12.3 0.2475–0.25 87054
4 Noise 25 3072000 2.6–12.3 0.2475–0.25 3647
5 Noise 10 3072000 2.6–12.3 0.2475–0.25 26173
6 Noise 5 307200 2.6–12.3 0.2475–0.25 89495
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of only a few minutes to tens of minutes. When considering
ET, which is sensitive down to frequencies as low as
1–3 Hz, depending on the final design configuration, signal
templates can be of the order of hours to several days in
length. In this investigation will focus on the application of
different low-frequency cutoffs where we run three
searches using the same template mass range but using
different fmin’s. We use low-frequency cutoffs of 25 and
10 Hz where we analyze the full mock data, and then
analyze 10% of the data at 5 Hz. We select one analysis run
at 25 Hz so that we can make a direct comparison to the
results from the first MDSC and we choose to only analyze
10% of the data at 5 Hz because of the high computational
cost associated with this analysis. At this starting frequency

with the injected masses shown in Fig. 2, the template
waveform lengths are already several hours long. Because
of this we also impose a cutoff at a redshift of z ¼ 0.2,
below which our search templates will not be sensitive.
Instead we make the assumption that we have a detection
efficiency of 100%. After this point, the signals are
redshifted by a factor of (1þ z) by a significant fraction
so that the signal wavelengths become computationally
manageable. For these searches we set a minimum com-
ponent mass of 1.3M⊙, a minimum total mass of 2.6M⊙, a
maximum component mass of 6.75M⊙, and a maximum
total mass of 12.3M⊙ with a minimum symmetric mass
ratio of η ¼ m1m2=M

2 ¼ 0.2475. This minimum symmet-
ric mass ratio is chosen to be as high as possible to reduce

TABLE II. A list of the number of triggers and detections produced for different SNR threshold values used with each search. The first
column gives the identity of the search. The second column gives the number of triggers produced when analyzing the noise-only data
set. The third column give the SNR of the 100th loudest event obtained from the noise-only data set. The fourth and fifth columns give
the total number of triggers and matched detections produced when no SNR threshold cut is applied. The sixth and seventh columns give
the total number of triggers and matched detections with an SNR larger than that of the 100th loudest event from the noise-only data set.
For the two right-hand columns the number in the brackets indicates the remaining percentage of triggers and detections compared to
when the lowest SNR threshold cut is used.

Noise ρT ¼ 6.9 ρT ¼ SNR (100th loudest noise event)

Search Ntriggers SNR (100th loudest) Ntriggers Ndetections Ntriggers Ndetections

1 74323 8.655 82322 5708 5670 (6.89%) 4713 (82.57%)
2 291319 8.904 341747 9956 15590 (4.56%) 8138 (81.74%)
3 45183 8.964a 63709 1242 7320 (11.49%) 1095 (88.19%)

aDue to the reduced amount of data that has been analyzed at 5 Hz, we have selected the SNR of the 10th loudest event from the noise-
only analysis run.

FIG. 2. Left: Injected masses m1 and m2, where m1 ≥ m2. The blue þ’s are the intrinsic masses and the red ×’s are the observed
(redshifted) masses, for 128 244 BNS, as given by StarTrack. The diagonal solid black line represents equal masses with η ¼ 0.25,
where η ¼ m1m2=M

2, the diagonal dashed line represents η ¼ 0.2475, and the dot-dashed line represents a total mass of 12.3M⊙. Right:
Injected total mass M against symmetric mass ratio η, where the blue þ’s are the intrinsic values and the red ×’s are the observed
(redshifted) values, for 128 244 BNS, as given by StarTrack. The dashed horizontal line represents η ¼ 0.2475 and the dot-dashed
vertical line represents a total mass of 12.3M⊙.
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the number of templates being generated while still
including most of the population of BNS, as can be seen
in the right-hand plot of Fig. 2. Already at this ηmin we
produce ∼87000 templates when starting at 5 Hz. All the
search parameters are displayed in Table I.
All three analysis runs are repeated on the noise-only

data sets in order to obtain an estimate on the number of
background triggers one would expect in the main data set.
From these results an SNR threshold value is set with which
to make a cut on all triggers in the main data sets. For this
we select the SNR equal to the 100th loudest events for the
25 and 10 Hz runs, and the 10th loudest event for the 5 Hz
run. At present there is no method for determining an
estimate for the false alarm probability with ET and so the
100th (10th) loudest noise event is selected as it will cover
most of the population of background noise events while
avoiding statistical fluctuations which produce louder SNR
events that may skew the background estimate. The results
of this are presented in Table II.

IV. RESULTS

In this section we present the results from all of the
analysis runs carried out as part of this investigation, which
is divided into four subsections. The first shows the number
of detections made for each analysis run, and the second
details the detection efficiency. In the third we explore a
proof of concept method for estimating the number of
injected signals as a function of redshift, and the fourth
presents the accuracy with which we are able to recover the
injection parameters.

A. gstlal analysis: Impact of the lower-frequency

cutoff on detection efficiency

The results for the different analysis runs with different
low-frequency cutoffs are summarized in Table II. Here the
first column gives the search identity, the second column
gives the number of triggers that were produced when
analyzing the noise-only data set, and the third column
gives the SNR of the 100th (10th) loudest event. The fourth
and fifth columns give the total number of triggers and
resulting number of matched detections that are made with
the smallest possible network SNR threshold of 6.9. The
sixth and seventh columns again show the number of
triggers and matched detections corresponding to an SNR
threshold ρT equal to the 100th (10th) loudest event from
the noise-only data set. The number in the brackets for the
two right-hand columns indicates the fractional number of
triggers or matched detections that remain when a higher
SNR threshold is used as compared to the case of the
smallest SNR threshold.
The results from these three analysis runs are shown in

Fig. 3, where the SNR is plotted against the observed chirp
mass. In each of the plots all the triple coincident triggers
produced by gstlal when analyzing the main data set are

FIG. 3. Scatter plots of SNR against the observed chirp mass for
the three different low-frequency cutoffs used in the analysis,
with 25 Hz (top), 10 Hz (middle), and 5 Hz (bottom). All triggers
produced from the analysis of the main data set are shown in blue,
with the triggers produced from the analysis of the noise-only
data set shown in green. Any of the triggers from the main data set
that are then matched to an injection are then plotted in red.
Finally, the dashed horizontal line represents an SNR equal to the
100th (10th) loudest trigger from the noise-only data set.
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plotted in blue, with any of these triggers that are then
matched to an injection being plotted in red, and finally the
triggers produced from the analysis of the noise-only data
set are plotted in green.
In the top plot we show the results from the 25 Hz

analysis where it is easy to distinguish a number of BNS
signal detections from those of background events. There is
a very clear peak of triggers with low chirp masses
(implying small distances) with very high SNRs. The
lower SNR events (i.e., SNR ≤ 10) are harder to differ-
entiate from the background events and its only by
comparing them to the list of injections that we are able
to identify them as true signal detections. There is a
population of higher-chirp-mass, high-SNR triggers that
have not been matched to any BNS injections and clearly
are not background events. These are in fact due to the
presence of GW signals from different types of CBC within
the data, in this case the population of NSBH. This shows
that the matched filtering method employed in this search is
sensitive to a CBC signal whose injection parameters lie
outside of the search range. Even though these are not
optimal matches—as we would expect the resulting SNR to
be louder than what is shown here—they are still consid-
ered as detected. In these cases one would expect the
recovered parameters to differ greatly from the true
parameters because of the search parameter limits used
when generating these template banks. Finally, we observe
a large number of triggers (74 323) obtained from the noise-
only data set, spread across all chirp masses, with the
loudest trigger having an SNR ¼ 9.37 and the 100th
loudest having an SNR ¼ 8.566. These are all entirely
caused by the random fluctuations in the Gaussian noise
data and are labeled as background events.
In the middle plot we show the results from the 10 Hz

analysis. We first note here that there is a massive increase
in the total number of triggers produced (341 747) which is
related to the increase in the number of templates (25 252)
produced for the 10 Hz analysis runs compared to that of
the 25 Hz run (3603). Here we clearly see the population of
BNS detections that have both higher SNRs and are
detectable at higher observed chirp masses. We also note
that there is a large reduction in the number of high-chirp-
mass, high-SNR unmatched detections from non-BNS
signals than compared to the 25 Hz analysis. From the
analysis of the noise-only data set, the loudest background
event has an SNR ¼ 9.53 and the 100th loudest event has
an SNR ¼ 8.904.
In the bottom plot we show the results from the 5 Hz

analysis. Again we clearly see the population of BNS
signals and we also find that the number of non-BNS
triggers is very small. We should also note that the number
of templates has significantly increased again (87 054
templates) over that of the 10 Hz analysis but we do not
see as large an increase in the number of detections due to
analyzing only 10% of the data. We would expect to obtain

10 times as many triggers and detections as given in
Table II, giving an estimate of ∼637000 triggers and
∼12400 detections from this mock data set.
Finally, we highlight the loudest BNS detections in

each of the analysis runs on the main data set which are
produced from the same event. Starting at 25 Hz it is
detected with an SNR ¼ 98.22, at 10 Hz it is detected with
an SNR ¼ 122.46, and at 5 Hz it is detected with an
SNR ¼ 134.97. This gives a clear example of how, when
analyzing from lower frequencies, we are able to build up
more SNR for each signal which also helps us to increase
the total number of detections we are able to make.

B. Detection efficiency

The detection efficiency as a function of redshift for a
given analysis is given by

ϵðzÞ ¼
NdetðzÞ

NinjðzÞ
; ð11Þ

where Ndet is the number of detected injections per redshift
bin, Ninj is the total number of injections per redshift bin,
and the variance is given by [48]

σ2ϵðzÞ ¼
ϵðzÞð1 − ϵðzÞÞ

NinjðzÞ
: ð12Þ

In the left-hand plot of Fig. 4 we show the smoothed
detection efficiencies for each of the analysis runs carried
out, with the �1σ limits contained within the shaded
region. Here we have only considered found injections
that have an SNR greater than the threshold set by the 100th
loudest event from the analysis of the noise-only data set.
We clearly see that by lowering the cutoff frequency of the
analysis we are able to increase our detection efficiency
across all redshift bins. This can be seen clearly by the fact
that the efficiency at z ¼ 1 doubles when going from 25 to
10 Hz. It is also shown that the size of the uncertainty in the
5 Hz efficiency is considerably larger that for 25 or 10 Hz
as we are only considering 10% of the data, and from
Eq. (12) we see that this decreases with the inverse of the
number of injections per redshift bin.

C. Rate estimation

In the previous subsection we make the assumption that
we know the true number and distribution of all the
injections in order to calculate the efficiency. If we
consider the case where the number of signals in the
Universe is unknown, then, by rearranging Eq. (11), it is
possible to make an estimate of this by considering the
number of detections as a function of redshift3 along with

3We again make the assumption that we know the true redshift
of the detection. In reality we would not know the detection’s true
redshift though it is possible to derive estimates from various
methods, which are detailed in Sec. V.
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the detection efficiency, which can be determined from
MC simulations with prior knowledge of the BNS mass
distribution from the second generation of detectors [49].
In the right-hand plot of Fig. 4 we show this estimate on
the number of injections per redshift bin for each of the
detection efficiencies calculated previously. Here the
errors on the size of the efficiencies have been carried
through. We clearly see that for each of the analysis runs
there is a similar chance of estimating the number of
events up to a redshift of z≃ 1.5. Between the 25 Hz
(blue) and 10 Hz (red) analysis runs, which were con-
ducted on the full data set, there is a clear difference in the
distance at which we are able to place an estimate on the
number of injected signals, with the 25 Hz extending to
z ∼ 2 and the 10 Hz extending to z ∼ 3. This is directly
related to the detection efficiency presented in the pre-
vious subsection, with the size of the estimation increas-
ing as the efficiency goes to zero. The 5 Hz estimation
appears to be larger than that of the 10 Hz, but this is a
consequence of only analyzing 10% of the data, which
results in larger uncertainties in the efficiency and a
smaller maximum redshift that an estimate can be made
out to.

D. Impact of lower-frequency cutoff

on parameter estimation

In this subsection we present the errors we obtained in
the measurement of the epoch of coalescence, and binary’s
chirp mass and total mass. We first look at the absolute
error in the recorded time of coalescence, given by
Δtc ¼ tc;obs − tc;inj, followed by relative error in the total

mass Mz and chirp mass4Mz. Table III lists the values of
the mean and standard deviation for all the errors shown in
this section.

1. Coalescence time

In this first MDSC, when matching triggers to injections,
we considered a time window of �30 ms, while in this
investigation (as stated above) we have increased this to
�100 ms. In Fig. 5 we show a normalized plot of the
absolute error in measured coalescence time tc of all the
detections made when investigating the low-frequency
cutoff. We find that for all three BNS runs there is a
constant bias of a few ms, but nearly all detections are
constrained very well to within �10 ms. This is due to the
fact that both the injected waveform and the waveform used
to search the data end at the same point, the flsco. So the
�30 ms window considered for the first MDSC is suitable
when considering BNS signals.

2. Masses

We now look at the errors in the measurements of the
mass parameters. In Fig. 6 we show the impact of lowering
the minimum search frequency.
In the top left-hand plot of Fig. 6 we show a normalized

distribution of the relative error in the measured total mass
with the results from the 25 Hz analysis shown in blue, the

FIG. 4. Left: Detection efficiency as a function of redshift for the 25 Hz (blue), 10 Hz (red), and 5 Hz (green) analysis runs with the
shaded areas representing the�1σ region, as given by Eq. (12). Right: Estimation of the number of injections as a function of redshift for
the 25 Hz (blue), 10 Hz (red), and 5 Hz (green) analysis runs with the shaded areas representing the �1σ region. The dashed black line
represents the true number of injections, with redshift bins of size Δz ¼ 0.1.

4We note that in the case where we know exactly the redshift of
the source, the relative error in the observed masses (Mz andMz)
is mathematically identical to the relative error in the intrinsic
masses (M andM).
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results from the 10 Hz analysis shown in red, and the results
from the 5 Hz analysis shown in green. We first note that
the error has decreased by an order of magnitude when
compared to the results from the first MDSC (see Fig. 7 of
Ref. [15]). Also, there is a constant systematic bias to
generally underestimate the total mass for all three analysis
runs, with a sudden drop-off below 0.5%. The number of
events where the total mass is underestimated does decrease
as the cutoff frequency for the analysis is lowered, but this
is only a small proportion. This bias was not observed in
either the first MDSC or in any of our initial analysis runs
where, in both cases, the component masses m1 and m2

were selected from the same distribution, which is not the
case for this main mock data set.
In the top right-handplotwe show the relative error in total

mass against the observed totalmasswith the results from the
25 Hz analysis shown in blue, the results from the 10 Hz
analysis shown in red, and the results from the 5 Hz analysis
shown in green. We clearly see the sharp cutoff at 0.5%
shown in thepreviousplot.Wealso see that at lowerobserved
masses, which correspond to closer distances, the spread of

error measurements covers a range of values. At higher
masses this distribution decreases, leaving only the larger
errormeasurements. This agreeswithwhatwewould expect,
namely, that our error measurements increase with distance.
In the bottom left-hand plot we show a normalized

distribution of the relative error in measured chirp mass
with the results from the 25 Hz analysis shown in blue, the
results from the 10 Hz analysis shown in red, and the results
from the 5 Hz analysis shown in green. We first note that
the scale of the size of the distribution of the error has also
decreased by a factor of ∼10 when compared to the results
from the first MDSC. Here we clearly see that as we
decrease the cutoff frequency for the analysis we obtain a
smaller distribution of the error of the chirp mass meas-
urement. We can also see from Table III that the deviation
of the mean of the distribution from zero goes from 0.01%
at 25 Hz to 0.001% at 5 Hz, which shows that we are able to
recover the chirp mass to a very high degree of accuracy in
this part of the analysis.
In the bottom right-hand plot we show the relative

error in the chirp mass against the observed chirp mass
with the results from the 25 Hz analysis shown in blue,
the results from the 10 Hz analysis shown in red, and the
results from the 5 Hz analysis shown in green. Here we
clearly see that by decreasing the cutoff frequency we
are able to better measure the chirp mass, but also that
the measured error on the chirp mass is related to the
distance to the source.

V. FUTURE DEVELOPMENT

Future MDSCs should aim to address the increasing
complexity of binary waveform models, improved detector
noise models, simulating EM counterpart scenarios, and
including other third-generation detectors. There are still
other GW sources that we can consider, such as continuous
waves [50] from rapidly rotating galactic neutron stars
[51,52]. The inclusion of one or more SGWBs of cosmo-
logical origin [53]—such as phase transitions [54–56],
cosmic (super) strings [57–61], or pre-big-bang models
[62–64]—would allow us to test whether we can distin-
guish between cosmological background and astrophysical
backgrounds [65]. The waveform models that we choose to
inject should also include additional features—such as spin
[66–68] and tidal affects [69–72] for BNS and NSBH, and

TABLE III. Table showing the mean and standard deviations of the error in the measurements of injection parameters. The first column
indicates which search it is. The second column gives the mean and standard deviations of the absolute error in measured coalescence
time in milliseconds. The third column gives the mean and standard deviations of the relative error in the measurement of the total mass.
The fourth column gives the mean and standard deviations of the relative error in the measurement of the chirp mass.

Search Δtc (ms) Relative error M Relative errorM

2 (25 Hz) −1.694� 3.314 −3.301 × 10−3 � 2.353 × 10−3 0.115 × 10−3 � 0.369 × 10−3

3 (10 Hz) −1.541� 5.307 −3.213 × 10−3 � 2.550 × 10−3 0.044 × 10−3 � 0.286 × 10−3

4 (5 Hz) −1.572� 5.856 −2.674 × 10−3 � 2.665 × 10−3 0.012 × 10−3 � 0.289 × 10−3

FIG. 5. Normalized distribution of absolute error in recovered
coalescence time for all matched detections given by gstlal for
Search 2 at 25 Hz (solid blue), Search 3 at 10 Hz (dashed red),
and Search 4 at 5 Hz (dot-dashed green), using time bins of size
Δt ¼ 1 ms, where different low-frequency cutoffs were used.
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spin and precession [73,74] for BBH and IMBH—and use
a larger range of burst signal models. The inspiral wave-
forms should be generated down to even lower frequencies,
such as 3 or 1 Hz, to investigate if it is possible to push the
low-frequency cutoff used for the matched filtering past the
5 Hz used here. At this frequency the low-mass waveforms
will be of the order of ∼ hours to days long. These would
allow for investigations into areas such as rate estimation,
both the SFR and coalescence rates for various sources, the
measurement of the mass functions for NSBH and BBH,
tests of general relativity, cosmological measurements,
investigations of different cosmological and astrophysical
models, and tests of alternate theories of gravity.

When generating the data we should also include the two
LIGO detectors with the use of the LIGO 3 Strawman PSD
[75]. A smaller second data set should also be constructed
with the use of recolored aLIGO noise (which we would
expect to have at that point) into which we inject coherent
signals. This will allow us to study the behavior of the null
stream in the non-Gaussian case.
It is impossible to obtain a redshift measurement directly

from a detection of a GW, but it is possible to infer one
through the use of an electromagnetic counterpart such as a
sGRBs [76] or from an existing galaxy catalogue [77], or
by considering either the neutron star mass function [78] or
equation of state (EOS) [79]. None of these methods have

FIG. 6. Top left: Normalized distribution of relative error in recovered total mass for Search 2 at 25 Hz (solid blue), Search 3 at 10 Hz
(dashed red), and Search 4 at 5 Hz (dot-dashed green), using mass error bins of size ΔM ¼ 5 × 10−4. Top right: Scatter plot of relative
error in total mass as a function of the observed total mass for Search 2 at 25 Hz (blue filled square), Search 3 at 10 Hz (red filled
triangle), and Search 4 at 5 Hz (green filled circle). Bottom left: Normalized distribution of relative error in recovered chirp mass for
Search 2 at 25 Hz (solid blue), Search 3 at 10 Hz (dashed red), and Search 4 at 5 Hz (dot-dashed green), using mass error bins of size
ΔM ¼ 5 × 10−5. Bottom right: Scatter plot of relative error in chirp mass as a function of the observed chirp mass for Search 2 at 25 Hz
(blue filled square), Search 3 at 10 Hz (red filled triangle), and Search 4 at 5 Hz (green filled circle).
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yet been applied within an MDSC, but some of them (such
as using sGRBs, or the neutron star mass function or EOS)
can easily be included within a future MDSC.

VI. CONCLUSION

In this investigation we have described the generation
and analysis of the data for the second Einstein Telescope
mock data and science challenge with a focus on binary
neutron stars. This data consisted of Gaussian noise, fitted
to the expected ET-D sensitivity noise curve, into which a
large number of GW signals from multiple sources were
injected. The analysis was conducted with a new matched
filtering pipeline that is able to analyze signals down to
lower frequencies than have been considered before. Our
motivation for this MDSC was to continue to explore the
science potential of ET, and to increase the complexity of
the data analysis and science that is conducted with it.
The analysis used in this investigation has far surpassed

that carried out in the first MDSC. One of the main goals
for this investigation was to show that it is possible to
analyze gravitational-wave inspiral signals down to a
frequency of 5 Hz. Starting at this frequency the lowest-
mass BNS systems considered here take over two hours to
coalesce. We have shown that, while being very computa-
tionally intensive/expensive, it is still possible to analyze
data down to this frequency. If we consider that in the few
years since the first MDSC we have been able to push the
limit of the analysis comfortably from 25 to 10 Hz and
proven that 5 Hz is achievable, we would like to think that
in the next decade when the Einstein Telescope is hoped to
be built, given Moore’s law, it should be possible to push
GW analysis to even lower frequency limits.
In the analysis at lower frequencies we have also shown

the improvement we obtain in both detection efficiency and
our ability to recover the injection parameters. By searching
for signals with lower frequencies we are able build up
more SNR, which allows many more signals to become
detectable as well as making the already detectable signals
louder. The longer template waveforms also allow us to
better match up with the GW signals, giving us better
accuracy in the measurements of the parameters.
It has also been shown that analyzing data at lower

frequencies results in a higher rate of background detec-
tions being made with larger SNRs. Here we have just

considered using an SNR threshold value that is equal to
the 100th (10th) loudest background event from the
analysis of the noise-only data set to reduce the number
of background events, but this has the drawback of
reducing the number of true detections that are made as
well. In the future it is hoped that a method will be
developed that implements the null stream to reject back-
ground events, thus lowering the false alarm probability,
allowing for a smaller SNR threshold to be used.
We have also shown the difference in detection efficien-

cies obtained when using lower cutoff frequencies. From
these a proof of concept method has been shown where we
attempted to estimate the number of injected signals as a
function of redshift. This is a very basic method that makes
several assumptions, mainly that we know the true redshifts
of the detected signals. More work is required to further
develop this method so that it is able to account for different
parameters as well as a distribution of the redshift from the
detections.
Finally, we have also shown that our ability to measure

mass parameters improved by an order of magnitude over
that of the first MDSC in the case of BNS as a result of
using a 5 Hz lower frequency cutoff instead of 25 Hz. We
were able to recover the observed total mass to within 0.5%
and the observed chirp mass to within 0.05%.
This work will now continue, and we will investigate

the parameter estimation for a small subset of the BNS
detections.
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