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Abstract

The Multiple Shift Maximum Element Sequential Matrix

Diagonalisation (MSME-SMD) algorithm is a powerful but

costly approximate iterative polynomial eigenvalue decom-

position (PEVD) for space-time covariance-type matrices

encountered in e.g. broadband array processing. This paper

discusses a newly developed search method that restricts the

order growth of the MSME-SMD algorithm. In addition to

enhanced control of the polynomial degree of paraunitary and

parahermitian factors in this decomposition, the new search

method is also computationally less demanding as fewer

elements are searched compared to the original while the

excellent diagonalisation of MSME-SMD is maintained.

1. Introduction

To accurately model the delay and multipath properties of

broadband array processing systems explicit lag elements

must be used rather than the phase shifts employed in narrow-

band systems. Using delays rather than phase shifts forms a

space-time covariance matrix, R[τ ], captures both spatial and

temporal dimensions. Taking the z-transform of the space-time

covariance matrix, R(z) •—◦ R[τ ], generates the polynomial

cross-spectral density (CSD) matrix. The structure of the CSD

matrix produced can be seen as matrix with polynomial ele-

ments or as a polynomial that has matrices as its coefficients.

The traditional eigenvalue decomposition (EVD) which is

used in many narrowband signal processing problems is not

directly applicable to the polynomial CSD matrix. The polyno-

mial EVD (PEVD) [1] is used to extend the EVD to the poly-

nomial matrix case. The CSD matrix,R(z), exhibits a property

known as parahermitian, similar to the Hermitian property of

scalar matrices, where R(z) = R̃(z). In addition to the conju-

gate symmetry a parahermitian operation, {̃·}, also includes a

time reversal such that R̃(z) = RH(z−1). The PEVD can be

used to factorise the parahermitian, R(z), into

R(z) ≈ Q̃(z)D(z)Q(z) , (1)

where Q(z) is paraunitary such that Q(z)Q̃(z) = I and D(z)
is a diagonal polynomial matrix. Although an exact decompo-

sition in (1) cannot be guaranteed [1], [3] suggests the approx-

imation can be accurate for sufficiently high orders of Q(z).
Recently a wide variety of applications for the PEVD have

arisen in areas such as broadband angle of arrival estimation

[7], filter bank-based channel coding [4], subband coding [6],

and the design of broadband precoding and equalisation of

MIMO systems [5]. The polynomial subspace decomposition

techniques, including [4,5,7], require an accurate PEVD with

low order paraunitary matrices to reduce the computational

cost of the application.

The decomposition in (1) can be calculated through a

variety of different iterative PEVD algorithms [1,8–10,17].

Each of the iterative PEVD methods may produce a different

decomposition and each algorithm has its own merits. This

paper considers the recently developed sequential matrix diag-

onalisation (SMD) family of algorithms [9,10]. Compared

to other PEVD algorithms, such as the SBR2 algorithm, [1]

the SMD methods converge in fewer iterations and produce

decompositions exhibiting a greater degree of diagonalisation

(thus greater accuracy). The original SMD algorithm [9] has

been shown to give good results with the lowest order parau-

nitary matrices. The results of the multiple shift maximum

element (MSME) SMD [10] are better in terms of convergence

however the multiple shifts cause the order of the paraunitary

matrices to grow faster. The aim of this paper is to restrict

the order growth seen in MSME-SMD whilst maintaining a

similar level of performance. A further benefit is that compu-

tational cost is also reduced due to less data being processed.

Sec. 2. reviews the current state of the art sequential matrix

diagonalisation algorithms. Sec. 3. first analyses the worst case

polynomial order growth for the SMD and MSME-SMD algo-

rithms then highlights the benefits the restricted search in the

MSME-SMD algorithm. Simulation results are presented in

Sec. 5. to compare the different PEVD methods and conclu-

sions are given in Sec. 6..

2. Iterative PEVD Algorithms based on Sequential Matrix

Diagonalisation

This section first gives an overview of the main steps involved

in the SMD family of iterative PEVD algorithms before explor-
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ing the SMD and MSME-SMD algorithms in detail.

The SMD family of algorithms has an initialisation step

where all off-diagonal energy on the zero lag is transferred

onto the diagonal via an EVD of the zero lag,

S(0)[0] = Q(0)HR[0]Q(0) . (2)

The modal matrix Q(0)(z) is then applied to all lags in the

parahermitian matrix,

S(0)(z) = Q(0)HR(z)Q(0) . (3)

At each iteration a generic iterative PEVD algorithm con-

sists of three main steps, first a search is carried out to deter-

mine which row(s) and column(s) are to be brought onto the

zero lag. This search step is algorithm dependent and will be

discussed in more detail below. Next the selected row(s) and

column(s) are shifted onto the zero lag by means of a parauni-

tary shift operation,

S(i)′(z) = Λ̃
(i)
(z)S(i−1)(z)Λ(i)(z) , i = 1 . . . I . (4)

Each PEVD iteration is then completed by bringing the off-

diagonal energy at lag zero onto the diagonal, which is done

by applying the modal matrix of the EVD from the zero lag to

all lags of the parahermitian matrix,

S(i)(z) = Q(i)HS(i)′(z)Q(i) . (5)

All SMD algorithms stop when either a set number of itera-

tions I have been carried out or the search step returns a value

which is below a predefined threshold. Upon completion the

approximately diagonal parahermitian matrix is S(I)(z), and

the product of the steps is used to construct the paraunitary

matrix for the decomposition i.e.

Q(z) = Q(0)
I∏

i=1

Q(i)Λ(i)(z) (6)

2.1 Sequential Matrix Diagonalisation

To determine which elements are brought onto the zero lag the

original SMD algorithm uses a search based on column norms

within the parahermitian matrix

{k(i), τ (i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖2 , i = 1 . . . I , (7)

where ŝ
(i−1)
k [τ ] is a modified column vector which contains

all elements excluding the on-diagonal entry. Once the column

with the largest norm is found it is brought onto the zero lag

using the delay matrix

Λ(i)(z) = diag{1 . . . 1
︸ ︷︷ ︸

k(i)−1

z−τ (i)

1 . . . 1
︸ ︷︷ ︸

M−k(i)

} (8)

where the parameters k(i) and τ (i) are the column and lag

indices obtained in (7).
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Figure 1. View of a 5 × 5 parahermitian matrix during the ith iteration,

not showing the lag dimension: starting from the top 2× 2 matrix containing

the maximum off-diagonal element in (a), (b) shows an example of an ele-

ment resistant to permutations, the third and fourth stages of the set of reduced

search space strategy are shown in (b) and (d).

2.2 Multiple Shift Maximum Element SMD

For the multiple shift maximum element search step (7) is

modified to use the l∞ rather than the l2 norm,

{k(i), τ
(i)

k(i)} = argmax
k,τ

‖ŝ
(i−1)
k [τ ]‖∞ , i = 1 . . . I , (9)

where the symbols have the same meanings as (7). The maxi-

mum element search is carried out a total ofM−1 times during

each iteration in an attempt to maximise the amount of energy

brought onto the zero lag

To ensure that the full quota ofM−1maximum elements are

transferred onto the zero lag and that the shifts do not adversely

affect one another, a set of reduced search spaces are required.

The masks used to reduce the search spaces are shown in Fig. 1

for the case where M = 5.

Prior to Fig. 1 (a) the first, global, maximum element is

found (without any restrictions) and permuted into the top left

2× 2 sub-matrix. Any element found in the search space iden-

tified in Fig. 1 (a) can be brought onto the zero lag and per-

muted into the top left 3 × 3 sub-matrix with out affecting the

initial global maximum. If the second element was found in

the position of element 2 in Fig. 1 (b) it would not be pos-

sible to permute it into the upper left 3 × 3 sub-matrix. As

a result we would have to proceed to Fig. 1 (d) meaning a

total of only 3 elements could be found. Using the MSME-

SMD search method, following the search space in Fig. 1 (a)

and a permutation to bring the second element into the upper

left 3 × 3 sub-matrix, Fig.1 (c) is obtained. The search, shift

and permute process is repeated using the mask in Fig. 1 (c),

however this time element 2 from Fig. 1 (b) could be chosen.

Finally the fourth or (M − 1)-th element is found using the

mask in Fig. 1 (d).

In practice the permutations mentioned above are not strictly

required, they are only used here to help illustrate the search

and mask process, without permutations the search spaces sim-

ply become split up and move. After the (M − 1) maximum

elements have been located they are then transferred onto the
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zero lag using the delay matrix

Λ(i)(z) = diag
{

z−τ
(i)
1 z−τ

(i)
2 . . . z−τ

(i)
M

}

. (10)

3. Polynomial Order Growth

This section analyses the worst case polynomial order growth

for both the SMD and MSME-SMD algorithms. It is likely that

the actual polynomial matrix growth will be less than the worst

case at each iteration. The analysis below assumes we have a

parahermitian matrix, S(i)(z), at the i-th iteration with a size

of M ×M × 2L+ 1, i.e. the maximum lag in either direction

is |L|.

The growth in order of the parahermitian, S(i)(z), and

paraunitary,Q(i)(z), matrices is determined by the order of the

shift matrix, Λ(i)(z). To help analyse the problem we define

the largest possible shift as ∆max and the highest possible

order for the shift matrix Λmax.

In the case of the SMD algorithm the growth is simply deter-

mined by the magnitude of τ (i) found in (7) which can have a

maximum value of L, therefore ∆max = L. With ∆max = L
the maximum SMD shift matrix length, Λmax = L. When

Λ(i)(z) of order Λmax is applied to S(i)(z) and Q(i)(z) their

order will increase by 2Λmax or in this case 2L. The parame-

ter Λmax is doubled because it is used to advance/delay a col-

umn and delay/advance a row onto the zero lag which grows

the polynomial order in both directions.

For the MSME-SMD algorithm each of the (M − 1) shifts

can potentially interact such that the maximum shift length,

∆max is ⌈((M − 1)L)/2⌉. The multiple shift algorithm can

both delay and advance elements onto the zerolag in a sin-

gle iteration using Λ(i)(z) therefore the maximum shift matrix

order,Λmax, is 2⌈((M−1)L)/2⌉. As with SMD, whenΛ(i)(z)
of order Λmax is applied to the polynomial matrices their order

will increase by 2Λmax. For the MSME-SMD algorithm the

worst case polynomial order growth is 4⌈((M−1)L)/2⌉. Even

with reasonably small values of M the multiple shift algorithm

can result in a significant increase in the worst case polynomial

order growth.

The growth in polynomial order can be curtailed using

appropriate parahermitian [11] and paraunitary [12,13] trim

functions. Both methods are permitted to remove up to a pre-

defined threshold of energy, µ, from the outer lags of the poly-

nomial matrices. For a parahermitian matrix the trim is done

symmetrically taking advantage of its parahermitian nature.

The parahermitian property is also preserved by the trim func-

tion. In the case of paraunitary matrices the trim function is

applied to both sides of Q(z) asymmetrically because the

outer lags of a paraunitary matrix will have different energies.

The paraunitary property is replaced by near-paraunitarity

after the trim function is applied but the extent of this can be

minimised by using the row-shift corrected trim from [13].

To reduce computational costs of the PEVD algorithms the

parahermitian truncation can be carried out at the end of every

iteration, with the resulting maximum total loss in energy after

I iterations I×µPH . As the paraunitary matrix is only ever cal-

culated when the PEVD is complete the trim function is only

Table 1. Summary of worst case polynomial order growth for the different

SMD variants .

SMD MSME RS-MSME

∆max L ⌈((M − 1)L)/2⌉ L
Λmax L 2⌈((M − 1)L)/2⌉ 2L
Ord. Growth 2L 4⌈((M − 1)L)/2⌉ 4L

applied once and so the resulting energy loss has a maximum

of µPU .

4. Restricted Search MSME-SMD

In the restricted search MSME-SMD we impose an extra con-

dition on the search spaces in Fig. 1 to control the polyno-

mial order growth in S(i)(z) andQ(i)(z). Rather than allowing

every search to select elements from any lag, we restrict it to

elements closer to the zero lag than the global maximum, found

during the first search of each iteration. The new approach still

uses (9) but now once the first search of the i-th iteration finds

a maximum element on τ (i), the lag parameter, τ , in (9) is

restricted such that |τ | ≤ |τ (i)| for the remaining searches in

the i-th iteration. Using this method the worst case maximum

shift, ∆max, is L, the maximum order for the shift matrix,

Λmax, is 2L and the polynomial order growth is 4L. For com-

parison the maximum shift, shift matrix order and polynomial

order growth are summarised in Tab. 1 for all three SMD vari-

ants. The worst case scenario sees the RS-MSME-SMD order

grow twice as fast as SMD but this is significantly lower than

the original MSME-SMD, especially when the matrix width

M is increased.

Ultimately limiting the search space to lower lags will result

in missing some elements and slow the algorithm slightly but

these missed elements are likely to be found by searches dur-

ing future iterations. The reduced search space will benefit the

real time performance in two ways; first the searches during

one iteration after the restriction will be on fewer elements and

second the slower growth in parahermitian matrix means future

searches will be over fewer elements, both result in better real

time performance.

5. Results

To illustrate the performance of the different PEVD algorithms

we first present the performance metrics, followed by the sim-

ulation set up. Finally the results are presented and the perfor-

mance of the PEVD algorithms is analysed.

5.1 Performance Metrics

To confirm that the RS-MSME-SMD maintains a similarly

high performance as the original MSME-SMD, the first

test will measure diagonalisation the remaining off-diagonal

energy after i iterations normalised by the energy in the initial

parahermitian matrix, R[τ ],

E(i)
norm =

∑

τ

∑M

k=1 ‖ŝ
(i)
k [τ ]‖22

∑

τ ‖R[τ ]‖2F
, (11)
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Figure 2. Diagonalisation vs. algorithm iterations for the SMD algorithm

and the two MSME-SMD varients.

where ‖ · ‖F represents the Frobenius norm.

The main objective of the search space restriction discussed

in this paper is to limit the order growth in the polynomial

matrix. With this in mind the order of the parahermitian and

paraunitary matrices are recorded after each iteration. The

orders are recorded both when the trim function is only used

to remove zeros and when it is permitted to remove 10−6 of

the initial polynomial matrix energy.

A side effect of the reduction in parahermitian matrix order

is a reduction in the computational cost of calculating the

PEVD. Here we use execution time as a measure of the com-

putational complexity of the PEVD algorithms implemented in

Matlab 2014a with the following system specification: Ubuntu

14.04 on a workstation with Intel R© Xeon R© E5-1607V2 3.00

GHz x 4 cores and 8 GB RAM.

5.2 Simulation Set Up

The results were produced using the source model from [16]

used to produce an ensemble of 102 parahermitian matrices

which were not majorised with an average dynamic range

of approximately 30 dB. The source model is randomised

so that the parahermitian matrices produced are unique

for each instantiation. The parahermitian matrix, R(z), is

R(z) ∈ C6×6 with the initial number of lags set to 119. Each

of the PEVD algorithms were run for 200 iterations with the

performance metrics recorded after each iteration. The simu-

lations are first run using µPH = µPU = 0, i.e. only removing

zero filled lags, then repeated over the same ensemble for

µPH = µPU = 10−6.

5.3 Algorithm Convergence

Fig. 2 shows the reduction in off-diagonal energy vs. algo-

rithm iterations for the SMD algorithm and the two versions

of MSME-SMD. Despite the reduced search space we can see

for the example in Fig. 2 the both MSME algorithms follow an

almost identical convergence, both of which are significantly

better than the SMD method.

As discussed in Sec. 4. the original MSME-SMD transfers

marginally more energy per iteration than the new RS-MSME-

SMD algorithm in Fig. 2 however these are still significantly

better than convergence of the SMD approach.
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Figure 3. Reduction in off-diagonal energy vs. growth in parahermitian

matrix order.
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Figure 4. Reduction in off-diagonal energy vs. growth in paraunitary matrix

order.

5.4 Paraunitary/Parahermitian Matrix Order

This section investigates one of the main goals of the RS-

MSME-SMD algorithm which is to reduce the growth in poly-

nomial order of the parahermitian and paraunitary matrices.

Figs. 3 & 4 show the order growth of the parahermitian

and paraunitary matrices for each of the selected PEVD algo-

rithms. Generally the SMD method produces parahermitian

and paraunitary matrices of lower order than any of the other

PEVD methods [17]. Here we can see in both Fig. 3 & 4 that

the matrices produced by RS-MSME-SMD are significantly

shorter than their MSME-SMD equivalent and are a similar

level to SMD. Even when a truncation algorithm such as those

described in [11] and [13] are applied to the parahermitian

and paraunitary matrices the reduced search method still out

performs the original MSME-SMD as shown in Fig. 3 & 4

although it does loose out slightly to SMD.

5.5 Real Time Execution

Fig. 5 shows the time taken for each of these algorithms to

carry out 200 iterations alongside the diagonalisation measure

at each point. Despite their more complex search methods the

MSME-SMD algorithms actually converge faster in real time

than the SMD approach in all cases. When no truncation is

used we can see that the new reduced search MSME method

is more efficient than the original MSME search, in fact the

new method takes on average around 10 seconds less than its

predecessor to complete 200 iterations. When the parahermi-

tain truncation methods are included both MSME-SMD vari-

ants obtain a significant performance improvement, where as

the same change in SMD has a lesser affect. The performance

benefits of the reduced search MSME-SMD are not as obvious
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Figure 5. real time convergence of PEVD algorithms, diagonalisation mea-

sure vs. mean execution time.

when the parahermitian truncation is used but it still performs

better than the original MSME-SMD.

6. Conclusion

Through analysis of the polynomial order growth of the SMD

and MSME-SMD algorithms we have proposed a new search

method which can significantly reduce the polynomial order

growth of the MSME-SMD algorithm. Results indicate almost

no degradation in energy transfer between the existing and

proposed method. In addition the experiments have shown

that the new method has a significant reduction in polynomial

matrix order growth even when truncation methods are used.

The reduced search spaces and resulting lower order paraher-

mitian matrices also result in an improved real time conver-

gence. When the parahermitian and paraunitary matrices are

truncated the benefits of the new search method are reduced.

In general the restriction of the search space slows the growth

of both paraunitary and parahermitian matrices which leads to

a faster execution time with minimal impact on the algorithm

convergence.
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