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ABSTRACT

We investigate discretization strategies of the conservation equation inVSIAM3 (volume/surface integrated average
based multi-moment method) which is a numerical framework for incompressible and compressible flows based
on a multi-moment concept. We investigate these strategies through the droplet splashing on a superhydrophobic
substrate. We find that the use of the CIP-CSLR (constrained interpolation profile-conservative semi-Lagrangian
with rational function) method as the conservation equation solver is critically important for the robustness of
incompressible flow simulations using VSIAM3 and that numerical results are sensitive to discretization techniques
of the divergence term in the conservation equation.
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1. Introduction

VSIAM3 [1, 2] is a numerical framework to simulate fluid flows, and employs a CIP-CSL method [4, 3]
as the conservation equation solver. VSIAM3 is a highly robust and efficient numerical framework [5].
However, a multi-moment framework which has been used in VSIAM3 (including the CIP-CSL method)
have increased some complexities in the implementation. Although several CIP-CSL methods such as
CSL2 (CSLwith quadratic function) [4], and CSLR (CSLwith rational function) [3] have been proposed,
little attention has been given to the formulation of the divergence term in the CIP-CSL methods.

In this study, we propose efficient formulations for the divergence term in the CIP-CSL schemes and we
identify reasons for robust implementation of VSIAM3.

2. The CIP-CSL and the Velocity Divergence Term

The CIP-CSL methods are used to solve the conservation equation

∂

∂t

∫
Ω

φdV +
∫
Γ

φ(u · n)dS = 0, (1)

here φ is a scalar value. In the CIP-CSL, an interpolation function Φi (x) is constructed using different
moments in one cell. For instance, in the CIP-CSL2 [4] method, a quadratic interpolation functionΦi (x)

Φi (x) = ai (x − xi−1/2)2 + bi (x − xi−1/2) + φi−1/2, (2)

is used to interpolate between xi−1/2 and xi+1/2 as shown in Fig. 1. By using the following constraints

Φi (xi+1/2) = φi+1/2, (3)

φi =

∫ xi+1/2

xi−1/2

Φi (x)dx/∆x, (4)

the coefficients, ai and bi , can be determined. In the CIP-CSLR [3] method which is characterised by
less numerical oscillations, the following interpolation function

Φi (x) =
αi βi (x − xi−1/2)2 + 2αi (x − xi−1/2) + φi−1/2(

1 + βi (x − xi−1/2)
)2 , (5)



with
αi = βiφi + (φi − φi−1/2)/∆x, (6)

βi =
1
∆x

(
|(φi−1/2 − φi ) | + ε
|(φi − φi−1/2) | + ε

+ 1
)
, (7)

is used. Here ε is an infinitesimal number. Once the interpolation functionΦi (x) is ready, the cell average
φi is updated by a finite volume formulation
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Figure 1: Schematic figure of the CIP-CSL2 method. ui−1/2 < 0 is assumed. The moments which are indicated by
gray color (φi−1/2, φi and φi+1/2) are used to construct the quadratic interpolation function.

∂

∂t

∫ xi+1/2

xi−1.2

φdx = −
1
∆x

(Fi+1/2 − Fi−1/2), (8)

here Fi−1/2 is the flux

Fi−1/2 =




−
∫ xi−1/2−ui−1/2∆t

xi−1/2
Φi−1(x)dx if ui−1/2 ≥ 0

−
∫ xi−1/2−ui−1/2∆t

xi−1/2
Φi (x)dx if ui−1/2 < 0.

(9)

The boundary value φi−1/2 can be updated by the conservation equation of a differential form

∂φ

∂t
+ u

∂φ

∂x
= −φ

∂u
∂x

. (10)

(10) is solved using a splitting approach as follows

∂φ

∂t
+ u

∂φ

∂x
= 0, (11)

∂φ

∂t
= −φ

∂u
∂x

. (12)

A semi-Lagrangian approach is used for the advection equation (11)

φ∗i−1/2 =

{
Φi−1(xi−1/2 − ui−1/2∆t) if ui−1/2 ≥ 0
Φi (xi−1/2 − ui−1/2∆t) if ui−1/2 < 0. (13)

(12) represents a correction due to the divergence term of the velocity and is solved by a finite difference
method.We propose the following approximations of the velocity divergence term of the 1D conservation
equation.

Simple upwind based on boundary value (UPW)

φ
∂u
∂x
=




φ∗
i−1/2(

un
i−1/2−u

n
i−3/2

∆x ) if ui−1/2 > 0

φ∗
i−1/2(

un
i+1/2−u

n
i−1/2

∆x ) if ui−1/2 ≤ 0.
(14)

This is a simple upwind approximation based on the boundary values.



Central difference based cell centre value (CDcc)

φ
∂u
∂x
= φ∗i−1/2

ûn
i − ûn

i−1
∆x

(15)

This is a central difference approximation based on the cell center values (ûi), where ûi is the
velocity calculated at cell centre [2]

ûi =
3
2

ui −
1
4

(
ui+1/2 + ui−1/2

)
. (16)

Mixed formulation of the simple upwind and a central difference (UPW-CDcc)

φ
∂u
∂x
=




DUPW if DUPW · DCDcc < 0
DUPW else if |DUPW | < |DCDcc |

DCDcc else,
(17)

here DUPW and DCDcc represent φ
∂u
∂x

which are calculated by (14) and (15), respectively.
The mixed formulation is introduced to take advantages of both upwind and central difference
approximations.

3. Numerical results of the droplet splashing

We conducted numerical simulations of droplet splashing on a superhydrophobic substrate to study
the effects of these discretization strategies of the conservation equation in VSIAM3 through a highly
complicated free surface flow problem.For more detail see [5].

In the set of numerical simulations, quantitative parameters, the densities ρl iquid = 1000 kg/m3, ρair =
1.25 kg/m3, viscosities µl iquid = 1.0×10−3 Pa·s, µair = 1.82×10−5 Pa·s, surface tensionσ = 7.2×10−2

N/m, gravity 9.8 m/s2, initial droplet diameter D = 1.86 mm, impact speed 2.98 m/s and the equilibrium
contact angle 163◦ are used. A regular Cartesian grid system of 192 × 192 × 48 is used.

Fig. 2 shows the results. VSIAM3 with CSL2-UPW could not capture droplet splashing well as shown
in Fig. 2a. CSL2-UPW also was not stable after around 1.1 ms. VSIAM3 with CSL2 with any central
difference formulation was not stable for this problem. VSIAM3 with CSLR is stable when UPW was
used for the divergence term as shown in Fig. 2b. However if we use any central difference formulation for
the divergence term, VSIAM3 with CSLR was also unstable. If we use UPW-CDcc (mixed formulation),
VSIAM3 with CSLR could conduct stable numerical simulation of droplet splashing and capture droplet
splashing well as shown in Fig. 2c.

4. Conclusions

The numerical results showed that VSIAM3 with CSL2 is not robust enough and that VSIAM3 with
CSLR is highly robust (if an appropriate formulation is used for the divergence term). We also found
that the numerical results are sensitive depending on discretization formulations of the divergence term
in the conservation equation. The numerical results of droplet splashing showed that VSIAM3 with any
central difference formulation is not robust even though CSLR is used, while VSIAM3 with the simple
upwind formulation was highly robust and captures the droplet splashing well. These results indicates
that the use of the upwind formulation is suitable for robust numerical simulations, especially for highly
complicated flows like droplet splashing.

We also proposed the mixed formulation using both a central difference and the simple upwind formu-
lation for the divergence term. The mixed formulation can simulate the droplet splashing like the result
using the simple upwind. The mixed formulation can take advantages of both central difference and
upwind formulations.

In conclusion, employing the less oscillatory CSL scheme (i.e. CSLR) with an appropriate divergence
term formulation is critically important for robust implementation of VSIAM3.



Figure 2: Numerical results of droplet splashing by CSL2-UPW (a), CSLR-UPW (b) and CSLR-UPW-CDcc (c).
VSIAM3 with CSL2-UPW was not stable after around 1.1ms.
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