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Abstract

We investigated discretization strategies of the conservation equation inM&S(#olume/surface integrated av-
erage based multi-moment method) which is a numerical framewoikdompressible and compressible flows based
on a multi-moment concept. We investigated these strategies through thevéd-davity flow problem, shock tube
problems, 2D explosion test and droplet splashing on a superhyalsmpbubstrate. We found that the use of the CIP-
CSLR (constrained interpolation profile-conservative semi-Lagrangith rational function) method as the conser-
vation equation solver is critically important for the robustness of incosgite flow simulations using VSIAM3 and
that numerical results are sensitive to discretization techniques of thagdivwce term in the conservation equation.
Based on these results, we proposed efficient implementation techoifd8$AM3.

keywords: multi-moment method; VSIAM3; CIP-CSL method; shocletulroplet splashing

1 Introduction

VSIAM3 [23, 24, 28] is a numerical framework to simulate ingoressible and compressible flows, and employs a
CIP-CSL method [21, 30, 25, 26] as the conservation equaidver. VSIAM3 has been applied to various fluids
problems [23, 24, 28] including droplet splashing [38, 39].4In experiences of one of the authors [38, 39, 40],
VSIAMS is a highly robust and efficient numerical framewoHkowever most of researchers who tried to develop the
code could not conduct robust fluid simulations [13]. Thisésause a multi-moment framework which has been used
in VSIAM3 (including the CIP-CSL method) has increased saomplexities in the implementation and the full detail
of the efficient/robust implementation of VSIAM3 has not bekescribed in any paper. The issue on the robustness in
VSIAM3 has also been implied in [9] and a possible solutioimgishe simple CIP interpolation for the issue has been
proposed. In the paper, we identify the reasons and suppljuthdetails of efficient implement of VSIAM3. Our
approach is fully based on VSIAM3 (without using the simpl® @iterpolation) and simple.

VSIAM3 and the CIP-CSL methods can be considered as multiremd methods. Multi-moment methods are
defined as methods which use at least two different types afients (variables) and update these moments by using
different formulations (but the same governing equatifioy. instance, the CIP-CSL2 (CIP-CSL with 2nd-order poly-
nomial function) method [30] which is a solver of the consgion equation uses boundary value (point value in 1D)
and cell average as moments (i.e. two different moment}.bbundary value and cell average are updated by using
finite difference and finite volume formulations, respesijv(i.e. two different formulations). VSIAM3 also uses the
same moments with these in CSL2. The CIP method [31, 32, B8}, (interpolated differential operator) scheme [1]
and MCV (multi-moment constrained finite volume) [6] cancal®e categorized in multi-moment methods. On the
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other hand, most of numerical methods in fluids are basedngtesmoment such as MUSCL (monotonic upwind-
centred scheme for conservation laws) [11], ENO (esséntiah-oscillatory) [3] and WENO (weighted ENO) [10, 7]
(i.e. point value only or cell average only).

The CIP-CSL method is a solver of the conservation equatttotwis used in VSIAM3. Several CIP-CSL methods
such as CSL2 [30], CSL3 [25] and CSLR (CSL with rational fim} [26] have been proposed. These CIP-CSL
methods are based on a semi-Lagrangian framework. The SlPa@thods construct the interpolation functions using
only moments (variables) within one cell and increase tlieoof accuracy by increasing the number of moments in
each cell, while single-moment methods increase the orfdacauracy by increasing the number of cells which are
used in their discretization. In the CIP-CSL2 method, 2ndko polynomial interpolation function is employed as the
interpolation function, and two boundary values and a cadtage in the upwind cell were used as the constraints. In
CSL3, 3rd-order polynomial interpolation function is emyd, and two boundary values and a cell average in the
upwind cell are used as the constraints and a gradient inpvéd cell is also used as a control parameter. CSL3 is
typically used for compressible flows and the control patemis used as a limiter. CSLR is a less oscillatory CSL
formulation based on rational functions. In this paper, ZSCSLR and CSL3 are used and detailed. In this paper,
we found that the use of a less oscillatory CSL formulatioBI(R) is critically important for robust incompressible
fluid simulations and that the divergence term which appieditese CSL schemes play a key role in the robustness of
VSIAM3.

In Section 2, a review of VSIAM3 for incompressible flows isgn. We also propose several formulations of the
divergence term in Section 2.6. In Section 3, the detailsSifAM3 for compressible flows is given. Numerical results
of lid-driven cavity flow, shock tube problems, 2D explosi@st and droplet splashing are given in Section 4. The
summary comes in Section 5.

2 VSIAM3 for incompressible flows

2.1 Governing equations

The following governing equations are used for incomptasglow

/u~ndS:O, 1)
JI

P 1 1
E/Qudv—k/ru(u-n)ds_—E/rpndSJrE/rr-ndS @)

whereu is the velocityn the outgoing normal for the control volunGewith its surface denoted Hy (see Fig. 1)p the
density,p the pressure andthe viscous stress tensor. A fractional step approach §u$ed to solve the governing
equations as follows:

ut+At — fNAZ(fNAl(fA(ut)))7 (3)
1. advection partf(®):
ﬁ/ udv+/u(u.n)dszo, @)
ot Ja r
2. non-advection part 1f {'A1):
0 1
E/Qudv_ﬁ/rr-nds )
3. non-advection part 2 {*2):
/ u-ndS=0, (6)
-
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These equations are solved by VSIAM3, in which the adveqtam is solved by a CIP-CSL method.



2.2 Grid for VSIAM3 (M-grid)

VSIAM3 uses the grid as shown in Fig. 1. This grid is called Ndd27], and employs cell averages and boundary
values as the moments. The cell averaggsvi j, pi j are defined at the cell centre and the boundary values; ;,
Ui j—1/2 Vi—1/2,j» Vi,j—1/2 are defined on the cell boundaries. A cell average and boyndares are defined as

X|+l/2/yj+1/2

X, y)dxdy, 8)

Ui,j = AxAy/I vz N
1 Yit+ye2

e Ay/y,-l/z U(Xi-1/2,Y)dy, ©)
1 [X+1/2

Ui,jfl/z - 7/ u(X7y]71/2)dX (10)
AX Xj_1/2

2.3 Advection part (f4)

The CIP-CSL methods are used to solve the conservationieguat

9
o | oav+ [otu-mas=o (11)

hereg is a scalar value. In the following subsections 2.3.1 and22tBe CIP-CSL2 method [30] and the CIP-CSLR
method [26] are explained, respectively.

2.3.1 CIP-CSL2
In the CIP-CSL2 method [30], a quadratic interpolation timT ®; (x)

P (X) =& (X—X_1/2)” + 01 (X=X _1/2) + A_1/2, (12)

is used to interpolate betweeq. 1, andx 1> as shown in Fig. 2, The coefficients, andbj, are determined as
follows

1

q = m(—&a +3@-1/2+3@11/2); (13)

1
bi = B((G(ﬂ —4Q_1/2—2Q1)2)- (14)

by using the following constraints
®i(Xir1/2) = @112, (15)
Xiy1/2
Q= ®; (x)dx/Ax. (16)
Xi—1/2

By using the interpolation functio®;(x), the boundary valugy_,, can be updated by the conservation equation of a

differential form
do 0@ Jdu

ot +Uu X —(P& (17)
(17) is solved using a splitting approach as follows
Jp 0@
ot +u ax =0, (18)
dp  du
= —qo&. (29)



A semi-Lagrangian approach is used for the advection equéti8)

y Oi_1(X_1/2—Ui_120t) if U_32>0

= . 20
B2 { Pi(Xi_1/2—Ui120t) if U512 <0. (20)

(19) represents a correction due to the divergence terrmeofdlocity and is solved by a finite difference method. The

divergence term is one of main topics in this paper as digclssSection 2.6. The cell averageis updated by a
finite volume formulation

1
Q=g - (|+1/2 F_1/2), (21)

hereF_1, is the flux

(22)

f)l(l 11//22 th-1/28¢ d; (X)dX if ui—l/2 < 0.

- { R e 0dx Ty 1> 0
e

2.3.2 CIP-CSLR

The CIP-CSLR [26] method is characterised by less numersxsllations. Although two CSLR formulations (CSLRO
and CSLR1) have been proposed [26], we explain only CSLRé (rereafter CSLRO is referred to as CSLR in this
paper). Instead of (12) in the CIP-CSL2 formulation, thédiwing interpolation function

0B (X—Xi_1/2)? + 206 (X— Xi_1/2) + B_1/2

@ (X) = y (23)
(1+B (X—><i—1/2))2
with
a =B+ (@ —@_1/2)/0x (24)
1 (@2 —@)l+e
BI_AX<|(<H—<R+1/2)|+5+1>7 (@5)

is used. Here is an infinitesimal number to avoid zero division. We used 1016 for all results in this paper. All
other procedures are the same with these in CSL2.

2.3.3 Multi-dimensional cases

For multi-dimensional cases, a dimensional splitting radt[23] is used. For x-directior’; and ¢ 1)2) are firstly
computed frorrr,q and@” 12, by using 1D CIP-CSL solver. Howeveqn 12 cannot be updated by using 1D CIP-
CSL solver. Therefor(-p 12 is updated by TEC (Time Evolution Convertlng) as follows:

Bi1p=d 125 (QM @+ g a0 (26)

n+1 n+1

A similar approach is used for y- dlrectlorrg and @oqyp are computed fronyg’; and ¢" 12 by using a 1D
CIP-CSL method(pfl/z_’ is updated by TEC as follows:

qqn—+1}2, (=0t (‘Rnrl @+ qqnffj —@qj)- (27)
2.4 Non-advection Part 1( fNAL)

The viscosity term is computed by a standard finite volummfdation for cell averages.

}/ o ndS— 1 <Ti+1/2,j —Ti—1/2,] n Tij+1/2— Ti,jl/2>. (28)
pJr Pi,] Ax Ay

The boundary values are updated by TEC.




2.5 Non-advection Part 2( fNA2)

By using the divergence of (7) angdu™?!.ndS= 0, the following Poisson equation

Dpn+l B 1 .
/r g ~ndS_E/ru ‘nds, (29)

is obtained, whera* is the velocity after non-advection part 1. (29) is disaed as

(= 0P 172 — (o= P ii1/2
]

Pii1/2,] = pinjl/zf (30)

(p_nfr]i O™ )i 12— (p_n%dxprwl)i,jfl/z

+ i,j+1/2 i,j—1/2
Ay
B i(ui*+1/2,j —Ulapj n Viji1/2 7Vi*.,j71/2)
M AX Ay ’
here N+l ol

( : O™ )i_1y2 = 2 LY (31)

iy oplteet X

A preconditioned conjugate gradient (CG) method [4] is ukedhe pressure Poisson equation. The convergence
tolerance of the pressure Poisson equatipa: 1019 s used. By using™t?, the boundary values of the velocity are
updated as follows_1 5 j, Vi j_1/2)

. At
u?jf/z,j =Ulypi— (p

n+1)
Pi—1/2,

i—1/2,j° (32)

At
Bij-1/2 Y
Other velocity componentsi(j, Vi j, U j_1/2, Vi_1/2,j) are updated by the TEC formula.

1
Vi =Vj1e—

")

12 (33)

2.6 Formulations of the divergence term

As we mentioned in Section 2.3, in this section, we explaiw o discretize the divergence term (19) of the 1D
conservation equation.

Simple central difference based on boundary value (CDb)

ou . Ulip—Ulsp
<P& = (R_l/zT- (34)

In the original papers of the CIP-CSL methods [30, 25], thpdé central difference approximation using
boundary values has been suggested.

In this paper, we propose the following approximations ef\klocity divergence term.
Simple upwind based on boundary value (UPW)
(35)

P ox Rz Wazy

A1)~

ui’[ —ui[ .
Jdu _ (ﬂ*_l/z( l/ZAX 3/2) if l'li—1/2 >0
U_1/2 <0.

This is a simple upwind approximation based on the boundaiyes.



Central difference based on cell average (CDca)

n n
du u'—u 4

o i
(p& - (371/2 AX : (36)

This is a central difference formula based on the cell awsagompared to CDb (34), the proposed central
difference formulation employs the cell average insteathefboundary values, and the stencil is shorter than
that of CDb.

Central difference based cell centre value (CDcc)
(37)

This is another central difference approximation basedhencell center valueay); whereu; is the velocity
calculated at cell centre [25]. By using the quadratic fiorc{12),; can be obtained

3

. 1
U = éUi 2 (Ui+1/2+ ui—1/2) . (38)
Central difference based on a 4th-order polynomial functio (CDbca)
du uw—ul ULy Uls,
‘P& =@ 1 (2 Ax A% . (39)

This formula (39) can be derived from a fourth-order centredrpolation function using; sz, Ui—1, Ui_1/2, Ui
andui+1/2 [12]

Mixed formulation of the simple upwind and a central difference (UPW-CDcc)

u Dupw if  Dupw-Dcpec <0
05, = Dupw elseif |Dupw| < |Dcpecl (40)
DCDcc else,

here ypw and Drpec representp% which are calculated by (35) and (37), respectively. Theaahbormulation

is introduced to take advantages of both upwind and ceriffaiehce approximations. The formulation employs
the upwind formula (35) when the sign of derivatives of UPW &Dcc are different (Bpw - Dcpee < 0) or
|Dcpec| is larger than that ofDypw|. Otherwise the central difference formula (37) is used.hddigh we
combined UPW with CDcc in this paper, it can be combined with ather central difference formulations. In
this paper, we also combined UPW with CDbca (UPW-CDbca).

Interpolation at characteristic departure point (DP)

00;_ .
ou fl’.*_l/ZTI)(l(Xi—l/z —U_10t) if U_15>0 "
90& = L (41)

fl’.,l/zﬁ(xifl/z —Ui_1/20t) if u_y<0.
This formulation evaluates the divergence at the charatitedeparture point using a CIP-CSL interpolation
function.

2.7 Formulations of the divergence term in Fourier analysis

In this section, we conduct Fourier analysis of these diecg term formulations. Fourier analysis shows resolution
of spatial derivatives in the wavenumber domain. The spptiile of the velocityU (x) is defined over the domain
[0, L] with a uniform grid spacind\x is decomposed into Fourier series

U(x) = 5 U (k)& (42)



wherej = v/—1 andw = 21Kk Ax/L is the scaled wavenumber. The point valug at  is also decomposed as
Ui_1/2 = zU(K)eijifl/Z/Ax. (43)
K

Using (43), the point value &_1 >, is decomposed as

Ui_1/24m = Ui_1/28/*™. (44)
The cell average; is also decomposed as
1 elw_1
U= 2% /o U(X_1/2+X)dX=Ui_1/2 o (45)

Since equation (45) expresses the relation between théyadire and the cell average, the accuracy of the proposed
formulations of the divergence term can be examined by ugidpand (45). The formulations of divergence term in
Fourier space are obtained as follows

Uxcob(w) = j(sin(w)), (46)

Uxupw (@) = (cogw) — 1) + j(sin(w)), (47)
Uxcbea(w) = j(sin(w)), (48)
Uccors(@) = j(CST2/2) _ @), @9)
Usconeal®@) = §(— sin(a) + SST@/2)) (50)

w

Uy pp depends on the interpolation function of a CSL method. Henew this paper, CSLR and CSL3 are mainly
used and both CSL methods are using nonlinear interpol&tiwetion. Therefore we cannot analyze DP formulation.

Fig. 3 shows the results of various formulations of the djeeice term in Fourier space. All central difference
methods have no error in real part (no diffusion error) angt biPW has diffusion error, as shown in Fig. 3 (b). Fig.
3 (a) has shown that CDbca is the closest to the exact solufibec is second closest, CDca third, CDca fourth, and
CDb and UPW are the most inaccurate.

3 VSIAM3 framework for inviscid compressible flows

3.1 Governing equations

The Euler equations describe the dynamics of inviscid cesgible flows and are written as

oU IF(U)

where
o}
U=< m ,, (52)
E
m
FU) =< um+p , (53)
Eu+pu



wheremis the momentumng = pu) and E the total energy. The equations are completed by tegieq of state

p= (-2 ) -, (54)

wherey is the specific heat ratio. By using the VSIAM3 formulatiod]2(53) is split into two parts, advection part

and non-advection part
m 0
FU) =F'UW+F'U)={ um > +{ p 3. (55)
Eu pu

A fractional step approach is used to solve (51), in whichettheection part

oU  AF'(U)

ot O (58)
is solved by CIP-CSL3 method [25]. The non-advection part

ou  dF'(U)

ot O S

is solved by finite volume/difference formulations.

3.2 Advection part: CIP-CSL3

The CIP-CSL3 method is an extension of the CIP-CSL2 methadthis method, 3rd-order polynomial function
is employed as the interpolation function instead of thedgatéc function of CSL2. Then CSL3 needs one more
constraint to determine all coefficients and introducesrdrobparameter (gradient at the cell center) as the additio
constraint. The control parameter can be used as slopetitoieliminate numerical oscillation [24]. The 3rd-order
polynomial interpolation function betweeq. 1, andx; 1/, is written as

Pi(X) = & (X—Xi_1/2) + bi(X—X_1/2)? + G (X—X_1/2) + @A_1/2- (58)

In addition to the constraints (15) and (16), the followirmmstraint

' —d, (59)

is used to determine the coefficients of (58) as follows

o 4(@y1/2— @1/ — Oxdh)

A , (60)
3(—2¢—q +3@_1/2+ 2Axd;
by = ( +1/2AX2 1/2 |)’ (61)
2(3@ —3@_1/, — Axdi
G = (S <AAX1/2 I>- (62)
The derivatived; is given as .
di = Bid, (63)
~ +S_
d = minmod( 3252205, 1,25 1), (64)
here
. m(A,B,C) if sgn(A) =sgn(B) =sgnC
mmmodA’B,C)_{ MABC) if o) = sgr(B) = sgr(C) (65)



A i min(|Al, B, C[) = |A|
MAB,C)={ B elseif minAl,|Bl,[C|)=|B] (66)
C else  mif|A},|B[,|C|) =]C],

and “~ A
S =202, (67)
where
~ 3 1
a=50- Z(‘H+1/2+ @-1/2): (68)
and
_ { 0.0125 if . (ui”_l/2 - ui”+1/2) < 0.02Ax (69)
1.2 otherwise.

Given at time step n, the cell average$, uf', p", m', E" and the cell boundary valu¢$‘71/2, uirll/Z’ ”ﬂl/z
E{Ll/z, the CIP-CSL3 method is used to obtain the correspondingityeat the next time step n+1 (i.epin+1 and
pi”jll/z) and the provisional values of the momentum and energyr(iﬁerq*_l/z, E’ andEi*_l/z).

3.3 The Non-advection Phase

A simple explicit equation [24] is used to advance the pressu

Pl — P pMl ML My,
N+l _ o2t [ g DY i-1/ Y / 7

hereuf = pﬁl, and,Ci2 = pﬁl. The boundary values of the momentum and total energy argegas follows
1 I

At

e =my = o (M —pl'), (72)
n+1 n At n+1 .n+1 n+1 .n+1
B2 =Bl12— 5y (um et U e - (72)
The cell averages of the momentum and total energy can bebtteia TEC formula as follows
1
m =+ > (”}nill/z —mlyp+ ”\njll/z - ”ﬂl/z) ; (73)
n+1 n 1 n+1 n n+1 n
B =E+5 (Ei+1/2 —Elapt B Ei71/2> : (74)

For numerical simulations of compressible flows, CSL3 stidndd used. Although CSLR is also a less oscillatory
CSL formulation, CSLR does not include a slope limiter sa 88LR cannot prevent oscillation around shock in
VSIAM3 (see Appendix A for some numerical results by CSLR).

4 Numerical results

4.1 Lid-driven cavity flow

We examined the discretization strategies of the congervatjuation through the lid-driven cavity flow problem [2].
The tests were carried out at Reynolds nhumbesR600 and 5000.

Fig. 4a shows the result of Re1000 by the CIP-CSL2 method with the simple upwind (UPW). Témult shows
the x-component of velocity along the vertical line througa centre of cavity. The result shows a reasonable agree-
ment with the solution by Ghia [2]. However the calculatioasanot stable after obtaining the steady state solution.



Although we also tested CSL2 with central difference appnations, these were not stable and did not reach to the
steady state solution. Fig. 4b shows the result when thegiwee term was ignored. Although the result was inaccu-
rate, the calculation was stable. These results suggdghthase of the CSL2 in VSIAMS3 affects the robustness and
the divergence term is relevant to the robustness.

We also examined the use of the CIP-CSLR method in VSIAM3. Aumaerical results of the CIP-CSLR method
with all divergence term approximations are presented guieis 5 with grid refinement studies using three grid sizes
(50x50, 100< 100 and 20&200). All numerical results show reasonable agreementstivi Ghia solution and also
reasonable convergences. All numerical simulations u§iBg§R (with any divergence term approximation) were
stable in this test problem. These results by CSL2 and CSlggesi that the use of CSLR improves the robustness
of VSIAM3. As explained in section 2.3.2 and [26], CSLR is adedscillatory formulation and CSL2 is not free
from numerical oscillations. Therefore it can be considatet the use of a less oscillatory formulation is critigall
important for the robustness of VSIAM3 and the numericalltzdions generated by CSL2 affect the robustness in
VSIAM3 through the divergence term.

Fig.5b shows the result by UPW. The result is almost equitdtethat of the upwind with a time average approx-
imation given in [23]. The numerical results of the centiiffiedlence approximations are shown in Figures 5a,c,d and
e. These results show that central difference approximsiiwe superior to UPW in this test problem. Although all
central difference formulations give similar results, @atand CDcc are slightly better than CDb and CDca as shown
in Fig. 6 (enlarged figure). It is hardly seen the differenegneen the results by CDbca and CDcc. CDb is superior to
CDca in this test. The result by mixed formulation (UPW-CPisagiven in Fig. 5f. Fig. 7 shows a comparison among
UPW, CDcc and UPW-CDcc. The result by UPW-CDcc is closer ®o@hia solution than that by UPW. Although
the results by UPW-CDbca are not presented in this paperethdts by UPW-CDbca show almost identical results
with these by UPW-CDcc. In this test problem, the mixed fdatian has no advantage for central difference approx-
imations. However, as explained in Section 4.3, the mixechétation plays an important role in complicated/difficult
problems like droplet splashing. The result by DP is bettantthat by UPW but worse than these by central diference
methods in this test as shown in Figures 5 and 6.

Fig. 8 shows numerical simulations of R&000 by CSLR. The trend is almost same with the results of B@&1

4.2 Compressible flows (Sod’s and Lax’s problems, and 2D ex@mn test)

We validate the effects of various discretization techagjior the divergence term in the conservation equatiomugjiro
benchmark problems in compressible fluids, Sod’s probleghdhd Lax’s problem [8]. The initial condition of Sod’s
problemis

| (20,0,1.0) if x<O0
(p,u,p) = { (0.1250,0.1) if x> 0. (75)
The initial condition of Lax’s problem is
_ | (0.4450.6983528 if x<O
(p,u,p) = { (0.5,0,0.572) if x> 0. (76)

All computations were conducted on a 400-point uniform gfide numerical results of Sod’s and Lax’s problems are
presented in Figures 9 and 10, respectively. Table 1 shgwesrbrs in Sod’s and Lax’s problems.

Numerical results of Sod’s problem by all divergence forations excluding DP are similar as shown in Fig. 9. DP
was not stable for this problem. Table 1 shows that CDbcaeigthst accurate in Sod’s problem and UPW is the worst,
in terms of Ly errors. All other central difference approximations (C@i)ca and CDcc) show very similar errors
(2.24x 1073 —2.25x 10°%). Mixed formulations (UPW-CDcc and UPW-CDbca) have intediate errors between
UPW and CDcc (or CDbca).

In Lax’s problem, we can observe some differences espg@adiund the contact discontinuity as shown in Fig.
10. As shown in Fig. 10 and Table 1, the result by CDb is the twoFis is because Lax’s problem involves the
discontinuity in the velocity initial condition and the gite central difference formulation (CDb) which uses a wider
stencil cannot manege such discontinuity well. AlthoughddBId simulate Lax’s problem, it was the second worst.
This will be because of the strong discontinuity in the alitondition. Although CDbca was the most accurate in

10



Sod’s problem (which does not involve the discontinuity lie tinitial velocity condition), second worst in central
difference methods. This will also be because CDbca useslerwtencil like CDb. On the other hand, CDcc is the
most accurate and CDca second best in Lax’s problem. Thise/thecause CDcc and CDca use a shorter stencil than
CDb and CDbca. UPW is less accurate than CDcc and CDca butawoueate than CDb and CDbca, and has a tiny
numerical oscillation around the shock (the similar oatiitin has also been observed in the previous work by Xiao
[24]). If the mixed formulation is used, the tiny oscillatievhich appears in the numerical result by UPW disappears
and numerical diffusion immediately before/after dis@omities, which is observed in numerical results by all caint
difference approximations is also reduced. Although theshiformulation shows some improvements, the results by
CDcc and CDca are still more accurate in terms pkkror because the mixed formulation is slightly more diffas
on the discontinuities.

We also conducted numerical simulations of 2D compreséible(2D exploion test) [22] on the domajr-1, 1] x
[—1,1]. The initial condition of the 2D explosion problem is

p(xy,0) =1; u(x,y,0)=0; v(xy,00=0; p(xy,0)=1; ifr<05 77)
p(xy,0) =0.125; u(x,y,0)=0; v(x,y,0)=0; p(xYy,0)=0.1; otherwise,

wherer = \/x2+y2. The inviscid Euler conservation laws are solved on a:2@00 Cartesian grid. Fig. 11 shows the
perspective view of the density at t=0.25. These divergémcaulations can easily be applied to multi-dimensional
fluid problems and the trend is alsmost same with that in Smdblem.

4.3 Droplet splashing

We also conducted numerical simulations of droplet sphagsloin a superhydrophobic substrate to study the effects
of these discretization strategies of the conservatiomtauin VSIAM3 through a highly complicated free surface
flow problem. The numerical formulation to simulate freeface flows is based on VSIAM3. Additionally, for the
motion of liquid interface, the CLSVOF (coupled level sedamlume-of-fluid) method [18, 34] using both the level
set method [14, 17] and the VOF method [15] is used. We use HiBIT/WLIC (tangent of hyperbola for interface
capturing/weighed line interface calculation) scheme B8 as a type of VOF method. For the surface tension force,
the density scaled balanced continuum surface force maittelevel set curvature correction [39, 40, 41] is used. To
impose contact angle, we use a method developed by Suss®aBb]1 We simulate not only the liquid but also the
air. For more detail see [37, 39].

In the set of numerical simulations, quantitative paramsgthe densitiepjq.ic = 1000 kg/n¥, pair = 1.25 kg/n?,
viscositiespiquid = 1.0 x 1078 Pas, tar = 1.82x 10°° Pas, surface tensiog = 7.2 x 10-2 N/m, gravity 98 m/<,
initial droplet diameteD = 1.86 mm, impact speed.28 m/s and the equilibrium contact angle 1G8e used. A
regular Cartesian grid system of 19292x 48 is used.

Fig. 12 shows the results. VSIAM3 with CSL2-UPW could nottcae droplet splashing well as shown in Fig.
12a. CSL2-UPW also caused relatively large amount of flosadwas not stable after around 1.1 ms. VSIAM3 with
CSL2 with any central difference formulation was not stablethis problem. VSIAM3 with CSLR is stable when
UPW was used for the divergence term. The formulation coafiture droplet splashing well as shown in Fig. 12b.
However if we use any central difference formulation for dinergence term, VSIAM3 with CSLR was also unstable.
If we use UPW-CDcc (mixed formulation), VSIAM3 with CSLR ddwconduct stable numerical simulation of droplet
splashing and capture droplet splashing well as shown inlg.

5 Summary

We investigated discretization strategies of the consiervequation for efficient implementation of VSIAM3 thrdug
the lid-driven cavity flow, shock tube problems and dropjgéashing.

We examined VSIAM3 with CSL2 and with CSLR through the lidvén cavity flow and droplet splashing. The
numerical results showed that VSIAM3 with CSL2 is not rolersdugh and that VSIAM3 with CSLR is highly robust
(if an appropriate formulation is used for the divergeneen)e These results indicate that the use of a less oscilator
formulation (i.e. CSLR) is a key for robust incompressibéaflsimulations.
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We also found that the numerical results are sensitive dépgron discretization formulations of the divergence
term in the conservation equation. The numerical resulthefid-driven cavity flow showed that CSLR with central
difference formulations are superior to the simple upwinmirfulation in this test. However both results are reasgnabl
precise. On the other hand, the numerical results of drgplashing showed that VSIAM3 with any central difference
formulation is not robust even though CSLR is used, whileAN$B with the simple upwind formulation was highly
robust and captures the droplet splashing well. Thesetsdadicates that the use of the upwind formulation is slgtab
for robust numerical simulations, especially for highlyrgaicated flows like droplet splashing. Although the ceintra
difference formulations are precise for simple flow prokdesnch as the cavity flow, will not be robust enough for
highly complicated flow problems.

Based on the numerical results, we also proposed the mixealfation using both a central difference and the sim-
ple upwind formulation for the divergence term. The mixexhfalation can simulate the lid-driven cavity well (better
than UPW and slightly worse than CDcc) and also simulateldtgplashing like the result using the simple upwind.
The mixed formulation can take advantages of both centfidrdince and upwind formulations. We summarize the
results of incompressible results in Table 2.

We also tested formulations for the divergence term thrahghinviscid compressible flow problems (Sod’'s and
Lax’s problems and 2D explosion test). In Sod’s problem Wwidoes not involve discontinuity in the velocity initial
condition, we could not observe much difference in numérniesults by all divergence formulations excluding DP
and DP was not stable. In Lax’s problem which involves thealiinuity in the velocity initial condition, we could
observe some differences especially around the contamirdiguity. In this test, CDb and CDbca, which use a wider
stencil were less accurate and CDcc and CDca, which use #shtancil were more accurate. The mixed formulation
shows some improvements compared to numerical resultsybyeariral difference or UPW. However, in terms of L
error, CDcc and CDca are still better than UPW-CDcc.

In conclusion, employing a less oscillatory CSL scheme C8LR, CSL3, etc.) with an appropriate divergence
term formulation is critically important for robust implemtation of VSIAM3.
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A Sod’s and Lax’s problems by the CIP-CSLR method

Fig. 13 shows numerical results of Sod and Lax problems byRCSISLR does not include a slope limiter so that
numerical oscillations around shock cannot be suppressé8liAM3 framework.
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Table 1: Ly errors in shock tube problems.

Sod Lax
CDb 225x10° 567x103
uPw 230%x 103 4.94%x10°3
CDca 224%x 103 4.78x10°3
CDcc 224x 1072 4.47x10°3
CDbca 221x10°2% 5.05x 103

UPW-CDcc  228x103 4.61x10°3
UPW-CDbca 227x103 4.67x10°3
DP N/A 547x 1073

Table 2: Summary of numerical results of incompressible gloiwn the cavity flow problem, result by CSLR with
central difference was slightly better than that by CSLRhwitixed formulation.

] | Cavity flow | Droplet splashing \
CSL2 with upwind Fairly precise and not robust Barely capture the phenomenon and not rohust
CSL2 with central difference | Not robust Not robust
CSLR with upwind Fairly precise and robust | Capture the phenomenon and robust
CSLR with central difference | Precise and robust Not robust
CSLR with mixed formulation| Precise and robust Capture the phenomenon and robust

u,‘vr

u7V7p
u,v u,v

Figure 1: Schematic figure of the grid in two dimensional casg is the cell average ang_y 3 j, Ui 1/2j, Vi,j—1/2
andyv; j,1/> are the boundary values.

15



Drv2 Gir1r2

Xi-3/2 Xi-1/2 Xi+1/2

Figure 2: Schematic figure of the CIP-CSL2 methagl.;, < 0 is assumed. The moments which are indicated by
gray color (4_1/2, @ and@ 1 /2) are used to construct the quadratic interpolation functio
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Figure 11: The density profiles of the 2-d explosion test @25 along the line of y = 0 . The dots represent numerical
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Figure 12: Numerical results of droplet splashing by CSIRPWI (a), CSLR-UPW (b) and CSLR-UPW-CDcc (c).
VSIAM3 with CSL2-UPW was not stable after around 1.1ms.
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