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Abstract

We investigated discretization strategies of the conservation equation in VSIAM3 (volume/surface integrated av-
erage based multi-moment method) which is a numerical framework forincompressible and compressible flows based
on a multi-moment concept. We investigated these strategies through the lid-driven cavity flow problem, shock tube
problems, 2D explosion test and droplet splashing on a superhydrophobic substrate. We found that the use of the CIP-
CSLR (constrained interpolation profile-conservative semi-Lagrangian with rational function) method as the conser-
vation equation solver is critically important for the robustness of incompressible flow simulations using VSIAM3 and
that numerical results are sensitive to discretization techniques of the divergence term in the conservation equation.
Based on these results, we proposed efficient implementation techniquesof VSIAM3.

keywords: multi-moment method; VSIAM3; CIP-CSL method; shock tube; droplet splashing

1 Introduction

VSIAM3 [23, 24, 28] is a numerical framework to simulate incompressible and compressible flows, and employs a
CIP-CSL method [21, 30, 25, 26] as the conservation equationsolver. VSIAM3 has been applied to various fluids
problems [23, 24, 28] including droplet splashing [38, 39, 40]. In experiences of one of the authors [38, 39, 40],
VSIAM3 is a highly robust and efficient numerical framework.However most of researchers who tried to develop the
code could not conduct robust fluid simulations [13]. This isbecause a multi-moment framework which has been used
in VSIAM3 (including the CIP-CSL method) has increased somecomplexities in the implementation and the full detail
of the efficient/robust implementation of VSIAM3 has not been described in any paper. The issue on the robustness in
VSIAM3 has also been implied in [9] and a possible solution using the simple CIP interpolation for the issue has been
proposed. In the paper, we identify the reasons and supply the full details of efficient implement of VSIAM3. Our
approach is fully based on VSIAM3 (without using the simple CIP interpolation) and simple.

VSIAM3 and the CIP-CSL methods can be considered as multi-moment methods. Multi-moment methods are
defined as methods which use at least two different types of moments (variables) and update these moments by using
different formulations (but the same governing equation).For instance, the CIP-CSL2 (CIP-CSL with 2nd-order poly-
nomial function) method [30] which is a solver of the conservation equation uses boundary value (point value in 1D)
and cell average as moments (i.e. two different moments). The boundary value and cell average are updated by using
finite difference and finite volume formulations, respectively (i.e. two different formulations). VSIAM3 also uses the
same moments with these in CSL2. The CIP method [31, 32, 33], IDO (interpolated differential operator) scheme [1]
and MCV (multi-moment constrained finite volume) [6] can also be categorized in multi-moment methods. On the
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other hand, most of numerical methods in fluids are based on single-moment such as MUSCL (monotonic upwind-
centred scheme for conservation laws) [11], ENO (essentially non-oscillatory) [3] and WENO (weighted ENO) [10, 7]
(i.e. point value only or cell average only).

The CIP-CSL method is a solver of the conservation equation which is used in VSIAM3. Several CIP-CSL methods
such as CSL2 [30], CSL3 [25] and CSLR (CSL with rational function) [26] have been proposed. These CIP-CSL
methods are based on a semi-Lagrangian framework. The CIP-CSL methods construct the interpolation functions using
only moments (variables) within one cell and increase the order of accuracy by increasing the number of moments in
each cell, while single-moment methods increase the order of accuracy by increasing the number of cells which are
used in their discretization. In the CIP-CSL2 method, 2nd-order polynomial interpolation function is employed as the
interpolation function, and two boundary values and a cell average in the upwind cell were used as the constraints. In
CSL3, 3rd-order polynomial interpolation function is employed, and two boundary values and a cell average in the
upwind cell are used as the constraints and a gradient in the upwind cell is also used as a control parameter. CSL3 is
typically used for compressible flows and the control parameter is used as a limiter. CSLR is a less oscillatory CSL
formulation based on rational functions. In this paper, CSL2, CSLR and CSL3 are used and detailed. In this paper,
we found that the use of a less oscillatory CSL formulation (CSLR) is critically important for robust incompressible
fluid simulations and that the divergence term which appearsin these CSL schemes play a key role in the robustness of
VSIAM3.

In Section 2, a review of VSIAM3 for incompressible flows is given. We also propose several formulations of the
divergence term in Section 2.6. In Section 3, the details of VSIAM3 for compressible flows is given. Numerical results
of lid-driven cavity flow, shock tube problems, 2D explosiontest and droplet splashing are given in Section 4. The
summary comes in Section 5.

2 VSIAM3 for incompressible flows

2.1 Governing equations

The following governing equations are used for incompressible flow
∫

Γ
u ·ndS = 0, (1)

∂
∂ t

∫

Ω
udV +

∫

Γ
u(u ·n)dS =− 1

ρ

∫

Γ
pndS+

1
ρ

∫

Γ
τ ·ndS, (2)

whereu is the velocity,n the outgoing normal for the control volumeΩ with its surface denoted byΓ (see Fig. 1),ρ the
density,p the pressure andτ the viscous stress tensor. A fractional step approach [37] is used to solve the governing
equations as follows:

ut+∆t = f NA2( f NA1( f A(ut))), (3)

1. advection part (f A):
∂
∂ t

∫

Ω
udV +

∫

Γ
u(u ·n)dS = 0, (4)

2. non-advection part 1 (f NA1):
∂
∂ t

∫

Ω
udV =

1
ρ

∫

Γ
τ ·ndS, (5)

3. non-advection part 2 (f NA2):
∫

Γ
u ·ndS = 0, (6)

∂
∂ t

∫

Ω
udV =− 1

ρ

∫

Γ
pndS. (7)

These equations are solved by VSIAM3, in which the advectionpart is solved by a CIP-CSL method.
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2.2 Grid for VSIAM3 (M-grid)

VSIAM3 uses the grid as shown in Fig. 1. This grid is called M-grid [27], and employs cell averages and boundary
values as the moments. The cell averagesui, j,vi, j, pi, j are defined at the cell centre and the boundary valuesui−1/2, j,
ui, j−1/2 ,vi−1/2, j, vi, j−1/2 are defined on the cell boundaries. A cell average and boundary values are defined as

ui, j =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ y j+1/2

y j−1/2

u(x,y)dxdy, (8)

ui−1/2, j =
1

∆y

∫ y j+1/2

y j−1/2

u(xi−1/2,y)dy, (9)

ui, j−1/2 =
1

∆x

∫ x j+1/2

x j−1/2

u(x,y j−1/2)dx. (10)

2.3 Advection part (f A)

The CIP-CSL methods are used to solve the conservation equation

∂
∂ t

∫

Ω
φdV +

∫

Γ
φ(u ·n)dS = 0, (11)

hereφ is a scalar value. In the following subsections 2.3.1 and 2.3.2, the CIP-CSL2 method [30] and the CIP-CSLR
method [26] are explained, respectively.

2.3.1 CIP-CSL2

In the CIP-CSL2 method [30], a quadratic interpolation function Φi(x)

Φi(x) = ai(x− xi−1/2)
2+bi(x− xi−1/2)+φi−1/2, (12)

is used to interpolate betweenxi−1/2 andxi+1/2 as shown in Fig. 2, The coefficients,ai andbi, are determined as
follows

ai =
1

∆x2 (−6φi +3φi−1/2+3φi+1/2), (13)

bi =
1

∆x
(6φi −4φi−1/2−2φi+1/2). (14)

by using the following constraints
Φi(xi+1/2) = φi+1/2, (15)

φi =
∫ xi+1/2

xi−1/2

Φi(x)dx/∆x. (16)

By using the interpolation functionΦi(x), the boundary valueφi−1/2 can be updated by the conservation equation of a
differential form

∂φ
∂ t

+u
∂φ
∂x

=−φ
∂u
∂x

. (17)

(17) is solved using a splitting approach as follows

∂φ
∂ t

+u
∂φ
∂x

= 0, (18)

∂φ
∂ t

=−φ
∂u
∂x

. (19)
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A semi-Lagrangian approach is used for the advection equation (18)

φ ∗
i−1/2 =

{

Φi−1(xi−1/2−ui−1/2∆t) if ui−1/2 ≥ 0
Φi(xi−1/2−ui−1/2∆t) if ui−1/2 < 0.

(20)

(19) represents a correction due to the divergence term of the velocity and is solved by a finite difference method. The
divergence term is one of main topics in this paper as discussed in Section 2.6. The cell averageφi is updated by a
finite volume formulation

φ n+1
i = φ n

i −
1

∆x
(Fi+1/2−Fi−1/2), (21)

hereFi−1/2 is the flux

Fi−1/2 =







−∫ xi−1/2−ui−1/2∆t
xi−1/2 Φi−1(x)dx if ui−1/2 ≥ 0

−∫ xi−1/2−ui−1/2∆t
xi−1/2 Φi(x)dx if ui−1/2 < 0.

(22)

2.3.2 CIP-CSLR

The CIP-CSLR [26] method is characterised by less numericaloscillations. Although two CSLR formulations (CSLR0
and CSLR1) have been proposed [26], we explain only CSLR0 here (hereafter CSLR0 is referred to as CSLR in this
paper). Instead of (12) in the CIP-CSL2 formulation, the following interpolation function

Φi(x) =
αiβi(x− xi−1/2)

2+2αi(x− xi−1/2)+φi−1/2
(

1+βi(x− xi−1/2)
)2 , (23)

with
αi = βiφi +(φi −φi−1/2)/∆x, (24)

βi =
1

∆x

( |(φi−1/2−φi)|+ ε
|(φi −φi+1/2)|+ ε

+1

)

, (25)

is used. Hereε is an infinitesimal number to avoid zero division. We usedε = 10−16 for all results in this paper. All
other procedures are the same with these in CSL2.

2.3.3 Multi-dimensional cases

For multi-dimensional cases, a dimensional splitting method [23] is used. For x-direction,φ ∗
i, j andφ ∗

i−1/2, j are firstly
computed fromφ n

i, j andφ n
i−1/2, j by using 1D CIP-CSL solver. Howeverφ n

i, j−1/2 cannot be updated by using 1D CIP-
CSL solver. Thereforeφ n

i, j−1/2 is updated by TEC (Time Evolution Converting) as follows:

φ ∗
i, j−1/2 = φ n

i, j−1/2+
1
2
(φ ∗

i, j −φ n
i, j +φ ∗

i, j−1−φ n
i, j−1). (26)

A similar approach is used for y-direction.φ n+1
i, j and φ n+1

i, j−1/2 are computed fromφ ∗
i, j and φ ∗

i−1/2, j by using a 1D
CIP-CSL method.φ ∗

i−1/2, j is updated by TEC as follows:

φ n+1
i−1/2, j = φ ∗

i−1/2, j +
1
2
(φ n+1

i, j −φ ∗
i, j +φ n+1

i−1, j −φ ∗
i−1, j). (27)

2.4 Non-advection Part 1( f NA1)

The viscosity term is computed by a standard finite volume formulation for cell averages.

1
ρ

∫

Γ
τ ·ndS =

1
ρi, j

(τi+1/2, j − τi−1/2, j

∆x
+

τi, j+1/2− τi, j−1/2

∆y

)

. (28)

The boundary values are updated by TEC.
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2.5 Non-advection Part 2( f NA2)

By using the divergence of (7) and
∫

Γ un+1 ·ndS = 0, the following Poisson equation

∫

Γ

∇pn+1

ρ
·ndS =

1
∆t

∫

Γ
u∗ ·ndS, (29)

is obtained, whereu∗ is the velocity after non-advection part 1. (29) is discretized as

( 1
ρn+1

i+1/2, j
∂x pn+1)i+1/2, j − ( 1

ρn+1
i−1/2, j

∂x pn+1)i−1/2, j

∆x
(30)

+

( 1
ρn+1

i, j+1/2
∂y pn+1)i, j+1/2− ( 1

ρn+1
i, j−1/2

∂x pn+1)i, j−1/2

∆y

=
1
∆t

(
u∗i+1/2, j −u∗i−1/2, j

∆x
+

v∗i, j+1/2− v∗i, j−1/2

∆y
),

here

(
1

ρn+1
i−1/2, j

∂x pn+1)i−1/2, j ≡
2

ρn+1
i, j +ρn+1

i−1, j

pn+1
i, j − pn+1

i−1, j

∆x
. (31)

A preconditioned conjugate gradient (CG) method [4] is usedfor the pressure Poisson equation. The convergence
tolerance of the pressure Poisson equationεp = 10−10 is used. By usingpn+1, the boundary values of the velocity are
updated as follows (ui−1/2, j, vi, j−1/2)

un+1
i−1/2, j = u∗i−1/2, j −

∆t
ρi−1/2, j

(

∂x pn+1)

i−1/2, j , (32)

vn+1
i, j−1/2 = v∗i, j−1/2−

∆t
ρi, j−1/2

(

∂y pn+1)

i, j−1/2 . (33)

Other velocity components (ui, j, vi, j, ui, j−1/2, vi−1/2, j) are updated by the TEC formula.

2.6 Formulations of the divergence term

As we mentioned in Section 2.3, in this section, we explain how to discretize the divergence term (19) of the 1D
conservation equation.

Simple central difference based on boundary value (CDb)

φ
∂u
∂x

= φ ∗
i−1/2

un
i+1/2−un

i−3/2

2∆x
. (34)

In the original papers of the CIP-CSL methods [30, 25], the simple central difference approximation using
boundary values has been suggested.

In this paper, we propose the following approximations of the velocity divergence term.

Simple upwind based on boundary value (UPW)

φ
∂u
∂x

=







φ ∗
i−1/2(

un
i−1/2−un

i−3/2
∆x ) if ui−1/2 > 0

φ ∗
i−1/2(

un
i+1/2−un

i−1/2
∆x ) if ui−1/2 ≤ 0.

(35)

This is a simple upwind approximation based on the boundary values.
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Central difference based on cell average (CDca)

φ
∂u
∂x

= φ ∗
i−1/2

un
i −un

i−1

∆x
. (36)

This is a central difference formula based on the cell averages. Compared to CDb (34), the proposed central
difference formulation employs the cell average instead ofthe boundary values, and the stencil is shorter than
that of CDb.

Central difference based cell centre value (CDcc)

φ
∂u
∂x

= φ ∗
i−1/2

ûn
i − ûn

i−1

∆x
(37)

This is another central difference approximation based on the cell center values ( ˆui), where ˆui is the velocity
calculated at cell centre [25]. By using the quadratic function (12),ûi can be obtained

ûi =
3
2

ui −
1
4

(

ui+1/2+ui−1/2
)

. (38)

Central difference based on a 4th-order polynomial function (CDbca)

φ
∂u
∂x

= φ ∗
i−1/2

(

2
un

i −un
i−1

∆x
−

un
i+1/2−un

i−3/2

2∆x

)

. (39)

This formula (39) can be derived from a fourth-order centralinterpolation function usingui−3/2, ui−1, ui−1/2, ui

andui+1/2 [12].

Mixed formulation of the simple upwind and a central difference (UPW-CDcc)

φ
∂u
∂x

=







DUPW if DUPW ·DCDcc < 0
DUPW else if |DUPW |< |DCDcc|
DCDcc else,

(40)

here DUPW and DCDcc representφ
∂u
∂x

which are calculated by (35) and (37), respectively. The mixed formulation

is introduced to take advantages of both upwind and central difference approximations. The formulation employs
the upwind formula (35) when the sign of derivatives of UPW and CDcc are different (DUPW ·DCDcc < 0) or
|DCDcc| is larger than that of|DUPW |. Otherwise the central difference formula (37) is used. Although we
combined UPW with CDcc in this paper, it can be combined with any other central difference formulations. In
this paper, we also combined UPW with CDbca (UPW-CDbca).

Interpolation at characteristic departure point (DP)

φ
∂u
∂x

=











φ ∗
i−1/2

∂Φi−1

∂x
(xi−1/2−ui−1/2∆t) if ui−1/2 ≥ 0

φ ∗
i−1/2

∂Φi

∂x
(xi−1/2−ui−1/2∆t) if ui−1/2 < 0.

(41)

This formulation evaluates the divergence at the characteristic departure point using a CIP-CSL interpolation
function.

2.7 Formulations of the divergence term in Fourier analysis

In this section, we conduct Fourier analysis of these divergence term formulations. Fourier analysis shows resolution
of spatial derivatives in the wavenumber domain. The spatial profile of the velocityU(x) is defined over the domain
[0, L] with a uniform grid spacing∆x is decomposed into Fourier series

U(x) = ∑
κ

U(κ)e jωx/∆x, (42)
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where j =
√
−1 andω = 2πκ∆x/L is the scaled wavenumber. The point value atxi−1/2 is also decomposed as

ui−1/2 = ∑
κ

U(κ)e jωxi−1/2/∆x. (43)

Using (43), the point value atxi−1/2+m is decomposed as

ui−1/2+m = ui−1/2e jωm. (44)

The cell averageui is also decomposed as

ui =
1

∆x

∫ ∆x

0
U(xi−1/2+ x)dx = ui−1/2

e jω −1
jω

(45)

Since equation (45) expresses the relation between the point value and the cell average, the accuracy of the proposed
formulations of the divergence term can be examined by using(44) and (45). The formulations of divergence term in
Fourier space are obtained as follows

Ux,CDb(ω) = j(sin(ω)), (46)

Ux,UPW (ω) = (cos(ω)−1)+ j(sin(ω)), (47)

Ux,CDca(ω) = j(sin(ω)), (48)

Ux,CDcc(ω) = j(
6sin2(ω/2)

ω
− sin(ω)

2
), (49)

Ux,CDbca(ω) = j(−sin(ω)+
8sin2(ω/2)

ω
). (50)

Ux,DP depends on the interpolation function of a CSL method. However, in this paper, CSLR and CSL3 are mainly
used and both CSL methods are using nonlinear interpolationfunction. Therefore we cannot analyze DP formulation.

Fig. 3 shows the results of various formulations of the divergence term in Fourier space. All central difference
methods have no error in real part (no diffusion error) and only UPW has diffusion error, as shown in Fig. 3 (b). Fig.
3 (a) has shown that CDbca is the closest to the exact solution. CDcc is second closest, CDca third, CDca fourth, and
CDb and UPW are the most inaccurate.

3 VSIAM3 framework for inviscid compressible flows

3.1 Governing equations

The Euler equations describe the dynamics of inviscid compressible flows and are written as

∂U
∂ t

+
∂F(U)

∂x
= 0, (51)

where

U =







ρ
m
E







, (52)

F(U) =







m
um+ p
Eu+ pu







, (53)
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wherem is the momentum (m = ρu) and E the total energy. The equations are completed by the equation of state

p =

(

E − ρu2

2

)

(γ −1), (54)

whereγ is the specific heat ratio. By using the VSIAM3 formulation [24], (53) is split into two parts, advection part
and non-advection part

F(U) = F I(U)+F II(U) =







m
um
Eu







+







0
p
pu







. (55)

A fractional step approach is used to solve (51), in which theadvection part

∂U
∂ t

+
∂F I(U)

∂x
= 0, (56)

is solved by CIP-CSL3 method [25]. The non-advection part

∂U
∂ t

+
∂F II(U)

∂x
= 0, (57)

is solved by finite volume/difference formulations.

3.2 Advection part: CIP-CSL3

The CIP-CSL3 method is an extension of the CIP-CSL2 method. In this method, 3rd-order polynomial function
is employed as the interpolation function instead of the quadratic function of CSL2. Then CSL3 needs one more
constraint to determine all coefficients and introduces a control parameter (gradient at the cell center) as the additional
constraint. The control parameter can be used as slope limiter to eliminate numerical oscillation [24]. The 3rd-order
polynomial interpolation function betweenxi−1/2 andxi+1/2 is written as

Φi(x) = ai(x− xi−1/2)
3+bi(x− xi−1/2)

2+ ci(x− xi−1/2)+φi−1/2. (58)

In addition to the constraints (15) and (16), the following constraint

dΦi(xi)

dx
= di, (59)

is used to determine the coefficients of (58) as follows

ai =
4
(

φi+1/2−φi−1/2−∆xdi
)

∆x3 , (60)

bi =
3
(

−2φi −φi+1/2+3φi−1/2+2∆xdi
)

∆x2 , (61)

ci =
2
(

3φi −3φi−1/2−∆xdi
)

∆x
. (62)

The derivativedi is given as
di = βid̃i, (63)

d̃i = minmod

(

Si+1/2+Si−1/2

2
,2Si+1/2,2Si−1/2

)

, (64)

here

minmod(A,B,C) =

{

m(A,B,C) if sgn(A) = sgn(B) = sgn(C)
0 otherwise,

(65)
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m(A,B,C) =







A if min(|A|, |B|, |C|) = |A|
B else if min(|A|, |B|, |C|) = |B|
C else min(|A|, |B|, |C|) = |C|,

(66)

and

Si−1/2 =
φ̂i − φ̂i−1

∆x
, (67)

where

φ̂i =
3
2

φi −
1
4
(φi+1/2+φi−1/2), (68)

and

βi =

{

0.0125 if (un
i−1/2−un

i+1/2)< 0.02∆x

1.2 otherwise.
(69)

Given at time step n, the cell averages,ρn
i , un

i , pn
i , mn

i , En
i and the cell boundary valuesρn

i−1/2, un
i−1/2, mn

i−1/2,

En
i−1/2, the CIP-CSL3 method is used to obtain the corresponding density at the next time step n+1 (i.e.ρn+1

i and

ρn+1
i−1/2) and the provisional values of the momentum and energy (i.e.m∗

i , m∗
i−1/2, E∗

i andE∗
i−1/2).

3.3 The Non-advection Phase

A simple explicit equation [24] is used to advance the pressure

pn+1
i =C2

i ∆t

(

u∗i
ρn+1

i+1/2−ρn+1
i−1/2

∆x
+

ρn+1
i

γ∆t
−

m∗
i+1/2−m∗

i−1/2

∆x

)

, (70)

hereu∗i =
m∗

i

ρn+1
i

, and,C2
i =

γ p∗i
ρn+1

i
. The boundary values of the momentum and total energy are updated as follows

mn+1
i−1/2 = mn

i−1/2−
∆t
∆x

(

pn+1
i − pn+1

i−1

)

, (71)

En+1
i−1/2 = En

i−1/2−
∆t
∆x

(

un+1
i pn+1

i −un+1
i−1 pn+1

i−1

)

. (72)

The cell averages of the momentum and total energy can be obtained via TEC formula as follows

mn+1
i = mn

i +
1
2

(

mn+1
i+1/2−mn

i+1/2+mn+1
i−1/2−mn

i−1/2

)

, (73)

En+1
i = En

i +
1
2

(

En+1
i+1/2−En

i+1/2+En+1
i−1/2−En

i−1/2

)

. (74)

For numerical simulations of compressible flows, CSL3 should be used. Although CSLR is also a less oscillatory
CSL formulation, CSLR does not include a slope limiter so that CSLR cannot prevent oscillation around shock in
VSIAM3 (see Appendix A for some numerical results by CSLR).

4 Numerical results

4.1 Lid-driven cavity flow

We examined the discretization strategies of the conservation equation through the lid-driven cavity flow problem [2].
The tests were carried out at Reynolds number Re= 1000 and 5000.

Fig. 4a shows the result of Re= 1000 by the CIP-CSL2 method with the simple upwind (UPW). The result shows
the x-component of velocity along the vertical line throughthe centre of cavity. The result shows a reasonable agree-
ment with the solution by Ghia [2]. However the calculation was not stable after obtaining the steady state solution.
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Although we also tested CSL2 with central difference approximations, these were not stable and did not reach to the
steady state solution. Fig. 4b shows the result when the divergence term was ignored. Although the result was inaccu-
rate, the calculation was stable. These results suggest that the use of the CSL2 in VSIAM3 affects the robustness and
the divergence term is relevant to the robustness.

We also examined the use of the CIP-CSLR method in VSIAM3. Thenumerical results of the CIP-CSLR method
with all divergence term approximations are presented in Figures 5 with grid refinement studies using three grid sizes
(50×50, 100×100 and 200×200). All numerical results show reasonable agreements with the Ghia solution and also
reasonable convergences. All numerical simulations usingCSLR (with any divergence term approximation) were
stable in this test problem. These results by CSL2 and CSLR suggest that the use of CSLR improves the robustness
of VSIAM3. As explained in section 2.3.2 and [26], CSLR is a less oscillatory formulation and CSL2 is not free
from numerical oscillations. Therefore it can be considered that the use of a less oscillatory formulation is critically
important for the robustness of VSIAM3 and the numerical oscillations generated by CSL2 affect the robustness in
VSIAM3 through the divergence term.

Fig.5b shows the result by UPW. The result is almost equivalent to that of the upwind with a time average approx-
imation given in [23]. The numerical results of the central difference approximations are shown in Figures 5a,c,d and
e. These results show that central difference approximations are superior to UPW in this test problem. Although all
central difference formulations give similar results, CDbca and CDcc are slightly better than CDb and CDca as shown
in Fig. 6 (enlarged figure). It is hardly seen the difference between the results by CDbca and CDcc. CDb is superior to
CDca in this test. The result by mixed formulation (UPW-CDcc) is given in Fig. 5f. Fig. 7 shows a comparison among
UPW, CDcc and UPW-CDcc. The result by UPW-CDcc is closer to the Ghia solution than that by UPW. Although
the results by UPW-CDbca are not presented in this paper, theresults by UPW-CDbca show almost identical results
with these by UPW-CDcc. In this test problem, the mixed formulation has no advantage for central difference approx-
imations. However, as explained in Section 4.3, the mixed formulation plays an important role in complicated/difficult
problems like droplet splashing. The result by DP is better than that by UPW but worse than these by central diference
methods in this test as shown in Figures 5 and 6.

Fig. 8 shows numerical simulations of Re= 5000 by CSLR. The trend is almost same with the results of Re=1000.

4.2 Compressible flows (Sod’s and Lax’s problems, and 2D explosion test)

We validate the effects of various discretization techniques for the divergence term in the conservation equation through
benchmark problems in compressible fluids, Sod’s problem [16] and Lax’s problem [8]. The initial condition of Sod’s
problem is

(ρ ,u, p) =

{

(1.0,0,1.0) if x ≤ 0
(0.125,0,0.1) if x > 0.

(75)

The initial condition of Lax’s problem is

(ρ ,u, p) =

{

(0.445,0.698,3.528) if x ≤ 0
(0.5,0,0.571) if x > 0.

(76)

All computations were conducted on a 400-point uniform grid. The numerical results of Sod’s and Lax’s problems are
presented in Figures 9 and 10, respectively. Table 1 shows L1 errors in Sod’s and Lax’s problems.

Numerical results of Sod’s problem by all divergence formulations excluding DP are similar as shown in Fig. 9. DP
was not stable for this problem. Table 1 shows that CDbca is the most accurate in Sod’s problem and UPW is the worst,
in terms of L1 errors. All other central difference approximations (CDb,CDca and CDcc) show very similar errors
(2.24×10−3−2.25×10−3). Mixed formulations (UPW-CDcc and UPW-CDbca) have intermediate errors between
UPW and CDcc (or CDbca).

In Lax’s problem, we can observe some differences especially around the contact discontinuity as shown in Fig.
10. As shown in Fig. 10 and Table 1, the result by CDb is the worst. This is because Lax’s problem involves the
discontinuity in the velocity initial condition and the simple central difference formulation (CDb) which uses a wider
stencil cannot manege such discontinuity well. Although DPcould simulate Lax’s problem, it was the second worst.
This will be because of the strong discontinuity in the initial condition. Although CDbca was the most accurate in
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Sod’s problem (which does not involve the discontinuity in the initial velocity condition), second worst in central
difference methods. This will also be because CDbca uses a wider stencil like CDb. On the other hand, CDcc is the
most accurate and CDca second best in Lax’s problem. This will be because CDcc and CDca use a shorter stencil than
CDb and CDbca. UPW is less accurate than CDcc and CDca but moreaccurate than CDb and CDbca, and has a tiny
numerical oscillation around the shock (the similar oscillation has also been observed in the previous work by Xiao
[24]). If the mixed formulation is used, the tiny oscillation which appears in the numerical result by UPW disappears
and numerical diffusion immediately before/after discontinuities, which is observed in numerical results by all central
difference approximations is also reduced. Although the mixed formulation shows some improvements, the results by
CDcc and CDca are still more accurate in terms of L1 error because the mixed formulation is slightly more diffusive
on the discontinuities.

We also conducted numerical simulations of 2D compressibleflow (2D exploion test) [22] on the domain[−1,1]×
[−1,1]. The initial condition of the 2D explosion problem is

ρ(x,y,0) = 1; u(x,y,0) = 0; v(x,y,0) = 0; p(x,y,0) = 1; if r < 0.5
ρ(x,y,0) = 0.125; u(x,y,0) = 0; v(x,y,0) = 0; p(x,y,0) = 0.1; otherwise,

(77)

wherer =
√

x2+ y2. The inviscid Euler conservation laws are solved on a 200×200 Cartesian grid. Fig. 11 shows the
perspective view of the density at t=0.25. These divergenceformulations can easily be applied to multi-dimensional
fluid problems and the trend is alsmost same with that in Sod’sproblem.

4.3 Droplet splashing

We also conducted numerical simulations of droplet splashing on a superhydrophobic substrate to study the effects
of these discretization strategies of the conservation equation in VSIAM3 through a highly complicated free surface
flow problem. The numerical formulation to simulate free surface flows is based on VSIAM3. Additionally, for the
motion of liquid interface, the CLSVOF (coupled level set and volume-of-fluid) method [18, 34] using both the level
set method [14, 17] and the VOF method [15] is used. We use the THINC/WLIC (tangent of hyperbola for interface
capturing/weighed line interface calculation) scheme [29, 36] as a type of VOF method. For the surface tension force,
the density scaled balanced continuum surface force model with level set curvature correction [39, 40, 41] is used. To
impose contact angle, we use a method developed by Sussman [19, 35]. We simulate not only the liquid but also the
air. For more detail see [37, 39].

In the set of numerical simulations, quantitative parameters, the densitiesρliquid = 1000 kg/m3, ρair = 1.25 kg/m3,
viscositiesµliquid = 1.0×10−3 Pa·s, µair = 1.82×10−5 Pa·s, surface tensionσ = 7.2×10−2 N/m, gravity 9.8 m/s2,
initial droplet diameterD = 1.86 mm, impact speed 2.98 m/s and the equilibrium contact angle 163◦ are used. A
regular Cartesian grid system of 192×192×48 is used.

Fig. 12 shows the results. VSIAM3 with CSL2-UPW could not capture droplet splashing well as shown in Fig.
12a. CSL2-UPW also caused relatively large amount of flotsamand was not stable after around 1.1 ms. VSIAM3 with
CSL2 with any central difference formulation was not stablefor this problem. VSIAM3 with CSLR is stable when
UPW was used for the divergence term. The formulation could capture droplet splashing well as shown in Fig. 12b.
However if we use any central difference formulation for thedivergence term, VSIAM3 with CSLR was also unstable.
If we use UPW-CDcc (mixed formulation), VSIAM3 with CSLR could conduct stable numerical simulation of droplet
splashing and capture droplet splashing well as shown in Fig. 12c.

5 Summary

We investigated discretization strategies of the conservation equation for efficient implementation of VSIAM3 through
the lid-driven cavity flow, shock tube problems and droplet splashing.

We examined VSIAM3 with CSL2 and with CSLR through the lid-driven cavity flow and droplet splashing. The
numerical results showed that VSIAM3 with CSL2 is not robustenough and that VSIAM3 with CSLR is highly robust
(if an appropriate formulation is used for the divergence term). These results indicate that the use of a less oscillatory
formulation (i.e. CSLR) is a key for robust incompressible flow simulations.
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We also found that the numerical results are sensitive depending on discretization formulations of the divergence
term in the conservation equation. The numerical results ofthe lid-driven cavity flow showed that CSLR with central
difference formulations are superior to the simple upwind formulation in this test. However both results are reasonably
precise. On the other hand, the numerical results of dropletsplashing showed that VSIAM3 with any central difference
formulation is not robust even though CSLR is used, while VSIAM3 with the simple upwind formulation was highly
robust and captures the droplet splashing well. These results indicates that the use of the upwind formulation is suitable
for robust numerical simulations, especially for highly complicated flows like droplet splashing. Although the central
difference formulations are precise for simple flow problems such as the cavity flow, will not be robust enough for
highly complicated flow problems.

Based on the numerical results, we also proposed the mixed formulation using both a central difference and the sim-
ple upwind formulation for the divergence term. The mixed formulation can simulate the lid-driven cavity well (better
than UPW and slightly worse than CDcc) and also simulate droplet splashing like the result using the simple upwind.
The mixed formulation can take advantages of both central difference and upwind formulations. We summarize the
results of incompressible results in Table 2.

We also tested formulations for the divergence term throughthe inviscid compressible flow problems (Sod’s and
Lax’s problems and 2D explosion test). In Sod’s problem which does not involve discontinuity in the velocity initial
condition, we could not observe much difference in numerical results by all divergence formulations excluding DP
and DP was not stable. In Lax’s problem which involves the discontinuity in the velocity initial condition, we could
observe some differences especially around the contact discontinuity. In this test, CDb and CDbca, which use a wider
stencil were less accurate and CDcc and CDca, which use a shorter stencil were more accurate. The mixed formulation
shows some improvements compared to numerical results by any central difference or UPW. However, in terms of L1

error, CDcc and CDca are still better than UPW-CDcc.
In conclusion, employing a less oscillatory CSL scheme (i.e. CSLR, CSL3, etc.) with an appropriate divergence

term formulation is critically important for robust implementation of VSIAM3.
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A Sod’s and Lax’s problems by the CIP-CSLR method

Fig. 13 shows numerical results of Sod and Lax problems by CSLR. CSLR does not include a slope limiter so that
numerical oscillations around shock cannot be suppressed in VSIAM3 framework.
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Table 1: L1 errors in shock tube problems.

Sod Lax

CDb 2.25×10−3 5.67×10−3

UPW 2.30×10−3 4.94×10−3

CDca 2.24×10−3 4.78×10−3

CDcc 2.24×10−3 4.47×10−3

CDbca 2.21×10−3 5.05×10−3

UPW-CDcc 2.28×10−3 4.61×10−3

UPW-CDbca 2.27×10−3 4.67×10−3

DP N/A 5.47×10−3

Table 2: Summary of numerical results of incompressible flows. In the cavity flow problem, result by CSLR with
central difference was slightly better than that by CSLR with mixed formulation.

Cavity flow Droplet splashing

CSL2 with upwind Fairly precise and not robustBarely capture the phenomenon and not robust
CSL2 with central difference Not robust Not robust
CSLR with upwind Fairly precise and robust Capture the phenomenon and robust
CSLR with central difference Precise and robust Not robust
CSLR with mixed formulation Precise and robust Capture the phenomenon and robust
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Figure 1: Schematic figure of the grid in two dimensional case. ui, j is the cell average andui−1/2, j, ui+1/2, j, vi, j−1/2
andvi, j+1/2 are the boundary values.
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Figure 2: Schematic figure of the CIP-CSL2 method.ui−1/2 < 0 is assumed. The moments which are indicated by
gray color (φi−1/2, φi andφi+1/2) are used to construct the quadratic interpolation function.
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Figure 5: Numerical results of lid-driven cavity flow using six different formulations for the divergence term. Three
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Figure 8: Numerical results of lid-driven cavity flow using six different formulations for the divergence term. Re =
5000. A Cartesian grid of 256×256 was used.
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Figure 9: Numerical results of Sod’s Problem. The dots show the density profile of numerical results. The line shows
the exact solution.
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Figure 10: Numerical results of Lax’s Problem. The dots showthe density profile of numerical results. The line shows
the exact solution.
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Figure 11: The density profiles of the 2-d explosion test at t=0.25 along the line of y = 0 . The dots represent numerical
results by using six different formulations for the divergence term. The line represents the reference solution.
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Figure 12: Numerical results of droplet splashing by CSL2-UPW (a), CSLR-UPW (b) and CSLR-UPW-CDcc (c).
VSIAM3 with CSL2-UPW was not stable after around 1.1ms.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

     Exact
CSLR-UPW

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.2  0.4  0.6  0.8  1

    Exact
CSLR-UPW

(a) (b)

Figure 13: Numerica results of shock tube problems by CSLR-UPW , (a) Sod problem and (b) Lax problem. The dots
show the density profile of numerical results. The line showsthe exact solution.
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