Synthesis, complex stability and small animal PET imaging of a novel 64Cu-labelled cryptand molecule†

Christian Foerster, a James C. Knight, a Melinda Wuest, a Brendan Rowan, b Suzanne E. Lapi, c Angelo J. Amoroso, b Peter G. Edwards b and Frank Wuest a

The radiosynthesis and radiopharmacological evaluation including small animal PET imaging of a novel 64Cu-labelled cryptand molecule ([64Cu]CryptTM) possessing a tris-pyridyl/tris-amido set of donor atoms is described.

Positron emission tomography (PET) is a rapidly expanding non-invasive molecular imaging methodology which allows high sensitivity mapping of biochemical and physiological processes at the cellular and molecular level in vivo. An important aspect in the success of this technique is the use of suitably designed radiolabelled molecular probes, also referred to as PET radiotracers. Whilst the most prevalent PET radio-tracer in clinical practice is 2-[18F]uorodeoxy-a-glucose ([18F]FDG) for measuring glucose metabolic rate, other radiotracers like proliferation marker [18F]uorothymidine ([18F]FLT), hypoxia imaging agent [18F]uoromisonidazole ([18F]FMISO) and amino acid metabolism marker [11C]methionine ([11C]-MET) have become clinically highly relevant PET radiotracers for various applications in oncology, neurology, and cardiology. The majority of PET radiotracers in clinical use contain short-lived positron emitters carbon-11 (11C, t$_{1/2}$ 20.4 min) and uroine-18 (18F, t$_{1/2}$ 109.8 min). The short half-lives of 11C and 18F make these radionuclides well-suited for radio-labelling small molecules as exemplified by PET radiotracers like [18F]FDG, [18F]FLT, [18F]FMISO, and [11C]MET. In contrast, higher molecular weight compounds like proteins (e.g. anti-bodies) and nanoparticles for molecular imaging and radio-therapy purposes require PET radionuclides with longer physical half-lives to accommodate the longer residence times of these larger constructs in the circulation.

The PET radiometal copper-64 (64Cu, t$_{1/2}$ 12.7 h) has been the subject of intensive research efforts for the development of both diagnostic PET radiotracers and radiotherapeutics. Prominent examples include hypoxia and perfusion imaging agents such as [64Cu]Cu-ATSM, [64Cu]Cu-PTSM, and [64Cu]Cu-MTUBo respectively.

The application of 64Cu as a radiometal for molecular imaging and radiotherapy requires the use of chelating agents to form kinetically inert and thermodynamically stable complexes. High complex stability is needed to obviate hydrolysis and trans-chelation to copper chelating proteins like ceruloplasmin, superoxide dismutase (SOD), metallothioneins, and copper transporting ATPases. Many applications utilise bifunctional chelators (BFCs) to sequester the [64Cu]Cu$^{2+}$ cation within a thermodynamically stable and kinetically inert framework while allowing attachment to selected targeting vectors (e.g. peptides, proteins). Popular and widely used BFCs for [64Cu]Cu$^{2+}$ complexation include macrocyclic chelators like 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7-triazacyclononane-N,N,N$^{-}$,N$^{-}$,N-triacetic acid (NOTA), and cross-ridged macrocycles like CB-TE2A. Within the class of macrocyclic chelators, cryptand molecules have been considered as particularly suitable ligands for their strong binding of Cu$^{2+}$ cations and the kinetic inertness of the result-ing complexes.

![Fig. 1 Examples of Sar-type cryptands derived from sarcophagine.](image-url)
stability. Prominent examples are cryptands derived from sarcophagine (Sar) such as DiAmSar and SarAr (Fig. 1), which form robust complexes (cryptates) with \[^{64}\text{Cu}]\text{Cu}^{2+}\) that are highly resistant towards transchelation.

While the Sar-based cryptands offer excellent \(\text{Cu}^{2+}\) chelating properties, the challenging synthetic route to obtain bifunctional Sar derivatives has undoubtedly hampered their wider application within the imaging community.

Given the remarkably limited number of examples of cryptands employed for in vivo imaging applications, and considering the potential of cryptand frameworks to improve overall imaging performance with radiometal complexes, we have evaluated the cryptand molecule CryptTM as novel chelating agent for \[^{64}\text{Cu}]\text{Cu}^{2+}\) (Fig. 2). Cryptand CryptTM was prepared in good chemical yields via an elegant Pd-catalysed carbonylation reaction starting from readily available tris-aminoethylamine and tris(3-bromo-2-pyridyl)methanol. In this previous study, the crystal structure of the copper complex with CryptTM revealed coordination of the \(\text{Cu}^{2+}\) ion to one side of the cryptand in a slightly distorted square planar coordination sphere. CryptTM is doubly deprotonated, and the \(\text{N}_4\)-coordination sphere of the \(\text{Cu}^{2+}\) ion involved two pyridyl and two amido N-donors. Protonation of the tertiary amine resulted in an overall 1+ charge of the Cu(II)-cryptate. Based on this intriguing finding, we now report the radiosynthesis and rst radio-pharmacological evaluation of \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\) complex. Radiopharmacology with \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\) involved challenge experiments with competitive chelators EDTA (ethylenediaminetetraacetic acid) and NOTA to assess complex stability in vitro, as well as small animal PET studies in mice to assess the biodistribution profile in comparison with another, literature-reported copper-cryptate \[^{65}\text{Cu}]\text{Cu}–\text{DiAmSar}\). The radiosynthesis and proposed structure of \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\) is depicted in Fig. 2.

In order to optimise the \[^{64}\text{Cu}\) complexation procedure, we explored the impact of various reaction conditions on radio-labelling yield and subsequent specific activity of \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\). This involved systematically altering (i) the concentration of CryptTM, (ii) type and volume of buffer solution, (iii) radioactivity concentration \(c_A\) of \[^{64}\text{Cu}]\text{Cu}(\text{OAc})_2\) in 100 mM ammonium acetate buffer (pH 5.5), and (iv) reaction temperature. The results (summarised in Table 1) clearly indicate the importance of CryptTM concentration, radioactivity concentration and reaction temperature on obtained radiochemical yield and specific activity. Using low concentrations of CryptTM resulted in only moderate radiochemical yields in the range of 51–64% and low specific activities (entry 1). Increasing the CryptTM concentration up to 0.34 nmol mL\(^{-1}\) gave higher radiochemical yields of 78% at 25 C.

Performance of the reaction at 37 C further increased the radiochemical yield to 95% which suggests that complexation of CryptTM with \[^{64}\text{Cu}]\text{Cu}^{2+}\) is a kinetically driven reaction (entries 2–7). Replacement of labelling buffers (1 M \(\text{NH}_4\text{OAc}\) and 1 M \(\text{NaOAc}\)) with de-ionised water also resulted in a signi cant increase of radiochemical yield from 78% to 98% without increasing the temperature to 37 C (entry 2 vs. 3). As a consequence, only \[^{64}\text{Cu}]\text{Cu}(\text{OAc})_2\) solution without addition of buffer or de-ionised water was used in further experiments (entries 4–7).

In all cases, radiochemical yields exceeded 95% at 37 C. High specific activities of up to 16 GBq mmol\(^{-1}\) were achieved by lowering cryptand concentration to 0.25 nmol mL\(^{-1}\) while increasing radioactivity concentration to 4000 kBq mL\(^{-1}\) (entry 7). High specific activities were obtained without the implementation of purification steps. Radiolabelling of very low quantities of CryptTM (1.0 nmol to 4.5 nmol) with up to 100 MBq of \[^{64}\text{Cu}]\text{Cu}(\text{OAc})_2\) gave higher specific activities of \(\#45 \text{GBq mmol}^{-1}\) (corrected to recovered radioactivity) a er solid-phase extraction puri cation as radiochemical yields decreased below 95%. The optimised reaction conditions for complexa-tion of \[^{64}\text{Cu}]\text{Cu}^{2+}\) by CryptTM are compatible with structural and functional integrity of delicate biopolymers like CryptTM-functionalised peptides and proteins as prospective targeting vectors for molecular imaging purposes.

Based on previous density functional theory (DFT) calculations, CryptTM has also been proposed to form complexes with trivalent cations like \(\text{In}^{(\text{III})}\), \(\text{Y}^{(\text{III})}\), and \(\text{Ga}^{(\text{III})}\). However, our radiolabelling experiments with \[^{68}\text{Ga}]\text{Ga}^{3+}\) obtained from a \[^{68}\text{Ge}]^{68}\text{Ga}\) generator did not result in the formation of a stable \[^{68}\text{Ga}]\text{Ga}–\text{CryptTM}\) complex despite applying a variety of labelling conditions as assessed by radio-TLC and radio-HPLC analysis (data not shown).

The next set of experiments dealt with the investigation of \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\) stability in vitro in direct comparison with literature-reported \[^{64}\text{Cu}]\text{Cu}–\text{DiAmSar}\) by means of challenge experiments involving chelators EDTA (\(\log K_{\text{Cu–EDTA}} 1.4\) 18.5) and NOTA (\(\log K_{\text{Cu–NOTA}} 1.4\) 21.6). \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\) and \[^{64}\text{Cu}]\text{Cu}–\text{DiAmSar}\) were challenged with competitive chelators EDTA and NOTA at stoichiometric ratios of 1 : 1 and 1 : 100 and were subsequently tested for trans-chelation of \[^{64}\text{Cu}]\text{Cu}^{2+}\) by radio-TLC. Challenge experiments were performed at 25 C. The results are summarised in Table 2.

In the case of \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\) substantial trans-chelation was observed in the presence of chelators EDTA and NOTA when compared to \[^{64}\text{Cu}]\text{Cu}–\text{DiAmSar}\). \[^{64}\text{Cu}]\text{Cu}–\text{DiAmSar}\) was inert towards trans-chelation with EDTA and NOTA over the entire course of the experiment (up 18 h). This is consistent with the reported high kinetic inertness of \[^{64}\text{Cu}]\text{Cu}–\text{Sar}\) complexes.

Challenge experiments of \[^{64}\text{Cu}]\text{Cu}–\text{CryptTM}\) with EDTA and NOTA gave higher rates of trans-chelation with EDTA for both
EDTA when compared with NOTA. Trans-chelation of Cu(II) with the same conditions, 7% of intact excess of NOTA was used for the challenge experiment. Under the same conditions, 74% (10 min), 53% (40 min), and 9% (18 h) of intact Cu(II) to NOTA. However, a 18 h, no intact Cu(II)–CryptTM was detectable when a 1 : 100 excess of NOTA was used for the challenge experiment. Under the same conditions, 7% of intact Cu(II)–CryptTM was found a 18 h for the challenge experiment with EDTA. Notably, the rate of trans-chelation of Cu(II) with macrocyclic NOTA chelator seems to be the formation of thermodynamic more stable [64Cu]–NOTA complex.

Radiopharmacological evaluation of [64Cu]–CryptTM in murine blood samples provided data on distribution pattern of radioactivity in blood cells, plasma proteins, and plasma at different time points (Fig. 3). Results in Fig. 3 revealed low binding of radioactivity (15%) on blood cells at all investigated time points (5, 30, and 60 min). Increasing amounts of radio-activity were found in plasma protein fraction of murine blood which exceeded 70% of radioactivity in whole blood pool at 60 min. Consequently, radioactivity in plasma dropped over time, reaching 18% at 60 min post injection (p.i.). Radio-TLC analysis of plasma fractions indicated intact [64Cu]–CryptTM as administered intravenously at all points. The high plasma protein binding may be indicative of trans-chelation of [64Cu] Cu(II) to plasma proteins, and/or binding of intact [64Cu]–CryptTM to plasma proteins.

Radiopharmacological pro le of [64Cu]–CryptTM was further elucidated with dynamic small animal PET imaging in

![Fig. 3 Distribution of radioactivity in murine blood compartments after intravenous injection of [64Cu]–CryptTM into normal mouse.](image)
comparison to $[^{64}\text{Cu}]\text{Cu-DiAmSar}$. In Fig. 4, representative PET images of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ (Fig. 4A) and $[^{64}\text{Cu}]\text{Cu-DiAmSar}$ (Fig. 4B) after 5, 15, and 60 min p.i. into EMT6 tumor-bearing BALB/c mice.

A er injection of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ and its initial distribution phase, the majority of radioactivity was rapidly eliminated from the blood pool and cleared through the hepatobiliary elimination pathway. Radioactivity was also observed in the bladder during the perfusion phase. Over time, $[^{64}\text{Cu}]\text{Cu-CryptTM}$ demonstrated predominantly hepatobiliary excretion accompanied by an almost constant accumulation and reten-tion of radioactivity in liver tissue over time (Fig. 5). The determined distribution and clearance pattern in the case of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ is consistent with the known tendency of pyridine derivatives to be subject of metabolism in liver cells by N-methyltransferases as well as monoxygenase cytochrome P450.

Moreover, the predominantly hepatobiliary excretion pathway of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ also leads to exposure to liver enzyme superoxide dismutase as a potential site for trans-chelation of $^{64}\text{Cu}^{2+}$ resulting in accumulation and retention of radioactivity in the liver over time. This observation is also consistent with the results of the challenge experiments in this work (see Table 2) suggesting a substantial kinetic instability of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ towards trans-chelation. In contrast to $[^{64}\text{Cu}]\text{Cu-CryptTM}$, $[^{64}\text{Cu}]\text{Cu-DiAmSar}$ was cleared almost exclusively through the kidneys, and the majority of radioac-tivity was found in the bladder a er 60 min p.i. The low uptake and rapid clearance of $[^{64}\text{Cu}]\text{Cu-DiAmSar}$ from the liver con rms high kinetic inertness of the complex towards trans-chelation in vivo. However, the very fast elimination from blood system possibly denies de nite assessment of in vivo stability due to very short time of interaction with competitive endoge-nous ligands. The observed differences in the biodistribution and elimination pattern of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ and $[^{64}\text{Cu}]\text{Cu-DiAmSar}$ are in principle agreement with the determined differences in kinetic stability and lipophilicity of both complexes. Lipophilicity was determined according to the shake- ask method resulting in log P values of 0.3 and 3.7 at physiological pH of 7.4 for $[^{64}\text{Cu}]\text{Cu-CryptTM}$ and $[^{64}\text{Cu}]\text{Cu-DiAmSar}$, respectively.

Fig. 5 summarises all time-activity-curves for radioactivity uptake pro les from the heart (blood pool), liver, kidneys, bladder, tumour and muscle visualising different bio-distribution and clearance patterns a er injection of both ^{64}Cu-labelled complexes. For $[^{64}\text{Cu}]\text{Cu-CryptTM}$ experiments we also calculated standardised uptake values (SUV) in EMT6-tumour tissue and muscle at which SUVtumour $\frac{1}{4}$ 0.40 0.03 (n $\frac{1}{4}$ 3) was signi cantly higher compared to SUVmuscle $\frac{1}{4}$ 0.16 0.02 (n $\frac{1}{4}$ 3) a er 60 min p.i. Injection of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ led to a reten-tion of radioactivity in EMT6-tumour tissue; however, overall uptake levels were comparable with previous experiments using $[^{64}\text{Cu}]\text{Cu(OAc)}_2$. This nding is indicative of non-speci c accu-mulation of radioactivity in EMT6 tumours.

Conclusions

We have prepared and evaluated a novel ^{64}Cu-labelled cryptand molecule ($[^{64}\text{Cu}]\text{Cu-CryptTM}$). Radiopharmacological pro le of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ was studied in comparison with $[^{64}\text{Cu}]\text{Cu-DiAmSar}$ as ‘gold standard’ for kinetically inert ^{64}Cu-labelled cryptand molecules. Radiopharmacological evaluation of $[^{64}\text{Cu}]\text{Cu-CryptTM}$ revealed insu cient kinetic stability which is consistent with the assumed unfavourable coordination mode of $[^{64}\text{Cu}]^{2+}$ through two pyridyl and two amido donors as determined by crystal structure. However, the facile synthetic access to the novel cryptand CryptTM and related structures, and its favourable complex formation conditions using $[^{64}\text{Cu}]\text{Cu(OAc)}_2$ warrant further investigation of related CryptTM-type
molecules possessing a more favourable tri-pyridyl/tri-amine donor group set to allow formation of more kinetically inert 64Cu-cryptates.

References

