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Abstract Optimisation based shape from shading (SFS) is sensitive to initialization: errors in initialization are a signifi-

cant cause of poor overall shape reconstruction. In this paper, we present a method to help overcome this problem by means

of user interaction. There are two key elements in our method. Firstly, we extend SFS to consider a set of initializations,

rather than to use a single one. Secondly, we efficiently explore this initialization space using a heuristic search method, tabu

search, guided by user evaluation of the reconstruction quality. Reconstruction results on both synthetic and real images

demonstrate the effectiveness of our method in providing more desirable shape reconstructions.

Keywords shape from shading, user interaction, tabu search

1 Introduction

Shading information provides one of the key clues to

understand 3D structure from 2D images. A particular

well-studied problem is to estimate 3D shape from pixel

intensities in a single 2D image. This task is known as

shape-from-shading (SFS)[1]. However, although it may

reconstruct local shape details satisfactorily, SFS often

fails to achieve correct reconstruction of overall struc-

ture due to its ill-posed nature[2-3]. One main obstacle

is the concave-convex ambiguity[2] — a single viewpoint

cannot distinguish between swapped convexity and con-

cavity. In this paper, we analyze optimisation based

SFS[1,4-5], and note that poor initialization can be a

main cause of such concave-convex errors. We thus

suggest a user-guided approach to improve initializa-

tion, which can provide a more desirable overall shape

after reconstruction.

As summarized in two survey papers[6-7], many SFS

methods rely on optimisation. A classic solution is the

variational approach[1] which iteratively estimates sur-

face normals such that they provide balanced agree-

ment with the observed intensities and a smoothness

constraint. However, this method is known for its over-

smoothing tendency. Worthington and Hancock[4] ad-

dressed this weakness by enforcing the surface normal

to lie on the image irradiance cone, thus agreeing with

the intensities as a hard constraint. Based on this op-

timisation framework, Huang and Smith[5] further pro-

posed a structure preserving SFS method which uses

a weighting scheme in the smoothness regularisation.

This better preserves shape structures, and is thus the

chosen underlying SFS method used in this paper.

To improve overall shape reconstruction, several

interactive SFS approaches[8-11] have been proposed.

Based on a graph constructed from singular points in

intensity, Meyer et al.[9] suggested to let the user cor-

rect reconstruction errors and add details by adjusting

the relative heights of some singular points. However,

due to the use of singular points, their approach is only

applicable to images with frontal lighting. Zeng et al.

in [8] proposed to let the user specify the surface nor-

mals at some key locations. Then, local shapes around

these locations are recovered and stitched together to

form a global surface. The results reported are faithful

and plausible. However, it is not easy for users to iden-

tify the critical locations and provide accurate normals

there. In [10], the user makes relative changes to prob-

lematic normals by rotating them on a sphere. This is

more intuitive for the user than specifying absolute nor-

mals. Our method can be viewed as further restricting

the rotation to adhere to the image irradiance cone[4],
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ensuring that the resulting normal is always compati-

ble with the image intensity — this has to be enforced

separately in [10]. Furthermore, we simplify the user

interaction required. The user simply indicates areas

judged to be good or poor reconstructions, rather than

having to carefully edit normals or heights, which can

be tricky to get right.

The contributions of this paper are twofold. Firstly,

instead of using a single SFS initialization, we make

use of a set of initializations which form a finite search

space. Secondly, we make use of a heuristic search

method — tabu search — to find a suitable initiali-

zation to improve SFS reconstruction. Tabu search

works by optimising an objective function, which in

this case is not computed by an algorithm, but is in-

stead provided via user interaction. Then, the objec-

tive depends upon the user’s understanding of the cor-

rect shape. There have been studies making use of

heuristic search, such as genetic algorithm[12] and simu-

lated annealing[13], to solve SFS. The purpose of us-

ing these heuristic search strategies is, in general, the

same with ours: to escape from the local optima re-

sulted from traditional optimisation based SFS. In [12]

and [13], additional priors were introduced to guide the

global search, while in our approach, user judgements

are used in place of these priors. Tabu search is used

in our approach as it provides good performance and

requires less time (and thus less user interaction) than

alternatives such as simulated annealing and genetic

algorithms[14].

In the next section, we further explain the motiva-

tion of the proposed method. Sections 3∼5 explain the

main steps in detail, while Section 6 presents recon-

struction results. Section 7 concludes the paper and

offers possible future directions.

2 Problem Overview and Solution

Fig.1 illustrates how initialization can influence the

final SFS reconstruction. The input, Fig.1(a), is a syn-

thetic face image of Julius Caesar. Fig.1(b) shows re-

constructions where surface normals are initialized from

negative image gradients, as used in [4]; Fig.1(c) shows

reconstructions where normals are initialized using lin-

ear interpolation of the normals at the boundary, as

used in [15]. Two SFS optimisation approaches have

been used[1,4], and the reconstructed surfaces are shown

in the middle and the right columns of Figs.1(b) and

1(c). In comparison to the ground-truth (in Fig.6),

we can see that no matter which SFS optimisation ap-

proach is used, reconstructions from the same initiali-

zation share common concave-convex errors, and these

were already present in the initialization. The aim of

this paper is to improve the reconstruction by correct-

ing such undesired errors in the initialization, by means

of simple user interaction.

(b)

(a)

(c)

Fig.1. Influence of SFS initialization on final reconstruction, us-
ing two initialization schemes. (a) Input: a synthetic face image
of Julius Caesar. (b) Results using initialization from negative
image gradients. (c) Results using initialization from occlud-
ing boundary. Left: reconstruction directly from initialization
normals themselves. Center: reconstruction after optimisation
using Horn and Brooks’ variational approach[1]. Right: recon-
struction after optimisation using Worthington and Hancock’s
SFS framework[4].

Negative image gradient initialization is used as the

basis for initialization in this paper. It estimates the

surface normal at each pixel by 1) forcing the normal to

lie on its irradiance cone, ensuring it is consistent with

the observed intensity, and 2) setting the direction of

the projected normal in the image plane in the opposite

direction to the image gradient. This approach assumes

global convexity of the surface — the local bright parts

in the image correspond to the peaks in the surface.

It is straightforward to make the opposite assumption

that the local bright parts correspond to valleys, by set-

ting the direction of the projected normal to be in the

same direction as the image gradient (we call it a posi-

tive image gradient). Other assumptions can be made,

e.g., that it corresponds to a saddle which is convex in



490 J. Comput. Sci. & Technol., May 2016, Vol.31, No.3

the x direction but concave in y, or concave in x but

convex in y. Complex surfaces often have regions of

all these shapes, and thus a global assumption is inap-

propriate, resulting in convex-concave errors. In turn,

this suggests that different negative or positive image

gradients should be used for the initialization of diffe-

rent regions. This observation is the foundation of the

method proposed in this paper.

Based on the above, for each pixel, we consider four

choices for the surface normal. To simplify the descrip-

tion, we rotate the current coordinate system to make

the positive z-axis coincide with the lighting direction.

Suppose (nx, ny, nz) is the negative image gradient ini-

tialization in this rotated coordinate system. Then

the other three choices are (−nx, ny, nz), (nx,−ny, nz),

(−nx,−ny, nz). Changes of sign indicate switching the

convex-concave assumption along the x and/or y axes.

By rotating back, we get the four candidate surface

normals at this pixel location in the original coordi-

nate system. Clearly, it is infeasible for the user to

specify such a choice for each pixel. For a smooth sur-

face, convexity or concavity is typically consistent over

local neighbourhoods with an intensity pattern charac-

terised as bright surrounded by dark. Watershed based

methods[16] are suited to provide a segmentation of this

kind. Then the user simply has to make such a choice

for each segmented region.

Based on these ideas, the framework of our method

can be summarized in Fig.2, and Procedure 1 lists the

steps of our method.

As described in Procedure 1, there are 4K possible

initializations involved, where K is the number of seg-

mented regions. These candidate initializations form a

finite search space. For simple surfaces where K 6 3, it

Procedure 1. Steps in Our Method

1. (If required) estimate and correct the lighting direction;
2. Use the known or estimated lighting direction to initialize the surface normals with negative image gradients;
3. Using current initialization, reconstruct a surface via SFS optimisation;
4. The user assesses the surface visually;
5. If the current surface is satisfactory, output it and stop;
6. Otherwise, the user marks one or more problematic areas as regions of interest (ROI);
7. Segment ROI into K local regions, and associate each region with four candidate convex-concave patterns, which forms the search

space;
8. Use tabu search (as explained below) to find a near optimal initialization in the current search space:

(a) randomly generate a new candidate initialization which is a neighbour of the current initialization in the search space,
(b) reconstruct a surface from the candidate initialization via SFS,
(c) the user visually assesses the candidate surface and compares it with current one,
(d) put the undesired solution into tabu list to be avoided in following iterations,
(e) set the desired solution to be the current one,
(f) go back to (a) and continue until satisfactory or the user wants to refine ROI;

9. Go back to step 3 and continue.

Input Image

Light
Estimation

SFS
Initialization

SFS
Optimisation

Reconstruction

Satisfied?

Yes

End

No

ROI

Segmentation

Regions

Tabu Search

Fig.2. Framework of our method.
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is feasible to use exhaustive search to find the optimal

initialization which gives the most plausible reconstruc-

tion. However, for complex surfaces with K > 6, the

exponential number of possibilities renders this infea-

sible. This is why we make use of a general heuristic

search method to find an initialization which gives a

reasonable reconstruction. Tabu search is both effective

and efficient for this purpose. It employs local search

to find potential solutions, but makes use of a memory

structure, called the tabu list, to prevent the entrap-

ment in local solution regions. An objective function is

optimised through the search, which in our method is

not computed by an algorithm, but is instead evaluated

via user interaction.

Note that there are two optimisations in our

method. One is the optimisation of SFS initialization

via tabu search, and the other is the SFS optimisation

which we carry out using a structure preserving varia-

tional approach[5]. The former, which is the focus of

this paper, aims to correct global and mid-scale struc-

tural errors, while the latter determines fine detail via

the local adjustment of surface normals.

3 Light Estimation and Shape from Shading

We follow the general assumption in orthographic

SFS: Lambertian reflectance, uniform albedo, and a fi-

nite lighting at direction l with unit intensity. Then the

image irradiance equation can be written as:

I = n · l, (1)

where n denotes surface normal. We make use of exist-

ing light estimation[15] and SFS[5] methods to estimate

l and n. We also implement an interface as shown in

Fig.3 to allow the user to make corrections of the es-

timated lighting direction, and in turn to change the

estimated surface normals.

Structure-preserving SFS[5] is used in our approach

to recover the surface normals. It introduces a weight-

ing scheme formulated in (2) for the regularization of

surface normals. The idea is that adjacent pixels with

closer intensities are more likely to have similar surface

normal directions. As suggested by its name, this SFS

method improves upon the classic variation SFS[1] on

the preservation of shape structures.

u(t+1)(x, y) =

∑
(i,j)∈Ω(x,y) W (i, j)n(t)(i, j)

∥
∑

(i,j)∈Ω(x,y) W (i, j)∥
,

n(t+1)(x, y) =
u(t+1)(x, y)

∥u(t+1)(x, y)∥
. (2)

Fig.3. Interface for the user to adjust lighting direction.

In (2), Ω(x, y) denotes the 3×3 neighbourhood of pixel

(x, y), and W (i, j) is a measure of the intensity simi-

larity between pixel (i, j) and the current pixel (x, y).

Applying the structure-preserving SFS in our approach,

we use a Gaussian function (3) for the weights W .

W (i, j) = exp(− (I(i, j)− I(x, y))2

2σ2
), σ = 0.1. (3)

The surface is finally integrated using the widely used

integration algorithm of Frankot and Chellappa[17].

The above SFS approach needs a known lighting di-

rection, which we estimated following the idea in [15].

Starting with an estimation of the surface normals in-

terpolated from the boundary normals, the lighting di-

rection l is determined as the least-squares solution

to (1), subject to non-negative lighting constraints[18].

However, the crude estimation of surface normals of-

ten causes errors in the estimated lighting direction.

We thus implement the interface in Fig.3 to let the

user correct the lighting direction by rotation. Sup-

pose l0 is the estimated lighting direction, from which

an estimation of the surface normals, denoted n0, can

be obtained using the structure-preserving SFS. Both

the lighting direction l0 and the reconstruction from

n0 are displayed in the interface for user examination.

If the user rotates the lighting direction to l1 = Rl0,

where R is the rotation matrix, then according to (1),

n1 = n0R
−1 is the corresponding surface normals (ig-

nore the normals facing away from the user). Then the

reconstruction from n1 is displayed. In this way, the



492 J. Comput. Sci. & Technol., May 2016, Vol.31, No.3

user can rotate the lighting to the direction which gives

the most desirable reconstruction.

4 Segmentation

The aim of segmentation is to divide the user

marked ROIs into local regions in such a way that each

region can be consistently approximated by just one of

the four candidate convex-concave patterns. As noted

in Section 2, such regions have a local intensity pattern

of bright surrounded by dark. Suppose I represents

the intensity image with values in the range [0, 1]. The

inverted image 1 − I can be seen as a topographic re-

lief with the values interpreted as altitudes. Then, the

targeted local regions form basins in the relief, and a

segmentation of these regions can be achieved by ap-

plying the watershed transformation[16].

However, due to noise and/or fine details in im-

ages, direct watershed transformation typically results

in over-segmentation. Thus, an image filtering is first

applied to remove noise and unnecessary details before

the watershed transformation. We tested mean/median

filters, bilateral filter[19], and L0 smoothing proposed

in [20]. Among them, bilateral filter[19] gives the most

reasonable results in terms of reducing the number of

segments, and thus is the chosen filter in our approach.

After the initial segmentation using watershed trans-

formation, we further combine adjacent segments to

reduce the number to be within a manageable range.

The combination is based on the physical meaning of

watershed: segments correspond to catchment basins.

We calculated the shortest path between the bottoms

of all adjacent basins. The two basins with the small-

est path are combined. The process is repeated until

all segments have been combined; the segmentation at

each stage is stored for later use. Fig.4 shows examples

of segmentation at different stages. A large K (number

of segments) results in many small regions, which slows

the search but provides finer user control, while a small

K results in larger regions with more complex convex-

concave patterns. An experiment examining a suitable

choice of K will be presented in Section 6. Based on

the experiment, we set the default value of K to be 9m,

where m is the number of disjoint ROIs; the user can

easily adjust K using a slider for more precise control,

as shown in Fig.4.

5 Tabu Search with User Interaction

The segmented regions are represented by an ar-

ray of K variables each of which has an integer value in

the range [0, 3], representing the four candidate convex-

concave patterns. An assignment of values represents a

possible initialization in the search space. Our goal is

to find an assignment which represents an initialization

that gives a desirable reconstruction.

The search strategy in our application is based on

tabu search[21-22]. The initial solution — an array of

zeros — represents negative image gradient initializa-

tion throughout the whole image. A move is defined as

a value change of an entry in the current array. A move

can be good, bad, or undecided as judged by the user

after a visual inspection of the corresponding change

to the reconstructed surface. A short-term tabu list

(a)

(b)

(c)

Fig.4. Segmentation of ROIs. (a) K = 24. (b) K = 9. (c)
K = 3. K is the number of segments. There is just one ROI
covering the centre of the face in this example.
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records banned values for each entry in the recent past

— less than t iterations. t is called the tabu tenure. If a

move is judged to be bad, the move to the value for this

entry is marked as “banned” in the tabu list. If a move

is judged to be good, all other three values for this entry

are marked as “banned”. Table 1 shows an example of

a tabu list with “X” marking a ban. In our applica-

tion, we set the tabu tenure to be 4, which means a

banned entry value will be re-allowed after four itera-

tions. Moreover, since the user can make poor judge-

ments, two more rules are used: 1) if all four values for

an entry are banned, they are all re-allowed, and 2) if

a good move to value is later judged to be bad, all other

three values for this entry are re-allowed.

Table 1. Example of a Tabu List

Segment Current Status Move to

0 1 2 3

1 0 X

2 1 X

3 0

.

..
.
..

.

..
.
..

.

..
.
..

K 3 X X X

Note: X marks a banned value.

The immediate neighbourhood of the current solu-

tion includes 4K−1 candidates, resulting from a single

move. Because of the limits to the amount of interac-

tion a user can reasonably perform, not all candidate

solutions can be examined. Instead, for each entry, we

set a probability for each of the four values. The proba-

bility indicates how likely we believe the value for an en-

try is correct. Initially, the probabilities are distributed

equally, i.e., 0.25 for each value. A bad move will de-

crease the probability to 0.1 (empirically chosen), while

the probabilities of the other three values in the same

entry will be equally increased to keep the sum to be

1. Similarly, a good move will increase the probability

to 0.7 (empirically chosen as well), while the others in

the entry will be decreased accordingly. During each

iteration, a set of moves is generated by stochastically

choosing an un-banned candidate for each region ac-

cording to their probabilities. A new initialization is

obtained by taking all the moves, and a surface is recon-

structed from the new initialization. These moves are

then judged by their effects on the new reconstruction.

Although there may be many “moves”, only those with

visually obvious improvements or deteriorations will be

judged to be good (using a left click on the region), or

bad (using a right click), and the others are left to be

undecided (no action is required). After examination,

an improved solution is achieved by replacing the en-

tries in the current array with those corresponding to

good moves. Iteration then continues until satisfactory.

Algorithm 1 summarizes our tabu search process.

Fig.5 shows the interface for user interaction. Four

panels are shown during each iteration. Fig.5(a) shows

the original image for user reference. Fig.5(b) shows

the regions that need user judgements. After stochastic

moves in these regions, a new reconstruction is found

and shown in Fig.5(c). The user visually inspects it,

and compares it with the current reconstruction (shown

in Fig.5(d)).

6 Experimental Results

Experiments have been carried out on both syn-

thetic and real-world images. All images are openly

available 1○, except for the “horse” image in Fig.11(b)

in Section 6 which can be obtained from [10]. Eva-

luation of the results relies on 1) visual inspection of

1○https://users.cs.cf.ac.uk/J.Wu/, Mar. 2016.
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(a) (b) (c) (d)

Fig.5. Using the user interface for our interactive SFS. (a) Original image for user reference. (b) Segmented regions requiring user
judgements. (c) New reconstruction with stochastic moves. (d) Current reconstruction to be improved.

the reconstructed surfaces, and 2) for synthetic images,

reconstruction errors compared with ground truth on

both surface normals and integrated depths.

6.1 Results on Synthetic Images

Figs.6 and 7 display reconstructions from two syn-

thetic images: Caesar 2○ and bunny Hi 3○. Images were

generated under orthographic projection, frontal light-

ing, and Lambertian reflectance. The reconstructions

with user interaction were obtained after 1∼2 refine-

ments using the displayed segmentations. These recon-

structions show visually improved overall shapes with

reduced concave-convex errors. Figs.8 and 9 quan-

titatively confirm these improvements, showing error

maps of the reconstructions compared with the ground-

truth in surface normal domain and depth domain re-

spectively. Both the average angular deviations and

depth errors are approximately halved by user inter-

action. However, our reconstructions still differ from

the ground-truth. We believe it is due to two main

causes. Firstly, the assumptions made in SFS are not

always satisfied. Structure preserving SFS still assumes

a smooth surface, and this causes some oversmoothing

of certain features as can be seen in the reconstructions

of Caesar’s face and the bunny Hi surface. Further-

more, our assumption that boundary normals lie in the

image plane may be far from correct: an example can

be seen in the bunny’s left ear. Secondly, the stochas-

tic nature of general heuristic search will typically lead

to an improved rather than optimal solution. As only

limited user interaction is feasible, it is hard to achieve

a satisfactory result when there are many fine details

resulting in many small segments.

To explore how the fineness of segmentation influ-

ences the accuracy of reconstruction and the experience

of user interaction, we carry out a further experiment

on the “Julius Caesar” image. Using the slider shown

in Fig.4, we separately choose three segmentation fine-

ness levels: “coarse” K = 3, “default” K = 9, and

“fine” K = 22, and without further ROI refinements,

we interactively improve the reconstructions as much as

we can using each of the segmentations. The segmenta-

tions, corresponding reconstructions and error maps are

shown in Fig.10, together with the iteration numbers re-

quired. It is clear that with finer segmentation, the user

gets a more accurate result, at the cost of more itera-

tions and thus more interactions. For each marked ROI,

we empirically set the default number K = 9 which, in

this example, was demonstrated to be a good balance

between accuracy and ease of use with clearly reduced

surface normal errors in two more iterations. In gene-

ral, we suggest the user should use a moderately small

K, between 6 and 9, and achieve fine details through

further refinements with smaller ROIs.

6.2 Results on Real-World Images

Given a colored real-world image, we first transform

it into HSL color space and use the L channel as input.

Then, we estimate the lighting direction and correct it

using the interface shown in Fig.3 if required. Then the

reconstruction is carried out using the corrected light-

ing direction. Fig.11 shows the real-world images used

2○AIM@SHAPE-VISIONAIR Shape Repository, 2006. http://visionair.ge.imati.cnr.it/ontologies/shapes/, Mar. 2016.
3○The Stanford 3D Scanning Repository, 1996. http://graphics.stanford.edu/data/3Dscanrep/, Mar. 2016.
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Fig.6. Reconstructions from synthetic “Julius Caesar” image. (a) Input image. (b) Ground truth. (c) Reconstruction without user
interaction. (d) Segmentation of ROIs. (e) Two views of the reconstruction with user interaction.
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Fig.7. Reconstructions from synthetic “bunny Hi” image. (a) Input image. (b) Ground truth. (c) Reconstruction without user
interaction. (d) Segmentation of ROIs. (e) Two views of the reconstruction with user interaction.
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Fig.8. Error maps of surface normals and average angular deviation from ground-truth. (a) Reconstruction without user interaction.
(b) Reconstruction with user interaction.

Fig.9. Error maps of integrated depths and average depth error with its percentage to ground-truth depth. (a) Reconstructions without
user interaction. (b) Reconstructions with user interaction.

in our experiments and the estimated/corrected light-

ing directions.

Fig.12 compares our reconstructions on the well-

known pepper image with those from three traditional

SFS methods[23-25]. All the surfaces are illuminated

from the lighting direction in Fig.11(a). It seems that

our reconstructions, even without user interaction, out-

perform the traditional SFS reconstructions, confirming

the effectiveness of structure preserving SFS[5]. With

user interaction, the distortion at the right side of the

pepper is very well corrected. However, the pepper’s

stem is not correctly recovered because of its depth dis-

continuity — such problem still provides a challenge to

SFS.

Fig.13 compares our reconstruction from the pepper

image with that in an earlier interactive SFS paper[8],

while Fig.14 compares our reconstruction from a horse

image with that obtained in another interactive SFS

paper[10]. In the first comparison, our results are illu-

minated with the same lighting direction as in Fig.12.

In the latter case, the results are illuminated with light-

ing direction (−1, 1, 1) as in [10] to enable a direct com-

parison. Our reconstructions have comparable overall

shapes to those provided by these earlier interactive

methods. The method in [8] better reconstructs the

pepper’s stem as it stitches local reconstructions. The

method in [10] recovers more details of the horse’s hair

as it is based on direct editing of surface normals. How-

ever, our method has a significant advantage over these

earlier interactive SFS methods: the user interaction

required in our method does not involve direct edit-

ing of surface normals, but simply judges whether an

automatically determined change in the surface is more

desirable or not. Users do not need the expertise or spe-

cific training in use of the surface normal domain, mak-

ing our method more intuitive and usable by a wider

user population.

To demonstrate that our method is simple and in-

tuitive, Fig.15 shows some reconstructions using our

method and interface produced by a seven-year-old boy

from images of his toys (Figs.11(c) and 11(d)), and the

reconstructions produced by the first author of this pa-

per. While the boy had a limited attention span, and as

a result his reconstructions are generally not as good as
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Fig.10. Effects of segmentation numbers. (a) Reconstruction results and iteration numbers. (b) Error maps of surface normals and
average angle deviation. (c) Error maps of recovered depths and average depth error with its percentage to ground-truth depth.

those produced by the author, the improvements over

the initial reconstructions are still clear.

6.3 Timing

Our experiments show we can achieve an obviously

improved reconstruction within 15 iterations during the

first round of refinement, and fewer iterations in the

following rounds. A reasonable final reconstruction is

usually achieved within three rounds of refinement. The

whole process usually takes less than 20 minutes (our

implementation is based on MATLAB R2013a, using a

computer with a 2.70 GHz Intelr Xeonr E5 CPU pro-

cessor). Most of the user’s time is spent on rotating the

model or light direction in 3D on the screen to assess

the shape of different areas.

7 Conclusions

We presented an interactive framework to improve

shape recovery in shape from shading, based on bet-

ter SFS initialization. The user identifies and improves

poor local reconstruction via a tabu search process. Ex-

perimental results on both synthetic and real images

demonstrated the effectiveness of our method, and also

the simple intuitiveness of our method compared with
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Fig.11. Real-world images and their estimated/corrected lighting directions. (a) Pepper. (b) Horse. (c) Fist. (d) Frog.

(a) (b) (c) (d) (e)

Fig.12. Reconstructions from pepper image. (a) and (b) are our reconstructions without user interaction and with user interaction
respectively. (c), (d) and (e) are reconstructions from [23], [24], and [25] respectively.

(a) (b) (c) (d)

Fig.13. Comparison with interactive SFS method[8]. (a) Reconstruction using interactive SFS in [8]. (b) Reconstruction using our
method. ((a) Copyright ©2005, IEEE).

(a) (b)

Fig.14. Comparison with interactive SFS method[10]. (a) Reconstruction using interactive SFS in [10]. (b) Reconstruction using our
method. ((a) Copyright ©2008 ACM, Inc.).



Jing Wu et al.: Improving Shape from Shading with Interactive Tabu Search 499

other interactive SFS methods.

Our future work will focus on 1) further simplify-

ing the user interaction by making use of belief propa-

gation to associate probabilities with potential recon-

structions; 2) exploring alternative SFS optimisation

methods to the current structure-preserving one in or-

der to improve the reconstruction of discontinuities.

(a) (b)

(c) (d)

Fig.15. Results produced by a 7-year-old boy. (a) Reconstruc-
tions without user interaction. (b) Reconstructions by the boy.
(c) and (d) are two views of the first author’s reconstruction.
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