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Genome-wide Association Studies (GWAS) result in millions of summary statistics

(“z-scores”) for single nucleotide polymorphism (SNP) associations with phenotypes.

These rich datasets afford deep insights into the nature and extent of genetic

contributions to complex phenotypes such as psychiatric disorders, which are

understood to have substantial genetic components that arise from very large numbers

of SNPs. The complexity of the datasets, however, poses a significant challenge to

maximizing their utility. This is reflected in a need for better understanding the landscape

of z-scores, as such knowledge would enhance causal SNP and gene discovery, help

elucidate mechanistic pathways, and inform future study design. Here we present a

parsimonious methodology for modeling effect sizes and replication probabilities, relying

only on summary statistics from GWAS substudies, and a scheme allowing for direct

empirical validation. We show that modeling z-scores as a mixture of Gaussians is

conceptually appropriate, in particular taking into account ubiquitous non-null effects

that are likely in the datasets due to weak linkage disequilibrium with causal SNPs. The

four-parameter model allows for estimating the degree of polygenicity of the phenotype

and predicting the proportion of chip heritability explainable by genome-wide significant

SNPs in future studies with larger sample sizes. We apply the model to recent GWAS

of schizophrenia (N = 82,315) and putamen volume (N = 12,596), with approximately

9.3 million SNP z-scores in both cases. We show that, over a broad range of z-scores

and sample sizes, themodel accurately predicts expectation estimates of true effect sizes

and replication probabilities in multistage GWAS designs. We assess the degree to which

effect sizes are over-estimated when based on linear-regression association coefficients.

We estimate the polygenicity of schizophrenia to be 0.037 and the putamen to be 0.001,

while the respective sample sizes required to approach fully explaining the chip heritability
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are 106 and 105. The model can be extended to incorporate prior knowledge such as

pleiotropy and SNP annotation. The current findings suggest that the model is applicable

to a broad array of complex phenotypes and will enhance understanding of their genetic

architectures.

Keywords: GWAS, Gaussian mixture model, effect size, schizophrenia, SNP discovery, putamen, heritability

INTRODUCTION

Many complex traits and common phenotypes have a genetic
component that arises from large numbers of genetic
loci (Visscher et al., 2012). The total effect of the genetic
component on phenotypic expression is often substantial,
as indicated by measures of heritability (Tenesa and Haley,
2013; Witte et al., 2014) obtained from twin and family studies
and genome-wide association studies (GWAS) for multiple
phenotypes. For example, heritability of schizophrenia is
estimated to be ∼80% from twin studies (Sullivan et al., 2003),
∼64% from family studies (Lichtenstein et al., 2009; Wray and
Gottesman, 2012), with a lower bound of ∼33% from recent
GWAS (Ripke et al., 2013a). For any phenotype, GWAS provide
a platform for uncovering the underlying genetic architecture,
but this poses a substantial challenge, compounded by the
complexity of the datasets: ∼104–105 individuals with ∼107

genetic markers (single nucleotide polymorphisms, or SNPs)
in various levels of correlation (linkage disequilibrium, or LD),
∼106 of which are estimated to be independent (Dudbridge and
Gusnanto, 2008; Pe’er et al., 2008), with multiple possible roles
for SNPs in mechanistic pathways.

Mathematical modeling is important for statistical genetics
to capture, both broadly and in detail, the complexity of the
datasets (Schork, 2002; So et al., 2010; Stahl et al., 2012).
Indeed, with the number of markers much larger than number
of individuals in GWAS, modeling assumptions are required
so as to estimate parameters of interest and thereby obtain
realistic descriptions of the numbers, distributions, and effect
sizes of causal SNPs—and the considerably larger number of
SNPs in strong LD with causal SNPs—which in turn can assist in
causal SNP discovery and individual risk prediction, and inform
mechanistic understanding of genetic effects in phenotypic
expression.

Better understanding of the genetic architecture of complex
traits will be facilitated both by many more individuals
being genotyped, by fine-mapping, and by developing more
advanced and realistic modeling techniques. Standard GWAS
approaches, however, are designed for discovering a small
number of common variants with relatively large effects (i.e., low
polygenicity), and so are not optimized for analyzing the large
numbers of small effects in highly polygenic traits. Thus, there
is a need for the development of analytical methods appropriate
for the many phenotypes that have, or are expected to have, high
polygenicity (Andreassen et al., 2013a,b; Schork et al., 2013).

Recently, methods have been developed to explore the
combined contributions of many low-penetrance effects that
do not reach genome-wide significance at current sample sizes.
These include polygenic risk score profiling (Purcell et al., 2009;

Schizophrenia Working Group of the Psychiatric Genomics
Consortium, 2014); mixed linear modeling to estimate the
genetic variance in unrelated individuals, where the distribution
of effect sizes is modeled as a single normal (Yang et al., 2010; Lee
et al., 2011, 2012a); a related Bayesian hierarchical model where
the z-scores (or summary statistics for SNP association with
phenotype), given the effect sizes, are assumed to follow a single
normal distribution (So et al., 2011); modeling the distribution
of the estimated genetic variance of known discoveries for
a trait as a mixture of exponentials distribution, analogous
to a scale mixture of normals distribution for the regression
coefficients (Park et al., 2011); and an analysis that combines
this later work with polygenic risk score profiling and heritability
estimates from GWAS (Chatterjee et al., 2013). Additionally,
multivariate linear mixed models have been developed (Yang
et al., 2011a; Speed and Balding, 2014; Zhou and Stephens, 2014).
The focus here, however, is on standard univariate analysis,
but the empirical method for estimating regression coefficients
in replication samples is also applicable to those arising from
multrivariate analysis.

Mixture densities (Efron, 2013), particularly mixtures of
normals, have previously been used in various forms to estimate
effect sizes from individual-level data (Meuwissen et al., 2001;
Goddard et al., 2009; Erbe et al., 2012; Zhou et al., 2013). Here
we expand on a version of this relatively simple model for the
distribution of z-scores (Thompson et al., 2015), and apply it to
genome-wide summary statistics for schizophrenia and also to
putamen volume, which provides an illustrative contrast.

One of our main objectives is to model, in a descriptive
and accurate yet parsimonious way, the distribution of genetic
summary statistics of traits for which a significant portion
of the genome is involved, and thus help illuminate the
genetic architecture of polygenic traits. To test for accuracy,
we present a methodology for non-parametric estimation of
quantities of interest which can then be compared with model
predictions. This includes obtaining realistic estimates of the
true effect size given the observed z-score and minimal other
information: sample size and the model parameters that capture
the statistics of the distribution—essentially, estimates of the
conditional expectancy of regression coefficients β given z. Of
particular importance, we want accurately to predict replication
probabilities in multistage GWAS, i.e., the probability that a
given z-score in a discovery sample will pass a nominal p-value
significance threshold in a replication sample (that might include
the discovery sample as a subset), a quantity that has not hitherto
been a focus of much research. This quantity requires knowing
the full distribution of test-statistics. In line with the parsimony
of the model, the parameters will be directly interpretable—for
example, one gives an index of the polygenicity—and being able
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accurately to estimate them and their uncertainties is a central
component in this study. These will be used, for example, in
power calculations to predict the proportion of additive chip
heritability (which in turn is the proportion of phenotypic
variance explainable by additive genetic effects of common SNPs
assayed by GWAS arrays) that is discoverable as a function
of sample size. (Additive chip heritability arises from additive
contributions to phenotypic variance from tagged SNPs; below
we will interchangeably refer to proportion of chip heritability
and proportion of tagged variance explained by genome-wide
significant SNPs.) Other recently developed methods that enable
estimating chip heritability and proportion of variance explained
are LD Scoring (Bulik-Sullivan et al., 2015) and Additive Variance
Explained and Number of Genetic Effects Method of Estimation
(AVENGEME) (Palla and Dudbridge, 2015).

It is the relatively large effects that GWAS have discovered
in recent years, yet for many phenotypes it appears that very
large numbers of much smaller effects remain unidentified (Yang
et al., 2010; Sklar et al., 2011; Ripke et al., 2013a,b). Thus, it
will be necessary to include large (or sparse) and small (or
ubiquitous) effects, a breakdown that naturally can be captured
in a mixture model for the distribution of SNP z-scores: one
Gaussian for each. (Since only a very small fraction of all SNPs
are expected to be causal or mechanistically associated with a
given phenotype, we use the word “sparse” to characterize these.
Since many other SNPs can be expected to exhibit attenuated
apparent effects through LD with the sparse SNPs, we also
use the word “large” as a descriptor for the sparse effects. In
contrast, we use “ubiquitous” and “small” to characterize the
SNPs in LD with the sparse SNPs and their attenuated apparent
effects.) In these Gaussians, it is important to incorporate the
allele SNP heterozygosity (variance of the allele count). Null
and non-null effects distributed throughout the genome could
be captured by using only a single Gaussian; a two-groups
mixture of Gaussians distribution has been used for ubiquitous
null and sparse non-null effects; modifying this slightly will
additionally allow for ubiquitous non-null effects: dedicating one
Gaussian to ubiquitous null and non-null (small) effects, and
the other to sparse (large) non-null effects. Intuitively, sparse
effects represent SNPs that are in strong LD with causal SNPs
(or more generally, with SNPs that are mechanistically associated
with the phenotype), while the ubiquitous non-null effects largely
arise from weak LD with causal SNPs, and the null effects—
effects that do not replicate—arise from environmental and error
contributions.

Here, we develop a unified framework for power calculations,
relying on only four parameters and their uncertainties, that
enables prediction of effect sizes, replication probabilities, and
fraction of chip heritability explained by genome-wide significant
SNPs as a function of sample size. We show that model variations
that do not take into account ubiquitous non-null effects do
not provide a good match to actual data, and propose a minor
modification with important implications for the discovery of
SNPs affecting phenotypes.We apply themodel to the Psychiatric
Genomics Consortium (PGC; Sullivan, 2010) schizophrenia
sample: 35,476 cases and 46,839 controls across 52 separate
substudies, with imputation of SNPs using the 1000 Genomes

Project reference panel (1000 Genomes Project Consortium,
2010) for a total of approximately 9.3 million genotyped and
imputed SNPs (Schizophrenia Working Group of the Psychiatric
Genomics Consortium, 2014). We also apply the model to
putamen volume using data from the Enhancing Neuro Imaging
Genetics through Meta-Analysis (ENIGMA) consortium (Hibar
et al., 2015), with 12,596 subjects and the same set of SNPs as for
schizophrenia. For these two phenotypes, using nonparametric
methods described herein, we directly compare empirical with
model results for expected replication effect sizes, variances, and
replication probabilities, as a function of sample size, and map
out the estimated proportion of chip heritability explained by
genome-wide significant SNPs as a function of sample size.

METHODS

Proposed Gaussian Mixture Model
Assuming a linear relationship between a quantitative phenotype
and genotype (logistic relationship for case-control designs),
a massively univariate, or marginal regression, approach with
effective sample size N (see Supplementary Material for
definition) shows that the z-score for a given SNP can be
written as a sum of genetic effect, δ, and a remainder term, ǫ,
encompassing environmental and error contributions, assumed
to be independent of δ: z = δ + ǫ, where ǫ ∼ N (0, σ 2

0 ),
σ 2
0 possibly being slightly different from 1 due to population

substructure (Devlin and Roeder, 1999). In the context of the
model, δ is the “true” effect size. Assuming Hardy-Weinberg
equilibrium, for any particular SNP the effect size δ ∝

√
N ·H,

where H is the heterozygosity (allele count variance in the
population),H = 2p(1−p), p being the allele frequency for either
of the two SNP alleles (see Supplementary Material for further
details). Thus, the variance of z is var(z) = var(δ) + σ 2

0 , with
var(δ) ∝ N · H. We introduce a four-parameter two-component
Gaussian mixture model for the marginal distribution of z-scores
assuming SNPs belong to a class of ubiquitous effects or to a class
of sparse effects:

f (z) = π0φ(z, 0, σ
2
0 + σ 2

1 )+ π1φ(z, 0, σ
2
0 + σ 2

1 + σ 2
2 ). (1)

Here, π0 is the prior probability (after uniform pruning so that
large LD blocks are not over-represented with respect to small LD
blocks—see below) that a SNP is in the ubiquitous class (π0 ≈ 1)
of “small” replicating effects (described by σ 2

1 ); π1 = 1 − π0 is
the prior probability that a SNP is in the sparse class of “large”
replicating effects (described by σ 2

1 +σ 2
2 ), i.e., π1 is the fraction of

independent SNPs characterized by the broader (sparse) normal
probability distribution function (PDF), which we denote the
index of polygenicity (π1≪1); φ(·, µ, σ 2) is the normal PDFwith
meanµ and variance σ 2; all SNPs have a component that is a null
effect, i.e., a non-replicating error/environmental contribution
(associated with σ 2

0 ); σ 2
1 = σ 2

aN · H is the additional variance
associated with non-null ubiquitous effects, and σ 2

2 = σ 2
b
N · H

is the additional variance associated with sparse effects, with σ 2
a

and σ 2
b
being the corresponding per-allele variances (assumed to

be independent of allele frequency). The four parameters of the
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model then are π1, σ
2
0 , σ

2
a , and σ 2

b
. In the two-groups formalism,

the non-null effect size is given by

δ =
{

δa, with prior prob. π0,

δa + δb, with prior prob. π1,
(2)

with δa and δb independent. The components of δ can be written
as

δa = a
√
N ·H, a ∼ N (0, σ 2

a ),

δb = b
√
N ·H, b ∼ N (0, σ 2

b ). (3)

The more usual two-groups mixture model would have σa ≡
0, so that SNPs would be categorized as either truly null
and ubiquitous, or non-null and sparse (Efron, 2013; see
also Greenland and Poole, 2013 for arguments against “spike ad
smear” priors).

In the usual terminology applied to two-groups mixture
models (Efron, 2013), the Bayesian local true discovery rate,
tdr(z), is the probability that z corresponds to the π1 arm of
Equation 1, i.e., the posterior probability that a SNP with this
z-score has a sparse effect:

tdr(z) = Pr(b 6= 0|z)
= π1φ(z, 0, σ

2
0 + σ 2

1 + σ 2
2 )/f (z). (4)

Then, from Equation 1, it is easy to show that the posterior
distribution of effect sizes δ, given z, is a weighted sum of sparse
and ubiquitous contributions

Pr(δ|z) = (1− tdr(z))φ(δ, µu(z), σ
2
u )+

tdr(z)φ(δ, µs(z), σ
2
s ) (5)

where,

µu(z) = zσ 2
1 /(σ 2

0 + σ 2
1 ) (6)

µs(z) = z(σ 2
1 + σ 2

2 )/(σ
2
0 + σ 2

1 + σ 2
2 ) (7)

σ 2
u = σ 2

0 σ 2
1 /(σ 2

0 + σ 2
1 ) (8)

σ 2
s = σ 2

0 (σ
2
1 + σ 2

2 )/(σ
2
0 + σ 2

1 + σ 2
2 ) (9)

(see Supplementary Material for details). Note that from
Equations 2, 3, and 5,

E(δa|z) = z · [tdr(z) · σ 2
1 /(σ 2

0 + σ 2
1 + σ 2

2 )+
(1− tdr(z)) · σ 2

1 /(σ 2
0 + σ 2

1 )], (10)

E(δb|z) = z · tdr(z) · σ 2
2 /(σ 2

0 + σ 2
1 + σ 2

2 ). (11)

where E denotes expectation. Alternatively, based on Equation 5,
we can write δ = δu + δs for non-sparse and sparse effects,
respectively, where

E(δu|z) = (1− tdr(z))µu(z) (12)

E(δs|z) = tdr(z)µs(z). (13)

The objective, then, is to determine the empirical distribution of
z-scores and the four model parameters that best characterize the
data, assess the quality of the resulting model fit, and address its
implications. Below we describe how the replication probability
can be measured empirically. Of particular interest will be the
accuracy of the model prediction of this quantity.

As there might be confusion about the terms bias and
effect size, a note of clarification is in order. A true regression
coefficient β for association between genotype and phenotype
(see Supplementary Material) can be thought of as a true effect
size. An estimate β̂ of this from data will then be an estimated
effect size. Simple linear regression, the standard approach in
GWAS, provides an unbiased estimate of effect sizes. That
is, the marginal expectation of β̂ is β : E(β̂) = β . This is
usually what is understood when the term “unbiased” is used for
estimated quantities. However, the quantity of practical interest
in association studies, because it is directly related to predicted
z-scores in replication samples, is the conditional expectancy of
the true effect size, given the estimate from GWAS: E(β|β̂). This
quantity we call the adjusted effect size; our results below show
that |E(β|β̂)| < |β̂|. In other words, β̂ provides an inflated
estimate of the true effect size. We show below that the adjusted
effect size can be expressed as a function of β̂ , sample size N,
heterozygosity H, and the four model parameters: E(β|β̂) =
f (β̂,N,H; σ0, σa, σb, π1). Since the Wald statistic (or z-score)
corresponding to β̂ is simply a scaling of β̂ , z = β̂/se(β̂), we
will also refer to the component δ of z as the adjusted effect size,
with context making it clear what is meant. (Note that “effect size”
is also often used to denote the portion of phenotypic variance
due to genotype, i.e., β̂2H Park et al., 2011). We will show below
that δ provides an unbiased estimate for the true effect size: given
a discovery sample z-score zd for a particular SNP, the expected
value for the z-score in a replication sample is δ = E(zr|zd).

Finally, we note that natural variation in genotypes vis-a-vis
phenotype does not lead to bias but will effect power: larger
variation (larger se(β)) will result in smaller Wald statistics, all
else equal. Genotype measurement error, however, may induce
correlation among the genotypes and have a biased effect,
operating in a manner similarly to population structure, resulting
in a positive contribution to the null variance component σ0.
Independent of correlated errors, random genotyping errors will
lead to underestimation of the regression coefficient—the effect
of regression dilution, or regression attenuation (Fuller, 2009).

Empirical Estimation
We analyzed summary statistics (z-scores) from the PGC
schizophrenia sample of 35,476 cases and 46,839 controls across
52 separate substudies, with 9,279,485 genotyped and imputed
SNPs; restricting allele frequency to be greater than 0.005 reduced
the number of SNPs by 2% (to 9,083,435). We randomly and
repeatedly divide the data into complementary discovery and
replication sets, and calculate the empirical expected z-score, and
the expected square of the z-score, in the replication set, given a
z-score in the discovery set. We also calculate empirical posterior
estimates of the variance of the effect size in the replication
set given a z-score in the discovery set, and the replication
probability (defined below) for z-scores in the discovery set.

Frontiers in Genetics | www.frontiersin.org 4 February 2016 | Volume 7 | Article 15

http://www.frontiersin.org/Genetics
http://www.frontiersin.org
http://www.frontiersin.org/Genetics/archive


Holland et al. Effect Sizes and Replication Rates

Note that while π1 and σ 2
0 do not depend on sample size

N, σ 2
1 and σ 2

2 are proportional to N. Thus, to separate out
these contributions and to examine the effects of sample size
on posterior expectation values, the division of the data into
complementary discovery and replication sets is not just a single
division, e.g., split-half. Rather, we repeatedly and randomly
divide the data with 10% of the effective sample in the discovery
set (90% replication), then do the same in increments of
10%, through 90% of the effective sample in the discovery set
(10% in replication). In the current work we do not use raw
genotype data, but summary statistics from 52 studies with
uneven distribution of sample sizes. So, for example, random
draws are made from the 52 studies so that the studies selected
for the discovery set will comprise approximately 10% of the
total effective sample size, and so on for the other percentage
breakdowns. The number of random draws per each percentage
breakdown was 100, sufficient to provide smooth empirical
a posteriori estimates of the quantities of interest. For each
random draw, the SNPs were randomly pruned: for SNPs in
LD, corresponding to correlation coefficient r2 ≥ 0.8, the SNP
selected was randomly chosen—not necessarily the one with
largest z-score. Using a fixed correlation coefficient allows for
uniform pruning such that each LD block is treated equivalently
(large block not over-represented); randomly selecting the
representative SNP explicitly avoids the “winner’s curse” (Zöllner
and Pritchard, 2007; Ghosh et al., 2008) in estimating discovery
sample z-scores. Pruning at r2 ≥ 0.8 reduced the number of SNPs
analyzed from∼ 9.3 to∼ 2.8 million, i.e.,∼ 30% of the total.

Note, each iteration of the procedure produces an unbiased
estimate of the posterior effect size means and variances,
conditional on the discovery z-scores. The purpose of averaging
across 100 random iterations is to smooth out the random
differences present in each arbitrary partition of the sample
into discovery and replication samples. Since each iteration is
unbiased, the average across all iterations is again unbiased for
the conditional posterior means and variances.

Empirical Posterior Effect Sizes and
Variances
For a given discovery-replication division of the data, z-scores
from the discovery set were binned in 200 equally-spaced bins
between zmin = −6 and zmax = 6. For each bin, the mean z-score
for the corresponding SNPs was estimated from the replication
set. For a given bin, denote the mean z-score in the discovery
set as zd, and the corresponding mean z-score in the replication
set as zr . Averaging these over the 100 repetitions (for a given
percentage breakdown) provides an empirical estimate for the
posterior expectation value of zr given zd, E(zr|zd). Note that
the empirical zr , being a mean in the replication set, is a direct
estimate of the effect size δr in the replication set corresponding
to zd in the discovery set: E(zr|zd) = E(δr|zd). Similarly, empirical
estimates for E(z2r |zd) = E(δ2r |zd) + σ 2

0 and var(zr|zd) =
var(δr|zd)+ σ 2

0 were calculated.

Empirical Replication Probabilities
Given a discovery sample z-score zd for some SNP, the effect
can be deemed to replicate if the corresponding z-score zr in

the replication sample has the same sign as zd, and its p-value
from a one-tailed test, based on the standard normal cumulative
distribution, is less than a chosen threshold, say pt = 0.05,
corresponding to −|zr| < zt = −1.645. For binned discovery
sample z-scores, the empirical replication probability for a given
bin is defined as the fraction of z-scores in the bin that replicate,
i.e., have replication-sample p-value pr < pt . As before, averaging
these over the 100 repetitions (for a given percentage breakdown)
provides an empirical estimate of the replication probabilities,
R(zd; zt), which we also denote Pr(pr < pt).

Model Posterior Effect Sizes and Variances
For a discovery sample of effective sample size Nd and a new
replication sample of effective sample size Nr , and noting that
effect sizes are proportional to the square root of effective sample
sizes, the posterior distribution for zr given zd is given by a
modification of Equation 5:

Pr(zr|zd) = (1− tdr)φ(zr,mu, s
2
u)+

tdr · φ(zr,ms, s
2
s ), (14)

where

mu =
√

Nr/Nd · µu (15)

ms =
√

Nr/Nd · µs (16)

s2u = σ 2
0 + (Nr/Nd) · σ 2

u (17)

s2s = σ 2
0 + (Nr/Nd) · σ 2

s (18)

(the explicit dependence of tdr, µu, and µs on zd and Nd, and
of σu and σs on Nd, has been dropped to simplify the notation).
Since z = δ + ǫ, with δ and ǫ assumed to be independent and
E(ǫ) = 0, the expected effect size δr in the replication sample,
given a z-score zd in the discovery sample, can be read off from
Equation 14:

E(δr|zd) =
√

Nr/Nd[(1− tdr)µu + tdr · µs]. (19)

Additionally, from Equation 14 and using standard properties
of mixture distributions (see Supplementary Material), it also
follows that

var(δr|zd) = (Nr/Nd)[(1− tdr)σ 2
u + tdr · σ 2

s +
tdr(1− tdr)(µs − µu)

2]. (20)

Model Replication Probabilities
The replication rate R(zd; zt) for a given zd is the probability,
in the complementary replication sample, of getting a z-score zr
(with corresponding p-value pr) more significant than a chosen
threshold, zt ≤ 0 (corresponding to p-value pt), which is simply
the proportion of z-scores more significant than the threshold,
which in turn is given by the cumulative distribution function
(CDF) version of Equation 14:

R(zd; zt) = (1− tdr)8(zt,−|mu|, s2u)+
tdr · 8(zt,−|ms|, s2s )
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≡ Pr(pr < pt) (21)

corresponding to the normal PDF with mean m and variance s2,
evaluated at zt .

The likelihood Pr(z|δ) is simply

Pr(z|δ) = φ(z; δ, σ 2
0 ).

Thus, the probability of having a z-score (with p-value p) that will
pass significance threshold pt , given the expected effect size δ, is
just the CDF:

Pr(p < pt, δ) = 8(zt,−|δ|, σ 2
0 ). (22)

Parameter Estimation
The four model parameters were estimated by minimizing a
convex cost function that was composed of a sum of two
terms: the weighted sum of the squares of the differences
between empirical estimates and model estimates of effect
sizes (expected z-scores) and of the expected z-scores-squared
(minimizing only with respect to the former does not allow
for sufficient precision in determining the parameters). More
specifically, denoting empirical replication z-scores as z, and
model (predicted) posterior expectation values as δ and η, the
cost function c(π1, σ

2
0 , σ 2

a , σ 2
b
) is

c(π1, σ
2
0 , σ 2

a , σ 2
b ) =

∑

i,j,k

[wijk · (z̄ijk − δijk)
2 +

wijk · (z2ijk − ηijk)
2]. (23)

Here, the sum over i is over the 9 different percentage
breakdowns of the dataset into complementary discovery-
replication fractions; the sum over j is over the 100 repetitions for
each breakdown; and the sum over k is over the 200 discovery
sample z-score bins. For a given percentage breakdown i and
repetition j, z̄ijk is the mean empirical replication z-score for
discovery sample SNPs in bin k (note again that the mean
replication z-score for a given bin provides a direct estimate of
the effect size), and δijk ≡ δijk(Nr/Nd, zd,H;π1, σ

2
0 , σ 2

a , σ 2
b
) is

the corresponding model prediction (only weakly dependent on
repetition j through variation in heterozygosityH from repetition

to repetition); z2ijk is the mean of the empirical replication z-
score-squared for discovery sample SNPs in bin k, and ηijk is the
corresponding model prediction. For given i and j, the weighting
wijk is the number of SNPs (z-scores) in the k-th bin. With i
indexing the ratio Nr/Nd and k indexing zd (and dropping the
explicit dependence of δijk and ηijk on Nr/Nd, H, and the model
parameters, so as to simplify the notation), δijk ≡ E(zr|zd) is given
by Equation 19 (E(ǫ) = 0), and ηijk ≡ E(z2r |zd) = E(δ2r |zd) + σ 2

0
can be calculated from Equations 19 and 20, noting that

E(z2r |zd)− [E(zr|zd)]2 = var(zr|zd)
= var(δr|zd)+ σ 2

0 . (24)

In particular, for a given sample of effective size N, the posterior
expectation of the square of the “true” effect size for that sample is

E(δ2|z) = (1− tdr)σ 2
u + tdr · σ 2

s +
tdr(1− tdr)(µs − µu)

2+
[(1− tdr)µu + tdr · µs]

2 (25)

(note again that the explicit dependence of tdr, µu, and µs on z
and N, and of σu and σs on N, has been dropped to simplify the
notation). Best-fit model parameters were determined by Nelder-
Mead minimization of c(π1, σ

2
0 , σ 2

a , σ 2
b
), using the Matlab

function fminsearch().

Proportion of Genetically-Determined
Phenotypic Variance Explained, as a
Function of N
For a given sample size N, the expected proportion of the
total additive genetic variance (approximately the proportion of
chip heritability) explained by sparse effects, S(N; zt), for SNPs
with −|z| < zt for some threshold zt < 0, or equivalently
with p-value less than the corresponding threshold pt , can be
estimated by simulating z-scores for all SNPs, whereby the
unobservable null, ubiquitous, and sparse effects can explicitly
be assigned to individual SNPs. From Equation 1 and the
implicit decomposition z = δ + ǫ, all of the simulation SNPs i
(i = 1, . . . ,≃ 2.8 × 106) are assigned an environmental/error
component ǫi drawn from a normal distribution with mean zero
and variance given by the estimated σ 2

0 . Then, a proportion π1 of
the SNPs (indexed by k)—conceptually, SNPs that are in strong
LD with causal SNPs—are assigned an additional component δc,k
drawn from a normal distribution with mean zero and variance
(σ 2

a + σ 2
b
)NH, where H is the mean heterozygosity, so that the

corresponding z-score for such a SNP k is zk = δc,k+ǫk. (Though
not necessary for the calculation of S, the remaining proportion,
1 − π1, of the SNPs can be assigned an additional (ubiquitous)
component δu,j drawn from a normal distribution with mean

zero and variance σ 2
aNH, giving z-scores zj = δu,j + ǫj. Note

that the total effect size for a SNP in the π1 category can be
decomposed into “ubiquitous” and “sparse” components: δc,k =
δu,k+δs,k.) The proportion of chip heritability explained by SNPs
with sparse effects is given by the ratio

S(N; zt) =
∑

k:−|zk|<zt
δ2
c,k
(N)

∑

all k δ2
c,k
(N)

(26)

where δ2
c,k
(N) denotes the square of the “true” effect size

component of the z-score for the kth SNP, emphasizing its
dependence on N (see Supplementary Material). The numerator
and denominator can be averaged over several repetitions for a
smooth estimate of S(N; zt). Alternatively, given a set of z-scores
{zk}, replace δ2

c,k
with the expectation E(δ2

k
|zk) (see Equation 25).

The corresponding ratio in Equation 26 should be accurate if
the average effect of LD cancels between the numerator and
denominator, which will always occur for N large enough so that
S approaches 1. In any case, the effects of LD can increasingly be
mitigated by higher levels of pruning.
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Multistage Design Combining Independent
Discovery and Replication Datasets
It is common practice to estimate effect sizes in a multistage
design where, at stage-1, candidate SNPs are selected in a
discovery dataset using a liberal p-value (e.g., p = 10−6), and
then reassessed at stage-2 in an independent replication data
set, with the final assessment for significance being from the
combined datasets (Satagopan et al., 2004; Skol et al., 2007;
Thomas et al., 2009; Schizophrenia Psychiatric Genome-Wide
Association Study (GWAS) Consortium, 2011; Lambert et al.,
2013; Ripke et al., 2013a). This strategy is usually employed
when the independent replication dataset is not directly available
to researchers, but where z-scores for candidate SNPs can be
requested. The model presented here allows for predictions in
this scenario. Specifically, letNd andNr be as before (sample sizes
for independent discovery and replication datasets, respectively),
and let Ndr = Nd + Nr denote the sample size for the combined
dataset. Define the inverse-variance weights wd = √

Nd/Ndr

and wr = √
Nr/Ndr . Then, given a discovery sample z-score

zd, the posterior expectation for the z-score zdr in the combined
dataset is

E(zdr|zd) = E(δdr|zd)
= wdzd + wrE(δr|zd), (27)

where δdr is the effect size and E(δr|zd) is given by Equation 19.
The variance is simply

var(zdr|zd) = w2
r var(zr|zd), (28)

where var(zr|zd) is given by Equations 20 and 24, thus allowing
E(z2

dr
|zd) to be calculated. The replication probability Rdr(zd; zt)

in the combined dataset for zd in the discovery dataset, which we
can also write as Pr(pdr < pt) where pdr is the p-value for the SNP
in the combined data set, is given by Equation 21, only replacing
zt on the right-hand side with z′t = (zt + wd|zd|)/wr :

Rdr(zd; zt) = (1− tdr)8(z′t,−|mu|, s2u)+
tdr · 8(z′t,−|ms|, s2s )

≡ Pr(pdr < pt) (29)

(see Supplementary Material for further details). Thus, for a SNP
whose discovery sample z-score is zd, the probability of its z-
score in the combined dataset reaching geome-wide significance
is given by Rdr(zd; zt), with zt = −5.33 (i.e., Pr(pdr < pt) with
pt = 5× 10−8).

RESULTS

For a range of z-scores in the discovery sample between −6 and
6, Figure 1 shows the empirical estimates (solid black curves) for
schizophrenia of (A) expected effect sizes and (B) variances in
the replication sample, and (C) the replication rate at zt = −1.64
(i.e., pt = 0.05), for split-half discovery and replication samples.
It is significant that in (A), in a neighborhood of approximately
±3 around zd = 0 the expected effect size is non-zero: the black
line has a positive slope. This implies that there exists ubiquitous
non-null “small” effects (small z-scores have high probability
densities, i.e., the corresponding SNPs are highly abundant). As
the neighborhood extends further, “large” effects found in the
discovery sample correspond to “large” effects in the replication
sample.

The parameter estimates (with 95% confidence intervals in
square brackets) for schizophrenia were:

π1 = 0.037 [0.017; 0.079]

σ0 = 1.014 [1.011; 1.017]

σa = 0.0057 [0.0051; 0.0063]

σb = 0.020 [0.015; 0.025]

(30)

(the procedure for calculating the standard errors is described
in the Supplementary Material). The model fit with these
parameters is shown as the solid red curve in Figure 1: there
is an excellent fit to posterior effect size and variance, and
to the replication rate. In contrast, if the model assumes no
non-null ubiquitous effects (σa = 0), then without changing
the other parameters the fit corresponds to the green dashed
line: in the ±3 neighborhood around zd = 0, small discovery
effects do not replicate (i.e., they are null), while sparse “large”
effects do replicate, in only approximate agreement with the
empirical estimates. The alternative scenario assumes no sparse
effects, σb = 0: without altering the other parameters, the

FIGURE 1 | For schizophrenia, posterior estimate of (A) effect size and (B) variance; (C) estimate of replication probability for zt = −1.64 (i.e.,

pt = 0.05): empirical (black solid lines), current model (red solid lines), model with no ubiquitous effects (green dashed lines), and model with no

sparse effects (blue dashed lines), for split-half discovery and replication data.
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model fit is shown by the blue dashed curves in Figure 1.
In this case, the model provides a reasonable match with the
empirical small effects. However, it completely fails to capture
the posterior empirical effects for large zd. Corresponding curves
for explicit model fits with parameters (π1, σ

2
0 , σ 2

b
) and (σ 2

0 , σ 2
a ),

respectively, are shown in Supplementary Material Figure S1
(note that in the case of σb = 0 the model is degenerate with
respect to π1).

For putamen volume, the parameter estimates (with 95%
confidence intervals) were:

π1 = 0.0010 [0.0001; 0.0082]

σ0 = 1.002 [1.001; 1.003]

σa = 0.0033 [0.0029; 0.0039]

σb = 0.034 [0.019; 0.062].

(31)

Thus, putamen volume is approximately 40-times less polygenic
than schizophrenia.

Discovery and replication sample sizes have a pronounced
influence on the empirical estimates of effect size, variance, and
replication rate, but these dramatic changes across a wide range
of z-scores are remarkably well matched by the model estimates
(Supplementary Material Figure S3). Additionally, the empirical
PDF for the z-scores is accurately reproduced by the model
fit, Equation 1, for z-scores divided up into five heterozygosity
windows (Supplementary Material Figure S2), validating the
basic model definition, Equation 1.

Figure 2 shows the posterior effect size components δu (green
curve) and δs (red curve), given by Equations 12 and 13, for
z-scores between -6 and 6, for an effective sample size N ≃
34, 000. Also shown is the total effect size (black) and the
posterior variance of the effect size (blue curve). The individual

FIGURE 2 | Posterior effect size and variance, calculated for effective

sample size Nd = Nr = N ≃ 34,000—see Equations 12, 13, 20 and

Supplementary Material. Note that sparse effects have a component that

arises from ubiquitous effects. z = δ + ǫ, where δ = δu + δs and E(ǫ) = 0; δu are

ubiquitous effects, while δs are additional contributions to total sparse effects.

components can be seen to behave as expected: the green curve
shows the ubiquitous non-null effects increasing away from the
origin, reaching a peak, and falling to zero for large values of z; the
red curve shows the sparse effects component essentially flat near
the origin, indicating a lack of sparse effects in this neighborhood,
and then monotonically increasing, beginning near where the
ubiquitous effects start falling to zero. The peaks in the variance
can be seen to arise from the regions where sparse effects are
already prominent but the small effects have not yet died off.
(Note that the variance is drawn on the same scale as the effect
sizes.)

To test the extent to which the small ubiquitous effects arose
from LD with sparse large effects, in addition to light random
pruning as before at r2 ≥ 0.8, we further restricted to SNPs whose
total linkage disequilibrium (TLD), given by the sum of their
LD r2’s with neighboring SNPs, was less than 15 (for reference,
the median TLD was 54.5), reducing the number of SNPs to
≃ 1 million (10% of the total). The empirical effect sizes, for
a sample breakdown of 50% discovery and 50% replication, are
shown in Figure 3 (the red plot). For comparison, also shown
(in black) is the empirical effect size plot for random pruning
at r2 ≥ 0.8 without restricting by TLD (same as in Figure 1A).
There is a pronounced diminution in the extent of ubiquitous
(small) effects: the decreased slope near the origin suggests that
a substantial portion of the ubiquitous effects arises due to
LD with large effects, particularly large LD blocks (Yang et al.,
2011b): if the distance between causal SNPs is comparable or
smaller than typical LD block sizes, then “ubiquitous” effects are
expected. Note that the shift from the black to the red curve in
Figure 3 is consonant with the shift from the black (ubiquitous
and sparse effects) to the red (sparse effects only) curve in
Figure 2.

FIGURE 3 | Randomly culling SNPs with LD r2 ≥ 0.8 and further

restricting to SNPs with total LD (TLD) less than 15 (approximately 1

million SNPs remaining) shows a diminution in the extent of ubiquitous

effects (decreased slope near the origin for the red curve), consistent

with an interpretation that the ubiquitous effects arise due to LD with

causal SNPs. The black plot is for light random pruning at r2 ≥ 0.8, shown in

Figure 1A.
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Figure 4A shows quantile-quantile (QQ) plots for SNP
p-values, comparing empirical and model fits for the full
schizophrenia and putamen data sets, averaged over 100
repetitions with random pruning. For any threshold p-value,
given as the ordinate in log10 units (to emphasize tail, or
small p, behavior), the abscissa gives the proportion of SNPs
whose p-values are at least as significant as the ordinate value;
the dashed line at 45◦ corresponds to the null hypothesis
where the distribution of SNP z-scores is assumed to follow a
standard normal distribution (the threshold p-value then being
synonymous with the proportion of SNPs exceeding that value).
The model plots are given by Equation 1, replacing the PDF with
the CDF, and provide a remarkably good fit to the empirical
plots. The earlier deviation of the schizophrenia plot, compared
with the putamen plot, from the null line is due to the higher
polygenicity of schizophrenia.

Figure 4B shows the projected proportion of tagged variance
explained by sparse SNPs reaching genome-wide significance
(p ≤ 5 × 10−8) for schizophrenia and putamen volume,
as a function of the total number N of subjects in the
samples (assuming equal numbers of cases and controls for
schizophrenia), as given by Equation 26. The fraction of tagged
variance explained by GWAS is expected to approximately
equal the fraction of additive genetically-determined phenotypic
variance, or narrow-sense heritability, explained. The blue
asterisk indicates the sample size from current ENIGMA data
(N = 12, 596); the green asterisk, for schizophrenia, gives N =
76, 326, assuming the effective sample size from the current
PGC2, Neff = 38, 163, arose from an equal number of cases and
controls: N/2 = Ncases = Ncontrols = Neff . Thus, we estimate that
15% of chip heritability for schizophrenia is currently explainable
by genome-wide significant SNPs in PGC2; for these SNPs, the
replication rate at pt = 0.05 for our split-half sample is 97%
or higher. GWAS on approximately half a million each of cases
and controls would need to be performed to explain all the
chip heritability for schizophrenia. For putamen volume, 14%
of chip heritability appears to be explainable by genome-wide
significant SNPs given the current sample size in ENIGMA. In

contrast to schizophrenia, however, approximately only 100,000
people would need to be assessed to fully explain chip heritability
for putamen volume. The higher sample size requirements for
schizophrenia are due partly to its higher polygenicity.

The per-allele contribution of a locus, with z-score z, to the
phenotypic variance va of the trait is usually estimated to be va =
β̂2H, where β̂ is the corresponding regression coefficient in the
univariate setting (Park et al., 2010). This is proportional to z2/N,
since z = β̂/se(β̂). However, the “true” effect more correctly is
related to the non-centrality parameter δ (z = δ + ǫ), so that
the per-allele contribution to phenotypic variance is proportional
to E(δ2|z)/N, not z2/N. Figure 5A plots E(δ2|z) vs. z2 (or scaled
β̂2) for three illustrative total sample sizes. For an independent
sample, the degree by which va is an overestimate when based
on z2 instead of E(δ2|z) is given by the ratio of the height on the
black dotted line to the height on the appropriate curve, at z2. For
example, for schizophrenia with a total sample size of N=50,000
and a z-score on the threshold of genome-wide significance (z ≃
±5.33), va will be over-estimated by a factor of 2.2 (the height of
the black dot relative to the blue dot).

Figure 5B shows the probability, given by Equation 29, of
reaching genome-wide significance in a combined discovery and
replication dataset of total sample size corresponding to PGC2
(N = 76, 326), where the discovery sample size Nd is 20, 50,
or 90% of the total, as a function of p-value in the discovery
dataset. For example, in discovery samples equal to 50 or 90%
of the total, to have a probability of reaching genome-wide
significance in the combined dataset approximately equal to 0.8
would require having reached genome-wide significance in the
discovery dataset; for a discovery sample only 20% of the total,
the same probability of replicating requires the discovery sample
p-value to be at least p = 10−9, i.e., more significant than the
genome-wide threshold.

DISCUSSION

Here we present a simple modeling framework, a scale-mixture
of Gaussians that is a modification of previously published

FIGURE 4 | (A) Empirical and model QQ plots for putamen volume and schizophrenia. (B) Proportion of total additive genetic variance or chip heritability explained by

sparse effects for all “tagged” SNPs with p-value less than the GWAS p-value threshold (pt = 5× 10−8), as a function of effective sample size, for putamen volume

and schizophrenia (the asterisks correspond to the current effective sample sizes for ENIGMA and PGS2). Of the total variance that is explained by sparse effects for

all SNPs, the proportion explained by SNPs currently reaching the usual GWAS significance level is approximately 15% for both phenotypes.
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FIGURE 5 | For schizophrenia, (A) posterior estimates of effect-size-squared, as given by Equation 25, vs. z2 for three total sample sizes. When

assuming that the phenotypic variance explained by a SNP is given by β̂2H ∝ z2/N, the degree to which this is an over-estimate is indicated by the ratio of the height

of the black dashed line (the assumption δ2 = z2) to the height of the corresponding point on the curve for a given sample size. The asterisks correspond to the

threshold significant z-score. (B) For a multistage GWAS, where discovery is from a subset (20%, 50%, 90%) of the total PGC2 sample, the curves give the probability

of a SNP with p-value p in the discovery sample passing genome-wide significance (pdr < pt = 5× 10−8) in the combined (total) data set, Equation 29. The vertical

gray line is at p = pt.

methodologies (Meuwissen et al., 2001; Goddard et al., 2009;
Erbe et al., 2012; Efron, 2013; Zhou et al., 2013), for assessing
the contributions of ubiquitous and sparse effects to quantities
of interest in GWAS. Additionally, we present a procedure for
testing the model empirically. The model has great utility in
that it allows for the prediction of the replication probability
and expected effect size for each SNP, given the discovery
and replication sample sizes, the four model parameters, and
the discovery sample z-score of the SNP. Using nonparametric
methods applied to large schizophrenia and subcortical brain
structure volumes, we show how the empirical replication
probabilities and effect sizes can be calculated directly from the
data, and demonstrate that the model results are in excellent
agreement with these—across a wide range of z-scores and
sample sizes, and for multistage GWAS designs, whether splitting
the available sub-studies into randomized disjoint sets for
discovery and replication, or combining the discovery dataset as
a subset in replication.

The parameter π1 in the model gives the prior probability that
SNPs belong in the category of sparse effects, i.e., those likely
to have a large and significant association with the phenotype.
π1 thus provides a way of estimation the proportion of “causal”
SNPs. An alternative method for doing this is Approximate
Bayesian Polygenic Analysis (ABPA; Stahl et al., 2012). With
1000 Genomes SNP imputation for a total of approximately
9.3 million SNPs in the studies, all possible causal common
SNPs are likely to be represented, either directly or through
strong LD. These SNPs will have the largest expected association
summary statistics; the remaining SNPs will either show weaker
effects through attenuated LD with the causal SNPs, or have null
effects. To a first approximation, a plausible interpretation is that
SNPs in the π1 category are likely to be dominated by SNPs in
strong LD with causal SNPs. Our estimate of π1 ≃ 0.037 for
the PGC2 schizophrenia GWAS suggests that this condition is
highly polygenic: about 3.7% of SNPs are potentially significantly
associated with the phenotype. It should be noted, however, that

variations at different loci exhibiting LD may have independent
effects on a phenotype (Malo et al., 2008).

Recently, a schizophrenia GWAS study, using approximately
half of the subjects and all of the SNPs employed here, reported
an estimate of “SNP heritability” (a lower bound of narrow
sense heritability since only variation due to SNP association
can be determined; copy-number variants and rare variants, for
example, are not included) h2 = 33% on the liability scale,
adjusted for case-control ascertainment (Lee et al., 2012b; Ripke
et al., 2013a). It should be noted that an implicit assumption
in the method used for estimating h2 is that the distribution
of effect sizes is given by a single Gaussian (no explicit sparse-
effects component—see Figure 1A: the blue dashed curve for
σb = 0), whereas we have shown here that it is more
appropriate to consider the effect sizes being described by a
Gaussian mixture distribution, with non-null ubiquitous and
sparse components. It is not clear how this affects the result
for h2. A follow-up study, using all of the subjects and SNPs
employed here, reported that 3.4% of variation on the liability
scale to schizophrenia, adjusted for case-control ascertainment,
is explained by genome-wide significant loci (Schizophrenia
Working Group of the Psychiatric Genomics Consortium, 2014).
Therefore, approximately 10% (3.4/33) of SNP heritability (or
chip heritability) for schizophrenia was estimated to be captured
by genome-wide significant SNPs, a result that comports with our
estimate of 15%. For the putamen, a recent report (Hibar et al.,
2015) using all of the subjects and SNPs employed here, and a
different method for estimating SNP heritability than was used
for schizophrenia (So et al., 2011), found that approximately 10%
of variance in putamen volume was due to all common variants,
while 1.09% was attributable to genome-wide significant SNPs.
Thus, again, approximately 10% of SNP heritability for putamen
volume was estimated to be captured by genome-wide significant
SNPs, a result in broad agreement with our estimate of 14%.

We presented a four-parameter two-groups mixture of
normals parametric model for the distribution of GWAS
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summary statistics. Additionally, we presented an empirical
scheme for estimating replication z-scores, their variances, and
replication rates. The model parameters are then estimated by
minimizing a cost function that depends on the differences in
model and empirical estimates of effect sizes and expected z-
scores-squared. Applying the model and empirical scheme to
recent large GWAS of schizophrenia and putamen volume, we
showed that effect sizes, along with variances and replication
rates, are accurately described by the simple model over a
wide range of z-scores, and over a wide range of discovery
and replication sample sizes when the relationships can change
dramatically. We further showed how the model can be used to
estimate the fraction of additive SNP heritability (an estimate
of the fraction of chip heritability) explainable by genome-wide
significant SNPs in a massive univariate setting, as a function
of sample size. The model enables estimation of an index for
the degree of polygenicity of a phenotype, because structurally
it allows for separate distributions of the large number of
ubiquitous (small) effects and the relatively small number of
sparse (large) effects, postulating that these different classes of
effects will be distributed differently. We showed that ignoring
the contribution of ubiquitous non-null effects severely degrades
the accuracy of the model. A variant of the model, particularly
for phenotypes likely to be of low polygenicity, e.g., individual
gene expression or methylation, where interpretation of the
ubiquitous component as currently presented might become
problematic, could incorporate a third gaussian for ubiquitous
null effects, with variance parameter σ 2

0 . In the current study
we note that the four-parameter model is more parsimonious
and fits the data well. In future work, we will explore more
deeply the relationship between true effects and total LD that will
enable us more precisely to pin down the interpretation of the
parameters.

Given the model parameters, for any SNP with a p-value
less than some threshold—indicating a potential candidate for
true association with the phenotype—an accurate estimate of
its probability of replicating can be calculated for replication
samples of different effective numbers of subjects. It should
be noted, however, that to have reasonable probability of
replicating in a multistage GWAS, it might be necessary that
candidate SNPs in the discovery sample substantially exceed
genome-wide significance. The model can be improved and
extended by letting the model coefficients depend on SNP
heterozygosity, and by incorporating additional information like
SNP functional annotation category (Schork et al., 2013). We
showed that schizophrenia is highly polygenic (∼3.7% of SNPs
are significantly associated). We estimate that at approximately
half a million each of cases and controls genotyped, all SNPs
contributing to narrow-sense heritability would have reached
genome-wide significance. Putamen volume is approximately 40-
times less polygenic than schizophrenia, and only of order one
hundred thousand people need to be genotyped to capture all
chip heritability with genome-wide significant SNPs.

Deep sequencing of large samples can be expected to advance
our understanding of the genetics of complex phenotypes, but
it seems more cost-efficient to start with uncovering more risk
genes from existing GWAS data by improving analytical tools,

as much remains to be explored in the complex landscape
where large numbers of SNPs in GWAS effect phenotype.
In particular, there is a need for better understanding the
distribution of effect sizes in GWAS (Andreassen et al.,
2013a,b; Schork et al., 2013). The univariate mixture model
we have presented and validated empirically here captures the
distribution of SNP effect sizes, and thus much of the genetic
architecture of complex phenotypes. It can be used for estimating
polygenicity and informing power calculations, in particular for
providing estimates of probabilities of reaching genome-wide
significance in multistage GWAS, and the proportion of SNP
heritability explainable in future larger studies. The model can
be extended by incorporating additional prior information, such
as SNP annotation and pleiotropy, to enable more accurate
estimation of replication probabilities (Lewinger et al., 2007;
Wang et al., 2016). Combined with larger sample sizes, this
statistical methodology may facilitate improved detection of
smaller effect sizes and enhance the ability of GWAS in accurate
risk prediction, and to inform human physiology and disease
etiology.
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