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Abstract. One of the most peculiar aspects of turbulence in wall bounded-flows is the ability
of the turbulent fluctuations to regenerate themselves through self-sustained processes. The
dynamics of these self-sustaining mechanisms has been extensively investigated in the past via
two complementary approaches. From one side, the possibility to identify very robust kinematic
features within the flow feeds the hope of the scientific community to obtain a complete and
consistent dynamical description of the physics of the turbulent regeneration cycles in terms
of the so-called coherent structures. From the other side, the multi-scale and inhomogeneous
features of the self-sustaining mechanisms of turbulence have been addressed by means of global
statistical quantities based on two-point averages such as second-order structure functions.
The present work attempts to link these two approaches, by identifying how turbulent cycle
mechanisms and turbulent structures reflect on the global statistical properties of second-order
structure function. To this aim we use Direct Numerical Simulation data of thermally driven
turbulence in the Rayleigh-Bénard convection and we analyse for the first time the behaviour
of the second-order structure function of temperature in the complete four-dimensional space
of spatio-temporal scales and wall-distances. The observed behaviour is then interpreted in
terms of the dynamics of coherent thermal structures and of their commonly accepted model of
life-cycle.

1. Introduction
A fundamental concept of turbulence theory is represented by the multi-scale scenario introduced
by Richardson [1] and further developed by Kolmogorov [2]. At sufficiently high Reynolds
numbers and away from the boundaries or other singularities, a clear distinction between large
and small scales can be made. Large eddies are directly influenced by the geometry of the
flow, whereas the behaviour of the small ones is almost universal as it depends only on the rate
at which they receive energy and on viscosity. The latter represents one of the few exact and
nontrivial results in the field of turbulence, nevertheless the limitations of the leading hypotheses
makes this framework a particular case, although conceptually of invaluable importance [3].
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In the next few decades after Kolmogorov [4, 5] until this day [6, 7, 8, 9], many research
groups have spent a lot of efforts trying to understand and model turbulence. However, even
if the same goal is shared by all these groups, the methodologies adopted are very different,
which lead sometimes to contradicting results. Historically, turbulence has been approached in
a statistical and in a structural sense. The decomposition introduced by Reynolds represents
the first attempt to describe turbulence in a statistical way by splitting the field into an average
component and a fluctuating one [10]. On the other side, Richardson was the pioneer of the
structural approach by portraying turbulence in terms of eddies of different sizes [1].

Loosely speaking, the statistical point of view deals with the global statistics of the turbulent
flow field whereas the structural one considers turbulence as a property of deterministic solutions
of the governing equations rather than as a stochastic process [11]. While in the structural
approach the results obtained are mainly influenced by the choice of the eduction technique (e.g.
quadrant analysis [12], VITA [13], POD [14], based on invariants of the velocity-gradient tensor
[15], etc. ), in the statistical one the results depend only on the choice of the observable (e.g.
mean velocity, turbulent intensities, etc. ). Quantitatively the results of these two approaches
are not comparable but they can complement each other and the results obtained by one method
can support or clarify the evidences obtained by the other.

The aim of the present work is to try to bridge the gap between these two approaches by
searching possible explanations of the behaviour shown by the second-order structure function in
the different features shown by turbulent structures. To this purpose we use the Rayleigh-Bénard
convection, see Ref. [16] for a recent review. In such a flow, thermally driven turbulence shows
a much more coherent pattern with respect to more classical pressure-driven wall-turbulence.
Indeed, the turbulent cycle is characterized by one single coherent structure, the so-called
thermal plume. The prominent role played by thermal plumes is then expected to leave a
marked footprint on global statistical quantities. Indeed, we here propose the analysis of the
second-order structure function for the temperature field. To further increase the possibility
of recognize features related to turbulent structures on the behaviour of second-order structure
function, we address here for the first time, the entire augmented-space of wall-turbulence, i.e.
the compound space of spatial and temporal scales and wall-distances. Needless to say this study
represents only a first step toward a more complete analysis represented by the Yaglom equation,
i.e. the balance for the second order structure function, where the study of the different ranges
of scales and positions encountered by the related fluxes endows the second-order moment with
its physical interpretation.

2. Direct Numerical Simulation
The Rayleigh-Bénard convection (RBC) consists of a fluid layer heated from below and cooled
from above by two horizonatal plates in a laterally unbounded domain. The governing
equations for RBC are the continuity, Navier-Stokes and energy equations under the Boussineq
approximation
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∂ui
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+

∂θuj
∂xj
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PrRa

∂2θ

∂xj∂xj
,

(1)

where i, j = 1, 2, 3, δij is the Kronecker delta and the variables ui, p, θ are respectively the
velocity, pressure and temperature fields. We introduce the commonly-used spatial coordinates
x = x1, y = x2, z = x3 and velocity components u = u1, v = u2, w = u3. The Cartesian
coordinate system is cell-centered, with the xz-plane parallel to the horizontal plates and the
y-axis pointing in the direction opposite to that of gravity acceleration, see figure 1. Equations
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Figure 1. Isosurfaces of temperature (θ = 0.3 down and θ = −0.3 up) for Ra = 1.0× 106.

(1) are written in a dimensionless form using the distance between the plates H, the temperature
difference between the lower and the upper plates ΔΘ and the free-fall velocity Uf =

√
gαΔΘH

as characteristic scales, where g and α are the gravity acceleration and the thermal expansion
coefficient respectively. In what follows, all the results will be reported in a non-dimensional
form by using H, ΔΘ and Uf as characteristic quantities. The resulting non-dimensional
groups are the Prandtl Pr = ν/κ and Rayleigh numbers Ra = gαΔΘH3/νκ, where ν the
kinematic viscosity and κ the thermal diffusivity. The Boussinesq equations (1) are solved
using a pseudospectral method which discretizes space with Chebychev polynomials in the y
direction and with Fourier modes in the x and z directions. Time integration is performed with
a fourth-order Runge-Kutta scheme for the nonlinear terms and a Crank-Nicholson scheme for
the linear ones. Two DNS are performed for Pr = 0.7 at Ra = 1.7 × 105 and 1.0 × 106 in a
rectangular box of sizes Lx = 8, Ly = 1, Lz = 8. Periodic boundary conditions are imposed at
the lateral sidewalls whereas isothermal and no-slip boundary conditions are used on the top and
bottom plates. This rather large computational domain has been considered, at the expense of
the Ra values reachable, in order to analyze the second-order structure function without being
influenced by the horizontal periodicity. The DNS at Ra = 1.7 × 105 and at Ra = 1.0 × 106

employ 128× 129× 128 and 256× 129× 256 dealiased modes and polynomials respectively, see
Ref. [17] for further details about the simulations and for the validation of the dataset.

3. Flow structures in thermally driven turbulence
Let us now briefly describe the topology of the flow. The turbulence regeneration cycle of RBC
is composed by coherent thermal and velocity structures which emerge from the chaotic regime,
combine themselves and create a sort of persistent machinery. The most relevant coherent
structure that can be identified in this cycle is the so-called thermal plume, which can be loosely
defined as a portion of fluid having a temperature difference with respect to the background
[16] (see figure 2(a)). These structures follow a precise life-cycle [18], in particular hot and cold
plumes detach from the bottom and the upper plate respectively, move throughout the fluid
layer driven by buoyancy force and finally impinge on the opposite wall triggering the ejection
of new plumes [17]. In the core, thermal plumes have a mushroom-like shape whereas close to the
walls they have a sheet-like one, see figure 1. Generally speaking, the sheet-like plumes create a
fine network across the plates and the mushroom-like plumes are emitted from the intersection
spots [19]. Both the ejection and impingement events of plumes take place not at the wall,
but approximately on the edge of a conductive layer, made of quiescent fluid, called thermal
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Figure 2. (a) Vertical section of the fluid domain colored with the temperature at Ra =
1.7 × 105. (b) Mean wall-normal length, l̄y, as a function of the streamwise lengths of the
structures lx. Solid and dashed lines for high- and low-temperature structures respectively.
Colors are black for Ra = 1.7 × 105 and red for Ra = 1.0× 106.

boundary layer. The thermal boundary layer thickness δθ is usually defined by considering a
thickness based on the slope of the mean temperature profile

δθ =
1

2

(∣∣∣dΘ
dy

∣∣∣
y=ywall

)−1

=
1

2Nu
, (2)

where Θ is the mean temperature and Nu is the Nusselt number. The Nusselt number for
Ra = 1.7×105 is equal to 5.0 whereas forRa = 1.0×106 is equal to 8.2 [17]. It is worth noting that
also large-scale circulations are found to characterize thermally driven turbulence with different
features according to the geometry of the domain [20, 21, 22]. In doubly-periodic rectangular
geometries, the large-scale circulation is found to be composed by ascending and descending
plumes locking into a roll-like structure; the latter undergoes a continuous displacement along
the horizontal directions x, z and exhibits a quite persistence in time [21].

To further address the topology of the flow we use now a thresholding technique similar to
the one adopted in [23] and [9] in order to identify scalings of properly defined three-dimensional
high- and low-temperature structures. We consider temperature structures the connected region
of the flow such that |θ′(x, y, z)| > αθ′rms(y), where θ′ is the fluctuating temperature, α a
thresholding parameter, and θ′rms(y) the root-mean-square of the fluctuating temperature as a
function of the wall-normal coordinate. As apparent, the resulting set of structures depends on
the value of the threshold. By means of a percolation analysis, we select a threshold, α = 1.5,
which is found to maximize the number of identified structure. Every single object is also
classified as a high- or low-temperature structure according to the sign of θ′m computed over the
domain Ω of all its constituent points as,

θ′m =

∫
Ω θ′(x, y, z)dV∫

Ω dV
. (3)

The above procedure yields about 103 objects for Ra = 1.7×105 and 4×103 for Ra = 1.0×106.
In order to characterize this population, we circumscribe each structure in a box aligned to the
Cartesian axes, whose streamwise, wall-normal and spanwise sizes are denoted by lx, ly and lz.
This procedure allows us to characterize in a more quantitative way the structural properties
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of the temperature field. Indeed, as expected, we found that these objects are characterized by
having roughly the same horizontal lengths, l̄x ∼ lz and l̄z ∼ lx where ·̄ denotes the ensemble
average over the population of identified thermal structures. The analysis of the (lx, l̄y)-space
shown in figure 2(b) reveals the presence of a hierarchy of thermal structures whose sizes satisfy
l̄y ∼ lx. The results also show that there are many structures spanning the full height, l̄y ∼ 1.
It is worth underlining the fact that this specific result might reasonably change when higher
Rayleigh numbers are addressed. This analysis can be also extended by considering a tracking
of the time evolution of these objects thus fully exploiting the potentiality of the approach.

4. The four-dimensional augmented-space of thermally driven turbulence
It is well-known that turbulence is a phenomenon characterized by fluctuations occurring at
many space and time scales [24]. Beyond the intuitive idea which arises from observation, a scale
of turbulence is quite an elusive quantity which is not univocally defined. From a statistical point
of view, the scale of a turbulent field can be defined by using second-order structure function as
the separation vector between two points and two times. The second-order structure function
for a generic quantity β can be written as

〈
δβ2

〉
= 〈δβδβ〉 , (4)

where
δβ = β′ (Xcj + rj/2, Tc + τ/2) − β′ (Xcj − rj/2, Tc − τ/2) (5)

denotes the increment of the fluctuations β′ between the point Xcj − rj/2 at time Tc − τ/2
and the point Xcj + rj/2 at time Tc + τ/2. Thus, the second-order structure function (4)
depends on the spatial separation vector ri, on the spatial location of the mid-point Xci, on the
temporal separation τ and on the temporal location of the mid-time Tc. Due to the statistical
symmetries of RBC in both space and time, the dependence on the mid-pointXci reduces simply
to the distance from the wall Yc = Xc2 whereas the dependence on the mid-time Tc vanishes.
Furthermore, by accounting for the statistical isotropy in the horizontal planes, the functional
dependence of

〈
δβ2

〉
on (rx, ry, rz, τ, Yc) reduces to (rπ, ry, τ, Yc), where rπ =

√
r2x + r2z . It is

worth noting that, the ry direction is limited by the presence of the wall, i.e. wall-normal scales
cannot extend for a distance greater than twice the distance of the mid-point from the wall,
ry ≤ 2Yc [25].

As previously mentioned, the most relevant coherent structure that can be identified in RBC,
for Rayleigh numbers sufficiently above the onset of convection [26], is the so-called thermal
plume. In accordance with the definition outlined above, plumes are coherent structures of
temperature rather than being structures of momentum, therefore their statistical footprint is
mostly marked on observables built with the temperature field. For this reason, we analyze
the behaviour of the second-order structure function of temperature

〈
δθ2

〉
as a function of

(rπ, ry, τ, Yc). This statistical observable can be considered a measure of the temperature
variance of turbulence at a scale (rπ, ry, τ) and at a position Yc, thus it will be hereafter called also
scale variance. For the sake of statistical convergence, two sets of uncorrelated time-series are
collected, one for Ra = 1.7×105 (14 time-series) and another for Ra = 1.0×106 (7 time-series).
Being 2H/Uf the dimensional large eddy turnover time and τ� = 2 its non-dimensional value,
these time series are 2.5τ� long within which 51 samples are collected to compute two-points and
two-times statistics.

5. Results
Figure 3(a) and (b) show the isocontours of the scale variance

〈
δθ2

〉
in the reduced (rπ, ry, τ)-

space for Yc = 0.1, Yc = 0.3 at Ra = 1.7 × 105. The planes colored with
〈
δθ2

〉
are orthogonal

and chosen in such a way that they cross the maxima achieved by
〈
δθ2

〉
at Yc = 0.1 and Yc = 0.3
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Figure 3. Isocontours of
〈
δθ2

〉
in the reduced (rπ, ry, τ)-space at (a) Yc = 0.1 and (b) Yc = 0.3

for Ra = 1.7× 105.

respectively. Around the origin and for both wall-distances, scale variance starts from zero at
rπ = ry = τ = 0 and then increases when augmenting the separations in space and time. The
location of the maximum, on the other hand, changes depending on the wall-distance; close to
the plate for Yc = 0.1, the scale variance is peaked at rπ = 2.4 and ry = τ = 0. On the contrary,
further away from the wall at Yc = 0.3, the maximum occurs at well-defined scales rπ = 2.4,
ry = 0.4 and τ = 1. The same qualitative behaviour is observed also for the larger Rayleigh
number considered.

In order to set quantitatively the behaviour of scale variance, let us consider the Yc-behaviour
of the characteristic scales (r̃π, r̃y, τ̃) defined as the locus of the scale variance maxima at different
distances from the plates, i.e.

〈
δθ2

〉
max

(Yc) =
〈
δθ2

〉
(Yc|r̃π, r̃y, τ̃) .

The analysis of (r̃π, r̃y, τ̃) as a function of Yc reveals that the horizontal scale r̃π is almost
constant with Yc. In particular, r̃π = 2.4 for Ra = 1.7 × 105 and r̃π = 2.7 for Ra = 1.0 × 106.
The fact that the characteristic horizontal length remains constant with the distance from the
wall means that the most intense temperature fluctuations occur at a specific horizontal scale.
Furthermore, it sounds reasonable that r̃π could be indicative of the average distance between an
ascending and a descending hot and cold temperature structure. In support of this conjecture,
we can see in figure 2(a) that the distance between the hot and the cold plumes for the DNS at
Ra = 1.7×105 is around 2.5, which is quite similar to the correspondent r̃π. An analogous result
is reported in Ref. [21], where a symmetry-accounting ensemble-averaging method is employed
to identify large-scale rolls in an unbounded RBC at Ra = 1.0×107 and Pr = 1; they found that
the distance between ascending and descending fluid is, on average, almost equal to two-times
the height of the fluid domain.

Contrary to the horizontal scale, the wall-normal scale is found to be zero close to the plates
and to increase linearly with the wall-distance in the core of the flow as shown in figure 4(a) and
(b). Let us analyse more in detail the linear behaviour of the wall-normal scale in the core of the
flow. The maxima of scale variance for each wall-distance are located near the (ry = 2Yc)-plane.
In particular, we measure that the exact plane where the maxima occur is

r̃y = 2

[
Yc − 1

2Nu

]
,

for both the Rayleigh numbers considered. Hence, these wall-normal scales are representative
of thermal fluctuations occurring on scales extending down to a distance from the wall 1/(2Nu)
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(a) (b)

Figure 4. (a) Section of the space (rπ, ry, τ, Yc) in the (rπ = 2.4, τ = 0)-plane colored with〈
δθ2

〉
for Ra = 1.7 × 105. (b) Characteristic wall-normal scale r̃y(Yc) as a function of Yc for

Ra = 1.7 × 105 (squares) and Ra = 1.0 × 106 (triangles). The equation of the dashed line is
2.1(Yc − 0.12) whereas the equation of the dashed-dot line is 2.0(Yc − 0.06).

which is exactly the non dimensional thermal boundary layer thickness defined in (2). Hence,
we can claim that the most intense thermal fluctuations are attached to the thermal boundary
layer. This behaviour may be explained in terms of dynamics of turbulent structures in the
following way. Thermal plumes detach from the near-wall region and span the entire domain
impinging on the opposite wall but retaining their roots attached to the original wall. On the
other hand, both the ejection and the impingement of plumes take place not at the wall, but
approximately on the edge of a conductive layer, made of quiescent fluid, the thermal boundary
layer. Thus, the overall picture is consistent with attached thermal structure spanning the entire
convection cell from one thermal boundary layer to the opposite one.

It is finally interesting to note that, as shown in figure 4, two well-defined peaks of scale
variance (colored in red) are present around Yc = 1/(2Nu) = 0.1 for ry = 0, rπ = 2.4 and
Yc = 0.5 for ry = 2 [Yc − 1/ (2Nu)], rπ = 2.4, respectively on top of the thermal boundary layer
and at the center of fluid layer. Both these two peaks appear to be a footprint of the same
temperature structure and to be strongly related with the inhomogeneity of the flow in the
vertical direction. In particular, the temperature structure is again a couple of ascending (hot)
and descending (cold) fluid statistically separated in the horizontal direction by rπ = 2.4 and
these two peaks are a statistical evidence of the impinging/ejection events. Indeed, as sketched
in figure 5, on top of the thermal boundary layer, Yc = 1/(2Nu) = 0.1, the horizontal scale of
the maximum is rπ = 2.4 while the wall-normal scale is zero because at this position non-zero
increments, ry �= 0, would involve the temperature field closer to the plate and, hence, outside
the thermal plume. On the contrary, at the channel center, Yc = 0.5, the statistical occurrence
of impinging and ejection events of couples of hot/cold plumes appear again for rπ = 2.4 but
for ry = 2 [Yc − 1/ (2Nu)] which involve exactly the two points lying on top of the two opposite
thermal boundary layer where the impinging/ejection events occur, see again sketch 5. As
previously mentioned, these aspects are strongly related with the inhomogeneity of the flow.
Indeed, by considering increments only in the wall-normal scales, the second-order structure
function of temperature can be written as〈

δθ2
〉
(ry, Yc) =

〈
θ′2

〉
(Yc + ry/2) +

〈
θ′2

〉
(Yc − ry/2)− 2

〈
θ′ (Yc + ry/2) θ

′ (Yc − ry/2)
〉
, (6)

thus highlighting the different contributions to the ry behaviour. It is clear that for large
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ry = 2[Yc − 1/(2Nu)]

Yc = 1/(2Nu)

Yc = 0.5

rπ = 2.4

Figure 5. Sketch of the statistical occurrence of ascending (hot) and descending (cold) fluid
and of the increments involved in the two maxima of the second-order structure function of
temperature occurring on top of the thermal boundary layer Yc = 1/(2Nu) = 0.1 and at the cell
center Yc = 0.5. The value rπ = 2.4 is relative to the Ra = 1.7× 105 case.

separation, the inhomogeneity strongly influences the space of wall-normal scales by setting
the locus of the maxima of 〈δθ2〉 in the plane of attached scales, ry = 2 [Yc − 1/ (2Nu)], via
the the spatial distribution of temperature variance given by the first two terms of (6). Since,
the maxima of 〈δθ2〉 in the ry = 2 [Yc − 1/ (2Nu)]-plane are here linked with the statistical
occurrence of ascending (hot) and descending (cold) plumes being occurring for rπ = 2.4, we
can conjecture that the location of the maximum of temperature variance

〈
θ2
〉
at Yc = 1/(2Nu)

and the thickness of the thermal boundary layer δθ are settled by the impinging/ejection events
of thermal plumes.

Let us now focus on the time scale behaviour of scale variance. In figure 6(a) and (b) the
isocontours of

〈
δθ2

〉
in the (rπ = 2.4, Yc = 0.1)-plane and (rπ = 2.4, Yc = 0.3)-plane are shown

respectively. As previously noted, close to the plates, the maximum of scale variance occurs for
rπ = 2.4 and for ry = τ = 0. Increasing both ry and τ a decrease of

〈
δθ2

〉
is observed. On the

contrary, further away from the walls, characteristic scales are observed also in the wall-normal
and time scales being present a maximum at attached wall-normal scales and for τ > 0. However,
let us notice that while the shape of this maximum is peaked in the wall-normal scales, the
temporal behaviour is very smooth thus leading to significant uncertainties on the measurement
of τ̃ . The behaviour of the characteristic time scales τ̃(Yc) as a function of the wall-distance
is shown in figure 6(c). In the near-wall region no characteristic time scale is defined being
τ̃(Yc) = 0 in this region of the flow. This aspect actually suggests that the impinging events on
top of the thermal boundary layer statistically causes ejection events at the same time, τ = 0,
at an horizontal distance rπ = 2.4, see again sketch 5. Then, as expected, a characteristic time
scale, τ̃ > 0, is observed further away from the wall where the maxima of

〈
δθ2

〉
show an attached

behaviour in the wall-normal scales. This time scale is a statistical measure of the time needed
by the ejection event created on top of the thermal boundary layer by an impinging event, to
reach the wall-distance y = Yc + ry/2, see sketch 5. In particular, we measure that to reach
the cell center y = Yc + ry/2 ∼ 0.5, the thermal structure statistically spends 2 large eddy
turnover time τ�. Then, for Yc > 0.33, the time scale τ̃ drops to zero. This aspects can be
associated to the fact that the impinging event that created the ejection statistically vanishes
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Figure 6. Section of the space (rπ, ry, τ, Yc) in the (a) (rπ = 2.4, Yc = 0.1)-plane and (b)
(rpi = 2.4, Yc = 0.3)-plane colored with

〈
δθ2

〉
for Ra = 1.7 × 105. (c) Characteristic time scale

τ̃(Yc) as a function of Yc for Ra = 1.7× 105.

after 2 large eddy turnover times which is the time employed by the ascending plume to reach
the wall-distance y = Yc + ry/2 ∼ 0.5. However, further investigation accounting for a longer
range of time scales is mandatory to draw a conclusion with any certainty. Indeed, it would be
also possible that, at these wall-distances, the characteristic time scale exceeds the maximum
time scale here analysed.

6. Conclusions
Direct Numerical Simulation data of turbulent Rayleigh-Bénard convection are analysed for the
first time in terms of second-order structure function of the temperature field in the complete
four-dimensional augmented space of spatial and temporal scales and wall-distances. The
observed behaviour for the second-order structure function is then clarified from a dynamical
point of view by means of the commonly accepted model of life-cycle for the thermal structures.
The second-order structure function shows marked maxima for a fixed horizontal length scale at
different wall-distances that is found to be related with the average distance between a couple
of ascending (hot) and descending (cold) thermal structures. This length is Rayleigh dependent
and is found to be rπ = 2.4 and 2.7 for Ra = 1.7 × 105 and Ra = 1.0 × 106, respectively.
The life-cycle of thermal structures is found to leave a clear footprint also in the wall-normal
scales. Indeed, we found that r̃y = 2 [Yc − 1/ (2Nu)] highlighting the fact that the most intense
thermal fluctuations occur at scales extending down to the edge of the thermal boundary layer
in agreement with the commonly accepted model for the dynamics of plumes [18]. We also
found that the statistical occurrence of an impinging event on top of the thermal boundary
layer is related with the simultaneous appearance of an ejection event at an average horizontal
distance rπ = 2.4 and 2.7 respectively for the Ra = 1.7 × 105 and Ra = 1.0 × 106 cases. The
resulting ejection of fluid is found to spend 2 large eddy turnover time τ� to reach the cell center.
Afterwards, the impinging event which created it vanishes thus highlighting that the life-time
of impinging is 2 large eddy turnover time τ�. The results presented in this work surely justify
a deeper analysis of the problem and the very next step will be investigating more turbulent
systems at higher Rayleigh numbers.
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[21] Van Reeuwijk M, Jonker H J J and Hanjalić K 2005 Identification of the wind in Rayleigh-Bénard convection

Phys. Fluids 17 051704
[22] Bailon-Cuba J, Emran M S and Schumacher J 2010 Aspect ratio dependence of heat transfer and large-scale

flow in turbulent convection J. Fluid Mech. 655 152–173
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