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Abstract 
The Wald interval is typically used to assign confidence to the accuracy of activity 
sampling studies. It is known the performance of the Wald interval is poor, especially 
when the observed probability is near zero or one. The suitability of the Wald interval for 
activity sampling is not often discussed in the operations management literature; if it is, 
this is usually followed by inappropriate and incorrect advice. Herein a range of 
alternative binominal confidence intervals for activity sampling is reviewed. A number of 
selection criteria are considered including achievement of the target nominal coverage 
probability, size of the interval, and ease of use and presentation. It is recommended that 
the Clopper-Pearson interval is used for activity sampling. A table of confidence intervals 
and sample sizes that is specifically designed to be used within a new activity sampling 
procedure based on the Clopper-Pearson interval is developed. Finally, pedagogical 
issues are considered.  
 
Key words 
Activity sampling, work sampling, binomial proportion confidence intervals, coverage 
probability. 
 
1.  Introduction and motivation 

 
Activity sampling is an empirical data collection technique attributed to Tippet (1935). It 
can be used to determine the proportion of time: an activity is being conducted by an 
operator; an operator is doing productive, value adding work; a machine or operator 
being delayed, or whether an entity (customer, supplier, product) possesses a particular 
(quality) characteristic or not.  
 
Activity sampling has been defined by British Standard 3138 (1992) as “A technique in 
which a large number of observations are made over a period of time of one group of 
machines, processes or workers. Each observation records what is happening at that 
instant and the percentage of observations recorded for a particular activity or delay is a 
measure of the percentage of time during which that activity or delay occurs”. Activity 
sampling has also been known as: work sampling in the U.S.; snap reading, Tippets’ 
original name for the technique; the ratio delay technique, as it can be used to ascertain 
the proportion of time a machine or operator is delayed or idle; and in the service sector, 
random moment studies.  
 
Activity sampling is a relatively inexpensive technique that can be used to determine the 
proportion of time spent on a particular activity. It can be applied to long, varied and 
intermittent work. It does not use a stop watch, so it is more acceptable to the subjects of 
the study and is not as intrusive as other methods. However, activity sampling is not 
efficient when activities are of a short duration, regular and predictable when time and 
motion studies might be more suitable. 
 
Almost all Operations Management (OM) textbooks that the recommended activity 
sampling procedure use the Wald interval to assign confidence to the results obtained 
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from the study. It is known in the statistical literature that this interval is a rather poor 
approximation to the true interval. Herein we test this claim and find that, 80% of the 
time, the Wald interval does not achieve the desired confidence. This is a serious issue 
for anyone using activity sampling for safety assurance. To address this we review a 
range of alternative confidence intervals and select one for inclusion in an updated 
activity sampling procedure. A new procedure is recommended that actually achieves the 
desired confidence and accuracy levels.  
 
 
1.1. The standard activity sampling procedure 
 
For simplicity we assume that we are monitoring the types of activities that an operator is 
undertaking. The standard activity sampling procedure usually involves the following 
steps. First, a pilot study (an initial look at the situation being studied) is undertaken to 
ascertain the range of activities an operator undertakes. The second step is to design the 
sampling tour and data collection forms. The sampling tour specifies when instantaneous 
observations of the situation being studied are to be taken. It is assumed that the 
underlying probability of an activity occurring does not change over time (at least within 
the period of study). It is important to ensure that there is no systematic effect present in 
the data collected by taking observations after random intervals of time. The study period 
should be long enough to capture the complete range of activities the operator undertakes 
but the study can be interrupted if the necessary. It may be also shortened or lengthened 
as required. The data collection forms are simply a table with rows that note the time a 
observation is taken and columns that document the activity observed. 
 
In the next step, the main data collection is undertaken. The situation being studied is 
observed at the prescribed moments of time and the activity being conducted by the 
operator is recorded in the data collection form as a tick mark. After several dozen or so 
observations the tick marks can be tallied to obtain an initial estimate of the probability of 
an activity occurring, p̂ . Alternatively we could use judgement or experience to make an 
initial estimate of p̂ . We could even believe that we are being conservative and 
(incorrectly) use ˆ 0.5p  . Note there will be a different p̂  for each of the activities. We 
will not index them there – it is fairly obvious which activity is being considered as there 
will be a unique estimate for each of the columns in the data collection form.  
 
Based on this initial estimate, p̂ , we can then calculate how many instantaneous 
observations (n) we need to take in order to be 95%  confident that the true (real, constant, 
but unknown) probability of the activity occurring (p) is within a certain boundary with 
 

  2ˆ ˆ4 1n p p L  , (1)

        
where L is a tolerance of the form p̂ L , within which a desired level of accuracy has to 
be achieved. Note L is an absolute distance and not a relative percentage of p̂ . L can be 
thought of as the confidence interval half-width. 
 
We continue to take the required number of observations, checking periodically with (1) 
for an updated value of n (which may have changed due to the new values of p̂ , the 
estimate of the true probability p). Note that n will be different for each of the observed 
activities (as p̂  is likely to be different for each activity). In order to gain a complete 
picture of the situation, the largest n will determine the required number of samples to be 
taken. Observe that the required level of accuracy (L) is a strategic decision that 
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influences the trade-off between the efficiency of the procedure and the accuracy 
obtained.  
 
1.2. Motivation 
 
At first sight the activity sampling procedure seems fine. It has such a long history and is 
relatively straight forward, so what is the problem? Take a look at (1). What happens 
when ˆL p  (or  ˆ1L p  ? A negative probability of p (or one that is greater than one) 

is not possible, so there is an issue here. What happens when ˆ ˆ0 or 1p p  ? Equation (1) 
incorrectly suggests that no samples should be taken. But rarely do operations 
management (OM) textbooks discuss these issues.  
  
Equation (1) is actually a simplified and rearranged version of the so-called Wald interval 
for the binomial proportion, Wald and Wolfowitz (1939). A literature review (see, for 
example, Pires and Amado (2008) for a modern and particularly comprehensive treatment 
of 20 different binomial proportion confidence intervals) reveals that statistical scholars 
have serious concerns about the adequacy of the Wald interval. However, this is the 
interval used in most the OM textbooks.  
 
Table 1 summarises a review of OM books for the terms activity sampling, work 
sampling, snap reading, ratio delay, random moment studies and confidence intervals. It 
highlights that in general it can be said that the Wald interval is almost exclusively 
recommended and guidance on the interval coverage probability is limited to either a 
“large sample size” or “ ˆ 5np   and  ˆ1 5n p  ”, if it is given at all. If there is indeed a 

problem with the Wald interval, then it means that the confidence that is assigned to the 
confidence interval cannot be trusted. The purpose of this paper is to investigate this issue. 
 
 
1.3. Organisation of this paper 
 
Section 2 presents a short review of the literature that exploits activity sampling to 
demonstrate the relevance and possible use of activity sampling. Section 3 reviews some 
background theory and defines notation. Section 4 studies the Wald interval. Key 
performance measures for confidence intervals, suitable for use in an activity sampling 
procedure, are defined and justified in Section 5. Section 6 studies some alternative 
confidence intervals from an OM activity sampling viewpoint. Section 7 reflects upon the 
considered confidence intervals and makes recommendations. Section 8 details a new 
updated activity sampling procedure that exploits the recommended confidence interval. 
Section 9 provides pedagogical reflections. Section 10 concludes. A blank example data 
collection form and the necessary tables required for the updated activity sampling 
procedure are presented in the appendices.  
 
 
2. Recent activity sampling studies 
 
It is interesting to quickly review studies that have used activity sampling in order to gain 
an understanding of the range of problems and issues that the methodology could be 
applied too. Farrell et al. (2009) determined the unit labour cost of activities in a bank 
across multiple branches. Tsai (1996) incorporated activity sampling into an Activity 
Based Costing methodology. Thomas (1991) investigated labour productivity in the 
nuclear industry. Liou and Borcherding (1986) studied power plant productivity.  
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Recommended 
sample size 

Guidance given Reference 

None None 

Adam and Ebert (1992), Barnes (2008),  
Finch (2008), Krajewski, Ritzman and 

Malhotra (2013), Slack, Brandon Jones and 
Johnston (2013), Waters (2002) 

‘100 samples’ None Naylor (1996), Schonberger and Knod (1988) 
‘perhaps 250 

samples’ 
None Bicheno and Holweg (2009) 

‘200 samples’ None Bicheno (2008) 

 
2

ˆ ˆ4 1p p
n

L


  

None 

International Labour Office (1974), Lockyer 
(1983), Lockyer, Muhlemann and Oakland 
(1988), Hill (1983 and 2000), Weiss and 

Gershon (1989), Wild (1995) 
‘ ˆ 5np   and 

 ˆ1 5n p  ’ 
Meredith (1992), Rosenkrantz (2009) 

   
2

ˆ ˆ1z
Ln p p  , 

where z  is the 

standard normal 
variant that refers 
to the confidence 

level required. 

None 

Brisley (2001), Chase and Aquilano (1992), 
Davis and Heineke (2005), Evans et al. (1984), 

Greasely (2009), Heizer and Render (2014), 
Jacobs, Chase and Aquilano (2009), Khanna 
(2015), Lee and Schniederjans (1994), Noori 

and Radford (1995), Reid and Sanders (2002), 
Russell and Taylor (2009), Stevenson (2012), 

Whitmore (1987) 
‘> 30 samples’ Curwin and Slater (1990) 

‘ ˆ 5np   and 

 ˆ1 5n p  ’ 
Anderson et al. (2007), Silver (1997) 

Table 1. Treatment of activity sampling confidence intervals in OM textbooks 

 
Buchholz et al. (1996) characterised ergonomic hazards in the American highway 
construction industry. Chen, Peacock and Schlegel (1989) conducted an ergonomic study 
to assess physical work stress. Construction site productivity was measured by Heinze 
(1984). Kaming et al. (1997) found that craftsmen in the Indonesian construction industry 
spent 75% of their time productively and identified five different root causes of 
productivity problems.  
 
73% of working time was productive in Gunesoglu and Meric’s (2006) study of the 
garment industry. Rutter (1994) identified the activities undertaken by operators in a 
pharmaceutical plant. The results were also used to justify the purchase of additional 
equipment. Kelly (1964) studied executive behaviour in a factory.  
 
Williams, Harris and Turner-Stokes (2009) identified the proportion of time on patient-
related care issues (as supposed to other nursing activities) within a UK neuro-
rehabilitation setting. Pelletier and Duffield (2003) also considered hospital scenarios. 
Finkler et al. (1993) compared activity sampling with time-and-motion studies and 
reflected upon the policy implications of sampling accuracy in the health services 
industry. Foley (1999) investigated the impact of restraints in nursing homes. 
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3. Background theory and notation  
 
Statisticians have developed several formulae to determine, with a particular level of 
confidence, a range of estimated probabilities that will contain the true probability. These 
formulae are known as binomial proportion confidence intervals or just confidence 
intervals for brevity. These confidence intervals are based on the binomial distribution as 
we are concerned with the observing x number of successes (the activity occurring or not) 
in n observations. Clopper and Pearson (1934) developed an exact solution and there is 
also some approximate confidence intervals available that possess various properties. 
 
Let p̂  be the observed value of the probability of a particular activity occurring. This 
observed value is not the true probability which can only be obtained by taking an infinite 
number of observations. However, it is an appropriate, approximate value for the true 
probability p. As the number of observations increases, the more confident we are that the 
observed probability is representative of the true probability. However, while p̂ p  as 
n  , p̂  does not approach p asymptotically (Brown, Cai and DasGupta, 2001). 
 
The observed probability p̂ x n , where x is the number of successes in the n samples 
(the number of times an activity occurs in the n observations). The confidence interval 
equation will give us an upper, ˆUp  and lower, ˆ Lp  bound for the unknown p, for a desired 

level of confidence, 1  . In other words, the confidence interval is a range of values, 
which we can be sure that, (1 ) 100%   of the time, will include the true value of p. 

Thus if   = 0.05, we can be 95% confident that ˆ ˆL Up p p  . The coverage probability, 

 , is the actual confidence achieved by interval, and l  is the actual length of the 

interval.  
 
In summary, 
 p is the (unknown) true value of the probability of a particular activity occurring 

from the entire population, 0 1p    
 n is the number of observations that have been taken 
 x is the number of times a particular activity was observed in the n observations 
 p̂ x n  is an estimate of the true probability p 

 ˆUp  is the upper limit of the confidence interval 

 ˆ Lp  is the lower limit of the confidence interval 

 1   is the desired confidence level.   is the ‘confidence coefficient’ 
 L is the interval half-width. It is the difference between the estimated value of 

p̂ and the unconstrained (upper and lower) confidence interval, 
ˆ ˆ ˆ ˆU Lp p p p L    . Note that when p̂  is near 0 or 1, the limits of the confidence 

limit must be truncated to ensure  ˆ ˆ0 ,  1.U Lp p   In which case 

 ˆ ˆ ˆ ˆmax ,  U LL p p p p   . 

   is the coverage probability. The coverage probability is the level of confidence 
actually achieved (not the desired confidence level). 

 l  is the actual length of the confidence interval. ˆ ˆl U Lp p   . Note, that 2l L     

near  0,1p  . 

 z  is the standard normal variant for a given  . 
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4. Wald interval & measures of performance for activity sampling 
 
The simplest equation for the confidence interval is a simplified and rearranged version 
of the Ward interval, see Table 1. It is based on a normal approximation to the binomial 
distribution. The upper and lower limits of the Wald interval are defined as 
 

   ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ ˆmin ,1 ,  max 0,U U

p p p p
p p z p p z

n n 

    
      
      

 (2)

     
where, p̂ x n  and  1

21z 


    is the 21   quartile of the cumulative density 

function of the standard normal distribution. z  for popular confidence levels are; 

 90% confidence, 0.1   and    1 1
21 0.95 1.64z 


       ,  

 95% confidence, 0.05   and    1 1
21 0.975 1.96z 


       , 

 99% confidence, 0.01   and    1 1
21 0.995 2.58z 


       .  

 
Notice some boundary conditions have been introduced into (2) to ensure that 0 1.p   

For 95% confidence, rounding 1.96z   to 2, ignoring the boundary conditions and 

recognising that ˆ ˆUp p L   and ˆ ˆLp p L  , it is easy to see that one of the standard 

approaches for determining the confidence interval in OM texts is based on the Wald 
interval, 
 

    2ˆ ˆ ˆˆ2   4 11L p n n p p Lp    . (3)

 
If we consider the same procedure without rounding z then the other popular OM 
textbook sample size requirement formulae results from the Wald interval as follows, 
 

   2 2ˆ ˆ ˆˆ   11L z p n n z p p Lp     . (4)

 
It is often stated that the Wald interval is a conservative estimate but it performs badly 
when n is small or when p is near to zero or one, Blyth and Still (1983). A simple rule of 
thumb frequently relied upon (see for example Johnson, Kemp and Kotz (2005) and 
Table 1) is that the Wald interval should only be used when 5np   and  1 5n p  . 

However, analysis suggests even this guidance is questionable. Brown, Cai and DasGupta 
(2001) also point out that the Wald interval can perform badly for all p and all n.  
 
 
 
4.1. Coverage probability for the Wald interval 
 
The confidence level actually achieved by a certain interval is called the coverage 
probability. As the true coverage probability is determined by the discrete binomial 
distribution, the coverage probability can never exactly equal the desired confidence level 
for all values of p. However, if an interval performs properly, then the coverage 
probability is always greater than the confidence level desired. If this is the case then we 
say the interval is exact. In order to obtain the coverage probability,   the following 
formula can be used, 
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   
0

ˆ ˆ1 If ,0, 1 If ,0, 1
n

n x n xx x
L U

x

n n
p p p p p p p p

x x
 



       
                      

 , (5)

 
where  If , ,c t f  is the conditional statement, “if c holds then t, otherwise f”. This 

expression can be found by deduction (see infra, the Clopper-Pearson interval) and 
verified via a Monte Carlo simulation. An alternative to this equation using an indicator 
function can be found in Pires and Amado (2008). Making (5) specific for the case for 
 50,  0.05n    when the Wald interval (2) is used to generate the upper and lower 

limits of the confidence interval produces Figure 1. 
 
 

 

Figure 1. Coverage probability of the Wald interval,  50,  0.05n    

In Figure 1 there are 1001 points (at 0, 0.001, 0.002, … 0.999, 1) of the unknown, but 
constant value of the binomial parameter, p. 907 of these 1001 tests fail to meet the 95% 
confidence limit (at the extremities, (7) is used in these results). Note that these results 
are based on using z  = 1.96. If z  = 2 is used, then the chance of meeting the desired 

confidence level will be slightly higher, with 799 of the 1001 tests failing to meet the 
desired 95% confidence interval (note z = 2 implies 95.47% confidence). If we follow 

the advice of excluding ˆ 5np   and  ˆ1 5n p   then 707 of the 1001 tests fail with z = 

1.96 (if z  = 2 is used, this reduces to 601 failures). For 90% desired confidence, there 

are 801 failures in the 1001 tests. For 99% confidence there are 999 failures in the 1001 
tests.  
 
 
 
4.2. Length of the Wald interval 
 
It is also interesting to investigate the length of the confidence interval. Figure 2 
illustrates the upper and lower bound of the 95% Wald interval. It also highlights the 
length of the interval given by  
 

ˆ ˆl U Lp p   . (6)
      



Disney, S.M., (2016), “Revisiting activity sampling: a fresh look at binomial proportion confidence intervals”,  
European Journal of Industrial Engineering, Vol. 10, No. 6, pp724-759. ISSN 1751-5254. DOI: 10.1504/EJIE.2016.081021. 

-8- 

Note that for the Wald interval when  ˆ 1  L p L  then 2 l L . However, when 

 ˆ 1p L   or ˆ p L , then 2 l L . This is a result of the boundary conditions in (2). It 

can be seen in Figure 2 that the interval narrows as more samples are taken. Here we have 
illustrated the case of n = 50, 100 and 250. Furthermore, the confidence interval is largest 
at ˆ 0.5p   and has zero length at p̂ = 0 and p̂ = 1. This is incorrect as it is known 
 

 1/

0 if 0
ˆ

/ 2  if 
nL

x
p

x n

 


 and  
 1/

1 / 2  if 0
ˆ

1 if 

n

U

x
p

x n

   


 (7)

 
should be used at the extremities, Pires and Amano (2008). These are true the Clopper-
Pearson limits. 
 
Figure 2 also contains a contour plot of the number of samples required to ensure 95% 
confidence (according to (4)) as a function of the underlining binomial probability p, and 
the interval half-width, L. It can be seen that the Wald interval (incorrectly) advises, for a 
given interval half width, that the maximum number of samples required occurs when p = 
0.5. The Wald interval also assumes (again incorrectly) that all the contours originate 
from L = 0, p = {0,1}. 
 

 

Figure 2. Wald interval, its length and sample size requirement for 95% confidence 

 
5.  Evaluating the performance of a confidence interval for activity sampling  
 
The review of the Wald interval has allowed us to introduce the terminology and the 
issues involved in binomial proportion confidence intervals. There are many such 
intervals in the literature (see Pires and Amado, 2008).  In order to select a confidence 
interval for professional OM activity sampling we need some criteria to judge the field. 
 
First, and most importantly, the interval should actually achieve the desired confidence 
interval. That is, the coverage probability should be greater than the desired confidence 
level. Second, the length of the interval should be as small as possible, which probably 
means that excessive confidence should be avoided. Third, the confidence interval should 
work for different confidence levels. Forth, it should be easy to present and understand in 
a classroom setting.  
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We should also not need to make any a priori assumptions of the binomial probability p. 
Whilst there are good performing conservative intervals (see Sterne (1954) for example) 
that use a priori information, they are not suitable for activity sampling as the required 
information is rarely available in a usable form. The procedure to determine the 
confidence interval is also rather complicated as the solution has no explicit form. Similar 
arguments were made by Clopper and Pearson (1934), although Buck and Tanchoco 
(1974) and Buck, Askin and Tanchoco (1983) have developed an activity sampling 
procedure that does use a priori information. 
 
There are also procedures available to modify confidence interval guidance. For example 
Wang (2007) and Wang (2009) identifies the minimum coverage probability for a given 
sample and size and interval specification. He also provides a mechanism to determine 
the average coverage probability.  Having determined the exact coverage probability (or 
the exact average coverage probability) one can then adjust (in an iterative approach) the 
safety factor to achieve target confidence levels, see Agresti and Caffo (2000). We have 
not pursued this approach either as this is a rather complex task. Rather we prefer to have 
a one-step calculation to the confidence interval calculation. 
 
 
6. Alternative confidence intervals 
 
This section reviews four other binomial confidence intervals. Three of these intervals are 
approximate, one is exact. These four intervals where selected from Pires and Amado 
(2008) as being described to possess (or nearly possess) the characteristics outlined in 
Section 5.  
  
6.1. Agresti and Coull’s ‘Adjusted Wald’ interval 
The first alternative confidence interval we will consider is based on a modification to the 
Wald interval that was introduced by Agresti and Coull (1998), sometimes called the 
Adjusted Wald interval. The expression for the boundaries of the interval with arbitrary 
confidence levels is given by, 
 

 
 

 
 2 2

1 1
ˆ ˆmin ,1  and max ,0 ,U Lp z p z

n z n z
 

 

   
 
          
       

 (8)

 

where    12 22x z n z 


   . Using (8) in (5) allows us to determine its coverage 

probability, see Figure 3. 
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Figure 3. Coverage probability of the Agresti and Coull interval, (n = 50, 0.05  ) 

 
For the record, 232 of 1000 tests fail to meet the 99% confidence target, 217 fail to meet 
the 95% target (above) and 305 fail the 90% target. While this is an improvement to the 
coverage compared to the Wald interval, 20% to 30% of time, the desired level of 
confidence is not actually achieved. 
 
Figure 4 highlights the length of the Agresti and Coull interval for 95% confidence. Of 
note here is the fact that at the extremities of the probability,  ˆ 0,1 ,p   the interval has a 

finite length. Also, the maximum and minimum operators in (8) are activated near the 
extremities. The sample size contours also exhibit more natural behaviour as they do not 
all originate from the same point in the (L, p) plane. Note that in the contour plot, the un-
truncated behaviour (for L) was considered, as it was for Figure 2. 
 

 
 

Figure 4. Agresti and Coull interval, its length and sample size requirements for 95% 
confidence 

 
 
 
 
 



Disney, S.M., (2016), “Revisiting activity sampling: a fresh look at binomial proportion confidence intervals”,  
European Journal of Industrial Engineering, Vol. 10, No. 6, pp724-759. ISSN 1751-5254. DOI: 10.1504/EJIE.2016.081021. 

-11- 

6.1.1. Agresti and Coull’s ‘Add 4’ interval 
 
If you round the normal variant for 95% confidence from 1.96z   to 2z   and add 

two successes and two failures to the sample population the Wald interval becomes 
Agresti and Coull’s Add 4 interval. Starting with 
 

4

2
ˆ

4

x
p

n





, (9)

 
the upper and lower intervals can be calculated with 
 

   +4 +4 +4 +4
+4 +4

ˆ ˆ ˆ ˆ1 1
ˆ ˆ ˆ ˆmin 2 ,1  and max 2 ,0 .

4 4U L

p p p p
p p p p

n n

    
      

       
 (10)

 
Now only 76 of the 1000 tests fail to reach 95% coverage. Equation (10) is interesting as 
it shows that if you do not collect any samples i.e. n = x = 0, then you can be confident 
that 0 1p  , which is at least a logical result. It is possible to manipulate the un-
truncated intervals in (10) to find a concise expression for the number of observations 
required to ensure p is within p̂ L , 
 

  2 2
4 4ˆ ˆ4 1n p p L L    . (11)

 

 

Figure 5. Coverage probability of the Add 4 interval,  50,  0.05n    

 
Equation (12) adapts the Add 4 interval for arbitrary confidence levels. It produces 345 
failures in the 1001 tests at the 90% confidence level, 211 failures at 95% and 351 
failures at 99%. 
 

     1 1

+4 +4 +4 +4 +4 +4ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ1 4  and 1 4U Lp p z p p n p p z p p n 
          (12)

      
In summary, the Add 4 interval has a relatively simple closed form that is only slightly 
more complex than the Wald interval. It can be manipulated for n, the number of samples 
needed to be collected in order to reach a defined tolerance band. Although the coverage 
achieved is vastly better than the Wald interval, especially for 95% when z = 2 is used, it 
is still not exact. Agresti and Caffo (2000) report that the Add 4 interval is received well 
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in a classroom setting, especially when students realise the implications of the Wald 
interval when  0,1p  .  

 
6.2. Wilson Score interval 
The Wilson Score interval is often quoted to be the statistician’s preferred choice for an 
approximation to the exact interval. The continuity corrected version of the Wilson score 
interval is recommended by Pires and Amado (2008) and is given by, 
 

 
 

2 2 1 1

2

1 if  else

ˆˆ 2 1 2 4 1

2

n nU

x n

x z z z x pp

n z

  




         
 

 (13)

    
and 
 

 
 

2 2 1 1

2

0 if 0 else

ˆˆ 2 1 2 4 1
.

2

n nL

x

x z z z x pp

n z

  




         
 

 (14)

 
As we can see in Figure 6, the coverage probability for the 90% and 95% confidence 
levels is acheived. However, for the 99% confidence level the coverage probability is not 
met in 36 instances of the 1001 tests.  
 

 

Figure 6. Coverage probability for the Wilson “Score” interval (n=50)  

 
Figure 6 highlights the length of the Wilson Score interval for different sample sizes. It 
also shows that it deals with the extremities appropriately. It is possible to subtract (13) 
from (14), set it equal to twice the interval half length (2L) and solve for n. It results in a 
rather unwieldy solution to a forth order equation. However, it is easily plotted, see 
Figure 7. By closely comparing the sample size requirements the Wilson interval with the 
Agresti and Coull interval sample size requirements, we can see that the Wilson Score 
interval always requires more samples to be taken for a given probability and a given 
interval half width. This is perhaps the reason why the Wilson Score interval has such a 
high coverage probability. 
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Figure 7. The Wilson Score interval, its length and sample size requirements 

 
6.3. The Arc Sin interval 
The final approximate binomial confidence interval considered is the continuity corrected 
Arc Sin interval discussed in Pires and Amado (2008). This is an interval based on the 
approximate normal distribution interval after a variance stabilizing transformation. The 
Arc Sin interval is given by 
 

7
2 8

3 1
4 2

1 if  else

ˆ
sin arcsin

2
U

x n

p x z

n n





        

 (15)

 
and      
 

1
2 8

3 1
4 2

0 if 0 else

ˆ
sin arcsin .

2
L

x

p x z

n n





        

 (16)

 
The coverage probability of the Arc Sin interval when n = 50 is highlighted in Figure 8.  
 

 

Figure 8. Coverage probability for the Arc Sin interval (n = 50). 
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The Arc Sin interval actually achieves 90% and 95% coverage, but fails to meet 6 of the 
1001 tests at 99% coverage probability. This is an improvement upon the Wilson Score 
interval, especially as 4 of the 6 failures at 99% coverage occur very close to the extreme 
values of the binomial probability. However, the interval is very large, see Figure 9.  
 

 

Figure 9. The 95% Arc Sin confidence interval, its length and sample size requirements 

 
6.4. The Clopper-Pearson interval 
An exact solution of the confidence interval is one that always reaches the desired 
coverage probability. The original approach to this solution is based on finding the real 
root within the valid probability range of a polynomial of an order equal to 1n  , Clopper 
and Pearson (1934). Specifically, the upper boundary of the Clopper-Pearson confidence 
interval is given by the real solution in the range [0..1] to 
 

 
0

ˆ ˆ1 .
2

x
n kk

U U
k

n
p p

k





 
  

 
  (17)

  
Similarly the lower boundary is given by the real solution, in the range [0..1], to  
 

 ˆ ˆ1
2

n
n kk

L L
k x

n
p p

k





 
  

 
 . (18)

 
This form of the Clopper-Pearson interval is rather hard to deal with when n becomes 
large. However, the Clopper-Pearson interval can also be expressed in a more 
manageable form that uses the Beta distribution (see Newcombe (1998) and Pires and 
Amado (2008)) as follows, 
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 (19)

     
where  1

1 2, ,B     is the   percentile of the Beta 1 2,  distribution. This form of the 

Clopper-Pearson interval is easy to handle with modern statistical and mathematical 
software. They are also computable in Microsoft Excel with the following expressions;  
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 ˆ BETAINV 1 2, 1,Up x n x     (20)

and 
 

 ˆ BETAINV 2, , 1Lp x n x   . (21)

 
Johnston, Kemp and Kotz (2005) provide a comprehensive list of references to tables of 
confidence intervals. They also note the link between the Clopper-Pearson interval and 
the F distribution and provide the following guidance for the upper limit of the 
confidence interval, 
 

1 2

1 2
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2 1 , ,1 2
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


 (22)

 
where  1 2 1v x   and  2 2v n x  . The lower limit of the interval is  
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2 1 , , 2
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v F
p

v v F







 (23)

         
with 1 2v x  and  2 2 1v n x   . Using (19) in (5) allows us to inspect the coverage 

probability, see Figure 10.  
 

 
 

Figure 10. Coverage probability of the Clopper-Pearson interval,  50,  0.05n    

 
Figure 10 confirms that for the Clopper-Pearson interval when 50 and 0.05n    the 
coverage probability is always greater than the desired confidence level. However, 
because of the discrete nature of the binomial distribution it can often be rather 
conservative, especially in the extremities of the binomial probability. The confidence 
interval and its length is portrayed in Figure 11. Here we can see that the interval is 
largest near p̂ = 0.5, is symmetrical about p̂ = 0.5, and has a finite length at  ˆ 0,1p  .  
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Figure 11. The 95% Clopper-Pearson confidence interval, its length and sample size 
requirements 

 
The inverse problem where we solve the Clopper-Pearson equations for n, was studied by 
Johnston, Kemp and Kotz (2005). They highlight that (24) and (25) can be solved to yield 
an upper and lower limit on n, Un  and Ln , such that p  is within p̂ L  with 

 1 100%   confidence; 
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Solving (24) and (25) plotting Un  and Ln  for different values of p when the interval half 

length, L = 0.1 and 0.05   yields Figure 12. Here we can see the two curves for Un  and 

Ln . Obviously we will need to pick the largest n for a particular observed probability, p̂ . 

Hence, the parts of the curves that are plotted in grey become redundant. We can also see 
that solutions Ln  < L and 1Un L   do not exist as p̂  cannot be less than zero or greater 

than unity. Interestingly, the maximum number of observations required does not occur 
when p̂  = 0.5 (which was advocated by all of the previously considered intervals - see 
the solid line in Figure 12 for the Wald interval). Rather the maximum observations occur 
near 1

2
ˆ L    (but not precisely at 1

2p̂ L  , due to the discrete nature of the binomial 

distribution). The nature of the two solutions to (24) explains why Figure 11 does not 
have contours that are maximal in L at 0.5p  . Figure 12 also highlights that the Wald 
interval never takes enough observations to ensure that both sides of the interval have less 
than 2  error probability (error probability = 1 ).  
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Figure 12. Sample size required for L = 0.1, 95% confidence 

 
Defining L  as the maximum L in the level sets of the contour plot in Figure 11 allows us 
to obtain an upper bound of the number of samples required to achieve a desired interval 
half-width. A visualisation of the relationship between L  and n is given in Figure 13. 
Here we can see that the maximum interval half-width reduces as more samples are taken, 
but there is a law of diminishing returns with large samples sizes. 
 
 

 
 

Figure 13. Minimum sample size requirements to ensure L<L+, 95% confidence 

 
 
7. Recommendation of a confidence interval for activity sampling 
  
Table 2 summaries the test results from Sections 4 and 6. If you require the most simple 
interval possible for 95% confidence, then you could (continue to) use the simplified 
Wald interval. This does not guarantee the coverage required (about 80% of the time) and 
assumes the user lacks the capability to exploit a more sophisticated approach. A 
literature review demonstrated that this approach is almost exclusively advocated by the 
OM field. 
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A more meaningful interval for 95% confidence is the Add 4 interval. This greatly 
improves the coverage probability of the Wald interval and also has a simple closed form 
solution for the number of samples required to be within a desired tolerance.  
 
To be sure that the coverage probability was achieved (at least for 90% and 95%, and 
almost sure for 99% confidence) in situations where a closed form expression is required, 
the continuity corrected Wilson Score interval is recommended. Whilst it is possible to 
manipulate the interval for n, given a target interval length, it is rather complex for 
classroom use. 
 
If one is willing to drop the requirement for a closed form, the Arc Sin interval ensures 
the coverage probability is assured for both 90% and 95% confidence. However, for 99% 
confidence the interval does not achieve the required coverage at the extremities (and for 
a small number of points in the middle). It is possible to find the sin and arcsin functions 
on most good handheld calculators, hence it may be relevant for practising industrial 
engineers. 
 
Finally, if you must ensure the coverage probability is met and have access to the 
Clopper-Pearson tables given in Appendix B (or access to the inverse beta distribution in 
Microsoft Excel) then the Clopper-Pearson interval is recommended. This is the only 
interval that guarantees the desired coverage probability for all values of   and p.  
 

Interval 
Confidence level desired 

Notes 
90% 95% 99% 

Wald 801 fails  
907 fails 

(799 fails if z=2) 
999 fails Most simple closed form 

Agresti & Coull’s 
‘Adjusted Wald’ 

305 fails 217 fails 232 fails Improved performance over Wald 

Agresti & Coull’s 
‘Add 4’ 

345 fails 
211 

(76 fails if z=2) 
351 fails 

Nice simple closed form for 
interval and for sample size 

requirements 
Wilson Score  0 fails 0 fails 36 fails Complex closed form 

Arc Sin 0 fails 0 fails 6 fails 
No closed form, but easily done on 

a scientific calculator. 

Clopper-Pearson 0 fails 0 fails 0 fails 

No closed form, but amenable in 
Excel. Easily presented in tabular 
form. Sample size requirements 

possible 

Table 2. Summary results from 1001 confidence interval trials for activity sampling 

 
Notwithstanding the arguments above, let’s now investigate the contour plots in Figures 2, 
4, 7, 9 and 11 again. Overlaying them all into one single plot as in Figure 14, it is 
possible to see when one interval dominates the other in terms of reducing the interval to 
a specific half-width with a particular sample size. Note we are ignoring whether the 
coverage probability actually meets the desired confidence level here. It can be seen that 
the Agresti and Coull interval generally dominates all of the other intervals. That is, it 
requires fewer samples to meet its specific half-width. The Wilson interval generally 
dominates all other intervals, except the Agresti and Coull interval. This can be regarded 
as good performance as the Wilson Score interval is almost exact. The Arc Sin interval 
generally dominates the Clopper-Pearson interval. Despite this, it is recommended that 
the standard operations management procedure is updated to include the Clopper-Pearson 
interval. 
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Figure 14. Comparison of the five confidence intervals by sample size requirements 

 
 
8. Activity sampling procedure using the Clopper-Pearson interval 
 
A procedure to exploit the Clopper-Pearson interval for activity sampling will now be 
described. Appendix A provides a blank data collection form. The Clopper-Pearson 
confidence interval requires either; the solution of pair of high order equations (equations 
(17) and (18)); access to Microsoft Excel to enumerate (20) or specialist statistical 
software to realise (22) and (23)); or access to Clopper-Pearson confidence interval tables. 
Appendix B provides Clopper-Pearson confidence intervals that fit the data collection 
forms for the case of n = 50, 100 and 150. Appendix C gives the maximum of the 
solution to (24) and (25), rounded up to the nearest integer, for the required number of 
samples n to be within a desired interval half-width for 90%, 95% and 99% confidence 
for different values of the estimated binomial parameter, p̂ . 
 
The following step-by-step guide highlights how to use these tools. 
 
Step 1.  Determine how much confidence you need to assign to your results. From this, 

determine the value of  .  
 
Step 2.  Determine an acceptable confidence interval half length (L) for the purposes of 

your study. Note. Steps 1 and 2 should be done in consultation with the 
“customer” of the activity sampling exercise. 

 
Step 3.  Explain the purpose of the activity sampling to the subjects of the exercise, (the 

workers, customers, operators etc). Obtain an initial impression of range of 
activities being undertaken by the workers, their duration and their frequency. 
Make a note of the working time, breaks and any data collection issues present. 

 
Step 4. Modify the activity sampling data collection form in Appendix A for your 

situation. Name each of the activities the subject (worker, customer, machine 
etc) undertakes in the columns A to J. If there are not enough columns then you 
need to develop your own forms. Specify when the observations are to be taken 
(ensuring random intervals of time between observations) using the uniformly 
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distributed random numbers appropriately scaled to fit your scenario. Make sure 
the study is long enough to capture the range of activities that are undertaken. 

 
Step 5.  Collect the activity sample. First collect 50 samples (a page worth). Total up the 

observations for each activity and calculate the upper and lower limits of 
confidence interval, using the table of Clopper-Pearson confidence intervals in 
Appendix B. Decide if the confidence interval meets the needs of the study. If it 
is not then use Appendix C to determine how many samples should be taken in 
order to reduce the interval half-width (L) to an acceptable level.  

 
Step 6.  If the confidence interval half length (L) is too large for your purpose, collect 

another 50 samples using the data collection form and re-calculate the length of 
the interval.  

 
Step 7.  Repeat steps 5 and 6 until you are satisfied with the accuracy of the confidence 

interval for each of the activities. 
 
 
9. Teaching activity sampling with the new Clopper-Pearson interval 
 
This new activity sampling procedure has been taught to over 2000 students over the last 
5 years in Undergraduate, MSc, MBA and Executive courses in the U. S. and the U. K. 
Only the Clopper-Pearson interval is discussed. No detail on other alternative intervals 
needs to be given. The data collection forms and tables of intervals and sample sizes are 
no more difficult to use than a standard normal table. Students often struggle with the 
difference between and selection of appropriate accuracy  L  and confidence   , so it 

is worthwhile spending some time on this matter. However, on balance, the new Clopper-
Pearson approach is actually easier to teach as students often find the circular reference to 
p in the Wald interval formula difficult. It is also easy to break-out of a presentation to 
illustrate the Inverse Beta function in Microsoft Excel.   
 
A worked example (activity sampling my 2 year old daughter), a class exercise of activity 
sampling a secretary’s duties and case study at Sam’s Tailor in Hong Kong is used. These 
teaching materials are available upon request from the author. Sohal and Oakland (1990) 
also offer some advice on an engaging method to teach activity sampling that could also 
be adopted for use within this Clopper-Pearson activity sampling procedure.  
 
 
10. Concluding remarks 
 
The standard operations management textbook treatment of activity sampling has been 
evaluated. It was found that the Wald interval is almost exclusively used to assign 
confidence to the results. A review of modern statistical knowledge on binomial 
proportion confidence intervals revealed that the statisticians have serious concerns with 
the adequacy of this interval and have developed a range of more sophisticated 
approximations. There is even an exact solution to the problem.  
 
These modern confidence intervals have been reviewed and analysed for the purpose of 
activity sampling. The Clopper-Pearson interval was found to be the only interval that 
actually achieves the desired confidence interval for any desired coverage probability that 
does not use a-priori information. The Clopper-Pearson interval has an explicit solution, 
but sadly has no closed form. However, given that Microsoft Excel has an Inverse Beta 
Distribution function built-in, the Clopper-Pearson interval can be easily determined. 
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Two look-up tables for the interval and the sample size requirements have been 
developed for classroom use.  
 
A new activity sampling procedure was developed that can be used without advanced 
statistical knowledge to gather information about many operations management scenarios. 
The interval obtained now economically achieves the desired coverage. The existing 
activity sampling procedure in many OM textbooks cannot guarantee this.  
 
References 
Adam, E.E. and Ebert, R.J., (1992), Production and Operations Management: Concepts, 

Models and Behaviour. Prentice-Hall Inc, New Jersey, USA, 314-315. 
Agresti, A., and Coull, B., (1998), “Approximate is better than 'exact' for interval 

estimation of binomial proportions”, The American Statistician, 52 (2), 119-126.  
Agresti, A. and Caffo, B., (2000), “Simple and effective confidence intervals for 

proportion and differences of proportions result from adding two successes and two 
failures”, The American Statistician, 54 (4), 280-288. 

Anderson, D.R., Sweeney, D.J., Williams, T.A., Freeman, J. and Shoesmith, E., (2007), 
Statistics for Business and Economics. Thomson, London, UK, 273-276. 

Barnes, D., (2008), Operations Management: An International Perspective. Thomson 
Learning, London, UK, 345. 

Bicheno, J. and Holweg, M., (2009), The Lean Toolbox: The Essential Guide to Lean 
Transformation. Picsie Books, Buckingham, UK, 130-131. 

Bicheno, J., (2008), The Lean Toolbox for Service Systems. Picsie Books, Buckingham, 
UK, 271-272. 

Blyth, C.R. and Still, H.A., (1983), “Binomial confidence intervals”, Journal of the 
American Statistical Association, 78 (381), 108-116. 

Brisley, C.L., (2001), “Work sampling and group timing technique”, Chapter 17.3 in 
Zandin, K.B., (2001), Maynard’s Industrial Engineering Handbook. Fifth Edition, 
McGraw-Hill, New York, USA, 17.47-17.64. 

British Standard 3138, (1992), “Glossary of terms used in management services”, p12. 
Brown, L.D., Cai, T.T., and DasGupta, A., (2001), “Interval Estimation for a Binomial 

Proportion”, Statistical Science, 16 (2), 101-117.  
Buchholz, B., Paquet, V., Punnett, L., Lee, D. and Moir, S., (1996), “PATH: A work 

sampling-based approach to ergonomic job analysis for construction and other non-
repetitive work”, Applied Ergonomics, 27 (3), 177-187.  

Buck, J.R. and Tanchoco, J.M.A., (1974), “Sequential Bayesian work sampling”, AIIE 
Transactions, 6 (4), 318-326. 

Buck, J.R., Askin, R.G. and Tanchoco, J.M.A., (1983), “Advances in sequential Bayesian 
work sampling”, IIE Transactions, 15 (1), 19-30. 

Chase, R.B. and Aquilano N.J., (1992), Production and Operations Management. Irwin 
In., Boston, USA, 518-524.  

Chen, J.-G., Peacock, J.B. and Schlegel, R.E., (1989), “An observational technique for 
physical work stress analysis”, International Journal of Industrial Ergonomics, 3 
(3), 167-176. 

Clopper, C. and Pearson, S., (1934), “The use of confidence or fiducial limits illustrated 
in the case of the binomial”. Biometrika, 26 (4), 404-413. 

Curwin, J. and Slater, R., (1990), Quantitative Methods for Business Decisions. Chapman 
and Hall, London, UK, 198-201. 

Davis, M.M. and Heineke, J., (2005), Operations Management: Integrating 
Manufacturing and Services. McGraw- Hill Irwin, New York, 257-261. 

Evans, J.R., Anderson, D.R., Sweeney, D.J. and Williams, T.A., (1984), Applied 
Production and Operations Management. West Publishing, St. Paul, Minnesota, 
USA, 427-429. 



Disney, S.M., (2016), “Revisiting activity sampling: a fresh look at binomial proportion confidence intervals”,  
European Journal of Industrial Engineering, Vol. 10, No. 6, pp724-759. ISSN 1751-5254. DOI: 10.1504/EJIE.2016.081021. 

-22- 

Farrell, P.J., Kusy, M., Tomberlin, T.J. and Thomas, R., (2009), “A hybrid methodology 
for measuring unit costs in multibranch institutions”, Canadian Journal of 
Administrative Sciences, 14 (2), 188 – 194. 

Finch, B.J., (2008), Operations Now: Supply Chain Profitability and Performance. 
McGraw-Hill Irwin, Boston, USA, 757-758. 

Finkler, S.A., Knickerman, J.R., Hendrickson, G., Lipkin, M. and Thompson, W.G., 
(1993), “A comparison of work sampling and time-and-motion techniques for 
studies in health services research”, Health Services Research, 28 (5), 577-597. 

Foley, W.J., (1999), “National nursing home restraint minimization project”, Internal 
Report, Rensselaer Polytechnic Institute, Troy, New York, USA. 

Greasely, A., (2009), Operations Management. John Wiley, Chichester, UK, 244-246. 
Gunesoglu, S. and Meric, B., (2006), “The analysis of personal and delay allowances 

using work sampling technique in the sewing room of a clothing manufacturer”, 
International Journal of Clothing Science and Technology, 19 (2), 145-150.  

Heinze, K.G.R., (1984), “Performance measures by means of activity sampling”, 
Transactions of the American Association of Cost Engineers, D (4), 1-8. 

Heizer, J. and Render, B., (2014), Operations Management. Pearson, New Jersey, USA, 
435-438. 

Hill, T., (1983), Production and Operations Management. Prentice Hall, London, 246-
248,  

Hill, T., (2000), Operations Management: Strategic Context and Managerial Analysis. 
Palgrave, Basingstoke, UK, 480-481. 

International Labour Office, (1974), Introduction to Work Study: Revised Edition. ILO 
Geneva, Switzerland, 369-377. 

Jacobs, F.B., Chase, R.B. and Aquilano, N.J., (2009), Operations and Supply 
Management. McGraw-Hill Irwin, Boston, USA, 194-200. 

Johnson, N.L., Kemp, A.W., Kotz, S., (2005), Univariate Discrete Distributions. John 
Wiley and Sons, New Jersey, USA.  

Kaming, P.F., Olomolaiye, P.O., Holt, G.D. and Harris, F.C., (1997), “Factors 
influencing craftsmen’s productivity in Indonesia”, International Journal of Project 
Management, 15 (1), 21-30.  

Kelly, J., (1964), “The study of executive behaviour by activity sampling”, Human 
Relations, 17 (3), 277-287. 

Khanna, R.B., (2015), Production and Operations Management, PHI Learning, Delhi, 
pp137-139.  

Krajewski, L., Ritzman, L. and Malhotra, M., (2013), Operations Management Processes 
and Value Streams. Pearson Prentice Hall, New Jersey, USA, 148. 

Lee, S.M. and Schniederjans, M.J., (1994), Operations Management. Houghton Mifflin, 
Boston, USA, 709-712. 

Liou, F.-S. and Borcherding, J.D., (1986), “Work sampling can predict unit rate 
productivity”, Journal of Construction Engineering and Management, 112 (1), 90-
103.  

Lockyer, K., (1983), Production Management. Pitman, London, UK, 196-200. 
Lockyer, K., Muhlemann, A. and Oakland, J., (1988), Production and Operations 

Management. Pitman Publishing, London, UK, 250-252. 
Meredith, J.R., (1992), The Management of Operations. John Wiley and Sons, New York, 

USA, 710-711.  
Naylor, J., (1996), Operations Management, Pitman Publishing, London, 170. 
Newcombe, R.G., (1998), “Two-sided confidence intervals for the single proportion: 

Comparison of seven methods”, Statistics in Medicine, 17 (8), 857-872. 
Noori, H. and Radford, R., (1995), Production and Operation Management: Total 

Quality and Responsiveness. McGraw-Hill, New York, 306-308. 



Disney, S.M., (2016), “Revisiting activity sampling: a fresh look at binomial proportion confidence intervals”,  
European Journal of Industrial Engineering, Vol. 10, No. 6, pp724-759. ISSN 1751-5254. DOI: 10.1504/EJIE.2016.081021. 

-23- 

Pelletier, D. and Duffield, C., (2003), “Work sampling: Valuable methodology to define 
nursing practice patterns”, Nursing and Health Sciences, 5 (1), 31-38.  

Pires, A.M. and Amado, C., (2008), “Interval estimators for a binomial proportion: 
Comparison of twenty methods”, Revstat – Statistical Journal, 6 (2), 165-197. 

Reid, R.D. and Sanders, N.R., (2002), “Operations Management”, John Wiley, New 
York, USA, 337-338.  

Rosenkrantz, W.A., (2009), Introduction to Probability and Statistics for Science, 
engineering and finance. CRC Press, Boca Raton, USA, 307-309. 

Russell, R.S. and Taylor, B.W., (2009), Operations Management Along the Supply Chain. 
John Wiley, Singapore, pp346-348. 

Rutter, R., (1994), “Work sampling: As a win-win management tool”, Industrial 
Engineering, 26 Feburary, 30-31.  

Schonberger, R.J. and Knod, E.M., (1988), Operations Management: Serving the 
Customer. Business Publications, Plano, USA, 666-670. 

Silver, M., (1997), Business Statistics. McGraw-Hill, London, UK, 191-192. 
Slack, N., Brandon-Jones, A. and Johnston, R., (2013), Operations Management. FT 

Prentice Hall, Harlow, UK, 268. 
Sohal, A.S. and Oakland, J.S., (1990), “Teaching production and operations management 

through participative methods”, Production and Inventory Management Journal, 31 
(3), 30-34.  

Sterne, T.E., (1954), “Some remarks on confidence or fiducial limits”, Biometrika, 41 (1-
2), 275-278. 

Stevenson, W.J., (2012), Operations Management: Theory and Practice. McGraw-Hill, 
Irwin, 308-313. 

Thomas, H.R., (1991), “Labour productivity and work sampling: The bottom line”, 
Journal of Construction Engineering and Management, 117 (3), 423-444.  

Tippett, L.H.C., (1935), “A snap-reading method of making time studies of machines and 
operatives in factory surveys”, Journal of the Textile Institute Transactions, 26 (2), 
51-55 & 75. 

Tsai, W.-H., (1996), “A technical note on using work sampling to estimate the effort on 
activities under activity based costing”, International Journal of Production 
Economics, 43 (1), 11-16.  

Wald, A. and Wolfowitz, J., (1939), “Confidence limits for continuous distribution 
functions”, Annals of Mathematical Statistics, 10 (2), 105-118. 

Wang, H., (2007), “Exact confidence coefficients of confidence intervals for a binomial 
proportion”, Statistica Sinica, 17 (1), 361-368. 

Wang, H., (2009), “Exact average coverage probabilities and confidence coefficients of 
confidence intervals for discrete distributions”, Statistics and Computing, 19 (2), 
139-148. 

Waters, D., (2002), Operations Management: Producing Goods and Services. FT 
Prentice Hall, Harlow, UK, 500. 

Weiss, H.J. and Gershon, M.E., (1989), Production and Operations Management. Allyon 
and Bacon, Boston, USA, 419-423. 

Whitmore, D.A., (1987), Work Measurement. Heinemann, London, UK, pp118-127. 
Wild, R., (1995), Production and Operations Management: Text and Cases. Cassell 

Education, London, UK, 188-191. 
Williams, H., Harris, R. and Turner-Stokes, L., (2009), “Work sampling: A quantitative 

analysis of nursing activity in a neuro-rehabilitation setting”, Journal of Advanced 
Nursing, 65 (10), 2097-2107.  



Disney, S.M., (2016), “Revisiting activity sampling: a fresh look at binomial proportion confidence intervals”,  
European Journal of Industrial Engineering, Vol. 10, No. 6, pp724-759. ISSN 1751-5254. DOI: 10.1504/EJIE.2016.081021. 

-24- 

Appendix A: Activity sampling data collection form  
Title: Confidence,____% , _____ L,____ Date: 

Purpose: Completed by: 

Page ___ of ____ 
O

b
se

rv
at

io
n

 
N

u
m

b
er

 Uniformly 
distributed 

random 
numbers  

Intervals driven 
by random 

numbers? Y / N 

Activity  
A B C D E F G H I J 

          

Time of 
observation 

1 98837 67136            
2 35311 82655            
3 18581 30998            
4 81781 03347            
5 38285 66912            
6 24689 72155            
7 93492 29368            
8 10281 25221            
9 95991 99716            
10 57579 12203            
11 12468 46011            
12 72758 75741            
13 86051 48890            
14 31430 48040            
15 96616 99230            
16 92753 37184            
17 55585 79446            
18 27108 38086            
19 53103 45868            
20 47128 69377            
21 67866 53793            
22 35611 99785            
23 58725 87497            
24 67091 07571            
25 28792 56073            
26 94790 89294            
27 54599 55184            
28 44346 65363            
29 45804 30298            
30 50371 55805            
31 53271 59910            
32 25086 73884            
33 98339 14198            
34 08591 41964            
35 94737 28459            
36 42328 97773            
37 25380 31213            
38 87258 46559            
39 83390 54356            
40 94856 27832            
41 77092 40946            
42 76977 34774            
43 15537 11515            
44 15033 90458            
45 63078 91904            
46 13037 90690            
47 62328 62666            
48 51910 39671            
49 37489 05840            
50 01641 53158            

Running count from any previous samples 
(n = ) 

          

Total sum of observations, x 
          

Observed probability, ˆ  x
np  

          

Lower confidence interval, ˆ Lp  (App. B) 
          

Upper confidence interval, ˆUp  (App. B) 
          

Sample size required based on L (App. C)           
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Appendix B: Table of Clopper-Pearson confidence intervals 
 
n=50  ˆ ˆ 1L Up y p y  

  ˆ ˆ 1U Lp y p y  
 

 n=150  ˆ ˆ 1L Up y p y  
  ˆ ˆ 1U Lp y p y  

 

x 99% 95% 90% 90% 95% 99%  x 99% 95% 90% 90% 95% 99% 

0 (50) y=0 0 0 0.058155079 0.071121736 0.100545083  0 (150) y=0 0 0 0.019773438 0.024292597 0.03470557 

1 (49) 0.000100246 0.000506228 0.00102534 0.091398131 0.106469546 0.139404125  1 (149) 3.34164E-05 0.000168771 0.000341897 0.031233817 0.036583168 0.048485953 

2 (48) 0.002088725 0.004881433 0.00715372 0.120614155 0.137137626 0.17250176  2 (148) 0.000692036 0.001618827 0.002374192 0.04137497 0.047333019 0.060345774 

3 (47) 0.006872485 0.012548588 0.016551859 0.147837176 0.165481947 0.202706269  3 (147) 0.002265007 0.004143625 0.00547293 0.050877068 0.057334222 0.071262464 

4 (46) 0.013768445 0.022227964 0.027787668 0.173791158 0.192342784 0.23105085  4 (146) 0.004516558 0.007312546 0.009158928 0.05998104 0.066867877 0.081586214 

5 (45) 0.022217815 0.033275094 0.04023659 0.198833003 0.218135366 0.258049729  5 (145) 0.007257229 0.010910186 0.013224408 0.068805184 0.076072323 0.091490565 

6 (44) 0.031862914 0.045335321 0.053571403 0.22316999 0.243101317 0.284003704  6 (144) 0.010366487 0.014818521 0.017560962 0.077417997 0.085027815 0.101076706 

7 (43) 0.042468787 0.0581917 0.067596699 0.246935202 0.267396002 0.309106966  7 (143) 0.013765426 0.01896557 0.02210405 0.08586338 0.093785865 0.110409837 

8 (42) 0.053873602 0.071700767 0.082185062 0.270220078 0.291126307 0.333493522  8 (142) 0.017399794 0.02330381 0.026811658 0.094171482 0.102381896 0.119534935 

9 (41) 0.065961072 0.085762078 0.097248095 0.293090581 0.314369411 0.357260386  9 (141) 0.021230608 0.027799978 0.031654647 0.102364084 0.11084152 0.128484599 

10 (40) 0.078644691 0.100302237 0.112721613 0.315596061 0.337183108 0.380480351  10 (140) 0.025228817 0.032429728 0.036611832 0.110457532 0.119183977 0.137283372 

11 (39) 0.091858295 0.115265826 0.128557379 0.337774485 0.359611889 0.403209554  11 (139) 0.029372118 0.037174615 0.041667235 0.118464471 0.127424162 0.145950285 

12 (38) 0.105550132 0.130609916 0.144718155 0.359655697 0.381690748 0.425492219  12 (138) 0.033642958 0.042020265 0.046808451 0.126394927 0.13557389 0.154500458 

13 (37) 0.119679002 0.146300584 0.161174597 0.381263556 0.403447679 0.447363763  13 (137) 0.038027232 0.04695522 0.052025622 0.134257008 0.143642723 0.162946142 

14 (36) 0.134211639 0.162310601 0.177903198 0.402617382 0.424905357 0.468852912  14 (136) 0.04251341 0.051970172 0.057310755 0.142057385 0.151638531 0.171297434 

15 (35) 0.149120897 0.178617846 0.194884897 0.423732967 0.446082326 0.48998318  15 (135) 0.047091922 0.057057435 0.062657265 0.149801626 0.159567885 0.17956277 

16 (34) 0.164384449 0.195204195 0.212104098 0.444623296 0.46699384 0.510773932  16 (134) 0.051754723 0.062210574 0.068059646 0.157494434 0.167436339 0.18774929 

17 (33) 0.179983844 0.212054713 0.229547962 0.465299081 0.487652488 0.531241159  17 (133) 0.056494972 0.06742414 0.073513243 0.165139829 0.175248639 0.195863098 

18 (32) 0.195903809 0.229157067 0.247205894 0.485769151 0.508068648 0.551398063  18 (132) 0.061306798 0.072693467 0.079014074 0.172741273 0.183008877 0.203909461 

19 (31) 0.21213172 0.246501078 0.265069158 0.506040748 0.528250837 0.571255486  19 (131) 0.066185114 0.078014525 0.084558705 0.18030178 0.190720614 0.211892966 

20 (30) 0.228657206 0.264078395 0.283130591 0.526119749 0.548205972 0.590822246  20 (130) 0.071125481 0.083383807 0.090144145 0.187823988 0.198386968 0.219817631 

21 (29) 0.245471848 0.281882241 0.301384377 0.546010837 0.567939565 0.610105383  21 (129) 0.076123996 0.088798232 0.095767775 0.195310223 0.206010689 0.227687004 

22 (28) 0.262568945 0.299907221 0.319825889 0.565717627 0.587455877 0.629110348  22 (128) 0.081177208 0.094255085 0.101427285 0.20276255 0.213594219 0.235504232 

23 (27) 0.279943342 0.318149179 0.338451559 0.585242759 0.606758024 0.647841147  23 (127) 0.086282047 0.099751951 0.107120622 0.210182807 0.221139733 0.243272126 

24 (26) 0.297591302 0.336605092 0.35725879 0.604587965 0.625848055 0.666300434  24 (126) 0.09143577 0.105286678 0.112845957 0.217572646 0.228649184 0.250993204 

25 0.315510421 0.355272997 0.376245891 0.623754109 0.644727003 0.684489579  25 (125) 0.096635913 0.110857332 0.118601649 0.22493355 0.236124327 0.258669737 

        26 (124) 0.101880252 0.116462173 0.12438622 0.232266861 0.24356675 0.266303776 

n=100  ˆ ˆ 1L Up y p y  
  ˆ ˆ 1U Lp y p y  

 
 27 (123) 0.107166776 0.122099628 0.130198336 0.239573797 0.250977895 0.273897184 

x 99% 95% 90% 90% 95% 99%  28 (122) 0.112493654 0.127768266 0.136036784 0.246855466 0.258359073 0.281451656 

0 (100) y=0 0 0 0.02951305 0.036216693 0.05160403  29 (121) 0.117859222 0.133466786 0.14190046 0.25411288 0.265711481 0.288968742 

1 (99) 5.01242E-05 0.000253146 0.000512801 0.046559811 0.054459385 0.071957682  30 (120) 0.123261954 0.139193999 0.147788357 0.261346965 0.273036218 0.296449862 

2 (98) 0.001039619 0.002431337 0.003565153 0.0616192 0.070383932 0.089430673  31 (119) 0.128700453 0.144948816 0.153699551 0.268558571 0.280334289 0.303896318 

3 (97) 0.00340707 0.006229972 0.008225829 0.075710794 0.085176053 0.105481254  32 (118) 0.134173435 0.150730237 0.159633196 0.275748483 0.287606623 0.311309311 

4 (96) 0.006801694 0.011004494 0.013776612 0.08919625 0.099257157 0.120632699  33 (117) 0.139679717 0.156537338 0.16558851 0.282917421 0.294854074 0.318689949 

5 (95) 0.010940334 0.016431879 0.019905564 0.102253378 0.112834911 0.135144683  34 (116) 0.145218205 0.162369272 0.171564774 0.290066054 0.302077433 0.326039255 

6 (94) 0.015642513 0.022334886 0.026449713 0.114985256 0.126029935 0.149168804  35 (115) 0.15078789 0.168225251 0.177561322 0.297195 0.309277432 0.333358178 

7 (93) 0.02078993 0.028605289 0.033311916 0.127458016 0.138919728 0.162802856  36 (114) 0.156387835 0.174104547 0.183577538 0.304304832 0.316454751 0.340647598 

8 (92) 0.026301152 0.035171563 0.040428871 0.139717119 0.151557636 0.176114355  37 (113) 0.16201717 0.180006485 0.189612851 0.311396082 0.32361002 0.347908333 

9 (91) 0.032117617 0.041983596 0.047756636 0.151795429 0.163982255 0.18915228  38 (112) 0.167675086 0.185930437 0.195666728 0.318469248 0.330743828 0.355141143 

10 (90) 0.038195653 0.049004689 0.055263238 0.163717623 0.176222598 0.201953521  39 (111) 0.173360831 0.191875818 0.201738676 0.325524789 0.337856721 0.362346739 

11 (89) 0.044501714 0.05620702 0.06292455 0.175502803 0.188301132 0.214546698  40 (110) 0.179073703 0.197842083 0.207828234 0.332563138 0.344949209 0.369525782 

12 (88) 0.051009388 0.063568903 0.070721838 0.18716611 0.200235684 0.226954552  41 (109) 0.184813047 0.203828725 0.213934972 0.339584697 0.352021771 0.37667889 

13 (87) 0.057697454 0.071073046 0.078640204 0.198719793 0.212040677 0.239195508  42 (108) 0.190578251 0.209835269 0.220058489 0.346589841 0.35907485 0.383806642 

14 (86) 0.064548563 0.078705405 0.086667578 0.210173925 0.223727981 0.251284745  43 (107) 0.196368742 0.215861271 0.226198409 0.353578923 0.366108864 0.390909577 

15 (85) 0.071548325 0.086454386 0.094794012 0.221536908 0.2353075 0.26323494  44 (106) 0.202183986 0.221906316 0.232354382 0.36055227 0.373124204 0.397988202 

16 (84) 0.078684647 0.09431029 0.1030112 0.232815835 0.246787597 0.275056809  45 (105) 0.208023481 0.227970016 0.23852608 0.367510193 0.380121234 0.405042991 

17 (83) 0.08594726 0.10226491 0.11131212 0.244016756 0.258175411 0.286759506  46 (104) 0.213886757 0.234052006 0.244713194 0.37445298 0.387100297 0.412074389 

18 (82) 0.093327359 0.110311229 0.119690778 0.255144881 0.269477086 0.298350915  47 (103) 0.219773374 0.240151946 0.250915436 0.3813809 0.394061714 0.419082811 

19 (81) 0.10081733 0.118443196 0.128142008 0.266204729 0.280697958 0.309837888  48 (102) 0.225682918 0.246269516 0.257132537 0.38829421 0.401005786 0.426068649 

20 (80) 0.108410541 0.126655552 0.136661325 0.27720025 0.291842689 0.321226413  49 (101) 0.231615003 0.252404415 0.263364242 0.395193146 0.407932795 0.433032269 

21 (79) 0.116101179 0.134943696 0.145244808 0.288134916 0.302915379 0.332521761  50 (100) 0.237569265 0.258556363 0.269610314 0.402077931 0.414843006 0.439974014 

22 (78) 0.123884115 0.143303577 0.153889007 0.299011796 0.313919654 0.343728594  51 (99) 0.243545363 0.264725097 0.275870531 0.408948776 0.421736667 0.446894207 

23 (77) 0.131754807 0.151731611 0.162590871 0.309833617 0.324858733 0.354851056  52 (98) 0.249542979 0.270910368 0.282144683 0.415805876 0.428614011 0.453793149 

24 (76) 0.139709209 0.160224613 0.171347691 0.320602811 0.335735489 0.365892843  53 (97) 0.255561812 0.277111945 0.288432575 0.422649414 0.435475255 0.460671123 

25 (75) 0.147743708 0.168779738 0.180157047 0.331321554 0.346552496 0.37685727  54 (96) 0.261601583 0.283329612 0.294734024 0.429479563 0.442320603 0.467528394 

26 (74) 0.15585506 0.177394438 0.189016773 0.341991802 0.357312063 0.387747312  55 (95) 0.267662029 0.289563165 0.301048858 0.436296482 0.449150245 0.474365209 

27 (73) 0.164040349 0.186066422 0.197924924 0.352615316 0.368016273 0.398565651  56 (94) 0.273742905 0.295812415 0.307376916 0.443100324 0.455964359 0.481181799 

28 (72) 0.172296944 0.194793627 0.206879746 0.363193686 0.378667005 0.40931471  57 (93) 0.279843981 0.302077184 0.31371805 0.449891226 0.462763112 0.487978379 

29 (71) 0.180622466 0.203574189 0.215879657 0.373728351 0.389265959 0.419996682  58 (92) 0.285965043 0.308357307 0.320072119 0.456669319 0.469546658 0.494755152 

30 (70) 0.189014762 0.21240642 0.224923224 0.384220613 0.399814676 0.430613554  59 (91) 0.292105893 0.31465263 0.326438993 0.463434726 0.47631514 0.501512302 

31 (69) 0.197471878 0.221288792 0.23400915 0.394671654 0.410314554 0.441167127  60 (90) 0.298266345 0.32096301 0.332818551 0.470187557 0.483068692 0.508250004 

32 (68) 0.205992042 0.230219917 0.243136257 0.405082547 0.420766862 0.45165904  61 (89) 0.304446228 0.327288314 0.339210683 0.476927916 0.489807436 0.514968417 

33 (67) 0.214573641 0.239198535 0.252303477 0.415454267 0.431172751 0.46209078  62 (88) 0.310645384 0.33362842 0.345615283 0.4836559 0.496531487 0.521667688 

34 (66) 0.223215213 0.248223502 0.261509839 0.425787697 0.441533268 0.472463697  63 (87) 0.316863666 0.339983214 0.352032256 0.490371595 0.503240947 0.528347952 

35 (65) 0.231915427 0.257293779 0.270754462 0.436083641 0.451849362 0.482779016  64 (86) 0.323100942 0.346352595 0.358461516 0.497075081 0.509935912 0.535009334 

36 (64) 0.240673076 0.266408423 0.280036546 0.446342825 0.462121893 0.49303785  65 (85) 0.329357088 0.352736466 0.364902983 0.503766432 0.516616468 0.541651944 

37 (63) 0.249487067 0.27556658 0.289355367 0.456565907 0.472351641 0.503241203  66 (84) 0.335631994 0.359134742 0.371356583 0.510445713 0.523282692 0.548275884 

38 (62) 0.258356408 0.284767476 0.29871027 0.46675348 0.482539306 0.513389984  67 (83) 0.34192556 0.365547347 0.377822252 0.517112981 0.529934654 0.554881244 

39 (61) 0.267280206 0.294010415 0.308100663 0.476906079 0.49268552 0.523485007  68 (82) 0.348237698 0.371974211 0.384299933 0.523768288 0.536572414 0.561468103 

40 (60) 0.276257658 0.303294769 0.317526015 0.48702418 0.50279085 0.533527004  69 (81) 0.354568328 0.378415274 0.390789572 0.53041168 0.543196027 0.568036531 

41 (59) 0.285288045 0.312619977 0.32698585 0.497108208 0.512855796 0.543516626  70 (80) 0.360917384 0.384870482 0.397291127 0.537043194 0.549805536 0.574586586 

42 (58) 0.294370727 0.321985539 0.336479745 0.507158539 0.522880804 0.553454447  71 (79) 0.367284806 0.391339792 0.403804559 0.543662861 0.55640098 0.581118318 

43 (57) 0.30350514 0.331391017 0.346007327 0.5171755 0.532866262 0.563340969  72 (78) 0.373670547 0.397823166 0.410329836 0.550270708 0.562982389 0.587631766 

44 (56) 0.312690792 0.340836024 0.355568269 0.527159374 0.542812503 0.573176625  73 (77) 0.380074569 0.404320573 0.416866933 0.556866752 0.569549785 0.594126959 

45 (55) 0.321927257 0.350320229 0.36516229 0.537110399 0.552719811 0.582961783  74 (76) 0.386496843 0.410831993 0.423415833 0.563451007 0.576103182 0.600603916 

46 (54) 0.331214178 0.359843353 0.374789154 0.547028772 0.56258842 0.592696745  75 0.392937351 0.41735741 0.429976521 0.570023479 0.58264259 0.607062649 

47 (53) 0.34055126 0.369405164 0.384448663 0.55691465 0.572418515 0.602381754      .

48 (52) 0.349938269 0.37900548 0.394140663 0.56676815 0.582210235 0.612016989  Examples: 
n = 50, 90% confidence required, and x=10, then pL=0.112721613 and pU=0.315596061 
n = 100, 95% confidence required, and x=85, then pU=1-0.0864543 and pL=1-0.2353075 

49 (51) 0.359375032 0.388644165 0.403865039 0.576589349 0.591963671 0.621602571  

50 0.368861437 0.39832113 0.413621715 0.586378285 0.60167887 0.631138563  
 

Note: For different sample sizes n or for different confidence level then the following formulas can be used 

in Microsoft Excel;  2
ˆ BETAINV 1 , 1,Up x n x     and  2

ˆ BETAINV , , 1Lp x n x   . 
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Appendix C: Activity sample size requirements 
 

 

90% Confidence  95% Confidence  99% Confidence 
p or 
(1-p) 

L  
p or 
(1-p) 

L  
 p or 
(1-p) 

L 

0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01  0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01  0.1 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01 

0 29 32 36 42 49 59 74 99 149 299  0 36 40 45 51 60 72 91 122 183 368  0 51 57 64 74 86 104 130 174 263 528 

0.01 31 35 40 47 56 69 90 128 216 569  0.01 39 44 50 59 70 87 114 164 279 753  0.01 57 65 74 87 104 131 172 250 433 1204 

0.02 34 38 44 52 63 79 106 157 280 829  0.02 42 48 56 66 80 102 137 204 371 1124  0.02 63 72 84 99 122 156 212 321 593 1844 

0.03 36 41 48 57 69 89 121 184 343 1083  0.03 45 52 61 73 90 115 159 244 461 1484  0.03 69 79 93 112 138 180 250 389 748 2468 

0.04 38 44 51 61 76 98 136 211 405 1332  0.04 49 56 66 79 99 129 180 282 548 1837  0.04 74 86 102 123 155 203 287 455 898 3077 

0.05 40 46 54 66 82 107 151 237 464 1574  0.05 52 60 71 86 108 142 201 319 632 2181  0.05 80 93 110 135 170 226 323 520 1045 3672 

0.06 42 49 58 70 88 116 165 263 523 1811  0.06 55 63 75 92 116 155 221 356 715 2517  0.06 85 99 118 145 185 248 358 583 1189 4254 

0.07 44 51 61 74 94 125 179 288 579 2042  0.07 57 67 80 98 125 167 240 391 796 2846  0.07 90 105 126 156 200 270 392 644 1329 4822 

0.08 46 54 64 78 100 133 192 312 635 2268  0.08 60 70 84 104 133 179 260 425 875 3167  0.08 94 111 134 166 214 290 425 704 1465 5377 

0.09 48 56 67 83 105 142 205 336 689 2488  0.09 63 74 89 110 141 191 278 459 952 3480  0.09 99 117 142 176 228 311 457 762 1598 5919 

0.1 50 58 70 86 111 150 218 359 742 2704  0.1 65 77 93 115 149 202 296 492 1027 3786  0.1 104 123 149 186 242 330 489 819 1728 6447 

0.11 51 60 73 90 116 157 230 381 793 2913  0.11 68 80 97 121 156 213 314 524 1100 4084  0.11 108 128 156 196 255 350 519 874 1855 6962 

0.12 53 63 76 94 121 165 242 403 843 3117  0.12 70 83 101 126 164 224 331 555 1171 4374  0.12 112 134 163 205 267 368 549 928 1978 7463 

0.13 55 65 78 97 126 172 254 424 892 3316  0.13 73 86 105 131 171 234 348 585 1241 4656  0.13 116 139 170 214 280 386 578 980 2098 7952 

0.14 56 67 81 101 131 179 265 445 939 3509  0.14 75 89 108 136 177 244 364 614 1308 4931  0.14 120 144 176 222 292 404 606 1031 2214 8427 

0.15 58 69 83 104 136 186 276 465 985 3697  0.15 77 92 112 141 184 254 379 643 1373 5198  0.15 124 149 182 231 303 421 633 1080 2327 8888 

0.16 59 70 86 107 140 193 287 484 1030 3880  0.16 79 94 116 145 191 264 395 670 1437 5457  0.16 128 153 188 239 314 437 659 1128 2437 9337 

0.17 61 72 88 111 144 199 297 503 1073 4057  0.17 81 97 119 150 197 273 409 697 1498 5709  0.17 131 158 194 246 325 453 685 1174 2543 9772 

0.18 62 74 90 114 149 205 307 521 1115 4228  0.18 83 99 122 154 203 282 423 723 1558 5953  0.18 135 162 200 254 336 469 709 1219 2647 10194 

0.19 63 76 92 116 153 211 317 538 1155 4394  0.19 85 102 125 158 209 290 437 748 1615 6189  0.19 138 166 205 261 346 484 733 1262 2746 10602 

0.2 64 77 94 119 157 217 326 555 1194 4555  0.2 87 104 128 162 214 298 450 772 1671 6418  0.2 141 170 210 268 355 498 756 1304 2843 10998 

0.21 66 79 96 122 160 223 335 572 1232 4711  0.21 88 106 131 166 219 306 463 795 1725 6639  0.21 144 174 215 275 365 512 778 1345 2936 11380 

0.22 67 80 98 124 164 228 343 587 1269 4861  0.22 90 108 134 170 225 314 475 818 1777 6852  0.22 147 178 220 281 374 525 800 1384 3026 11748 

0.23 68 81 100 127 167 233 352 602 1304 5005  0.23 92 110 136 173 230 321 487 839 1827 7057  0.23 150 181 225 287 382 538 820 1421 3112 12104 

0.24 69 83 102 129 171 238 360 617 1338 5144  0.24 93 112 139 177 234 328 498 860 1875 7255  0.24 152 185 229 293 391 550 840 1457 3196 12446 

0.25 70 84 103 131 174 243 367 631 1370 5278  0.25 94 114 141 180 239 335 509 880 1921 7445  0.25 155 188 233 299 398 562 858 1491 3275 12774 

0.26 71 85 105 134 177 247 374 644 1401 5406  0.26 96 116 143 183 243 341 520 899 1965 7628  0.26 157 191 237 304 406 573 876 1524 3352 13090 

0.27 72 86 106 136 180 251 381 657 1431 5529  0.27 97 117 145 186 247 347 529 917 2007 7802  0.27 159 193 241 309 413 583 894 1556 3425 13392 

0.28 72 87 108 137 182 255 388 669 1459 5647  0.28 98 119 147 188 251 353 539 934 2048 7970  0.28 161 196 244 314 420 593 910 1586 3495 13682 

0.29 73 88 109 139 185 259 394 681 1486 5759  0.29 99 120 149 191 255 359 548 951 2086 8129  0.29 163 199 247 318 426 603 925 1614 3562 13957 

0.3 74 89 110 141 187 263 400 691 1511 5865  0.3 100 121 151 193 258 364 556 966 2123 8281  0.3 165 201 251 322 432 612 940 1641 3625 14220 

0.31 74 90 111 142 189 266 405 702 1536 5967  0.31 101 123 153 196 261 369 564 981 2157 8425  0.31 167 203 253 326 438 620 954 1667 3685 14469 

0.32 75 91 112 144 191 269 411 711 1559 6063  0.32 102 124 154 198 264 373 571 995 2190 8561  0.32 168 205 256 330 443 628 967 1691 3742 14705 

0.33 75 91 113 145 193 272 415 721 1580 6153  0.33 103 125 155 200 267 377 578 1008 2220 8690  0.33 169 207 259 333 448 636 979 1714 3795 14928 

0.34 76 92 114 146 195 275 420 729 1600 6238  0.34 103 126 157 201 269 381 585 1020 2249 8811  0.34 171 208 261 336 452 643 990 1735 3845 15138 

0.35 76 93 115 147 197 277 424 737 1619 6318  0.35 104 127 158 203 272 385 591 1031 2276 8924  0.35 172 210 263 339 456 649 1001 1755 3891 15334 

0.36 77 93 116 148 198 280 428 744 1637 6392  0.36 105 127 159 204 274 388 596 1042 2301 9030  0.36 173 211 265 342 460 655 1010 1773 3935 15517 

0.37 77 94 116 149 199 282 431 751 1653 6460  0.37 105 128 160 206 276 391 601 1051 2324 9128  0.37 174 212 266 344 463 660 1019 1790 3975 15686 

0.38 77 94 117 150 201 284 435 757 1668 6524  0.38 105 128 160 207 278 394 606 1060 2345 9218  0.38 174 213 268 346 467 665 1027 1805 4012 15842 

0.39 77 94 117 151 202 285 437 763 1681 6582  0.39 106 129 161 208 279 396 610 1068 2364 9300  0.39 175 214 269 348 469 669 1034 1819 4045 15986 

0.4 78 94 118 151 203 287 440 767 1693 6634  0.4 106 129 162 209 280 398 614 1075 2382 9375  0.4 175 215 270 349 471 673 1041 1831 4075 16115 

0.41 78 95 118 152 203 288 442 772 1704 6682  0.41 106 130 162 209 281 400 617 1081 2397 9442  0.41 176 215 271 351 473 676 1046 1842 4102 16232 

0.42 78 95 118 152 204 289 444 775 1713 6723  0.42 106 130 162 210 282 401 619 1086 2410 9502  0.42 176 216 271 352 475 678 1051 1851 4125 16335 

0.43 78 95 118 152 204 290 445 778 1721 6760  0.43 106 130 163 210 283 403 621 1091 2422 9554  0.43 176 216 271 352 476 680 1055 1859 4145 16425 

0.44 78 95 118 152 204 290 446 781 1728 6790  0.44 106 130 163 210 283 403 623 1094 2432 9598  0.44 176 216 272 353 477 682 1058 1865 4162 16502 

0.45 77 94 118 152 205 290 447 783 1733 6816  0.45 106 130 163 210 283 404 624 1097 2439 9634  0.45 176 216 272 353 477 683 1060 1870 4176 16566 

0.46 77 94 118 152 205 291 448 784 1737 6836  0.46 106 129 162 210 283 404 625 1099 2445 9663  0.46 175 215 271 353 477 683 1061 1874 4186 16616 

0.47 77 94 118 152 204 290 448 785 1740 6851  0.47 105 129 162 210 283 404 625 1100 2449 9684  0.47 175 215 271 352 477 683 1062 1876 4193 16653 

0.48 77 94 117 152 204 290 447 785 1741 6860  0.48 105 129 162 209 283 404 625 1100 2451 9698  0.48 174 214 270 351 476 683 1061 1876 4196 16677 

0.49 76 93 117 151 203 290 447 784 1741 6864  0.49 104 128 161 209 282 403 624 1100 2451 9703  0.49 173 213 269 351 475 682 1060 1875 4196 16687 

0.5 76 93 116 151 203 289 446 783 1739 6862  0.5 104 127 160 208 281 402 623 1098 2449 9701  0.5 172 212 268 349 474 680 1058 1873 4193 16684 
  

 
Example: Assume that 95% confidence and an interval half width of L=0.05 is desired. 
After the first 50 samples, the estimate of p, p̂  is 0.73. The sample size requires are 
symmetrical about p, thus in order to save space the table only considers 0 0.5p  . So 
we need to make the calculation 1 0.73 0.27p    . The required sample size is then 
found in the second table (as this refers to the 95% confidence interval) and we pick the 
column associated with 0.05L   and the row associated with 0.27. Thus the sample size 
is n = 347. 
 


