
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2016; 82:261–285
Published online 5 February 2016 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/fld.4217

A local mesh refinement approach for large-eddy simulations of
turbulent flows

M. Cevheri *,† R. McSherry and T. Stoesser

School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK

SUMMARY

In this paper, a local mesh refinement (LMR) scheme on Cartesian grids for large-eddy simulations is
presented. The approach improves the calculation of ghost cell pressures and velocities and combines LMR
with high-order interpolation schemes at the LMR interface and throughout the rest of the computational
domain to ensure smooth and accurate transition of variables between grids of different resolution. The
approach is validated for turbulent channel flow and flow over a matrix of wall-mounted cubes for which
reliable numerical and experimental data are available. Comparisons of predicted first-order and
second-order turbulence statistics with the validation data demonstrated a convincing agreement. Impor-
tantly, it is shown that mean streamwise velocities and fluctuating turbulence quantities transition smoothly
across coarse-to-fine and fine-to-coarse interfaces. © 2016 The Authors International Journal for Numerical
Methods in Fluids Published by John Wiley & Sons Ltd
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1. INTRODUCTION

In recent decades, considerable progress has been made in the development of high fidelity numeri-
cal methods for the solution of the Navier–Stokes equations to simulate turbulent flows of practical
interest. Computational techniques such as large-eddy simulation (LES) and direct numerical simu-
lation (DNS) are applied increasingly to such flows, but their use continues to be restricted by grid
resolution requirements, and therefore also by available computing resources. In general, sophisti-
cated numerical methods on sufficiently fine grids enable accurate solutions of these simulations to
be obtained.

It is generally difficult to achieve the desired level of accuracy in turbulent flow simulations without
the use of spectral methods, which are presently limited to simple geometries with periodic boundary
conditions. High-order methods such as the compact scheme and high-order accurate finite difference
discretisation [1, 2], which have been investigated principally for LES of turbulent flow [3], there-
fore offer more convenient, easier ways to handle the nontrivial geometries that are involved in most
modern scientific and engineering applications. Inherently, high-order methods achieve better accu-
racy on coarser meshes compared with low-order schemes, which means lower computational cost
and faster convergence with lower dissipation and dispersion errors. When applied to eddy-resolving
simulations such as LES, however, high-order methods are nonetheless subject to the restriction
that the grid must be fine enough to accurately resolve the flow features of interest. Furthermore,
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the accuracy of subgrid scale (SGS) modelling, which forms the basis of LES, is normally achieved
using closure models that are a function of grid resolution and are generally less complex than the
analogue of a Reynolds-averaged Navier–Stokes turbulence model.

Grid-based (as opposed to meshless) numerical solution of the governing equations of fluid flow
can be achieved on structured or unstructured grids. Although the recent trend in LES has been
for the application of finite volume [4] and finite element methods [5, 6] on unstructured grids, the
present study focuses on the use of structured grids for two principal reasons: firstly, the accuracy of
the computation on unstructured grids often suffers when extreme gradients are experienced along
the dominant flow direction, as is the case in boundary layer flow, for example [7], and secondly,
unstructured grids are often not suitable for use with multigrid methods, which have been used by
the authors in the past to achieve very efficient computations. In addition, the immersed boundary
method (IBM) [8, 9] permits the accurate and efficient representation of complex solid bodies on
fixed Cartesian grids, thereby circumventing one of the main perceived limitations of structured
grids, which is their inability to represent complex geometries.

For computation of flows on structured grids in which only certain regions of the physical domain
are critical, two approaches have received significant recent attention: grid stretching, in which cells
are stretched in one direction as distance from the critical region(s) increases, and local mesh refine-
ment (LMR), in which sequences of nested finer grids are applied in the critical region(s). Both
approaches aim at optimising the use of available computing power by concentrating grid resolu-
tion where it is most needed, and reducing it where it is not. Stretched grids inherently include cells
with high aspect ratios in some areas of the flow (and particularly in complex domains) prolong-
ing or hindering the convergence of the Poisson equation in projection methods, particularly when
immersed boundaries are also used [10]. The present study therefore focuses on the application of
LMR in structured grids.

The development of a mesh refinement algorithm for the solution of hyperbolic partial differential
equations in one and two dimensions was initially discussed by [11, 12], who applied specially
derived difference equations at the interface between nested grids of differing resolution. Since then,
a number of researchers have investigated the application of mesh refinement to incompressible
flows, but this is significantly complicated by the elliptic nature of the governing equations and
the difficulty associated with the enforcement of the divergence-free constraint. The violation of
mass and momentum conservation properties at the coarse-fine interfaces affects the global solution:
several techniques such as idempotent [13] and non-idempotent (i.e. approximate) [14, 15] second-
order projection methods using different convection schemes have therefore been developed.

Minion [14] developed an adaptive projection method for the incompressible Euler equations on
locally refined grids to enforce the divergence-free constraint at each time step, establishing second-
order accuracy in time and space. Almgren et al. [16] described a conservative adaptive projection
method for the variable-density incompressible Navier–Stokes equations in two and three dimen-
sions on adaptive grids, which refines in time as well. An algorithm for the incompressible Euler
equations on block-structured local refinement grids using a multilevel projection algorithm was
proposed by Martin and Colella [17]; the method has subsequently been extended to incompress-
ible viscous flows by Martin et al. [18]. Popinet [19] proposed the adaptive quad/octree Gerris
solver, which uses a combination of an approximate projection approach and the multigrid method
to numerically solve the time-dependent incompressible Euler equations. A nested finite volume-
based Cartesian grid was presented by Peng et al. [20] to simulate unsteady viscous incompressible
flows with complex immersed boundaries. The equations resulting from discretisation on structured
grids were solved using an iterative method known as line-successive-over-relaxation with a fast
convergence rate.

Of critical importance in LMR is the establishment of procedures for communication of data
across the non-matching interfaces to accommodate the requirements of discretisation stencils. This
involves two processes: prolongation (i.e. extrapolation or interpolation) and restriction (i.e. aver-
aging). Generally, linear interpolations to transfer data from coarse to fine grids are used for the
prolongation process, and cell averaging procedures to reduce fine grid data onto coarse grids are
used for the restriction process, and many fluid flow problems can be treated effectively using this
technique. However, while the aforementioned studies [11–20] focused on the simulation of laminar
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flows, the application of nested grids for turbulent flows, and in particular for LES/DNS, requires
different, more sophisticated strategies to minimise (or ideally remove) the negative by-products of
grid discontinuities (in particular the inherent violation of conservativeness) on the accuracy and sta-
bility of the solution. Special interpolation algorithms, advanced numerical methods, higher-order
discretisations and variable filters have been applied in LES computations to circumvent these issues
[21–24].

Kravchenko et al. [21] computed wall-bounded turbulent flows using a pseudo-spectral/B-spline
approach with a Fourier spectral method in homogeneous directions and a B-spline method in the
wall-normal direction on multi-level grids, with the finest zones located near the walls. Although the
results were in good agreement with previously published experimental results, the applicability of
spectral methods to turbulent flows in complex geometries is limited. Piomelli et al. [22] studied LES
of turbulent channel flow with different SGS models and variable filters to examine the combined
effect of truncation, modelling and commutation errors on discontinuous grids. It was observed that
interfaces parallel to the direction of mean advection did not result in significant discontinuities,
but those normal to it were characterised by large jumps in the resolved shear stresses, especially
close to the wall. Application of a variable filter across the interface reduced commutation errors but
did not reduce the discontinuity, and the authors therefore postulated that commutation errors were
not the main cause. Pantano et al. [23] presented a dynamically adaptive, three-dimensional hybrid
finite difference method for LES of compressible flows. The method employed a finite difference
weighted essentially non-oscillatory scheme close to the grid resolution discontinuities, while a tuned
centred finite difference scheme was applied in regions of uniform resolution. Smooth flow and
conserved properties were observed around the resolution discontinuities, and the turbulent structures
passing through the interface were shown to be well resolved. Simulations of spatially developing
homogeneous isotropic turbulent were performed by [24] on fine-to-coarse and coarse-to-fine grids,
and the development of the turbulence downstream of the interface was investigated. It was observed
that a significant amount of energy accumulation occurs when the grid is suddenly coarsened in the
streamwise direction. Although filter widths that changed discontinuously across the interface gave
more accurate results for coarse-to-fine grids than filter widths that varied gradually between the
values of coarse and fine grids, commutation errors were shown to be larger for the discontinuous
filter widths. Furthermore, gradually changing filter width across the interface gives better results for
a fine-to-coarse interface. All of the observations in [24] were obtained for relatively simple turbulent
flows, and their accuracy for complex flows remains unquantified.

The present study introduces and validates an LMR method for LESs of turbulent incompress-
ible flows. The most important feature of the proposed approach derives from the combination of
high-order spatial discretisation and LMR, which aims at achieving improvements in terms of the
predictions of second-order statistics in complex turbulent flows. Two validation cases have been
chosen to illustrate the robustness of the code: turbulent channel flow at friction Reynolds number
Re𝜏 = 590 and flow over a matrix of cubes at bulk Reynolds number Re = 1.3 × 104. The paper
is organised as follows: Section 2 introduces the numerical framework that has been developed; the
computational setup of the turbulent channel and cube matrix validation simulations are presented
in Section 3; and the results, which are compared with DNS and experimental data, are presented
and discussed in Section 4. Finally, some conclusions are drawn in Section 5.

2. NUMERICAL FRAMEWORK

2.1. Large-eddy simulation method

In this study, the in-house LES code Hydro3D, which has been validated thoroughly for many internal
and external flows (e.g. [25–30]), is modified with an LMR algorithm. In LES, large-scale turbulent
motions are simulated directly, and only the less-energetic, dissipative part of the turbulence spec-
trum is modelled [31, 32]. Hydro3D solves the incompressible, filtered Navier–Stokes equations
which read

𝜕ui

𝜕xi
= 0 (1)
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𝜕ui

𝜕t
+

𝜕(uiuj)
𝜕xj

= −
𝜕p

𝜕xi
+ 1

Re

𝜕2ui

𝜕xi𝜕xj
−

𝜕𝜏ij

𝜕xj
(2)

where xi and xj are the spatial location vectors (i.e. xi and xj = x, y, z for i and j = 1, 2, 3), ui, uj
(i, j = 1, 2, 3) are the resolved velocity components in x−, y− and z−directions, normalised on the
reference velocity U and p is the resolved pressure divided by density. Re = UL∕𝜈 is Reynolds
number, where 𝜈 is the kinematic viscosity and L is the reference length scale.

The SGS stress, 𝜏ij, arises from unresolved small scale fluctuations and is approximated using
the wall-adapting local eddy viscosity model [33]. Unlike the classic Smagorinsky model, the wall-
adapting local eddy viscosity model does not require damping near solid walls. This makes it very
well-suited to simulations in which solid boundaries are not sharply defined, such as those performed
using the IBM, as is the case in the present study. In addition, the model is based on the strain and
rotation rates of resolved velocities, and it therefore automatically calculates zero eddy viscosity in
laminar shear flows. The eddy viscosity, 𝜈T , is calculated as follows:

𝜈T = (CwΔ)2

(
sd

ijs
d
ij

) 3
2

(SijSij)
5
2 +

(
sd

ijs
d
ij

) 5
4

(3)

where Cw is a constant with a value 0.46. The traceless symmetric part of the square of the velocity
gradient tensor is computed in the following form:

sd
ij =

1
2

(
gikgkj + gjkgki

)
− 1

3
𝛿ijgkk

2 with
𝜕ūi

𝜕xij
(4)

Implicit coupling of pressure and velocity terms is achieved by the fractional step method, which
comprises two steps [34]. In the first step, the intermediate velocities, ui

∗, are initially predicted
without enforcing the incompressibility constraint using a two-stage explicit Runge–Kutta method
as follows:

ui
∗,n+ 1

2 = ui
n + Δt

2

[
𝐑n − 𝜕

𝜕xi
pn− 1

2

]
(5)

ui
∗,n+1 = ui

n + Δt

[
𝐑∗,n+ 1

2 − 𝜕

𝜕xi
pn− 1

2

]
(6)

where

R =
[
−
𝜕(uiuj)
𝜕xj

+
( 1

Re
+ 𝜈T

) 𝜕2ui

𝜕xi𝜕xj

]
. (7)

In the second step, the intermediate velocities are projected onto the divergence-free vector fields
through a Poisson equation, which calculates an increment to the pressure field, 𝛿p:

∇2(𝛿p) = 1
Δt

𝜕

𝜕xi
ui

∗,n+1 (8)

where ∇2 is the Laplacian operator. Equation (8) is solved iteratively using the multigrid method
[[35]], and the velocity field is updated as follows:

ui
n+1 = ui

∗,n+1 − Δt
𝜕(𝛿p)
𝜕xi

(9)
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pn+ 1
2 = pn− 1

2 + 𝛿p (10)

The Poisson equation is then solved with this new pressure, and an iterative process is established.
The iteration continues until the divergence-free condition of the computed velocity field within some
tolerance is satisfied. It is observed that the overall algorithm is second-order accurate and stable on
either uniform or locally refined grids when the ghost cell pressures at coarse-fine grid interfaces are
treated with a specific interpolation algorithm, which is described in Section 2.2.

Hydro3D employs a Cartesian grid with a staggered arrangement of pressure and velocity vari-
ables, which has the advantage of avoiding the odd-even coupling between the pressure and velocity
without requiring special interpolation algorithms. On a staggered grid, scalar quantities such as pres-
sure and divergence are stored at the cell centres, and vector quantities such as velocity and pressure
gradient are stored at the middle of the cell faces. Figure 1(a) presents a schema showing the storage
of pressures and velocities on a 2D staggered grid, either side of an LMR interface: the indices (I, J)
and (i, j) correspond to coarse and fine grid points, respectively. The indices of u velocity on the east
face and v velocity on the north face of the shaded-fine cell are (i, j), and u velocity on the west face
and v velocity on the south face of the same cell are (i − 1, j) and (i, j − 1), respectively. The index-
ing of coarse cells is handled analogously. One or more layers of ghost cells, denoted in Figure 1(b)
by dashed lines, are appended around each side of the physical domain in order to provide numeri-
cal boundaries and to facilitate spatial approximations of cells at the fine-coarse interfaces without
requiring complicated discretisation stencils of non-uniform grids.

Equation (7) contains partial derivatives in space of first and second order, and in LES, the accurate
approximation of these is key to the success of the simulation [31]. In Hydro3D, explicit second-
order and fourth-order central differences for continuity, convective and viscous terms are available
and for the sake of simplicity are presented here in two dimensions.

Second-order accurate approximations of the cell-centre partial derivatives in the continuity
equation read

(
𝜕u
𝜕x

)
i,j
=

ui,j − ui−1,j

Δx
+ O

(
h2
)

and

(
𝜕v
𝜕y

)
i,j

=
vi,j − vi,j−1

Δy
+ O

(
h2
)

(11)

Because of the staggered arrangement, the x−, y− and z−momentum equations are solved at
the cell faces. The second-order accurate discretisations of convective and diffusive terms in the
x−momentum equation are as follows:

Figure 1. The staggered variable arrangement and index location of coarse and fine ghost cells.
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(
𝜕u2

𝜕x

)
i,j

=
(ui+1,j + ui,j)2 − (ui,j + ui−1,j)2

4Δx
+ O

(
h2
)

(12)

(
𝜕uv
𝜕y

)
i,j

=
(vi+1,j + vi,j)(ui,j+1 + ui,j) − (vi+1,j−1 + vi,j−1)(ui,j + ui,j−1)

4Δy
+ O

(
h2
)

(13)

(
𝜕2u
𝜕x2

)
i,j

=
ui+1,j − 2ui,j + ui−1,j

(Δx)2
+ O

(
h2
)

(14)

(
𝜕2u
𝜕y2

)
i,j

=
ui,j+1 − 2ui,j + ui,j−1

(Δy)2
+ O

(
h2
)

(15)

and the y−momentum convective and diffusive terms are evaluated as

(
𝜕uv
𝜕x

)
i,j
=

(
ui,j+1 + ui,j

) (
vi+1,j + vi,j

)
−
(
ui−1,j+1 + ui−1,j

) (
vi,j + vi−1,j

)
4Δx

+ O
(
h2
)

(16)

(
𝜕v2

𝜕y

)
i,j

=
(
vi,j+1 + vi,j

)2 −
(
vi,j + vi,j−1

)2

4Δy
+ O

(
h2
)

(17)

(
𝜕2v
𝜕x2

)
i,j

=
vi+1,j − 2vi,j + vi−1,j

(Δx)2
+ O

(
h2
)

(18)

(
𝜕2v
𝜕y2

)
i,j

=
vi,j+1 − 2vi,j + vi,j−1

(Δy)2
+ O

(
h2
)

(19)

Analogous formulae are used to predict convective and diffusive terms for the z−momentum
equation.

Fourth-order accurate approximations of the cell-centre partial derivatives in the continuity
equation are [2]

(
𝜕u
𝜕x

)
i,j
=

−ui+1,j + 27ui,j − 27ui−1,j + ui−2,j

24Δx
+ O

(
h4
)

(20)

and

(
𝜕v
𝜕y

)
i,j

=
−vi,j+1 + 27vi,j − 27vi,j−1 + vi,j−2

24Δy
+ O

(
h4
)

(21)

Fourth-order accurate discretisations of convective and diffusive terms in the x−momentum
equation are as follows:

(
𝜕u2

𝜕x

)
i,j

=
−ũi+2,j

2 + 27ũi+1,j
2 − 27ũi,j

2 + ũi−1,j
2

24Δx
+ O

(
h4
)

(22)
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(
𝜕uv
𝜕y

)
i,j

=
−ũc

i,j+1ṽc
i,j+1 + 27ũc

i,jṽ
c
i,j − 27ũc

i,j−1ṽc
i,j−1 + ũc

i,j−2ṽc
i,j−2

24Δy
+ O

(
h4
)

(23)

(
𝜕2u
𝜕x2

)
i,j

=
−ui+2,j + 16ui+1,j − 30ui,j + 16ui−1,j − ui−2,j

12(Δx)2
+ O

(
h4
)

(24)

(
𝜕2u
𝜕y2

)
i,j

=
−ui,j+2 + 16ui,j+1 − 30ui,j + 16ui,j−1 − ui,j−2

12(Δy)2
+ O

(
h4
)

(25)

The y−momentum convective and diffusive terms, at the north face of the cell indexed by (i, j),
are ultimately evaluated as

(
𝜕uv
𝜕x

)
i,j
=

−ũc
i+1,jṽ

c
i+1,j + 27ũc

i,jṽ
c
i,j − 27ũc

i−1,jṽ
c
i−1,j + ũc

i−2,jṽ
c
i−2,j

24Δx
+ O

(
h4
)

(26)

(
𝜕v2

𝜕y

)
i,j

=
−ṽi,j+2

2 + 27ṽi,j+1
2 − 27ṽi,j

2 + ṽi,j−1
2

24Δy
+ O

(
h4
)

(27)

(
𝜕2v
𝜕x2

)
i,j

=
−vi+2,j + 16vi+1,j − 30vi,j + 16vi−1,j − vi−2,j

12(Δx)2
+ O

(
h4
)

(28)

(
𝜕2v
𝜕y2

)
i,j

=
−vi,j+2 + 16vi,j+1 − 30vi,j + 16vi,j−1 − vi,j−2

12(Δy)2
+ O

(
h4
)

(29)

where ũi,j and ṽi,j are the interpolated velocities at the cell centre (i, j):

ũi,j =
−ui+1,j + 9ui,j + 9ui−1,j − ui−2,j

16
+ O

(
h4
)

(30)

ṽi,j =
−vi,j+1 + 9vi,j + 9vi,j−1 − vi,j−2

16
+ O

(
h4
)

(31)

and ũc
i,j and ṽc

i,j are the interpolated velocities at the corner (i, j):

ũc
i,j =

−ui,j+2 + 9ui,j+1 + 9ui,j − ui,j−1

16
+ O

(
h4
)

(32)

ṽc
i,j =

−vi+2,j + 9vi+1,j + 9vi,j − vi−1,j

16
+ O

(
h4
)

(33)

The partial derivatives of the z−momentum equation are defined similarly.
Finally, it should be noted that Hydro3D is parallelized using domain decomposition, that is, the

computational domain is divided into a number of smaller sub-domains to allow parrallelisation.
Communication across internal boundaries between neighbouring sub-domains is achieved using
layers of ghost cells that are located around the peripheries of the domains. The standard message
passing interface accomplishes communication between sub-domains.
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2.2. Local mesh refinement

In the present study, a 2:1 reduction in grid element size between neighbouring sub-domains is
imposed on the staggered computational grid to achieve LMR in critical areas. In the follow-
ing, the arrangement of ghost cell velocities and pressures is mostly depicted in two dimensions
for simplicity.

2.2.1. Calculation of pressure at the non-matching interface. The calculation of ghost cell pressures
is achieved by adjusting the coarse pressure gradients at the coarse-fine interface to those computed
for neighbouring fine cells, thereby coupling the pressure fields. In the prolongation process, pres-
sure values, the location of which are indicated by ‘x’ symbols in Figure 2, are first quadratically
interpolated using pressure values from the coarse grid computational cells (indicated by solid right
triangles, ▶, in the same figure) as follows:

pa
I,J =

5pI−1,J + 30pI,J − 3pI+1,J

32
+ O

(
h2
)

pb
I,J =

5pI+1,J + 30pI,J − 3pI−1,J

32
+ O

(
h2
) (34)

Another quadratic interpolation is then applied to calculate fine ghost pressures using the
computational cells indicated by solid left triangles (◀ ) and the interpolated pressures:

pi,j+1 =
8pa

I,J + 10pi,j − 3pi,j−1

15
+ O

(
h2
)

pi+1,j+1 =
8pb

I,J + 10pi+1,j − 3pi+1,j−1

15
+ O

(
h2
) (35)

In the restriction process, the edge-centred gradients of the fine grids, Fa
fine and Fb

fine in Figure 2,
are calculated as follows:

Fa
fine =

pi,j+1 − pi,j

Δyfine
+ O(h) and Fb

fine =
pi+1,j+1 − pi+1,j

Δyfine
+ O(h) (36)

The coarse grid pressure gradients are then taken as the arithmetic average of the fine-grid pressure
gradients to enforce the continuity of the gradient across the interface. Ghost cell pressures from the
coarse grid (I, J − 1) are calculated using the following formula:

Figure 2. Pressure locations around the interface between a fine and coarse grid.
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Figure 3. Pressure locations between fine and coarse grids for three-dimensional problems when the
refinement is considered in the y− direction.

pI,J − pI,J−1

Δycoarse
=

(
Fa

fine + Fb
fine

2

)
+ O(h) (37)

Although quadratic interpolations give first-order accurate approximations of the Laplacian oper-
ator along the interface, it is proposed in [36] that this is sufficient to ensure global second-order
accuracy of the projected velocity field.

Figure 3 presents the indexing of neighbouring cells around a non-matching interface to illustrate
the means by which pressure values are calculated in the three-dimensional domain. Considering
refinement in the y−direction, a coarse cell, which is located on the north faces of four fine cells, is
indexed as (I, J,K), and the south neighbours associated with it are indexed as follows: (i, j, k), (i, j, k+
1), (i+1, j, k) and (i+1, j, k+1). In the prolongation process, quadratic interpolations are performed
to obtain the four ghost fine pressure values on the coarse side of the interface, which are denoted
pa, pb, pc and pd in Figure 3:

pa
I,J,K = 1

1024

(
25pI−1,J,K−1 + 150pI,J,K−1 − 15pI+1,J,K−1 + 150pI−1,J,K + 900pI,J,K

−90pI+1,J,K − 15pI−1,J,K+1 − 90pI,J,K+1 + 9pI+1,J,K+1

)
+ O

(
h2
) (38)

pb
I,J,K = 1

1024

(
−15pI−1,J,K−1 + 150pI,J,K−1 + 25pI+1,J,K−1 − 90pI−1,J,K + 900pI,J,K

+150pI+1,J,K + 9pI−1,J,K+1 − 90pI,J,K+1 − 15pI+1,J,K+1

)
+ O

(
h2
) (39)

pc
I,J,K = 1

1024

(
−15pI−1,J,K−1 − 90pI,J,K−1 + 9pI+1,J,K−1 + 150pI−1,J,K + 900pI,J,K

−90pI+1,J,K + 25pI−1,J,K+1 + 150pI,J,K+1 − 15pI+1,J,K+1

)
+ O

(
h2
) (40)

pd
I,J,K = 1

1024

(
9pI−1,J,K−1 − 90pI,J,K−1 − 15pI+1,J,K−1 − 90pI−1,J,K + 900pI,J,K

+150pI+1,J,K − 15pI−1,J,K+1 + 150pI,J,K+1 + 25pI+1,J,K+1

)
+ O

(
h2
) (41)

Additional information pertaining to the derivation of Equations (38)–(41) can be found in
[37]. Another quadratic interpolation is then applied to calculate fine ghost pressures using the
computational cells indicated by solid left triangles (◀) and the interpolated pressures:
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pi,j+1,k =
1
15

(
8pa

I,J,K + 10pi,j,k − 3pi,j−1,k

)
+ O

(
h2
)

(42)

pi+1,j+1,k =
1
15

(
8pb

I,J,K + 10pi+1,j,k − 3pi+1,j−1,k

)
+ O

(
h2
)

(43)

pi,j+1,k+1 = 1
15

(
8pc

I,J,K + 10pi,j,k+1 − 3pi,j−1,k+1

)
+ O

(
h2
)

(44)

pi+1,j+1,k+1 = 1
15

(
8pd

I,J,K + 10pi+1,j,k+1 − 3pi+1,j−1,k+1

)
+ O

(
h2
)

(45)

In the restriction process, the coarse ghost pressure value, pI,J−1,K , is calculated by adjusting the
coarse pressure gradients at the coarse-fine interface to those computed for neighbouring fine cells
in the following form:

pI,J,K − pI,J−1,K

Δycoarse
= 1

4

(pi,j+1,k − pi,j,k

Δyfine

+
pi+1,j+1,k − pi+1,j,k

Δyfine
+

pi,j+1,k+1 − pi,j,k+1

Δyfine
+

pi+1,j+1,k+1 − pi+1,j,k+1

Δyfine

)
+ O(h)

(46)

2.2.2. Calculation of ghost velocities tangential to the non-matching interface. Prolongation and
restriction of ghost velocities, which are tangential to the non-matching interface, are required in the
discrete formulations of derivatives. The procedures are different for velocity components that are
tangential and normal to the non-matching LMR interfaces; evaluation of tangential velocities is not
as challenging as evaluation of normal velocities. Figure 4 is a schema illustrating the arrangement
of ghost cell tangential velocities at a fine-coarse grid interface.

In the prolongation procedure, fine grid tangential ghost velocities are calculated using quadratic
interpolations with mass conservation in the following forms for two-dimensional and three-
dimensional problems, respectively:

ui+1,j+1 =
uI,J−1 + 8uI,J − uI,J+1

8
+ O

(
h2
)

(47)ui+1,j+1,k =
1

128

(
3uI,J−1,K−1 + 15uI,J,K−1 − 2uI,J+1,K−1 + 15uI,J−1,K

+128uI,J,K − 15uI,J+1,K − 2uI,J−1,K+1 − 15uI,J,K+1 + uI,J+1,K+1

)
+ O

(
h2
) (48)

ui+1,j+1,k+1 = 1
128

(
−2uI,J−1,K−1 − 15uI,J,K−1 + uI,J+1,K−1 + 15uI,J−1,K

+128uI,J,K − 15uI,J+1,K + 3uI,J−1,K+1 + 15uI,J,K+1 − 2uI,J+1,K+1

)
+ O

(
h2
) (49)

Figure 4. Locations of velocities tangential to the LMR interface between fine and coarse grids.
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The second-order average of these edge values is then taken to obtain the value at the location in
between: ui+2,j+1 = (ui+1,j+1 + ui+3,j+1)∕2 in 2D and ui,j+1,k+1 = (ui−1,j+1,k+1 + ui+1,j+1,k+1)∕2 in 3D.

In the restriction procedure, the coarse tangential velocities are obtained by averaging the com-
puted fine values, thus enforcing mass conservation at the interfaces. Mass conservation is also
enforced for velocities normal to the interface (Section 2.2.3). The coarse grid ghost velocity, indexed
by (I, J − 1), is calculated as follows:

uI,J−1 =
ui+1,j + ui+1,j−1

2
+ O

(
h2
)

(50)

and the three-dimensional procedure for the coarse grid ghost velocity indexed by (I, J − 1,K),
which is prescribed for the three-dimensional pressure formulation, is achieved for both approaches
as follows:

uI,J−1,K =
ui+1,j,k + ui+1,j−1,k + ui+1,j,k+1 + ui+1,j−1,k+1

4
+ O

(
h2
)

(51)

2.2.3. Calculation of ghost velocities normal to the non-matching interface. Interpolation and
restriction procedures for the velocity component normal to the interface differ slightly from those
used for the tangential velocities. Figure 5 presents the arrangement of ghost cells.

In the prolongation process, the values marked with ‘x’ symbols in Figure 5 are first calculated
using coarse grid computational values as follows:

vi,j+2 =
vI−1,J + 8vI,J − vI+1,J

8
+ O

(
h2
)

vi+1,j+2 =
vI+1,J + 8vI,J − vI−1,J

8
+ O

(
h2
) (52)

One additional quadratic interpolation between computed coarse and fine grid values is then
employed using vi,j+2 and vi+1,j+2, which are interpolated quadratically with mass conservation
enforced. This interpolation is defined as follows:

vi,j+1 = 1
3

(
vi,j+2 + 3vi,j − vi,j−1

)
+ O

(
h2
)

vi+1,j+1 = 1
3

(
vi+1,j+2 + 3vi+1,j − vi+1,j−1

)
+ O

(
h2
) (53)

The formulation for three-dimensional problems is similar. First, the normal velocities on the
coarse edge are interpolated as follows:

Figure 5. Locations of velocities normal to the LMR interface between fine and coarse grids.
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vi,j+2,k =
1

128

(
3vI−1,J,K−1 + 15vI,J,K−1 − 2vI+1,J,K−1 + 15vI−1,J,K

+128vI,J,K − 15vI+1,J,K − 2vI−1,J,K+1 − 15vI,J,K+1 + vI+1,J,K+1

)
+ O

(
h2
) (54)

vi+1,j+2,k =
1

128

(
−2vI−1,J,K−1 + 15vI,J,K−1 + 3vI+1,J,K−1 − 15vI−1,J,K

+128vI,J,K + 15vI+1,J,K + vI−1,J,K+1 − 15vI,J,K+1 − 2vI+1,J,K+1

)
+ O

(
h2
) (55)

vi,j+2,k+1 = 1
128

(
−2vI−1,J,K−1 − 15vI,J,K−1 + vI+1,J,K−1 + 15vI−1,J,K

+128vI,J,K − 15vI+1,J,K + 3vI−1,J,K+1 + 15vI,J,K+1 − 2vI+1,J,K+1

)
+ O

(
h2
) (56)

vi+1,j+2,k+1 = 1
128

(
vI−1,J,K−1 − 15vI,J,K−1 − 2vI+1,J,K−1 − 15vI−1,J,K

+128vI,J,K + 15vI+1,J,K − 2vI−1,J,K+1 + 15vI,J,K+1 + 3vI+1,J,K+1

)
+ O

(
h2
) (57)

before the quadratic interpolation is performed according to Equation (53) to compute the values of
vi,j+1,k, vi+1,j+1,k, vi,j+1,k+1 and vi+1,j+1,k+1.

In the restriction process, the fourth-order averages of computed fine grid values are used to calcu-
late the coarse grid ghost velocities instead of second-order averages as was the case for the tangential
velocities (Equations 50 and 51). The fourth-order formulation is as follows:

vI,J−1 =
−vi−1,j + 9vi,j + 9vi+1,j − vi+2,j

16
+ O

(
h4
)

(58)

In 3D, the formulation of the fourth-order average is slightly more complicated than in 2D. Figure 6
presents a view of a 3D interface in the x−z plane, with the locations of fine and coarse grid velocities
denoted by hollow and solid circles, respectively. In the first step, the values marked with ‘x’ symbols
are calculated as follows, using the first ‘x’ on the left side of Figure 6 as an example:

Figure 6. Locations of velocities normal to the LMR interface between fine and coarse grids for three-
dimensional problems when the refinement is considered in the y− direction.
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va =
−vi−1,j,k−1 + 9vi−1,j,k + 9vi−1,j,k+1 − vi−1,j,k+2

16
+ O

(
h4
)

(59)

The coarse grid ghost velocity is then evaluated using the calculated values at ‘x’ locations
as follows:

vI,J−1,K = −va + 9vb + 9vc − vd

16
+ O

(
h4
)

(60)

Finally, it should be noted that although the generated grid consists of domains at different
resolutions, refinement in time is not employed in the present study. Instead, all grids in all lev-
els are advanced with a uniform time step to simplify the implementation and to make for more
straightforward parallelisation and CPU load distribution.

3. PERFORMANCE ASSESSMENT: COMPUTATIONAL SETUP AND BOUNDARY
CONDITIONS FOR TWO VALIDATION CASES

In order to assess the performance of the LES-LMR code, two flows are simulated. The first is
fully developed turbulent flow in a straight channel, probably the most prominent validation case
for LES. The challenge lies in the accurate prediction of wall-shear stress and profiles of first-order
and second-order statistics. The second case is the flow over a matrix of cubes. Here, the goal is to
reproduce numerically the well-known experiment of Meinders et al. [38], which is included in the
European Research Community On Flow, Turbulence and Combustion (ERCOFTAC) data base of
standard test cases for Computational Fluid Dynamics (CFD) developers. The computational setup
and boundary conditions for the LES of the two cases are presented in the following subsections,
and Table I summarises all of the simulations that have been undertaken.

3.1. Fully developed turbulent channel flow

The Reynolds number based on half channel height, 𝛿, and bulk velocity of this flow is Re = 10, 935,
which is exactly the same as the DNS of Moser et al. [39], data from which are used for compari-
son. In the streamwise direction (along the x-axis), the computational domain spans Lx ≈ 2𝜋𝛿. The
domain has a cross-section of Ly = 2𝛿 and Lz ≈ 𝜋𝛿 in wall-normal (y-axis) and spanwise (z-axis)
directions, respectively. No-slip boundary conditions are stipulated at the walls, and periodic bound-
ary conditions are used in streamwise and spanwise directions. The streamwise pressure gradient,
𝛿p∕𝛿x, that drives the flow is adjusted at each time step to ensure a constant mass flow rate through
the channel.

Three different grids are tested, and these are sketched in Figure 7. LES that employed second-
order and fourth-order spatial discretisations were performed on each grid. The finest grid, that is, the

Table I. Summary of test cases.

Name Case Grid Spatial discretisation Normal ghost cell interpolation

CH-FIN-O2 Channel Uniform fine Second-order Equation (60)

CH-CRS-O2 Channel Uniform coarse Second-order Equation (60)

CH-LMR-O2 Channel LMR Second-order Equation (60)

CH-FIN-O4 Channel Uniform fine Fourth-order Equation (60)

CH-CRS-O4 Channel Uniform coarse Fourth-order Equation (60)

CH-LMR-O4 Channel LMR Fourth-order Equation (60)

CH-LMR-O4b Channel LMR Fourth-order Equation (51)

CB-LMR-500 Cube, Reb = 500 LMR Fourth-order Equation (60)

CB-LMR Cube, Reb = 13000 LMR Fourth-order Equation (60)

CB-UNI Cube, Reb = 13000 Uniform Fourth-order Equation (60)
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Figure 7. Grid resolutions used in the channel flow test case: (a) fine uniform, (b) coarse uniform and (c)
LMR. Solid lines in plot (c) represent LMR interfaces, and dashed lines denote spectra locations.

one used for CH-FIN-O2 and CH-FIN-O4, comprises approximately 74 million grid points, while
that one used for CH-CRS-O2 and CH-CRS-O4 is much coarser and comprises approximately 1
million grid points. The grid for CH-LMR-O2 and CH-LMR-O4 uses LMR and incorporates three
resolution levels; the entire computational domain contains approximately 22 million grid points.
The refinement factor between two neighbouring resolutions is 2:1 in all spatial directions. The
resolution of the uniform grids in wall units is as follows: the uniform fine grid (CH-FIN-O2 and
CH-FIN-O4) has grid spacings of Δx+ = Δz+ = 9.8 and Δy+ = 1.2, the grid spacings of the uniform
coarse grid (CH-CRS-O2 and CH-CRS-O4) are Δx+ = Δz+ = 39.7 and Δy+ = 4.8. The spacings
of the LMR grid (CH-LMR-O2 and CH-LMR-O4) in wall units in the fine-grid near-wall region are
Δx+ = Δz+ = 9.5 and Δy+ = 1.2. For comparison, the DNS grid of [39] featured grid spacings
of Δx+ = 9.7, Δz+ = 4.8 and Δy+ = 7.2 plus 13 or more Chebyshev grid points in the near-wall
(Δy+ ⩽ 10) region.

The computations are first run for approximately 10 convective time units (tu𝜏∕𝛿, where u𝜏 is
friction velocity) to reach fully developed turbulent flow, and then statistics are collected over approx-
imately 12 additional convective time units. All flow profiles are averaged in the streamwise and
spanwise directions.

As the main motivation for using LMR is to reduce overall computational expense by reduc-
ing grid resolution in areas where it is not needed, it is pertinent to compare the relative savings
that were achieved in the present investigation when the LMR grid was used. To facilitate such
a comparison, the uniform fine and LMR cases with fourth-order interpolations, CH-FIN-O4 and
CH-LMR-O4, are considered. In both cases, the grids were decomposed into 256 sub-domains of
equal dimensions, which were distributed between a number of parallel processors in such a manner
as to divide the computational load equally between the processors. The uniform fine grid simu-
lation used 256 processors (one sub-domain per processor), while the LMR simulation used only
112 (between one and eight sub-domains per processor). The average wall time required for the fine
uniform grid was 1.344 seconds per time step, while for the LMR grid, it was 1.355 seconds per
time step, equating to an average increase of 0.8%. This small increase in the per-time step com-
putational expense is primarily due to the extra interpolation operations that are required to restrict
and prolong variables between meshes of different resolutions in the LMR algorithm. In fact, in the
LMR simulation, the total wall time required to perform one exchange of pressures and velocities
between two adjacent sub-domains with non-matching resolutions (one in the finest region and one
in the intermediate region) was observed to require 2.5 times as much wall time as the exchange
between the same sub-domains in the uniform case. However, the proportion of the overall computa-
tion time taken up by the exchange operations is sufficiently small to ensure that the overall increase
is only 0.8%. The overall expense of the uniform fine grid simulation was 256 × 1.344 ≈ 344 CPU
seconds, whereas for the LMR simulation, it was 112 × 1.344 ≈ 152 CPU seconds, a saving of
almost 56%.
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3.2. Turbulent flow over a matrix of cubes

In the experiment of Meinders et al. [38], 250 cubes of height k were placed on one wall of a wide
wind tunnel of height h = 3.4k. The cubes were arranged in a regular fashion, with equal streamwise
and spanwise spacings (Sx = Sz = 1.2h). The Reynolds number of the flow based on tunnel height,
h, was Reh = 13000.

Meinders et al. proposed that the matrix of cubes was wide and long enough to ensure that the flow
around individual cubes that were positioned sufficiently far from the edge of the matrix could be
considered to be fully developed and spatially periodic. A number of researchers (see, for example,
[40] and [41]) have therefore chosen to simulate this case using a domain of dimensions Sx × Sz ×
h, with periodic conditions applied to the spanwise and streamwise boundaries, no-slip conditions
applied to the top and bottom walls, and the cube located at the centre of the bottom wall; this is the
approach that is adopted here.

The LESs are performed on two computational grids: one in which the grid resolution is increased
in the vicinity of the cube and walls using LMR to ensure proper resolution of the near-wall regions
and one ‘affordable’ coarse grid in which the grid spacing is uniform across the whole domain.
Figure 8 presents longitudinal sections of the two grids in the spanwise mid plane (i.e. z∕h = 0.6).
The grid with LMR comprises approximately 18.3 million grid points; if the finest resolution of
this grid was applied uniformly throughout the domain, the grid would comprise nearly 100 million
grid points. The minimum grid resolution in wall units in the finest grid zone, determined using the
peak local friction velocity, which occurs at the bottom corners of the leading face of the cube, is as
follows: Δx+ = Δy+ = Δz+ ≈ 3.32. In the intermediate zone, the mesh resolution is Δx+ = Δy+ =
Δz+ ≈ 6.65, and in the coarse zone, it is Δx+ = Δy+ = Δz+ ≈ 13.3. The uniform grid comprises
97 × 97 × 205 (≈ 1.93 million) points, and the cell sizes yield minimum resolutions in wall units of
Δx+ = Δz+ ≈ 16.6 and Δy+ ≈ 6.65. Unlike in the LMR grid, the cells of which have sides of equal
length in all directions, the cells in the uniform grid are anisotropic. It should be noted that, as flow
variables are stored in a staggered arrangement, the normalised wall distance of the first grid point
is always half of the resolution quoted previously. This means that the first grid point for streamwise
velocity, for example, is located at y+ ≈ 1.66 for the LMR case and y+ ≈ 3.32 for the uniform case.
On the sides of the cube, the first grid point for streamwise velocity is located at z+ ≈ 1.66 for the
LMR case and z+ ≈ 8.31 for the uniform case.

Before replicating the exact experimental conditions, a lower Reynolds number laminar flow
(Reh = 500) is simulated to provide preliminary confirmation that the LMR algorithm is capable of
computing flow variables accurately and stably near transitions between zones of differing resolu-
tion and in areas of steep gradients. The computational domain for this laminar case is the same as
that described earlier, but the computational grid is much coarser.

The IBM [8, 9] is employed to represent the cubes in the Cartesian grid. In the present investiga-
tion, the direct forcing approach that was first introduced by [42] and subsequently improved by [43]

Figure 8. Numerical grids for the turbulent cube flow case, shown here in the x − y plane at z∕h = 0.6: (a)
CB-LMR and (b) CB-UNI.
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is used. This approach relies on the transmission of Eulerian velocities to Lagrangian markers: a reac-
tion force is calculated and then added as a source/sink to the momentum equations. The accuracy
of the IBM depends on the fineness of the Lagrangian representation: the more Lagrangian points
used, the more accurately the body is represented; therefore, the finer the Cartesian grid, the more
accurate the representation of the body. In the turbulent LMR case (CB-LMR), the cube is defined
by approximately 1.8 million Lagrangian points, while in the uniform turbulent case (CB-UNI) it is
defined by approximately 38 000 points. In the laminar flow case, 15 600 Lagrangian points define
the cube.

4. RESULTS AND DISCUSSIONS

4.1. Fully developed turbulent channel flow

This section presents the results of a series of turbulent channel flow simulations that have been
performed on grids with different resolutions, as summarised in Figure 7, as well as with different
(i.e. second or fourth order) spatial discretisations. Cases CH-FIN-O2, CH-CRS-O2 and CH-LMR-
O2 refer to LES in which second-order central spatial discretisation schemes are employed, and cases
CH-FIN-O4, CH-CRS-O4 and CH-LMR-O4 refer to LES in which fourth-order spatial discretisation
schemes are used. First of all, the effect of grid resolution on the friction velocity is established. The
DNS featured a Reynolds number based on friction velocity of Re𝜏 = 590, for comparison, Re𝜏 is
593 and 592 for CH-FIN-O2 and CH-FIN-O4, 621 and 602 for CH-CRS-O2 and CH-CRS-O4, and
572 and 578 for CH-LMR-O2 and CH-LMR-O4.

Profiles of the time-averaged streamwise velocity normalised by the friction velocity are pre-
sented in Figure 9, with the DNS result of [39] included for comparison. The dash-double dot lines
in Figure 9(a) and (b) show the results of the computation on the fine grid (i.e. CH-FIN-O2 and
CH-FIN-O4), and they are in good agreement with the DNS data, regardless of whether second-
order or fourth-order spatial discretisations are employed: this indicates that this level of resolution
is adequate to produce an accurate solution with the present LES. The velocities in CH-CRS-O2 and
CH-CRS-O4 are consistently less than those of the DNS, which is the result of the overestimation of
the shear on the coarse grid, which is in turn due to the coarseness of the grid near the wall. Interest-
ingly, higher-order spatial discretisation lessens this underestimation in the middle of the channel,
as can be seen when comparing the dashed lines of Figure 9(a) and (b) relative to the DNS data.
The time-averaged velocity profile of the LES on the locally refined grid exhibits slight overestima-
tion of the velocity around the mid-channel, but this overestimation disappears when higher-order
discretisation is employed. It is apparent that fourth-order spatial discretisation results in slightly
better accuracy in areas where the grid is coarse. Also noteworthy is the fact that the LMR velocity
profiles do not exhibit any discontinuity at the coarse-fine grid interfaces (denoted in the figure by
dashed vertical lines).

Figure 9. Mean streamwise velocity profile of fully developed turbulent channel flow at Re = 10935.
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Figure 10. Comparison of RMS velocity fluctuations normalised by the friction velocity for three different
grids, obtained using second-order spatial discretisation.

Profiles of turbulence intensities normalised by the friction velocity are presented in Figure 10 for
three different grid resolutions using second-order spatial discretisation together with DNS data. The
simulated profiles from the uniform fine grid simulation are in good agreement with the DNS data
for all four fluctuating quantities. Although the general shape of the profiles is in good agreement,
there are some discrepancies for the uniform coarse and locally refined grid cases. The coarse grid
case, represented by the dashed line, overestimates the normalised root-mean-square (RMS) stream-
wise velocity fluctuation in the near-wall region and underestimates it in the middle of the channel
(Figure 10(a)). Furthermore, the coarse grid simulation underestimates the normalised spanwise and
normal velocity fluctuations, vRMS and wRMS, throughout the channel (Figure 10(b) and (c)) and over-
estimates the normalised shear stress, −u′v′, most significantly near the wall (Figure 10(d)). This
suggests that energetic features of the flow are not properly captured, and simple eddy viscosity-
based SGS models are not sufficient to model them. The locally refined grid, which is represented
by the solid line, offers improved predictions near the wall, but similarly to the coarse grid, some
underestimation of turbulent fluctuations in the mid-channel area is evident for uRMS, vRMS and wRMS,
while the shear stress is overestimated until y∕𝛿 = 0.5.

Figure 10 reveals an important feature of the velocity fluctuations computed using the LMR
method: significant drops can be observed across the LMR interfaces, particularly for vRMS, wRMS

and −u′v′. For CH-LMR-O2, there exist two LMR interfaces, which are located at y = 0.256𝛿 and
0.512𝛿, and drops in the normal and spanwise fluctuations at these locations reduce the accuracy
and stability of the simulation. In the middle of the channel, all four fluctuations are similar to the
profile of CH-CRS-O2, which suggests that introducing finer resolution in the near-wall region does
not improve the accuracy of the solution in the coarser grid regions. In addition, the profiles of the
normal and spanwise velocity fluctuations bulge upwards between y = 0.256𝛿 and 0.512𝛿, which
provides an indication that LMR has a negative effect on the computation of the turbulence physics.
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Figure 11. Comparison of RMS velocity fluctuations for three different grids, obtained using fourth-order
spatial discretisation.

Figure 11 displays turbulence intensities normalised by the friction velocity for three different
cases using fourth-order spatial discretisation. The order of the spatial discretisation does not affect
the results for the uniform fine grid case, as can be seen by comparing Figures 10 and 11. The positive
impact of higher-order spatial discretisation can however be observed for the uniform coarse and
LMR cases. Profiles of uRMS and −u′v′ exhibit good agreement with the DNS computation for the
coarse and LMR grid simulations. When the profiles of vRMS and wRMS are examined (Figure 11(b)
and (c)), the underprediction of quantities in the middle of the channel for the uniform coarse and
LMR cases is not as severe as it was with second-order discretisation, suggesting improved accuracy
of the results with higher-order spatial discretisation. Noteworthy for the LMR case is the fact that
the drops in the normal and spanwise velocity fluctuations at the LMR interfaces are less severe than
before and that discontinuities between the fine and medium mesh, that is, at y = 0.256𝛿, are almost
imperceptible. Although the uniform coarse grid and LMR cases have the same grid resolution in
the middle of the channel, improved accuracy is obtained with fourth-order spatial discretisation
in the LMR simulation in this region. The bulging of the profiles of normal and spanwise velocity
fluctuations between y = 0.256𝛿 and 0.512𝛿 disappears for CH-LMR-O4.

In addition to the spatial discretisation, it is worthwhile to consider the effect of the choice of
interpolation scheme for the calculation of coarse grid ghost velocities normal to the interface on
the normal turbulence profile. Figure 12 presents profiles of the normalised wall-normal turbulent
fluctuation, vRMS, calculated using two different interpolation schemes, alongside the DNS profile.
In CH-LMR-O4, the normal ghost velocities are calculated using the approach outlined in
Section 2.2.3, which is also the approach that has been adopted for normal ghost velocities in all sim-
ulations that have been discussed up to this point. In CH-LMR-O4b, the normal ghost velocities are
calculated using the approach that was proposed for velocities parallel to the LMR interface, as out-
lined in Section 2.2.2. An important difference between the two approaches relates to the restriction
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Figure 12. Comparison of RMS normal velocity fluctuation using two different averaging schemes for ghost
coarse velocities normal to the LMR interface.

Figure 13. One-dimensional streamwise energy spectra at different y+ locations for turbulent channel flow
with LMR. The locations at which the spectra are taken are denoted in Figure 7.

of fine grid values onto the coarse grid: in CH-LMR-O4, a fourth-order interpolation is used, whereas
in CH-LMR-O4b, the interpolation is second order. The figure shows that vRMS profiles are generally
very similar in both cases, but notable differences occur at the near-wall peak and in the vicinity of
interfaces between different resolution levels. The peak of the fluctuation is overpredicted for CH-
LMR-O4b, but perhaps more importantly CH-LMR-O4b produces larger drops across the interfaces
than CH-LMR-O4. It should be noted that the number of multigrid iterations required for CH-LMR-
O4 is higher than for CH-LMR-O4b: CH-LMR-O4 required approximately 3.1 iterations per time
step compared with approximately 2.3 for CH-LMR-O4b, and CH-LMR-O4b therefore required
approximately 17% less wall time per time step on average. However, the significant improvement
in the continuity of the profile across the interfaces that was obtained with CH-LMR-O4 justifies the
additional computational expense.

One-dimensional streamwise power density spectra are shown in Figure 13 to illustrate the effect
of the grid resolution on the turbulent energy transfer. Here, k is the wave number in the streamwise
direction, and Euu is the power density obtained from fast Fourier transforms of streamwise velocity
time signals taken at different y+ locations. These locations are in areas of different grid resolution
in the LMR grid (refer to Figure 7). The spectra of the LES using second-order and fourth-order
discretisations are compared with the dash-double dot line, which has a slope of −5∕3 and indicates

© 2016 The Authors International Journal for Numerical
Methods in Fluids Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Fluids 2016; 82:261–285
DOI: 10.1002/fld



280 M. CEVHERI, R. MCSHERRY AND T. STOESSER

homogeneous turbulence. At the first location, y+ = 115, which is in the near-wall region with the
finest grid level, the spectra of both cases are very similar and follow the −5∕3rd line for a large
range of wavenumbers (nearly two decades). However, the second-order discretisation simulation is
not quite parallel to the −5∕3rd line and it appears to fall-off a bit earlier. In the medium mesh region,
this trend is a bit more pronounced, and it appears that the resolved energy is not transferred properly
among the various scales in the second-order discretisation simulation. This is clearly visible in
the coarsest grid energy spectrum, where a pile-up of energy is observed just before the cut-off
wavenumber (i.e. beyond which the SGS model quickly dissipates all turbulent energy from the
flow). The LES with the fourth-order spatial discretisation appears to transfer the energy across the
grid interfaces more effectively, but the slope is no longer parallel to the −5∕3rd line.

4.2. Turbulent flow over a matrix of wall-mounted cubes

Figure 14(a) presents contours of instantaneous streamwise velocity in the x − y plane at z∕h = 0.6
for the laminar (Reh = 500) flow case. The plot reveals that velocities below the top of the cube
in this plane are very low, with some local acceleration noticeable immediately above it, especially
near the leading edge. The transitions between the high and low resolution zones are denoted by the
thick red line, and the contours are seen to behave continuously across these transitions. This is also
evidenced in Figure 14(c), which presents profiles of u at the two locations indicated by dashed lines
in Figure 14(a).

Figure 14. Contour and vertical profile plots displaying continuity of flow variables across grid resolution
transitions: (a) contours of streamwise velocity, u, in the laminar flow case, Reh = 500; (b) contours of
normal stress, u′u′, in the turbulent flow case, Reh = 13000; (c) vertical profiles of u in the laminar flow case
at two streamwise locations; and (d) and (e) vertical profiles of u and u′u′ in the turbulent flow case at two

streamwise locations.
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Figure 14(b) presents contours of time-averaged streamwise normal stress, u′u′, also in the x − y
plane at z∕h = 0.6, for the turbulent (Reh = 13, 000) flow case. The plot indicates that the normal
stress variation is largely continuous across the transitions between fine grid and medium grid resolu-
tions, and that only minor jumps at the medium to coarse grid interface can be observed. Figure 14(e)
and (f) presents vertical profiles of u and u′u′ at the two streamwise locations indicated by dashed
lines in Figure 14(c) and also suggests that the transitions between regions of differing resolutions
are largely continuous. This is an important result, bearing in mind the drops that were observed in
the turbulent intensities in the channel flow case, and provides a strong indication that the interpola-
tion of ghost cell velocities is achieved satisfactorily in flows that are much more complex than the
previous test case.

Simulated streamlines of the time-averaged flow very close to the bottom wall (y∕h = 0.0025) are
plotted for the LMR LES in Figure 15, alongside an oil film flow visualisation from the experiments
of Meinders et al. Although direct quantitative comparison is difficult, there are some very encour-
aging similarities such as the position of the two recirculation nodes in the cube’s mid-wake region
and the general shape of the streamlines around the cube.

Figure 16 presents time-averaged flow streamlines in the x − z plane a quarter of the way up the
cube (y∕k = 0.25, y∕h = 0.075). The simulated streamlines, from the LMR LES (CB-LMR), are
plotted in Figure 16(a), and the corresponding plot from the experiments of Meinders et al. is shown
in Figure 16(b). The agreement is very encouraging: the computed mean length of the circulation
bubble is very close to the experimentally observed length, indicating that the separating shear layers
on the sides of the cube are accurately computed in the LES. Noteworthy is the fact that streamlines
are continuous, evidence of the absence of discontinuities near grid interfaces.

Figure 15. (a) Time-averaged streamlines in the x − y plane close to the bottom wall from CB-LMR and (b)
oil-film visualisation on the bottom wall, from the experiment of [38].

Figure 16. Time-averaged streamlines in the x − z plane at y∕H = 0.25. (a) CB-LMR and (b) experiment of
[38].

© 2016 The Authors International Journal for Numerical
Methods in Fluids Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Fluids 2016; 82:261–285
DOI: 10.1002/fld



282 M. CEVHERI, R. MCSHERRY AND T. STOESSER

Figure 17(a) presents the friction coefficient, cf , that was computed in the LMR simulation, on the
bottom wall and surface of the cube along the centreline of the domain (z∕h = 0.6). DNS computed
data points from [40] are included for comparison. The variable s signifies the length of the wall
and cube surfaces in direct contact with the fluid along the centreline of the channel, as illustrated in
Figure 17(c). Figure 17(a) reveals that the friction coefficient computed by the LMR LES generally
agrees very well with the DNS, although some discrepancies are in evidence, most noticeably on
the top wall of the body (i.e. 1 ⩽ s∕k ⩽ 2). There the peak friction velocity at the leading edge
is overestimated, while over the rest of the cube surface, the friction velocity is underestimated by
approximately 10%. This is to be expected, as in the LES, the cube is represented using the IBM,
and the no-slip condition on its surface is only approximately prescribed; the friction coefficient on
an immersed boundary would generally be expected to have a lower magnitude than that computed
using a boundary-fitted grid, as was the case in the DNS.

A more quantitative evaluation of the LMR code’s performance is possible with the help of
Figures 18–20. Profiles of simulated time-averaged streamwise velocity at selected locations along
the centreline of the computational domain (z∕h = 0.6) are plotted against the experimental data
(open circles) of Meinders et al. [38] in Figure 18. The five locations, labelled (a) to (e), are shown
in Figure 17(b). Data from the LMR simulation (solid line) and the coarse uniform grid simulation
(dashed line) are both plotted, while DNS data (small filled circles) from [40] are plotted in the lower
half of the domain for reference. Note that the velocities are normalised with the bulk streamwise
velocity, Ub. The agreement between the LES and the experiment and DNS is generally good. The
comparison of profiles indicates that the uniform grid is capable of reproducing fairly well the flow

Figure 17. (a) Friction coefficient as a function of distance along the duct and cube surface (z∕h = 0.6); (b)
profile locations used in Figures 18–20; and (c) schema introducing the distance s, as used in plot (a).

Figure 18. Profiles of normalised mean streamwise velocity along the centreline of the domain (z∕h = 0.6).
(a) x∕h = 0.36; (b) x∕h = 0.54; (c) x∕h = 0.84; (d) x∕h = 0.96; and (e) x∕h = 1.14.
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and good agreement with the experimental data is observed, although a clear improvement is found
when employing LMR at locations x∕h = 0.36 and x∕h = 1.14 (i.e. Figures 18(a) and (e)) close
to the bottom wall. This is because the resolution in the x − z plane in this region is much finer in
the LMR grid than in the uniform grid, resulting in more accurate computation of the shear layers
around the cube. This in turn produces a more accurate computation of the recirculation length, with
inherent improvements in the prediction of mean and fluctuating velocities.

Figures 19 and 20 present profiles of normalised normal stresses in the streamwise and span-
wise directions, u′u′∕U2

b and w′w′∕U2
b , respectively. The profile locations are once again those

shown in Figure 17(b). As would be expected, significant peaks are observed near the top of the
cube (see plot (b)), where the fluid experiences steep velocity gradients, separation and recircula-
tion, while a smaller peak is observed at the top wall due to the presence of a classic smooth wall
turbulent boundary layer there. Stresses are also significantly non-zero in the cube wake (y∕h ⩽ 0.3),
where the flow is characterised by unsteady recirculation between spatially periodic cubes. The LMR
and coarse uniform grid LES both produce good agreement with the experimental data, but the LMR
simulation achieves some notable improvements, particularly near the bottom wall and in the region
immediately above the top of the cube. There are some rather significant discrepancies in the profiles
of the spanwise Reynolds stress, w′w′∕U2

b , in particular at locations x∕h = 0.36 and x∕h = 1.14

Figure 19. Profiles of normalised streamwise normal stress along the centreline of the domain (z∕h = 0.6).
(a) x∕h = 0.36; (b) x∕h = 0.54; (c) x∕h = 0.84; (d) x∕h = 0.96; and (e) x∕h = 1.14.

Figure 20. Profiles of normalised spanwise normal stress along the centreline of the domain (z∕h = 0.6). (a)
x∕h = 0.36; (b) x∕h = 0.54; (c) x∕h = 0.84; (d) x∕h = 0.96; (e) x∕h = 1.14.
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(i.e. Figure 20(a) and (e)); however, the same discrepancies were observed by [40] in their DNS
(DNS data points are the small filled circles), and as can be seen, the LMR LES matches the DNS
almost perfectly. Noteworthy is the fact that no discontinuities in the profiles are observed across tran-
sitions between zones of differing grid resolutions, providing further indication that the interpolation
of ghost cell velocities is dealt with satisfactorily in the LMR approach.

5. CONCLUSION

A refined LMR approach on Cartesian grids for LESs has been presented and validated with data
from well-known experiments and DNSs. LMR is promising to become an important ingredient
for LESs of practical relevance because it can provide large computational savings when applied to
high-Re flows with important localised features. The LMR approach calculates ghost cell pressures
and velocities using higher-order interpolation schemes at the interface and throughout the domain
to remedy mass and momentum conservation issues that occur at interfaces between nested grids
of different resolutions. The LMR approach also adopts a more robust method to calculate fine grid
ghost velocities normal to the grid, which are generally more challenging than tangential velocities.
It is shown that the refined method is able to minimise numerical artefacts that have been shown to
arise at the interfaces when second-order spatial discretisation is used. The study has incorporated
careful validation, making comparisons with DNS and experimental data for two canonical test cases
that together incorporate the most challenging features of turbulent flows, including wall-bounded
turbulence, separating shear layers and unsteady vortex shedding. The agreement between the present
method and DNS and physical experiments is convincing. Importantly, first-order and second-order
turbulence statistical quantities are shown to transition smoothly across coarse-to-fine and fine-to
coarse interfaces, giving continuous and accurate profiles in wall-normal and streamwise directions.
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