
 

 

Adipocyte-derived extracellular 

vesicles: characterisation and function 

 

by 

Katherine Diana Connolly 

 

A thesis submitted for the degree 

DOCTOR OF PHILOSOPHY 

 

Institute of Molecular and Experimental Medicine 

Wales Heart Research Institute 

Cardiff University School of Medicine 

2016 

  



Page | i  

 

DECLARATION 

This work has not been submitted in substance for any other degree or award at this 

or any other university or place of learning, nor is being submitted concurrently in 

candidature for any degree or other award. 

 

Signed ………………………………………… (candidate) Date ………………… 

 

 

STATEMENT 1 

This thesis is being submitted in partial fulfilment of the requirements for the degree 

of PhD 

 

Signed ………………………………………… (candidate) Date ………………… 

 

 

STATEMENT 2 

This thesis is the result of my own independent work/investigation, except where 

otherwise stated. Other sources are acknowledged by explicit references. The views 

expressed are my own. 

 

Signed ………………………………………… (candidate) Date ………………… 

 

 

STATEMENT 3 

I hereby give consent for my thesis, if accepted, to be available online in the 

University‟s Open Access repository and for inter-library loan, and for the title and 

summary to be made available to outside organisations. 

 

Signed ………………………………………… (candidate) Date ………………… 

 

 



Page | ii  

 

To my parents and family, for their constant love 

and support



Page | iii  

 

Acknowledgements 

My sincere thanks go to my supervisors, Professor Phil James and Dr Aled Rees. I 

can‟t thank you enough for the opportunities, help and advice you‟ve given me 

throughout my PhD. 

A special thank you to Dr Aled Clayton and his group at Velindre, particularly to Mr 

Vincent Yeung. Also to Dr Irina Guschina, Dr Keith Morris and Mr Nurudeen 

Hassan, Professor Marian Ludgate and Dr Mohd Shazli Draman, Dr Chris Von 

Ruhland, Dr Kristin Ladell, Professor Maurice Hallet, and Dr Andy Devitt and Miss 

Parbata Chauhan for their help and support with this work. 

Thank you to my friends and colleagues, past and present, Dr Jessica Tiplady, Dr 

Ewelina Sagan, Dr Gareth Willis, Dr Laurence Thornhill, Miss Megan Curzon, Dr 

Rebecca Wadey, Dr Joanne Welton, Dr Fairoz Abdul, Dr Justyna Witzcak, Mr 

Nicholas Burnley-Hall, and Miss Donna Mathew. A further thank you to my friends, 

Miss Jessica Davis, Miss Rhiannon Roberts, Miss Sami Jennings, Dr Monika Seidel, 

Dr Kirsten Smith, Miss Libby Ellins, and Miss Luned Badder. 

A final thank you to Miss Joni Quintanilla and Mrs Hannah Taylor for your love and 

friendship. 

 

 

Scaredy fat: A scanning electron microscope image of a 3T3-L1 mature adipocyte. 



Page | iv  

 

“It does not do to dwell on dreams and forget to live” 

JK Rowling via Albus Dumbledore  

 



Page | v  

 

Table of Contents 

1. General Introduction ............................................................................................. 1 

1.1 EXTRACELLULAR VESICLES ...................................................................... 3 

1.1.1 History ......................................................................................................... 3 

1.1.2 Nomenclature .............................................................................................. 5 

1.1.3 Formation .................................................................................................... 7 

1.1.3.1 The classical pathway .......................................................................... 7 

1.1.3.2 The direct pathway ............................................................................. 11 

1.1.4 Composition of extracellular vesicles ....................................................... 13 

1.1.4.1 Protein markers .................................................................................. 13 

1.1.4.2 RNA ................................................................................................... 15 

1.1.4.3 Lipids ................................................................................................. 16 

1.1.5 Uptake and trafficking of extracellular vesicles ........................................ 17 

1.1.5.1 EV internalisation............................................................................... 17 

1.1.5.2 Intracellular trafficking of EVs .......................................................... 19 

1.1.6 Pre-analytical processing .......................................................................... 20 

1.1.6.1 Sample collection and handling ......................................................... 20 

1.1.6.2 Methods of EV isolation .................................................................... 24 

1.1.6.3 Storage of isolated EVs ...................................................................... 31 

1.1.7 Measurement ............................................................................................. 33 

1.1.7.1 Methods for determining EV morphology ......................................... 33 

1.1.7.2 Phenotyping EVs ................................................................................ 33 

1.1.7.3 Quantification of EVs ........................................................................ 37 

1.1.8 Physiological roles of extracellular vesicles ............................................. 39 

1.1.8.1 Biodistribution of EVs ....................................................................... 39 

1.1.8.2 Role of EVs in haemostasis ............................................................... 39 

1.1.8.3 Role of EVs in angiogenesis .............................................................. 40 



Page | vi  

 

1.1.8.4 Role of EVs in the immune system .................................................... 41 

1.1.8.5 Role of EVs in bone formation .......................................................... 41 

1.1.9 Pathophysiological roles of extracellular vesicles .................................... 43 

1.1.9.1 EVs in cardiovascular diseases .......................................................... 43 

1.1.9.2 EVs in cancer ..................................................................................... 45 

1.1.9.3 EVs in inflammatory diseases ............................................................ 46 

1.1.10 Therapeutic applications of extracellular vesicles .................................. 49 

1.1.10.1 EV therapeutics ................................................................................ 49 

1.1.10.2 EVs as biomarkers of disease ........................................................... 50 

1.2 ADIPOSE TISSUE .......................................................................................... 51 

1.2.1 Types of adipose tissue ............................................................................. 51 

1.2.1.1 White adipose tissue ........................................................................... 51 

1.2.1.2 Brown adipose tissue.......................................................................... 52 

1.2.1.3 Beige adipose tissue ........................................................................... 53 

1.2.1.4 Adipocyte lineage............................................................................... 53 

1.2.2 Adipose tissue depots ................................................................................ 55 

1.2.2.1 Subcutaneous AT ............................................................................... 55 

1.2.2.2 Visceral AT ........................................................................................ 56 

1.2.2.3 Perivascular AT .................................................................................. 56 

1.2.3 Methods of studying adipose tissue and adipocytes ................................. 58 

1.2.3.1 Preadipocyte cell lines: 3T3-L1 ......................................................... 58 

1.2.3.2 Primary human adipocyte culture ...................................................... 60 

1.2.3.3 Adipocyte progenitor cells ................................................................. 61 

1.2.3.4 Genetic mouse models of obesity ...................................................... 62 

1.2.4 Adipokines and the role of AT in physiology ........................................... 63 

1.2.4.1 Regulation of lipid metabolism and appetite ..................................... 63 

1.2.4.2 Role in vascular function ................................................................... 65 



Page | vii  

 

1.2.4.3 Immune interaction of AT .................................................................. 66 

1.2.4.4 AT and ageing .................................................................................... 66 

1.2.5 Adipose tissue in disease ........................................................................... 68 

1.2.5.1 Metabolic dysregulation in obese AT ................................................ 68 

1.2.5.2 Vascular dysfunction in obese AT ..................................................... 69 

1.2.5.3 AT-derived inflammation .................................................................. 70 

1.2.6 Adipose tissue hypoxia ............................................................................. 72 

1.2.6.1 Rationale for AT hypoxia................................................................... 72 

1.2.6.2 Measurement of AT hypoxia ............................................................. 73 

1.2.6.3 Impact of hypoxia on AT function ..................................................... 75 

1.2.7 EVs as novel adipocyte communicators ................................................... 77 

1.2.7.1 Characteristics of adipocyte-derived EVs .......................................... 77 

1.2.7.2 Effects of adipocyte-derived EVs on metabolism .............................. 77 

1.2.7.3 Immunomodulatory properties of adipocyte-derived EVs ................. 78 

1.2.7.4 Other effects of adipocyte-derived EVs ............................................. 78 

1.3 Thesis aims and objectives ............................................................................... 79 

1.3.1 Rationale ................................................................................................... 79 

1.3.2 Hypothesis ................................................................................................. 79 

1.3.3 Global thesis aim ....................................................................................... 79 

1.3.4 Specific aims ............................................................................................. 79 

2. General Methods .................................................................................................. 81 

2.1 Reagent list ....................................................................................................... 82 

2.2 3T3-L1 cells ..................................................................................................... 83 

2.2.1 3T3-L1 culture ...................................................................................... 83 

2.2.2 Cell counting and viability .................................................................... 83 

2.2.3 Oil Red O staining ................................................................................. 85 

2.3 Extracellular vesicle processing ....................................................................... 86 



Page | viii  

 

2.3.1 Isolation of cell-derived extracellular vesicles ...................................... 86 

2.3.2 Isolation of plasma-derived extracellular vesicles ................................ 86 

2.3.3 Storage of extracellular vesicles............................................................ 87 

2.4 Nanoparticle tracking analysis ......................................................................... 88 

2.4.1 Theory of operation ............................................................................... 88 

2.4.2 Experimental methodology ................................................................... 89 

2.5 Tunable resistive pulse sensing ........................................................................ 91 

2.5.1 Theory of operation ............................................................................... 91 

2.5.2 Experimental methodology ................................................................... 93 

2.6 Flow cytometry ................................................................................................ 94 

2.6.1 Annexin V positivity of 3T3-L1 cells ................................................... 94 

2.6.2 Annexin V positivity of EVs ................................................................. 94 

2.7 Gas Chromatography ....................................................................................... 95 

2.7.1 Lipid extraction ..................................................................................... 95 

2.7.2 Fatty acid methylation and gas chromatography .................................. 95 

2.7.3 Phospholipid separation ........................................................................ 97 

2.8 BCA protein assay ........................................................................................... 98 

2.8.1 Background ........................................................................................... 98 

2.8.2 Experimental procedure ........................................................................ 98 

2.9 Extracellular vesicle immunophenotyping ....................................................... 99 

2.9.1 Immunostaining of EVs ........................................................................ 99 

2.10 Western Blotting .......................................................................................... 101 

2.10.1 Lysis of cells ..................................................................................... 101 

2.10.2 Separation of proteins by SDS-PAGE .............................................. 101 

2.10.3 Electroblotting ................................................................................... 102 

2.10.4 Incubation of antibodies .................................................................... 103 

2.10.5 Developing of blots ........................................................................... 104 



Page | ix  

 

2.10.6 Densitometry ..................................................................................... 104 

2.11 Statistical analysis ........................................................................................ 105 

3. Results I: Developments in methodology ......................................................... 106 

3. Perspective ....................................................................................................... 107 

3.1 Introduction .................................................................................................... 108 

3.1.1 Aims .................................................................................................... 109 

3.1.2 Hypotheses .......................................................................................... 109 

3.2 Methods .......................................................................................................... 110 

3.2.1 Nanoparticle tracking analysis ............................................................ 110 

3.2.2 Tuneable resistive pulse sensing ......................................................... 110 

3.2.3 Dynamic light scattering ..................................................................... 110 

3.2.4 Flow cytometry ................................................................................... 111 

3.2.5 Isolation of plasma-derived extracellular vesicles .............................. 111 

3.2.6 Filtering of extracellular vesicles ........................................................ 111 

3.2.7 Method and length of storage of extracellular vesicles ....................... 112 

3.2.8 Statistical analysis ............................................................................... 113 

3.3 Results ............................................................................................................ 114 

3.3.1 Reliability of NTA and TRPS ............................................................. 114 

3.3.2 Limits of detection .............................................................................. 116 

3.3.3 Detection of polydispersity ................................................................. 116 

3.3.4 Choice of vacutainer ........................................................................... 120 

3.3.5 Filtering of extracellular vesicles ........................................................ 121 

3.3.6 Method and length of extracellular vesicle storage ............................. 124 

3.4 Discussion ...................................................................................................... 126 

3.4.1 Key findings ........................................................................................ 126 

3.4.2 Main discussion ................................................................................... 126 

3.4.3 Limitations .......................................................................................... 134 



Page | x  

 

3.4.4 Conclusions ......................................................................................... 136 

4. Results II: Characterisation of adipocyte-derived EVs .................................. 137 

4. Perspective ....................................................................................................... 138 

4.1 Introduction .................................................................................................... 139 

4.1.1 Aims .................................................................................................... 140 

4.1.2 Hypotheses .......................................................................................... 140 

4.2 Methods .......................................................................................................... 141 

4.2.1 Cell culture .......................................................................................... 141 

4.2.2 Western blotting .................................................................................. 141 

4.2.3 Extracellular vesicle isolation ............................................................. 142 

4.2.4 Scanning electron microscopy ............................................................ 142 

4.2.5 Transmission electron microscopy ...................................................... 142 

4.2.6 Optiprep™ separation of EVs ............................................................. 143 

4.2.7 Extracellular vesicle size and concentration analysis ......................... 143 

4.2.8 Annexin V positivity ........................................................................... 144 

4.2.9 Fatty acid analysis ............................................................................... 144 

4.2.10 Phospholipid analysis ........................................................................ 144 

4.2.11 Extracellular vesicle immunophenotyping ........................................ 144 

4.2.12 Statistical analysis ............................................................................. 145 

4.3 Results ............................................................................................................ 146 

4.3.1 Confirmation of adipogenesis ............................................................. 146 

4.3.2 Electron microscopy............................................................................ 148 

4.3.3 Optiprep™ separation of extracellular vesicles .................................. 149 

4.3.4 Extracellular vesicle size and concentration ....................................... 150 

4.3.5 Annexin V positivity ........................................................................... 151 

4.3.6 Fatty acid concentration and composition........................................... 152 

4.3.7 Phospholipid analysis .......................................................................... 155 



Page | xi  

 

4.3.8 Immunophenotyping of extracellular vesicles .................................... 157 

4.3.9 Retrospective Western blot analysis ................................................... 158 

4.4 Discussion ...................................................................................................... 159 

4.4.1 Key findings ........................................................................................ 159 

4.4.2 Main discussion ................................................................................... 159 

4.4.3 Limitations .......................................................................................... 165 

4.4.4 Conclusions ......................................................................................... 167 

5. Results III: Effects of hypoxia on adipocyte-derived EV production ........... 168 

5. Perspective ....................................................................................................... 169 

5.1 Introduction .................................................................................................... 170 

5.1.1 Aims .................................................................................................... 171 

5.1.2 Hypotheses .......................................................................................... 171 

5.2 Methods .......................................................................................................... 172 

5.2.1 Cell culture .......................................................................................... 172 

5.2.2 Isolation and measurement of extracellular vesicles ........................... 172 

5.2.3 Flow cytometry ................................................................................... 172 

5.2.4 Gas chromatography ........................................................................... 173 

5.2.5 Thin layer chromatography ................................................................. 173 

5.2.6 Western blotting .................................................................................. 173 

5.2.7 Extracellular vesicle immunophenotyping .......................................... 174 

5.2.8 Statistical analysis ............................................................................... 175 

5.3 Results ............................................................................................................ 176 

5.3.1 Effect of hypoxia on adipocyte morphology, number and viability ... 176 

5.3.2 Oil Red O staining ............................................................................... 177 

5.3.3. Effect of hypoxia on extracellular vesicle size and concentration ..... 178 

5.3.4 Effect of hypoxia on annexin V positivity .......................................... 180 

5.3.6 Effect of hypoxia on phospholipid composition ................................. 187 



Page | xii  

 

5.3.7 Effect of hypoxia on cellular protein content ...................................... 189 

5.3.8 Effect of hypoxia on EV protein content ............................................ 191 

5.4 Discussion ...................................................................................................... 192 

5.4.1 Key findings ........................................................................................ 192 

5.4.2 Main discussion ................................................................................... 192 

5.4.3 Limitations .......................................................................................... 202 

5.4.4 Conclusions ......................................................................................... 203 

6. Results IV: The effects of hypoxic adipocyte-derived extracellular vesicles on 

macrophage function ............................................................................................. 204 

6. Perspective ....................................................................................................... 205 

6.1 Introduction .................................................................................................... 206 

6.1.1 Aims .................................................................................................... 207 

6.1.2 Hypotheses .......................................................................................... 207 

6.2 Methods .......................................................................................................... 208 

6.2.1 3T3-L1 culture and extracellular vesicle isolation .............................. 208 

6.2.2 THP-1 phenotype assay....................................................................... 208 

6.2.3 ELISA ................................................................................................. 208 

6.2.4 Quantitative reverse transcription PCR ............................................... 209 

6.2.5 THP-1 migration assay ........................................................................ 210 

6.2.6 Statistical analysis ............................................................................... 212 

6.3 Results ............................................................................................................ 213 

6.3.1 M1 cytokine secretion ......................................................................... 213 

6.3.2 M2 mRNA expression ........................................................................ 213 

6.3.3 Mϕ migration....................................................................................... 215 

6.4 Discussion ...................................................................................................... 217 

6.4.1 Key observations ................................................................................. 217 

6.4.2 Main discussion ................................................................................... 217 



Page | xiii  

 

6.4.3 Limitations .......................................................................................... 220 

6.4.4 Conclusions ......................................................................................... 221 

7. Results V: Evidence for adipocyte-derived extracellular vesicles in vivo ..... 222 

7. Perspective ....................................................................................................... 223 

7.1 Introduction .................................................................................................... 224 

7.1.1 Aims .................................................................................................... 225 

7.1.2 Hypotheses .......................................................................................... 225 

7.2 Methods .......................................................................................................... 226 

7.2.1 Cell culture and extracellular vesicle isolation ................................... 226 

7.2.2 Plasma extracellular vesicle isolation ................................................. 226 

7.2.3 Nanoparticle tracking analysis ............................................................ 226 

7.2.3 Leukocyte isolation ............................................................................. 226 

7.2.4 Western Blotting ................................................................................. 227 

7.2.5 Flow cytometry ................................................................................... 228 

7.2.6 Extracellular vesicle immunophenotyping .......................................... 228 

7.2.7 Statistical analysis ............................................................................... 228 

7.3 Results ............................................................................................................ 229 

7.3.1 Quantitation of adipocyte- and plasma-derived EVs .......................... 229 

7.3.2 Western blot analysis of adipocyte markers........................................ 230 

7.3.3 Flow cytometric analysis of adipocyte markers .................................. 231 

7.3.4 Detection of adipocyte markers using immunophenotyping .............. 232 

7.4 Discussion ...................................................................................................... 233 

7.4.1 Key findings ........................................................................................ 233 

7.4.2 Main discussion ................................................................................... 233 

7.4.3 Limitations .......................................................................................... 236 

7.4.4 Conclusions ......................................................................................... 237 



Page | xiv  

 

8. Results VI: Lipoprotein apheresis reduces circulating EVs in individuals with 

familial hypercholesterolaemia ............................................................................. 238 

8. Perspective ....................................................................................................... 239 

8.1 Introduction .................................................................................................... 240 

8.1.1 Aims .................................................................................................... 241 

8.1.2 Hypotheses .......................................................................................... 241 

8.2 Methods .......................................................................................................... 242 

8.2.1 Apheresis and sample collection ......................................................... 242 

8.2.2 Biochemical measurements ................................................................. 242 

8.2.3 Isolation of extracellular vesicles ........................................................ 243 

8.2.4 Nanoparticle tracking analysis ............................................................ 243 

8.2.5 Tunable resistive pulse sensing ........................................................... 244 

8.2.6 Flow cytometry ................................................................................... 244 

8.2.7 Gas chromatography ........................................................................... 244 

8.2.8 Thrombin generation ........................................................................... 244 

8.2.9 Statistical analysis ............................................................................... 245 

8.3 Results ............................................................................................................ 246 

8.3.1 Anthropometric and biochemical data ................................................ 246 

8.3.2 Effect of apheresis on extracellular vesicle size and concentration .... 247 

8.3.3 Extracellular vesicle origin pre- and post-apheresis ........................... 253 

8.3.4 Effect of apheresis on fatty acid concentration and composition ....... 255 

8.3.5 Extracellular vesicle thrombin generation .......................................... 260 

8.4 Discussion ...................................................................................................... 261 

8.4.1 Key findings ........................................................................................ 261 

8.4.2 Main discussion ................................................................................... 261 

8.4.3 Limitations .......................................................................................... 264 

8.4.4 Conclusions ......................................................................................... 265 



Page | xv  

 

9. General Discussion ............................................................................................. 266 

9.1 Thesis overview ............................................................................................. 267 

9.2 Future research ............................................................................................... 273 

References ............................................................................................................... 275 

Appendices .............................................................................................................. 316 

  



Page | xvi  

 

Summary 

Extracellular vesicles (EVs) are submicron vesicles released from cells as 

intercellular communicators. EV research is hindered by a current lack of 

standardisation. However, mounting evidence suggests a role for EVs in both 

physiological and pathophysiological processes. Little is known about adipocyte-

derived EVs despite the recognition of adipose tissue (AT) as an endocrine organ 

and the role of dysfunctional AT in disease. Obese AT develops regions of hypoxia 

and inflammation, leading to obesity-associated metabolic complications. The aim of 

this thesis was to explore EVs as novel adipocyte communicators, characterising 

their release under physiological and disease-like conditions. 

 

Nanoparticle tracking analysis (NTA) and tunable resistive pulse sensing (TRPS) 

were assessed for their accuracy and usability for EV quantification. NTA and TRPS 

both accurately quantified EVs though NTA was more user-friendly. The choice of 

anticoagulant, filtering and storage of EVs all affected EV concentration.  

 

Physiological EV release from 3T3-L1 adipocytes was characterised pre- and post-

adipogenesis. EV generation increased prior to adipogenesis and EVs were enriched 

in pro-signalling fatty acids and proteins characteristic of the original cell. Therefore, 

EVs may aid the initiation of adipogenesis. Hypoxia was then used to pathologically 

generate EVs to mimic adipocyte obesity. Adipocyte EV release increased in 

hypoxia; these EVs were enriched in pro-signalling fatty acids and monocyte 

chemoattractant protein-1. Hypoxic EVs were then analysed for their interaction 

with macrophages (Mϕ). Hypoxic EVs may increase Mϕ migration and promote an 

anti-inflammatory Mϕ phenotype; further repeats are needed to confirm this. 

 

Finally, adipocyte markers were detected in plasma EVs suggesting the presence of 

circulating adipocyte-derived EVs in vivo. Plasma EVs were also reduced in 

hypercholesterolaemia patients by routine apheresis treatment. 

 

In conclusion, adipocytes release EVs which may assist intercellular communication 

in both physiological and disease-like conditions. Adipocyte-derived EVs can be 

detected in vivo and may provide novel biomarkers of obesity-associated diseases. 
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1. General Introduction 
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The emergence of extracellular vesicles (EVs) as novel cellular communicators and 

potential biomarkers has led to an exponential growth in EV research. Similarly to 

the history of adipocyte research itself, the study of adipocyte-derived EVs is 

somewhat behind the rest of the EV field. Data presented in this thesis describes the 

physiological and potential pathophysiological characteristics of adipocyte-derived 

EVs. 

It is important to state that from the onset of this thesis, the EV field has been rapidly 

and continually changing in suggested protocols and methods. Therefore in order to 

keep up with the dynamics of the field, methods may differ slightly with progression 

through the chapters; though consistency was maintained wherever possible. In 

particular, the methods and protocols employed in Chapter 8 (which was conducted 

at the beginning of my PhD) were based on those recommended at the time. 

Therefore, some of these methods such as the use of FC without beads or instead of 

time resolved fluorescence to phenotype EVs are now regarded suboptimal. Though 

frustrating, it provides an important insight into ever changing field of EV research, 

which is described in detail below.  
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1.1 EXTRACELLULAR VESICLES 

Extracellular vesicles (EVs) are cell-derived submicron vesicles. EVs are spherical, 

ranging from 30 nm to 1 µm in size, and are contained by a phospholipid bilayer. 

The following section provides a detailed account of the current classification, 

functions and potential clinical relevance of EVs. 

 

1.1.1 History 

The first visual evidence of EVs was published in 1967 by Peter Wolf (1). In this 

study, plasma EVs were visualised by electron microscopy (EM) and termed 

“platelet dust”. Wolf‟s study aimed to explain a study from 1946 where platelet-free 

plasma (PFP) had been shown to possess thrombin generation capacity and that this 

could be reduced by high speed centrifugation (2). This was in fact, the first 

experimental evidence for the existence and functional capacity of EVs, though the 

visual evidence of this was not supplied until 20 years later by Wolf. In 1970, 

Webber and Johnson eloquently illustrated the blebbing of particles from activated 

platelets by EM (Figure 1.1.1 A).  

Concurrently, the works of George Palade and in later years, James Rothman, helped 

to delineate the role of vesicles in the secretory pathway of intracellular protein 

transport, largely in relation to the secretion of enzymes, hormones and 

neurotransmitters (3–6). However, it also provided important evidence for: a role of 

vesicles in the transfer of cellular material; fusion of vesicles with the plasma 

membrane; and discharge of intravesicular contents into the extracellular space. It 

was later demonstrated that reticulocytes package the transferrin receptor into 

vesicles to allow for maturation into erythrocytes (7). The authors later proved this 

shedding of the transferrin receptor was specifically mediated by exosomes (8) 

(Figure 1.1.1 B/C). Over the next few decades, EV research was slow to progress, 

and only in the last 15 years has the EV field seen a rapid expansion. 
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Figure 1.1.1: Early evidence of EVs. Transmission EM images of EV release. (A) 

Activated platelets releasing submicron vesicles via a direct blebbing of the plasma 

membrane. (B) Invagination of the plasma membrane of reticulocytes leads to packaging of 

the transferrin receptor into intracellular vesicles contained within a larger vesicle which 

fuses with the plasma membrane to release the vesicles from the cell via exocytosis (C). 

Image A is reproduced with permission from (9) © 1970, American Society for Investigative 

Pathology. Published by Elesevier Inc. All rights reserved. Images B and C are reproduced 

with permission from Rockefeller University Press, ©Pan et al. Journal of Cell Biology (8). 
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1.1.2 Nomenclature 

Whilst the interest in and impact of the EV field has boomed over recent years, it has 

been accompanied by a varied use of terminology (10). Unfortunately, this causes 

confusion within the field and the published literature as to the precise nature and 

classification of the vesicles being studied. The varied nomenclature has primarily 

arisen from the vast subject areas of EV researchers, who have named the vesicles 

after the cell from which they originate (11). For example: tolerosomes (intestinal 

epithelial cells) (12), oncosomes (cancer cells) (13), prostasomes (prostate cancer 

cells) (14) and matrix vesicles (bone cells and cartilage) (15). In addition to cell-

specific terminology, terms referring to the mechanism of biogenesis such as 

“exosomes”, “microvesicles”, “microparticles” and “apoptotic bodies” are often used 

interchangeably, and often mean different things to different researchers. Thus, in 

2014, the International Society of Extracellular Vesicles (ISEV) produced a position 

paper to unify these discrepancies. The statement encourages the use of “EVs” as an 

umbrella term to encompass all secreted vesicles and requests that authors in the 

field provide complete clarity in reporting the defined EV population(s) of study 

(10,16). Secreted vesicles that fall under the generic EV umbrella and their typical 

characteristics are summarised in Figure 1.1.2. It should be noted that Figure 1.1.2 

summarises characteristics of EVs that are generally accepted by the field. However, 

some of the specific characteristics are not strictly evidenced, for example, some 

exosomes may be >100 nm and some microvesicles may be <100 nm (17). 

Specificity and further characterisation is likely to be improved in future years. 
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Figure 1.1.2: Summary of EV nomenclature. The term “EV” is used as a generic term to 

encompass all cell-derived secretory vesicles. This includes exosomes, microvesicles and 

apoptotic bodies. CD = cluster of differentiation; GM1 = monosialotetrahexosylganglioside; 

PS = phosphatidylserine; TSG101 = tumour susceptibility gene 101. 

 

As the name indicates, apoptotic bodies are released by cells undergoing apoptosis 

(18) and therefore do not represent EVs from viable cells. Thus, the term EV in this 

thesis refers to both exosomes and microvesicles but does not include apoptotic 

bodies.  
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1.1.3 Formation 

EV biogenesis is categorised into two pathways: the classical pathway for exosome 

formation, and the direct pathway for microvesicle budding (Figure 1.1.3); although, 

EVs may not be limited to these pathways of biogenesis. Exosome-like vesicles with 

a diameter, density and tetraspanin expression akin to those of exosomes have been 

shown to be released via the direct pathway (19). However, it is not yet possible with 

current technology to discriminate between EV subtypes with similar sizes (10). 

 

1.1.3.1 The classical pathway 

The mechanisms of the classical pathway are part of those in the endocytic pathway. 

The endocytic pathway primarily regulates the expression of cell surface receptors, 

which can be internalised and degraded or recycled depending on the needs of the 

cell (20). Indeed, the endocytic formation of exosomes was first illustrated as a novel 

mechanism of receptor recycling (8). However, exosomes are now considered to 

play a major role in intercellular communication and hence, this pathway has now 

been widely studied with respect to exosome formation.  

The process begins with the invagination of the plasma membrane and endocytosis 

of membrane proteins and surrounding material to form an intracellular vesicle 

(Figure 1.1.3 A). Intraluminal vesicles (ILVs) are then formed from an inward 

budding of the intracellular vesicle membrane. ILV generation is governed by the 

endosomal sorting complex required for transport (ESCRT) of which there are 4 

main complexes (21). ESCRT complexes 0, I and II recognise and ubiquitinate 

endocytosed proteins in the intracellular vesicle membrane (22). The ESCRT III 

complex (including alix and TSG101) then orchestrates the inward budding and 

scission of the ILV to form multi-vesicular bodies (MVBs). ESCRT-derived MVBs 

may then be degraded in lysosomes or secreted as exosomes. Knockdown of ESCRT 

complex proteins such as TSG101 impairs, but does not abolish exosome secretion 

(23) suggesting an alternative pathway for MVB formation. Furthermore, the 

differential targeting of MVBs for either lysosomal degradation or exocytosis is 

suggestive of subtle alterations in the compositions of ILVs and MVBs that 

determine the fate of the MVBs and their contents. 
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Figure 1.1.3: Schematic of EV biogenesis. The two main pathways for EV biogenesis are summarised. (A) The classical pathway: inward budding of the 

plasma membrane creates intracellular vesicles which process endocytosed material forming intraluminal vesicles (ILV). ILV are contained within 

multivesicular bodies (MVB) which may then be targeted for lysosomal degradation or fuse back with the plasma membrane to release ILV as exosomes. (B) 

The direct pathway: alterations in plasma membrane asymmetry cause an outward budding of the membrane directly into the extracellular space producing 

microvesicles that contain surface proteins of the parent cell. Image created using Servier Medical Art (Servier, France). 
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The precise processing of MVB subpopulations is currently unknown, though data is 

accumulating for a role of lipids in an ESCRT-independent process. MVBs that were 

cholesterol rich were found to be destined for release as exosomes (24). Furthermore, 

association of exosomal proteins with lipid-raft microdomains was found to 

segregate MVBs for exosome secretion rather than lysosomal degradation (25). 

Ceramide was also detected within exosomes, which is hydrolysed from the 

phospholipid sphingomyelin by sphingomyelinase enzymes. Addition of exogenous 

sphingomyelinases to cells induced aggregation of lipid-raft microdomains in 

intracellular vesicles and inward budding, producing ILVs. Furthermore, inhibition 

of sphingomyelinases reduced secretion of exosomal markers such as tetraspanins 

and TSG101 (26) suggesting a role for ceramide in the production of ILVs destined 

for exosome secretion. However, others have shown that inhibition of 

sphingomyelinases has little or no effect on exosome secretion (27) suggesting this 

process may be cell-specific. Tetraspanins, particularly CD63, have also been 

proposed as ESCRT-independent stimulators of ILV formation and exosome 

secretion (27,28) and are known to be enriched in ILVs and exosomes (29). 

Phospholipase D2 (PLD2) which is highly enriched in exosomes, is necessary for the 

formation of CD63-containing ILVs (30,31). PLD2 targets phosphatidylcholine (PC) 

in the plasma membrane to yield phosphatidic acid which, similarly to ceramide, has 

been implicated in the formation of MVBs. Recently, ESCRT-dependent and –

independent mechanisms were shown to form ILVs of different sizes (32), providing 

a potentially simple method of distinguishing ILV populations. 

The majority intracellular vesicle trafficking is controlled by Rab GTP (guanosine 

triphosphate)-ases, a family of conserved, small cytosolic proteins (33). Several Rab 

GTPases have been implicated in exosome secretion, particularly Rab 27. These 

Rabs have been shown to play a fundamental role in exosome secretion by directing 

MVBs to the plasma membrane and assisting their docking for fusion and exocytosis 

(34). Inhibition of Rab 27A in cancer cells prevented exosome secretion in vitro and 

also reduced tumour metastasis in vivo (35,36).  

The final stage of the classical pathway involves fusion of MVBs with the plasma 

membrane and exocytosis of exosomes. The “SNARE hypothesis” (37) has been 

proposed as a mechanism for MVB fusion with the plasma membrane. The SNARE 

complex is formed between the attached vesicle and the plasma membrane by: 
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syntaxin and SNAP (soluble NSF (N-ethylmaleimide-sensitive fusion) attachment 

protein) which protrude from the cytosolic plasma membrane, and vesicle-associated 

membrane protein (VAMP) in the vesicle membrane. The folding of the SNARE 

proteins between the docking vesicle and the plasma membrane provides the 

thermodynamic energy to pull apart the membranes, creating a pore for exosomes 

release (38). The involvement of the SNARE complex in MVB fusion and exosome 

release has not yet been widely studied, though several groups have indicated 

SNARE and accessory proteins may be crucial to exosome secretion (39–42). 

 

Though a plethora of research exists detailing the classical pathway, the exact 

mechanisms of exosome biogenesis are by no means clear. Currently, it seems that 

the endocytic pathway of exosome formation may involve several different proteins 

and share similarities between cell types, though some aspects may be cell-specific. 

Figure 1.1.4 summarises the major current theories surrounding exosome 

biogenesis. Further investigation is needed to draw parallels between different cell 

types to further our understanding of how MVB heterogeneity can result from 

different mechanisms of ILV formation and hence impact upon exosome biogenesis. 

 

Figure 1.1.4: Summary of classical exosome biogenesis. A summary of the major steps 

and inducers of classical exosome biogenesis. ILV formation may arise from actions of the 

ESCRT complexes, ceramide, tetraspanins or PLD2 to form MVBs. RabGTPases then aid 

the translocation and docking of MVBs to the plasma membrane where the SNARE complex 

assembles. Energy created by the association of the SNARE complex pulls the docked 

vesicle and plasma membranes apart creating a fusion pore to allow for exosome secretion.  
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1.1.3.2 The direct pathway 

During resting conditions where cells are unstimulated, the phospholipid bilayer 

exists in an asymmetric state (43). Aminophospholipids phosphatidylserine (PS) and 

phosphatidylethanolamine (PE) are preferentially situated on the cytoplasmic side of 

the bilayer whilst PC and sphingomyelin are positioned on the outer leaflet (44). 

This physiological asymmetry is generated by synthesis of phospholipids on a 

specific leaflet of the membrane and is maintained by three phospholipid translocase 

enzymes embedded in the plasma membrane. Flippase is an adenosine triphosphate 

(ATP)ase which causes rapid translocation of aminophospholipids to the inner 

membrane leaflet, with a higher affinity for PS. Floppase is also an ATPase and a 

member of the ATP-binding cassette (ABC) transporter family (45). It acts to move 

phospholipids to the outer membrane leaflet, but does so at a much slower rate than 

flippase when the cell is at rest (43). Scramblase does not require ATP and causes 

random bidirectional transport of phospholipids across the membrane. When the cell 

is at rest, transport of phospholipids between the membrane leaflets is slow and 

generally mediated by flippase. 

Activation of the cell usually results in an increase in cytosolic calcium which causes 

concurrent activation of floppase and scramblase and inhibition of flippase (45). The 

resulting effect is a dissemination of phospholipid asymmetry with a profound 

exposure of PS on the outer membrane leaflet. Furthermore, increased cytosolic 

calcium concentrations also cause a disruption in the actin cytoskeleton (46). The 

proteolysis of the actin cytoskeleton may require the actions of several enzymes. 

Rho-kinase (RhoK)-II has been shown be essential for endothelial microvesicle 

production (46) and RhoK inhibitors are able to block microvesicle blebbing (47). 

Furthermore, the production of adipocyte-derived EVs has been shown to be 

dependent on RhoK following cleavage by caspase-3 (48). Caspases can also 

modulate the actions of calpain to cause cytoskeletal reorganisation and microvesicle 

blebbing in neutrophils (49) and macrophages (Mϕ) (50). Though a number of 

proteins have been implicated in microvesicle budding, the precise mechanism 

remains unclear and similarly to exosome biogenesis, is likely to vary between cells. 

The resulting exposure of PS and cleavage of the actin cytoskeleton following 

cellular activation causes budding and shedding of the plasma membrane in the form 
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of microvesicles. Typically between 100 and 1000 nm in diameter, microvesicles 

often harbour surface antigens from their cell of origin in their own plasma 

membrane as well as specific lipid signalling molecules, messenger ribonucleic acid 

(mRNA), micro RNA (mIR) and soluble proteins (Figure 1.1.5). 

 

 

Figure 1.1.5: Summary of microvesicle formation. The membrane of resting cells has an 

asymmetric distribution of phospholipids which is primarily maintained by the action of the 

enzyme, flippase. This causes anionic phospholipids such as PS to remain facing the 

cytoplasm. Upon cellular activation and calcium (Ca
2+

) influx, flippase is inhibited and 

scramblase is activated. This causes PS to be externalised to the outer membrane leaflet. 

Concurrently, increased cytosolic Ca
2+

 activates enzymes such as RhoK, calpain, and 

caspases which cleave the actin cytoskeleton. Together, this causes an external budding of 

the plasma membrane, into which surface receptors and antigens, and cytosolic enzymes, 

nucleic acids and lipids are incorporated. Image created using Servier Medical Art (Servier, 

France). 
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1.1.4 Composition of extracellular vesicles 

Owing to their different methods of biogenesis, EV subtypes are likely to alter in 

composition despite originating from the same cell. Broadly, EVs have been shown 

to contain proteins (membrane-bound, secretory, cytosolic and enzymes), nucleic 

acids and lipids. The specific cargo of EVs is likely to reflect the originating cell but 

also may determine their eventual function. 

 

1.1.4.1 Protein markers 

Exosomes have been more intensely studied than microvesicles or EV fractions as a 

whole, and therefore much more data exists detailing their composition. The current 

canonical markers of EVs are largely associated with EV biogenesis and can be split 

into luminal (intravesicular) and membrane-associated markers. Intravesicular 

markers include cytoskeletal proteins such as actin, tubulin, and ezrin, endosomal 

trafficking proteins such as RabGTPases, ESCRT complexes, heat shock proteins 

(HSPs), Alix and TSG101 and enzymes such as glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). Membrane-associated EV markers include tetraspanins 

(CD9, CD63 and CD81), membrane trafficking proteins such as annexins, flotillin 

and milk fat globule-epidermal growth factor VIII (MFG-E8), lysosome-associated 

membrane glycoprotein (LAMPs) and major histocompatibility complex (MHC) I 

and II (21,51). EVs also harbour an array of cell-specific markers which assists in the 

identification of their cell of origin in complex biological fluids. The most 

commonly used markers are summarised in Table 1.1.1. 

Proteomic analysis of plasma membrane-derived vesicles is beginning to reveal that 

markers previously regarded as “exosome specific” may also be present on 

microvesicles (52). For example, CD9 is frequently used to confirm the presence of 

exosome populations. Silencing of Rab27A reduced expression of classical exosome 

markers such as CD63, alix and TSG101 but had little effect on CD9. Furthermore, 

larger vesicles (as viewed by EM and separated at a different density to exosomes) 

were also found to be CD9 positive (53) suggesting CD9 may be more of a 

ubiquitous marker of EVs than other tetraspanins. 
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Cell type Marker/antigen Citations 

B cells B cell receptor, CD19  (51,54) 

Dendritic cells CD11c  (51) 

Endothelial cells CD31, CD62E, CD144, CD146  (54–60) 

Erythrocytes CD235a, CD236  (54–57,60,61) 

Leukocytes CD15, CD45  (54,57,61) 

Monocytes CD11b, CD14  (61,62) (60) 

Platelets CD41, CD42a, CD42b, CD61  (54–57,59–63) 

Reticulocytes CD71  (57) 

T cells CD2, CD3, CD86  (51,54) 

Table 1.1.1: Cell-specific markers used for EV analysis. Common markers used in EV 

analysis of complex biological fluids to identify the cellular origin. 

 

MFG-E8 has been historically associated with exosomes (64) though recent evidence 

suggests it may also be a more universal marker of EVs (35,65,66). MFG-E8 is able 

to bind PS, which has repeatedly been used to identify microvesicle populations due 

to the phospholipid rearrangement that occurs prior to their formation. PS exposure 

is frequently used to gate EV populations by flow cytometry (FC) and is usually 

quantified using annexin V or MFG-E8. However, the use of PS as a microvesicle 

marker has been contested in recent years as not all microvesicles appear to expose 

PS (63,67) and some exosomes seem to contain an enrichment of PS (21,68).  

As more detailed proteomic analyses of EVs continue to be published, it is hoped 

that more ubiquitous markers of EVs and both cell- and subtype-specific markers 

will be identified. As such, a database of such proteins identified in EV populations 

(Vesiclepedia) has been compiled and is managed by members of the EV field (69). 
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1.1.4.2 RNA 

It was not until relatively recently (2007) that EVs were conclusively shown to 

contain RNA (70). The original study of murine mast cell exosomes showed a 

number of important features:  

1. Exosomes contained significant amounts of mRNA and mIR but no DNA or 

ribosomal RNA. 

2. RNA was not susceptible to RNAse degradation and was therefore 

intravesicular. 

3. RNA could be translated to functional proteins when incubated with protein 

machinery. 

4. Exosomes could transfer RNA to human mast cells and be translated into 

protein. 

Concomitant studies also showed that microvesicles from tumour cells (71) and 

embryonic stem cells (72) could also transfer functional mRNA to recipient cells. 

Since these key discoveries, countless studies have indicated the presence of mRNA 

and mIR in EVs from a variety of cell types. A recent study visualised the transfer of 

functional RNA contained within glioma-derived EVs to Mϕ in vivo, illustrating the 

subsequent effect on Mϕ gene and protein expression and modulation of the tumour 

microenvironment (73). EV-mediated transfer of mRNA has also been proposed 

between mother and neonate in breast milk (74) suggesting post-natal transfer of 

maternal genetic material via EVs. Cells infected with Epstein-Barr virus (EBV) 

were able to produce EVs packaged with mIRs that could selectively silence genes in 

B cells, thereby promoting and maintaining viral infection (75). Furthermore, 

circulating EVs in a cohort of young women with polycystic ovary syndrome 

(PCOS) had an altered profile of mIR compared to healthy controls (76) which might 

accelerate the progression of cardiovascular disease (CVD) in these individuals.  

In EV therapeutics, dendritic cell exosomes were successfully loaded with short 

interfering RNA and systemically injected into mice. The exosomes harboured a 

protein that enabled them to translocate to the brain and silence specific genes 

including a gene target for Alzheimer‟s disease therapy (77). Therefore, the capacity 

of EVs to carry functional nucleic acids is an exciting prospect, not only in the 

identification of novel disease biomarkers but also for targeted therapy. 



Page | 16  

 

1.1.4.3 Lipids 

Lipid signalling mediators are the least studied of the biochemical components of 

EVs despite being important precursors and mediators of a number of signalling 

pathways. Typically, lipid bilayers are ~ 5 nm thick, meaning >60% of the smallest 

EVs (~30 nm) are made of lipids (78). Compositional analysis of mast, dendritic, 

prostate cancer and B cell-derived EVs have all revealed the enrichment of 

sphingomyelin within EVs compared to cells (79–81) suggesting a higher reserve of 

ceramide which is required for exosome biogenesis. EV lipids are more tightly 

packed (79) with lipid rafts (80) and are more detergent-resistant (80) compared to 

the cells. The decreased membrane fluidity and resistance to detergents suggests EVs 

are more resistant to degradation in the circulation (79). The randomised distribution 

of PE observed in EVs indicates EV membranes retain the phospholipid 

reorganisation that precedes their biogenesis (79). Furthermore, the overall lipid 

composition of EVs bore both similarities and differences to the cell of origin (81); a 

concept also observed between circulating EVs and corresponding plasma (55,76). 

Lipid analyses of EVs are gaining popularity with the increased accessibility of in-

depth analysis techniques such as gas chromatography-mass spectrometry (GC-MS). 

For example, a recent lipidomic study using platelet EVs illustrated compositional 

differences in lipids between EV subpopulations (82). Increased knowledge of the 

type of lipids packed into EVs may help to elucidate alternative biological roles and 

biomarkers for EVs that are not based on proteomic or nucleic acid detection. 
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1.1.5 Uptake and trafficking of extracellular vesicles 

1.1.5.1 EV internalisation 

Much of the evidence for the internalisation of EVs arose from the presence of the 

EV cargo within recipient cells, however, the mechanism of uptake was not studied 

in parallel. Recognition and internalisation of EVs is likely to differ between cell 

types and perhaps also between EV subpopulations; as such, a variety of uptake 

mechanisms have been proposed. 

The initiation of EV uptake by a cell is likely to involve a receptor-ligand interaction 

between the EV and the target cell. Evidently, this may be extremely cell-specific 

and depend upon the origin of the secreted EV and the target cell, though a number 

of less specific interactions have also been described. PS exposure on activated T 

cell EVs was recognised by the anti-PS receptor on Mϕ. Consequent EV 

internalisation resulted in the accumulation of cholesterol and tumour necrosis factor 

(TNF)-α in the Mϕ, which may initiate the transition towards a foam cell (83). 

However, inhibition of PS did not completely prevent EV uptake suggesting 

alternative methods of uptake. Integrins have also been implicated in the engulfment 

of EVs. The presence of α4β1 integrins on endothelial progenitor cell (EPC)-derived 

EVs were essential for uptake by endothelial cells (84) and uptake of dendritic EVs 

was partially blocked by the inhibition of αvβ3 (85). The latter study also illustrated 

a role for tetraspanins in EV-cell recognition as blocking antibodies to CD9 and 

CD81 reduced EV uptake (85). Interestingly, the tetraspanin Tspan8 was shown to 

form a complex with the integrin α4 in EV membranes, both of which were then 

required for exosome internalisation (86). These results suggest that tetraspanins and 

integrins may have both isolated and concomitant roles in EV uptake. Proteoglycans, 

lectins and immunoglobulins have all been implicated in EV-cell interactions, 

though in more cell-specific circumstances (87). 

Following recognition of EVs by the target cells, internalisation ensues. The majority 

of studies analysing EV uptake suggest an active, endocytic mechanism of 

internalisation, of which, there are several pathways (87). The most studied of these 

pathways is clathrin-mediated endocytosis, which involves an intracellular 

accumulation of clathrin-coated vesicles in the target cell which assemble to cause 

invagination of the plasma membrane and endocytosis of the EV. Inhibitors of 
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clathrin-mediated endocytosis can stem EV uptake including chlorpromazine (88–

90) which inhibits clathrin-coated pit formation, or silencing of dynamin 2, (90,91) a 

GTPase required for endocytic vesicle formation and cleavage. 

Endocytosis of EVs can also be mediated by lipid raft-associated calveolae, which 

form small chasms in the plasma membrane (87). Knockdown of Calveolin-1, a key 

component of calveolae , suppresses internalisation of EVs (92). This study also 

showed that dynamin inhibition reduced EV uptake, though this may have been due 

to blockade of clathrin-mediated endocytosis.  

Phagocytosis of EVs has also been proposed as a mechanism for EV internalisation, 

particularly of larger EVs (21) and more so by professional phagocytes (93). 

However, exosomes were rapidly internalised by Mϕ suggesting smaller vesicles 

may also be phagocytosed (93). Interestingly, this study also showed that dynamin 2 

was required for exosome phagocytosis, illustrating the parallels between different 

endocytic mechanisms. Dendritic cells (DCs) have also been shown to phagocytose 

EVs as EVs were labelled and tracked to the phagosome of the target cell and the 

content of EVs was later detected in the cytosol (94). 

Finally, endocytosis of EVs has been shown to occur via macropinocytosis, which is 

often utilised by the cell to sample the extracellular milieu. Macropinocytosis occurs 

in a phagocytosis-like manner, though the process is constitutive and not targeted 

(87). Microglia were shown to employ macropinocytosis to internalise 

oligodendrocyte EVs as inhibition of macropinocytosis-associated proteins, Rac-1 

and the Na
+
/H

+
 exchanger, inhibited uptake of EVs. 

Direct membrane fusion has also been suggested as a non-endocytic mechanism of 

EV internalisation in a process that may resemble the fusion of MVBs with the 

plasma membrane (Section 1.1.3.1). Metastatic melanoma cell EVs were internalised 

into melanoma cells by direct fusion, a process which was enhanced when EVs were 

isolated from acidic melanoma cells (95). This suggests the tumour 

microenvironment can release EVs which are more efficient in being internalised 

into cells and therefore have a greater metastatic potential. Furthermore, Mϕ-derived 

EVs were shown to fuse with activated platelets and induce coagulation via the 

transfer of tissue factor (TF) (96). 



Page | 19  

 

It seems that cells may utilise several different mechanisms to recognise and 

internalise EVs, though the significance of each particular mechanism is not 

currently understood. The pathway of internalisation may perhaps be determined by 

the initial interaction of the EV with the cell, which is likely to be affected by 

receptors and ligands carried by the EV. 

 

1.1.5.2 Intracellular trafficking of EVs  

With the exception of direct fusion of EVs with target cells, the uptake of EVs 

appears to leave the EV intact, and hence the EV cargo remains contained within the 

endocytosed EVs. Indeed, endothelial-derived EVs endocytosed by human umbilical 

vein endothelial cells (HUVECs) were visualised by confocal microscopy as intact 

vesicles (97). This suggests that the EV membrane undergoes intracellular 

degradation to liberate the delivered EV cargo. Fusion of EVs with the limiting 

membrane of endosomes has been illustrated using the lipid mixing probe R18, 

which quenches to form a fluorescent probe upon fusion with an unlabelled 

membrane (94,98). Furthermore, endocytosed tumour cell EVs were shown to 

demonstrate two distinct forms of intracellular translocation (98). The “confined 

mode” of movement was associated with diffusion into the cytoplasm whereas the 

“rapid directed mode” was associated with an active movement of EVs along 

microtubules or actin filaments. Transport of endocytosed glioblastoma EVs were 

also visualised along microtubules using live confocal imaging (99). Recent data 

presented at the ISEV annual meeting (100) (Washington DC, 2015) by Hartjes et 

al., (O-6C-1) demonstrated the uptake and translocation of individual fluorescently 

labelled exosomes via microtubules using high speed spinning disk microscopy. 

 

The development and application of more sophisticated microscopy techniques to 

visualise the uptake and intracellular trafficking of EVs is likely to further our 

understanding of the fate of EVs within target cells. However, from the diversity of 

uptake mechanisms, it seems likely that intercellular communication via EVs is 

highly specific to the cell types involved. 
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1.1.6 Pre-analytical processing 

The rapid growth of EV research proposes exciting functional prospects of EVs, but 

data must also be reviewed with a degree of circumspection. The diversity of 

biological fluids analysed combined with different levels of experience in working 

with EVs and the variety of isolation procedures employed, highlights the lack of 

consistency in pre-analytical processing of EVs. Consequently, a position statement 

from ISEV was issued in 2014, highlighting a need for researchers to meet a set of 

“minimal requirements” for the classification of an EV population (16). The 

requirements include the presence and absence of particular markers and techniques 

that should be used in combination to claim the presence of EVs (Table 1.1.2). 

 

1.1.6.1 Sample collection and handling  

Sample collection for EV processing will ultimately depend on the starting 

biological fluid. Due to the nature of data presented in this thesis, only the 

processing of blood and culture medium will be covered in detail, though processing 

of EVs from other biological fluids has been reviewed elsewhere (17). 

Blood is a complex biological fluid and therefore, there are many stages at which 

variation could be introduced. Before blood is drawn from a patient or individual, a 

full history should be taken to collect information on age, sex, ethnicity, 

medications, health complications and potentially anthropometric and biochemical 

measurements such as weight, height, blood glucose etc. depending on the study. 

The fasting or fed state of the individual may be important to establish, due to 

postprandial elevations in circulating lipoproteins and chylomicrons, which fall 

within the same size range as EVs. A postprandial increase in EV concentration has 

also been observed (101,102) suggesting a fasted state may be better for EV isolation 

to avoid a false overestimation of EV concentration. The time of sample collection 

may also be important to consider as the activation of platelets, one of the major 

sources of EVs in the blood, varies throughout the day (103). Interestingly, TF
+
 EVs 

follow the same pattern of variation throughout the day, peaking at 9am (104). 

Therefore, EV samples should be collected after this time to minimise false 

estimations of platelet-derived EVs.  
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Requirement Examples 

 

Evidence of transmembrane or lipid-

bound proteins derived from 

extracellular membranes 

(Present or enriched in EV fractions) 

Tetraspanins (CD9, CD63, CD81) 

Integrins or cell adhesion molecules 

Growth factor receptors 

Heterotrimeric G-proteins 

Phosphatidylserine-binding proteins (MFG-

E8, annexin V) 

Evidence of cytosolic proteins with 

membrane- or receptor-binding 

capacity 

(Present or enriched in EV fractions) 

Endosomal proteins (TSG101, Alix, Rab 

GTPases) 

Signal transduction or scaffolding proteins 

(syntenin) 

Lack of non-endocytic intracellular 

proteins  

(i.e. proteins not directly related to 

EV biogenesis, associated with other 

intracellular compartments) 

Endoplasmic reticulum proteins (Grp94, 

calnexin) 

Golgi proteins (GM130) 

Mitochondrial proteins (cytochrome c) 

Nuclear proteins (histones, argonautes, RISC 

complexes) 

Cell-specific extracellular proteins 

that may bind specifically or non-

specifically to EV membranes 

(Variable association with EVs 

depending on cell type) 

Acetylcholinesterases 

Serum albumin 

Extracellular matrix proteins (fibronectin, 

collagen) 

Soluble and secretory proteins (cytokines, 

growth factors, matrix metalloproteinases) 

Indication of heterogeneity Electron microscopy or atomic force 

microscopy images of individual EVs and 

multiple EVs 

Size distribution measurements Nanoparticle tracking analysis or tunable 

resistive pulse sensing measurements of the 

size and concentration distributions of EVs 

to correlate with microscopy images 

Table 1.1.2: ISEV minimal requirements. Details of the minimal requirements 

outlined by ISEV for the classification of an EV population.   



Page | 22  

 

The processing of blood for EV isolation presents a number of important 

considerations, primarily because circulating platelets are easily activated, causing a 

release of EVs in vitro. The type of needle, vacutainer and time between collection 

and processing may all influence EV concentration. Shear stress may be higher in 

smaller gauge needles due to an increased pressure, however, no differences were 

observed between 19 and 21G needles on EV concentration (60) and these diameters 

are frequently used in the literature. A slow, gentle removal of blood into a syringe is 

recommended to minimise shear stress activation of platelets and the first 2-3 mL of 

blood are then usually discarded to avoid contaminating factors resulting from 

vascular injury (60). Previously used anticoagulants for EV isolation have included 

protease inhibitors such as heparin sulphate and hirudin, and calcium chelators such 

as sodium citrate, ethylenediaminetetraacetic acid (EDTA), acid citrate dextrose 

(ACD) and citrate-theophylline-adenosine-dipyridamole (CTAD). Unfortunately, 

only 2 studies have directly compared the effects of anticoagulants on EV 

concentration. Both studies found an increased concentration of EVs with the use of 

protease inhibitors compared to chelating anticoagulants (59,60). However, the 

authors of each study reached different conclusions as to the observed difference in 

EV concentration. Jayachandran et al., concluded that chelating anti-coagulants 

caused EVs to bind to platelets in whole blood, resulting in fewer EVs in the plasma 

that was later analysed for EVs (following depletion of platelets) (59). Conversely, 

Shah et al., hypothesised that the anticoagulant properties of chelating anticoagulants 

were superior to those of protease inhibitors, resulting in a greater platelet activation 

and ex vivo generation of EVs in blood collected in protease inhibitor anticoagulants 

(60). The correct conclusion remains a mystery as neither of the authors provided 

evidence for their theory. However, Jayachandran et al., did observe a reduction in 

endothelial-derived EVs with chelating agents but not with protease inhibitors. 

Endothelial cells are not present in the circulation and therefore, ex vivo generation 

of endothelial EVs is unlikely, suggesting protease inhibitor anticoagulants may 

provide a truer reflection of circulating EVs than chelating agents. The use of 

heparin for downstream EV analyses has however, been advised against (17). 

Heparin sulphate has inhibitory effects on the polymerase chain reaction (PCR) 

(105) and is therefore unsuitable for mRNA and mIR analysis using blood-derived 

EVs. Moreover, heparin sulphate was an effective inhibitor of EV internalisation into 

recipient cells (106), suggesting heparin sulphate should not be used if functional 
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interactions of EVs with target cells are being studied. Additional comparisons of the 

effects of anticoagulants on EVs are needed to decipher the optimal reagent. These 

comparisons should be accompanied by functional evidence of the negative effects 

of other anticoagulants (e.g. proof of EV-platelet binding with calcium-chelating 

anticoagulants) and should preferably not use FC for enumeration of EVs (see 

Section 1.1.7.2). 

The length of time following collection of blood should also be considered. A time-

dependent increase in EV concentration has been reported following blood collection 

which was attributed to ex vivo microvesiculation of blood cells (107,108), however 

others have observed no differences in EV counts (59,109). Despite conflicting 

results, it may be best to process samples immediately after venepuncture to avoid 

the risk of misleading data. At the very least, the time between sample collection and 

processing should be kept consistent between samples and experiments. 

EVs isolated from cell lines in culture are released directly into the surrounding 

medium and therefore provide a pure source of EVs from a specific cell type. 

However, there are a number of important points to consider when using cultured 

cells for EV analysis. Firstly, the time of incubation used to generate EVs. Twenty-

four hour incubation with fresh medium is the most widely used incubation time as 

this is often optimal in allowing enough time for sufficient EV generation; though, 

both shorter and longer incubation times have been used (110–112). Secondly, the 

modification or exclusion of foetal calf serum (FCS) or other serum from the media 

for the incubation period is commonly used as serum contains an abundance of EVs 

that are morphologically similar to EVs analysed with EM and nanoparticle tracking 

analysis (NTA) (113). Serum-derived EVs not only contaminate the EV population 

of the cultured cells but may also affect downstream functional assays using EVs. 

FCS-derived EVs stimulated migration of lung epithelial cancer cells (113). 

However, serum-depleted or –starved media has been shown to reduce cell growth 

(114) and to change the size, concentration and protein composition of EVs 

(115,116). Therefore, it is important to first establish that serum-deprived or –free 

media has no effect on cell viability to ensure cellular stress is minimised. Cells that 

do not survive in serum-depleted or –free media may be supplemented with 1% 

(w/v) bovine serum albumin (BSA) (117).  
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1.1.6.2 Methods of EV isolation 

A number of techniques are currently employed to isolate EVs including differential 

centrifugation, density gradient ultracentrifugation, size exclusion chromatography 

(SEC), immunoaffinity capture assays, filtration and commercially available 

products such as ExoQuick™; or a combination of several of these methods. The 

method employed usually reflects the EV population being studied and/or the 

downstream application. 

Differential centrifugation requires a number of sequential centrifugation steps (often 

with increasing centrifugal force) and is one of the most popular techniques for EV 

isolation. The number and speed of centrifugation steps may vary between groups 

and especially between biological fluids. Typical differential centrifugation of EVs 

from blood and conditioned culture medium are summarised below (Figure 1.1.6). 

 

Figure 1.1.6: Differential centrifugation. Typical differential centrifugation steps used to 

isolate EVs from blood and conditioned culture media. Number of steps, centrifugal force 

and times may vary between groups and biological fluids.  
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The popularity of differential centrifugation as an isolation technique may be due to 

its simplicity and short preparation time. However, several limitations are associated 

with differential centrifugation. For instance, the final ultracentrifugation step may 

pellet some soluble material in the remaining supernatant. Therefore the preparatory 

spins prior to ultracentrifugation are crucial to remove contaminating artefacts such 

as platelets and cell debris. Supernatants, particularly those derived from blood, are 

likely to contain a mixture of lipoproteins and soluble proteins as well as EVs 

(21,118,119) which may co-pellet following ultracentrifugation. Ultracentrifugation 

may also alter the physical properties of EVs by inducing EV aggregation with 

protein complexes (117,120), fusion with other EVs (11,121), and increasing PS 

exposure (122) which may lead to erroneous results. Therefore, differential 

centrifugation is proposed as an enrichment method rather than a purification method 

for EV analysis. Calculating the ratio between the number of vesicles and the amount 

of protein detected in the EV sample was recently suggested as a simple method of 

determining EV sample purity (123).  

Alternatively, successive filtration of EVs has long been used as a less vigorous 

method of purification (124). A number of studies have applied the use of simple 

submicron filters to remove larger vesicles and protein aggregates 

(58,59,110,117,123). However, it is unknown whether any interaction occurs 

between the EV and the filter and whether the higher concentrations of EVs 

observed post-filtration are due to increase purity, or deformation and disintegration 

of EVs by the filter. More sophisticated filtering systems have used to separate  free 

protein from EVs such as tangential flow filtration (TFF), in which samples are 

passed through a hollow fibre 500 kDa filter (124,125) or ultrafiltration which 

combines centrifugation and filtration (typically a 100 kDa filter) (126,127). 

Filtration is often then combined with other techniques such as differential 

centrifugation or density centrifugation to aid purification.  

Density gradient ultracentrifugation is regarded as the current “gold standard” EV 

isolation technique as it allows EVs to be separated from protein contaminants which 

are denser, and EVs can also be validated to their expected density (1.13 – 1.19 g/mL 

for exosomes (128) and 1.03 – 1.08 g/mL for microvesicles (129)). EVs sediment at 

the point where their density is equal to that of the surrounding media. Each density 

fraction can then be probed for EV markers to confirm enrichment (Figure 1.1.7) 
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and then be pooled for further analysis. Sucrose (64,66,74,128,130) or iodixanol 

(106,131,132) are often used as mediums for density ultracentrifugation of EVs. The 

process is typically longer than differential centrifugation (Figure 1.1.6) taking up to 

16 hours (117) and is usually performed overnight (17). Interestingly, EVs separated 

by density gradient ultracentrifugation have usually first been pelleted by differential 

centrifugation. Density separation is then used to improve the purity of the EV 

sample for downstream analyses. However, lipoproteins have similar densities to 

EVs, suggesting EVs isolated by density ultracentrifugation may still be 

contaminated with lipoproteins. Moreover, EVs are still exposed to the initial 

ultracentrifugation and therefore may have been fused or damaged before loading 

onto the density gradient. Pooling of specific EV fractions may also introduce a 

selective bias towards a certain EV population, causing others to be discarded. 

 

Figure 1.1.7: Density ultracentrifugation enrichment of EV markers. Example data of 

EVs separated by density ultracentrifugation and probed for (A) the generic EV marker, 

CD9, using FC and latex beads and (B) for the exosomal marker, TSG101 using Western 

blot. Data are courtesy of Dr Joanne Welton (Cardiff Metropolitan University). 
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The application of SEC as a novel EV isolation technique has been relatively well 

received as prior ultracentrifugation processing may not be required. SEC, also 

termed gel filtration, separates particles based on their relative size to porous 

polymer beads packed into a column (133) (Figure 1.1.8).  

SEC columns have been tested for plasma-derived EV isolation by directly adding 

isolated plasma to columns packed with Sepharose CL-2B (118,119,134–136), 

Sepharose CL-4B, Sephacryl S-400 (134) or the commercial qEV column (126) 

(IZON Science, NZ). Most columns used a 10 mL bed volume collecting 500 μL 

elution fractions following loading of 1-1.5 mL plasma (depleted or free of platelets). 

All studies found SEC successfully separated EVs in distinct fractions to the 

majority of serum proteins such as albumin by enrichment of tetraspanins, cleaner 

transmission EM (TEM) images and good particle to protein ratios. Two studies also 

illustrated a successful separation of lipoprotein makers (118,135) from EVs 

following SEC, however this was not reproducible in other studies that measured 

lipoprotein markers (119) and in our own pilot experiments (unpublished 

observations). Muller et al., observed that SEC had no effect on the ability of cancer 

exosomes to immuno suppress CD4
+
 T cells (136) indicating EVs isolated by SEC 

retain their functionality. This is also important to demonstrate the effect is due to 

the EV itself rather than co-pelleted contaminants. The relative potential of SEC for 

EV isolation is reflected in the marketing of two commercial SEC columns 

specifically for EV isolation: Exo-Spin™ Midi Columns (Cell Guidance Systems, 

UK) and qEV™ (IZON Science, NZ). However, further optimisation of SEC is 

needed to improve separation from lipoproteins and to design a repeatable workflow. 

The labour-intensiveness and time of fraction collection could be reduced following 

optimisation, by pooling fraction collection into larger volumes (119,135,136). 

However, this may also introduce bias through the selection of specific fractions and 

EV populations. Due to the relatively small volume loaded in comparison to the bed 

volume, dilution of signal could be a limitation of SEC, particularly for less 

abundant markers. Welton et al., experienced difficulties in concentrating eluted 

fractions back up for subsequent analysis (119). Furthermore, dilution of signal in 

combination with the pooling of fractions may make it difficult to relate the 

measured concentration of EVs to that in circulating plasma. 
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Figure 1.1.8: Principle of SEC: SEC columns are usually prepared in 10 mL syringes by 

pouring the matrix (commonly Sepharose) and allowing it to pack under gravity. Complex 

biological fluids such as plasma containing a heterogeneous mix of EVs, proteins and 

lipoproteins can then be added directly onto the SEC column. Larger particles are unable to 

pass through the pores in the beads and so pass quickly through the column, whereas smaller 

particles are able to pass through the pores, therefore taking longer to elute. Fractions can 

then be collected at set intervals (volume or time) and analysed for protein markers, EV 

concentration and lipoprotein markers to monitor the progress of the sample through the 

SEC column.  

 

Immunoaffinity isolation of EVs involves the coupling of an antibody of interest to 

magnetic beads (or beads that are pelleted at relatively low centrifugal forces). The 

beads are then incubated with EVs which bind to the antibody-bead complex and the 

beads can be subsequently removed from unbound EVs and contaminants by a 

magnet or low speed centrifugation. The technique is well characterised for cells and 

was first demonstrated for EV isolation using exosomes bearing MHC II in 2001 

(137). Despite the demonstration of successful isolation of EVs without the need for 

high-speed centrifugation using a quick, simple method, the use of immunoaffinity 

isolation has been slow to catch on in the EV field. Recently, magnetic beads were 

used to isolate TF
+
 EVs from plasma (138) and annexin V positive EVs isolated by 
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immunoaffinity were then used for downstream analysis of EV RNA (139). 

Antibody-coated beads have also been used to capture EVs for flow cytometric 

measurements as often the bead is ~1 – 10 μm in diameter (140). This overcomes the 

major limitations of using FC for EV measurements (Section 1.1.7.2) and also allows 

for dual staining of EVs. However, immunoaffinity assays isolate specific 

populations of EVs and may therefore bias towards certain EV subsets. Furthermore, 

recovery may not be 100% efficient and therefore downstream analyses may be 

underestimated.  

Commercial techniques for EV isolation are also available including SEC-based 

methods, ExoSpin™ and qEV™, and the precipitation technique, ExoQuick™ 

(System Biosciences, USA). The exact mechanism of action of ExoQuick™ has not 

been disclosed though the process uses a polymer to precipitate exosomes directly 

from biofluids such as plasma using a mixture of specific reagents and low speed 

centrifugation (141). ExoQuick™ has been reported to provide superior isolation of 

exosomal RNA and proteins compared to ultracentrifugation, SEC and 

immunoaffinity-based methods (142) however, other studies have indicated low 

enrichment of EV markers and high contamination of non-EV protein with 

ExoQuick™ isolations (126,141). Therefore, commercial isolation techniques such 

as ExoQuick™ should not be used without prior validation of sufficient EV 

purification. 

A summary of the methods outlined above with respective advantages and 

disadvantages is given in Table 1.1.3. Irrespective of the protocol used for EV 

isolation, the method must first be validated for the biological fluid and shown to 

fulfil the minimal requirements outlined by ISEV to confirm the isolation of a true 

EV population (16).  
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Method Subpopulation isolated Advantages Disadvantages 

Differential 

centrifugation 

Exosomes 

Microvesicles 

EVs 

→ Fast 

→ Little training required 

→ Enriches EV markers 

→ Can be adapted to remove larger 

microvesicles/isolate only exosomes 

→ Crude separation of EVs (contamination 

from soluble protein and lipoprotein) 

→ May cause EVs to fuse 

→ May increase PS exposure 

Filtration 

(including tangential 

flow filtration (TFF)) 

Exosomes 

EVs 

→ Fast and simple 

→ Remove protein contaminants (TFF) 

→ Unknown interaction of EVs with filter 

→ May require additional purification 

steps 

Density gradient Exosomes 

Microvesicles 

EVs 

→ Separation from protein contaminants 

→ EVs can be verified by density 

→ Lengthy procedure 

→ Requires training 

→ May not separate lipoproteins 

→ May require additional processing 

Size exclusion 

chromatography 

(including qEV™ and 

ExoSpin™) 

Exosomes 

Microvesicles 

EVs 

→ Fast and simple 

→ Requires minimal pre-processing 

→ Separation from protein and potentially 

lipoprotein contaminants 

→ Labour-intensive 

→ Sample diluted by column so may 

require concentration afterwards 

→ Workflow needs refining and further 

validation of homemade and 

commercial columns needed 

Immunoaffinity Exosomes 

Microvesicles 

EVs 

→ Fast and simple 

→ Allows isolation of specific sub 

population 

→ Recovery may not be 100% 

→ May bias towards specific population 

→ Needs further validation 

ExoQuick™ Exosomes → Fast and simple → Impure isolation 

→ Low enrichment of exosomes 

Table 1.1.3: Summary of methods of EV isolation. Current methods employed for EV isolation and their respective advantages and disadvantages.
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1.1.6.3 Storage of isolated EVs 

For EVs to serve as clinical biomarkers in large-scale studies or routine diagnostic 

analyses, storage of EV samples is paramount. Therefore, optimal storage vessels, 

medium, method and length must be established to minimise changes in EV profiles. 

Though a number of studies have reported differences in EVs when varying storage 

parameters, results are often conflicting and as such, no standardised protocols are in 

place for EV storage. Furthermore, many of these studies have been undertaken 

using FC to enumerate EVs, which as discussed in Section 1.1.7.2, is sub-optimal.  

The material of the storage vessel has been proposed to affect EVs as certain plastics 

may cause EV aggregation and adherence to the vessel. Silicone storage vessels have 

been suggested as an alternative (17), however no physical evidence exists in the 

literature demonstrating the effect of storage material on EV characteristics. The 

most widely-used medium for EV resuspension and storage is phosphate buffered 

saline (PBS) (117). Recent advice suggests the PBS must be completely free of 

calcium to avoid formation of calcium phosphate complexes (16), which are in the 

same size range as EVs and may therefore skew size and concentration analyses. 

Other solutions have also been used to store EVs, including 4-(2-hydroxyethyl)-1-

piperazineethanesulphonic acid (HEPES), water, dimethyl sulphoxide (DMSO) and 

glycerol (16). DMSO and glycerol, commonly used in the cryo-freezing of cells, 

reportedly cause partial lysis of EVs (143); however, our own observations with 

glycerol do not marry with this (P8B-301) (144). Storage mediums should also be 

filtered (using a 0.22 μm filter) to remove any EV-sized contaminants prior to 

resuspension of EVs, or a commercial sterile medium should be purchased. 

Analysis of EV samples on the same day as isolation is often not feasible, 

particularly if a lengthy isolation procedure is used. Therefore, it is important to 

understand the impact of the method and of short- and long-term storage on EV 

characteristics. Although a number of studies have analysed the effects of storage on 

EVs, much of the data are contradictory, making it difficult to interpret the “best 

option”. Studies have illustrated that EV isolation from the biofluid before storage is 

optimal, particularly with blood-derived samples. Plasma frozen prior to EV 

isolation contained a greater contamination of protein aggregates in subsequent EV 

isolations (136). Additionally, storage of platelets at -80°C resulted in an increased 
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concentration of platelet-derived EVs with a reduced diameter and a greater 

thrombin-generation (procoagulant) capacity (145,146). 

Currently, most studies store samples at -80°C in PBS (17). Concentration, 

functionality (143) and EV diameter were shown to be unchanged following storage 

at -80°C and repeated freeze-thaw cycles also had no effect on EV size (147) 

suggesting stability of EVs at this storage temperature. Furthermore, small RNAs 

within EVs were stable following 1 month of storage at room temperature and also 

following 20 freeze-thaw cycles at -80°C (110). The size, concentration and 

morphology of EVs from conditioned culture medium, platelet and erythrocyte 

concentrates and urine were also unaffected by storage at -80°C (109). 

Conversely, others report that storage of EVs at -80°C resulted in an immediate 

decrease in diameter of EVs and a gradual (>2 months storage) degradation of EV 

RNA (148). Ayers et al., observed increases in annexin V and platelet-positive 

(CD41+/CD31+) plasma EVs following 1 month storage at -80°C (107), supported 

by Yuana et al., who reported an increase in lactadherin-positive EVs following 

storage at -80°C (109). Storage of EVs at -80°C with repeated freeze-thaw cycles 

also reduced the EV RNA (139). Long-term storage was also detrimental to the 

concentration of plasma-derived EVs which was significantly decreased between 1 

(59) and 2 years of storage at -80° C (107). Storage of EVs at temperatures above 

freezing has also been shown to have conflicting effects on EV characteristics. 

Storage of EVs at 20°C or 4°C for >1 week resulted in decreased EV concentration 

and a loss of functional activity (143). The diameter of EVs was also rapidly reduced 

following storage at 37°C, and to a lesser extent at 4°C (147). However, others have 

observed stability in EV concentrations following storage at room temperature for 4 

days (59). 

 

There are evidently many problems regarding the pre-analytical processing of EVs 

and few concrete solutions to these issues from which to design a protocol. Until 

more is known about the effects of EV processing steps, consistency between 

samples and experiments and complete clarity in reporting methods are paramount to 

enable comparisons with the rest of the field.   
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1.1.7 Measurement 

A variety of optical and non-optical techniques are available for the measurement of 

EVs, and the chosen technique often reflects the desired outcome or application. 

TEM is commonly used to determine the ultrastructure, FC to analyse surface 

phenotypic makers, and NTA to quantitate the size and concentration of EVs (149). 

 

1.1.7.1 Methods for determining EV morphology  

The minimal requirements outlined by ISEV (16) (Table 1.1.2) indicate a need for 

visual evidence of individual and multiple EVs in samples. TEM is the most widely-

used technique to visualise EV structure; originally described as a “cup-like 

morphology” though this has since been shown to be an artefact of TEM preparation 

(117). Heavy metals such as uranyl acetate allow staining of lipid membranes, and 

these are visualised following fixation and dehydration onto grids (17). EVs can also 

be stained with antibodies (such as CD63) coupled to nano-gold particles to allow 

further confirmation of an EV population (150). Cryo-EM may relinquish the need 

for dehydration and fixation by fast-freezing EV samples, and has recently identified 

a number of different EV structures such as “vesicle-within-vesicle” structures (151). 

Atomic force microscopy (AFM) is also used to visualise EV structures by scanning 

the surface of EVs without contact, using deflections of a directed laser beam to 

build a 3D image with nanometre resolution (108,152). EVs are bound to a flat 

surface onto which antibodies can also be conjugated, allowing the application of 

immuno-detection to analyse specific EV populations (152). 

Though size distributions and structures of EVs can be visualised by TEM and AFM, 

EV concentration cannot be calculated and experiments may take hours to conduct. 

 

1.1.7.2 Phenotyping EVs 

Perhaps the most interesting aspect of EV research is the analysis of the markers 

carried by EVs, and particularly how these may change in disease. Once again, the 

ISEV minimal requirements outline the need for analysis of EVs to show the 

presence of certain markers and the absence of others (Table 1.1.2). FC is the most 



Page | 34  

 

widely used technique for both qualitative and quantitative EV measurements. 

Samples are introduced into the system surrounded by a fluid sheath which then 

directs the sample through a laser beam (Figure 1.1.9). The constituents of the 

sample (usually cells) scatter light forwards depending on their size (forward scatter) 

and sideways depending on their granularity (side scatter). Both scatter profiles are 

collected by detectors and used to create a dot plot from which samples can be gated 

to allow enumeration of particles within the sample. Additionally, specific antibodies 

can be used bearing a fluorochrome which is excited by a certain laser to allow 

quantification and phenotyping of subpopulations. Multiple antigens can be analysed 

simultaneously by using different lasers and antibody-fluorochrome combinations, 

providing fluorochrome emission spectra do not overlap.  

Unfortunately, the use of FC for EV analysis is hampered by a number of 

limitations. Many conventional flow cytometers are unable to detect EVs <300 nm in 

diameter, which is the range in which most EVs fall (120). This is due to the low 

refractive index of EVs (149) meaning the majority of EVs fall within the noise of 

the cytometer. Furthermore, the gating of EV populations is usually based on the 

forward and side scatter properties of submicron polystyrene beads (17,149). The 

refractive index of a 200 nm polystyrene bead can be up to 15 times higher than that 

of an EV of equal diameter (149) leading to false comparisons of size between beads 

and EVs, as EVs would scatter less light and appear to be smaller. Silica beads 

reportedly have a refractive index more akin to that of EVs than polystyrene and may 

be more representative for EV gating (153). The limited diameter of EVs also 

prevents the flow cytometer from efficiently sorting EVs into a single particle stream 

for individual analysis, meaning individual EV counts may be the result of “swarm” 

detection (multiple EVs) (154). 

Steps have been taken to improve the flow cytometric detection of EVs such as high 

resolution FC which may detect EVs ~100 nm in diameter (155) though this requires 

expensive machinery and an experienced user. Alternatively, similarly to 

immunoaffinity isolation (Section 1.1.6.2), EVs can be conjugated to latex beads (>1 

µm in diameter) carrying an antibody to a marker of interest (117), e.g. CD9. EVs 

bound to the beads are then within a detectable range for analysis and can be probed 

with further antibodies. 
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Figure 1.1.9: Flow cytometry. A schematic illustrating the mechanism of FC. The sample 

(e.g. cells) is drawn into the machine and surrounded by sheath fluid. The fluid and the 

shape of the tube allow the hydrodynamic focusing of the sample into a stream of single 

cells. Individual cells then pass through a laser and the resulting forward and side scatter are 

collected by positioned detectors. Scatter profiles can then be plotted and gated (right). 

 

Western blotting and quantitative real-time (qRT)-PCR are also useful techniques for 

analysing the protein and RNA content of EVs. Western blots are frequently 

presented alongside density ultracentrifugation data to provide evidence for 

enrichment of EV proteins in the correct density fractions (Figure 1.1.7). More 

sensitive proteomic techniques (primarily using MS) can be applied to EVs that are 

able to simultaneously analyse an array of proteins to highlight potential biomarkers 

(156–158). Microarray analysis can also be used to analyse a wide variety of RNA 

species in EV samples to highlight potentially interesting changes in specific 

mRNAs and mIRs (76). Lipid species (lipidomics) of EVs can be identified using 

GC alone (55,76,159) or combined with MS (GC-MS) (78). Generally, large-scale 

analyses of EVs are useful to analyse a range of markers within EVs and may 

highlight potential biomarkers of interest for further study. However, due to the 

amount of data generated by these methods, great care should be taken with data 
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interpretation and an experienced user should be consulted. Markers of interest 

should then be validated using Western blot or qRT-PCR to confirm results. These 

types of techniques are usually expensive and time-consuming.  

Immunophenotyping of EVs has been proposed as an alternative method to Western 

blotting that allows analysis of multiple antigens in synchrony (119,158). The 

principles of EV immunophenotyping are shown in Figure 1.1.10. EVs are settled 

onto high-binding enzyme-linked immunosorbent assay (ELISA) plates and probed 

for antibodies of interest. EVs may also be partially permeabilised to analyse 

antigens within EVs as well as surface markers. A biotinylated secondary antibody 

then allows binding of streptavidin-europium conjugates. The bound europium probe 

can then be dissociated from the streptavidin and excited at 340 nm by a series of 

flashes. The resulting fluorescence emission is monitored using time resolved 

fluorescence (TRF) and a narrow emission peak is produced with a large Stokes‟ 

shift and long decay time, thereby giving a good signal-to-noise ratio. The technique 

has been successfully applied to measure markers within prostate cancer EVs (158), 

plasma-derived EVs (119) and by ourselves in adipocyte-derived EVs (159). Though 

the technique requires initial efforts to validate EV and antibody concentrations, it is 

a promising simple and rapid technique for phenotyping multiple markers on the 

surface of and within EVs. 

 

Figure 1.1.10: Immunophenotyping of EVs. EV immunophenotyping is performed on 

high-binding ELISA plates. A primary antibody of choice can be added to the well and the 

same sample can be probed with other antibodies using remaining wells. A biotinylated 

secondary antibody is then added which allows binding of a streptavidin-europium 

conjugate. Flash excitation of wells allows generation of fluorescence which can then be 

measured in a plate reader with TRF settings.  



Page | 37  

 

1.1.7.3 Quantification of EVs 

The enumeration and accurate sizing of EV populations may also be important in 

comparing EVs between healthy and disease states. Several techniques have been 

used to determine the size and concentration of EV samples, each with their own 

advantages and limitations. Dynamic light scattering (DLS) measures the light 

scattered from EVs in suspension (i.e. under Brownian motion) and uses the 

information to determine EV size and concentration (143,160). However, the 

scattering of EVs is collected by a single detector (160,161), meaning the signal is 

averaged for the whole EV population. Therefore larger EVs scattering more light 

bias the average signal and potentially overestimate the overall size. For 

monodisperse populations such as exosomes however, DLS may produce relatively 

accurate size and concentration data.  

NTA is a technique which incorporates the principles of DLS but uses additional 

video tracking of EVs over time for detection. This overcomes the shortfalls of DLS 

by tracking the light scattering and Brownian motion of individual EVs over time to 

calculate EV size and concentration distributions. However, large EVs will still 

scatter considerably more light than smaller EVs, and hence may still dominate 

recordings. Analytical software settings have the potential to introduce subjectivity 

into EV analysis with NTA, though a recently published technical report provides 

advice on how to minimise sources of variation (162). Due to its simplicity and the 

relatively short sampling time, NTA is one of the most popular techniques for EV 

quantification. The addition of a syringe pump and more advanced software which 

can be programmed to continuously introduce samples into the viewing chamber 

allows measurement of replicates in quick succession (162) and reduces the input 

time of the user. NTA is also moving towards the measurement of fluorescently 

labelled EVs using different laser and camera attachments (161,163). A current 

limitation of NTA and other EV quantification methods is the inability to distinguish 

EVs from contaminating material such as protein complexes and lipoproteins. 

Although fluorescence NTA is not yet in routine use, it has great potential in 

combining the direct labelling of EVs with accurate size and concentration data. 

Tunable resistive pulse sensing (TRPS) is a non-optical method for determining EV 

size and concentration. TRPS measures the disruption in current generated by EVs as 
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they pass through a tunable nanopore that is suspended between two wells of 

electrolyte buffer (164). EVs are measured on a particle-by-particle basis, allowing 

data to be recorded for each EV traversing the pore. The magnitude of the blockade 

event (disruption in current) is proportional to the EV size and the frequency of 

blockade events is proportional to the concentration of EVs. TRPS has been used to 

accurately quantify EVs in a variety of biological fluids (55,165); however, issues 

with pore clogging and the need for multiple nanopores to cover the EV size range 

have perhaps prevented TRPS becoming as widely used as NTA. Furthermore, 

sample analysis is much more labour intensive than NTA as continuous monitoring 

is needed to identify pore blockages and (especially less concentrated) samples may 

take up to 10 minutes to record per replicate. However, a unique ability of TRPS is 

the measurement of EV surface charge from the duration of the blockade event 

(166). This may have interesting applications in the phenotyping of EVs based on 

changes in surface charge. Aptamers are single strands of nucleic acids (DNA or 

RNA) with high specificity and affinity to a target (e.g. protein) (164,167). Aptamers 

conjugated to beads and incubated with thrombin were shown to traverse the 

nanopore differently due to a change in surface charge from binding of thrombin to 

the aptamer-bead complex (167). This work was then extended using two aptamers 

(for vascular endothelial growth factor (VEGF) and platelet-derived growth factor 

(PDGF)) conjugated to beads of different sizes allowing multiplexing of samples 

(168). The combined use of aptamers for specific EV markers and TRPS may allow 

for simultaneous analysis of size, concentration and surface markers of EVs. 

 

Currently no “gold standard” technique exists for measurement of EVs, and the 

chosen technique is often dictated by the desired outcome. As with EV isolation, it 

seems that complete clarity in the methods used to analyse EVs is needed to enable 

comparison with the rest of the field. Users must also have a good understanding and 

be aware of the advantages and limitations of each analytical technique to avoid 

erroneous results. Clearly, most of the measurement techniques used for EVs are 

striving to improve their methods and capabilities, so it is hoped in the future that 

standardisation of EV measurements will be achieved.  
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1.1.8 Physiological roles of extracellular vesicles 

EVs from a variety of sources can be detected in a number of biological fluids of 

healthy individuals and have been recognised as important cell-cell communicators. 

The field has been dominated by pathological roles of EVs in disease, though it is 

clear that EVs are also important homeostatic mediators (Figure 1.1.11). 

 

1.1.8.1 Biodistribution of EVs 

The biodistribution of circulating EVs is dependent upon the ratio between EV 

biogenesis and EV clearance (169). Little is known about the half-life of circulating 

EVs, though a number of studies indicate the rapid clearance (within 30 minutes) of 

exogenously isolated EVs following re-introduction (170–172). EVs bearing a MFG-

E8-luceriferase label were cleared from the circulation within 2 minutes of injection 

(173). In vivo studies however, reported a much slower clearance from the 

circulation (~6 hours). EV internalisation by cells is likely to account for the 

majority of clearance, which is a cell-specific process, depending on the cellular 

origin of the EV and the target cell (Section 1.1.5).  

 

1.1.8.2 Role of EVs in haemostasis  

One of the most studied functions of EVs is their contribution to the coagulation 

cascade; primarily the role of platelet-derived EVs. Some of the earliest studies into 

EVs insinuated a procoagulant effect of platelet-derived EVs (1,2) and platelet-

derived EVs were recently shown to enhance thrombin generation in vitro (174,175). 

The exposure of PS on platelet-derived EVs provides a platform for the assembly of 

factors of the coagulation cascade such as Factors VII and X and prothrombin (176). 

However, flow cytometric analyses of PS exposure of platelet-derived EVs using 

annexin V or MFG-E8 indicates that not all EVs expose PS at their surface (63,177). 

TF is a potent stimulator of coagulation and has also been shown to be present in 

EVs (169). Interestingly, platelet-derived EVs seem to contain very little TF (169) 

suggesting EVs derived from other cell types contain procoagulant TF. Indeed, 

procoagulant EVs have been shown to be released from leukocytes, endothelial cells, 

monocytes (169), erythrocytes (178) and vascular smooth muscle cells (179). The 
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presence of TF within these EVs seems to be the reason for their procoagulant 

characteristics (176). Some studies suggest the presence of EVs with anticoagulant 

properties in the circulation, harbouring inhibitors of the TF pathway (180,181) and 

also those with a fibrinolytic phenotype (182). Interestingly, these subsets of EVs 

were not of platelet origin, indicating many of the haemostatic properties of EVs are 

not regulated by platelet-derived EVs. Furthermore, non-blood derived EVs such as 

those derived from saliva and urine, possess procoagulant properties. Salivary EVs 

were found to contain TF and were able to initiate coagulation in EV-free plasma. 

The authors hypothesised that the presence of procoagulant EVs in our saliva may 

explain why we lick wounds, in order to enhance coagulation and sealing of the 

wound from pathogens (183). 

The regulatory role of EVs in coagulation is illustrated by individuals with Scott 

Syndrome, who have lower levels of circulating platelet-derived EVs (184). A 

scramblase enzyme in the plasma membrane of platelets is mutated, preventing PS 

externalisation (185). These individuals are at an increased risk of severe bleeding 

due to a reduced ability of platelets and platelet-derived EVs to initiate coagulation. 

 

1.1.8.3 Role of EVs in angiogenesis  

EVs derived from a number of cell types regulate vascular cell growth. Endothelial 

cells were shown to generate EVs containing the Notch signalling ligand, delta-like 4 

(Dll4) which is crucial for the regulation of angiogenesis (186). These EVs were then 

shown to induce sprouting and branching of endothelial cells in vitro and in vivo. 

Platelet-derived EVs were also shown to contain pro-angiogenic lipids and VEGF 

which could induce endothelial cell proliferation and capillary sprouting in vivo 

(187). The transfer of phosphoinositide 3-kinase (PI3K) protein and mRNA from 

EPCs can stimulate angiogenesis in endothelial cells (84). Furthermore, EVs derived 

from hypoxic placental mesenchymal stem cells (MSCs) were shown to aid the 

adaptation of the placental vasculature to low oxygen (O2) concentrations by 

enhancing endothelial cell angiogenesis (188). 
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1.1.8.4 Role of EVs in the immune system 

EVs are also implicated in modulating cells of the innate and adaptive immune 

system. Polymorphonuclear neutrophils (PMNs) secrete EVs that promote an anti-

inflammatory phenotype in DCs and monocytes (189) and control the phagocytosis 

of apoptotic PMNs to promote resolution (190). Additionally, PMN-EVs impaired 

leukocyte adhesion and infiltration to endothelial cells, preventing subsequent 

leukocyte extravasation and initiation of tissue inflammation (191,192). EVs are also 

involved in antigen presentation. Intestinal epithelial cell-derived EVs harbouring 

MHC class I and II are able to transfer orally ingested antigens from the apical 

lumen to antigen presenting cells at the basolateral membrane of the gut epithelia 

(193,194). Antigen presenting cells can also secrete EVs carrying MHCs class I and 

II to present the antigen to T cells (195) showing EVs are heavily involved in 

modulating immune responses. MSC EVs harbour the same anti-inflammatory and 

immunosuppressive properties as MSCs (169) and were shown to induce Mϕ 

polarisation towards an M2 (anti-inflammatory) phenotype and enhance T regulatory 

(Treg) cell production. (196).  

 

1.1.8.5 Role of EVs in bone formation  

The role of EVs in bone formation was first documented over 40 years ago, 

providing one of the earliest examples for a physiological role for EVs (197). These 

EVs are often referred to as matrix vesicles, and they are required for the initiation of 

mineralisation (198). Matrix vesicles are secreted from chondrocytes in response to 

retinoic acid (199) and are enriched in Ca
2+

-binding proteins to promote transport of 

Ca
2+

 into the vesicle lumen and phosphatases to liberate phosphate (198). 

Accumulation of Ca
2+

 and phosphate within matrix vesicles leads to the formation of 

calcium-phosphate complexes (hydroxyapatite) (200). EVs then release 

hydroxyapatite into the extracellular matrix where further hydroxyapatite formation 

can occur in clusters around matrix vesicles and between collagen fibres leading to 

mineralisation (198). 
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Figure 1.1.11: Physiological roles of EVs. A summary of documented physiological roles of EVs in vivo. Ca
2+

 = calcium; DC = dendritic cell; Dll4 = delta-

like 4; EPC = endothelial progenitor cell; IEC = intestinal epithelial cell; MSC = mesenchymal stem cell; Mϕ = macrophage; PI3K = phosphoinositide 3-

kinase; PMN = polymorphonuclear neutrophil; PO4 = phosphate; PS = phosphatidylserine; TF = tissue factor; VEGF = vascular endothelial growth factor.  
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1.1.9 Pathophysiological roles of extracellular vesicles 

Despite the diversity of physiological roles for EVs, the vast majority of EV research 

is centred on the role of EVs in pathology. Altered concentrations and differences in 

biochemical composition in disease states make EVs promising biomarkers.  

 

1.1.9.1 EVs in cardiovascular diseases 

CVD is the global leading cause of mortality, accounting for over 30% of deaths 

worldwide in 2012 (201). CVD is an umbrella term for a number of disorders that 

afflict the heart and vasculature such as coronary artery disease (CAD). CVDs are 

multifaceted and often present alongside co-morbidities such as diabetes mellitus. 

EVs have been implicated in a plethora of CVDs and co-morbidities, a number of 

which are outlined below. 

In CAD, coronary arteries are occluded by fatty deposits in the artery wall, 

increasing the risk of myocardial infarction. Studies have found elevations in 

endothelial EVs in CAD (202,203), perhaps reflecting the underlying endothelial 

dysfunction. Endothelial EVs also displayed a procoagulant phenotype (202) and 

contained elevated CD144 (vascular endothelial cadherin) (204) which may indicate 

changes in endothelial cell permeability in patients with CAD. Endothelial EVs have 

also been shown to possess anti-inflammatory mIRs; mIR-216, involved in vascular 

repair, and mIR-222, which is able to reduce endothelial cell expression of 

intercellular adhesion molecule (ICAM)-1 and hence reduce leukocyte adhesion to 

endothelial cells (205). However, these mIRs were reduced in hyperglycaemic 

conditions, thus enhancing leukocyte adhesion and extravasation. Furthermore, EVs 

from hyperglycaemic endothelial cells induced endothelial dysfunction and increased 

Mϕ infiltration leading to subsequent development of atherosclerosis in vivo (206). 

EVs derived from atherosclerotic plaques were rich in ICAM-1 which could then be 

transferred to healthy endothelial cells to induce leukocyte adhesion and 

atherosclerotic plaque formation (207). Taken together, alterations in endothelial EV 

concentration and composition may provide an indication of CVD status. Indeed, 

endothelial EVs correlated with a subset of diabetic patients with no symptomatic 

evidence of angina, but with evidence of CAD on angiography (204). The 
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concentration of endothelial EVs from patients with high risk coronary lesions was 

over twice that of patients with low risk lesions. However, concentrations of 

endothelial EVs in patients with severe occlusions of the coronary artery were 

comparable with healthy controls (208). This suggests that endothelial EVs may be 

useful biomarkers of early CAD, before the development of severe stenosis.  

Age- or disease-related arterial stiffening increases the risk of CVD and mortality 

(209). Vascular calcification plays a major role in arterial stiffening and is often 

found in association with atherosclerotic plaques. Vascular smooth muscle cells 

(VSMCs) have been heavily implicated in calcification as they are able to transition 

towards a phenotype associated with bone formation (210). Physiological VSMCs 

release EVs enriched with osteogenic inhibitors such as matrix Gla protein (211) and 

fetuin-A (212). In conditions of endothelial dysfunction and/or conditions of 

elevated extracellular Ca
2+

/PO4, VSMC EV release is altered (213). These EVs 

contain low amounts of osteogenic inhibitors and high levels of Ca
2+

-binding 

annexins and PS that can initiate nucleation of hydroxyapatite (213,214). These EVs 

also contain specific mIRs that target markers of osteogenic differentiation (215) and 

matrix metalloproteinase-2, which assists calcification via degradation of elastin 

fibres (214). Therefore vascular calcification is mediated by EVs as in chondrocyte 

calcification and bone formation. However, VSMCs release EVs via the classical 

pathway (Section 1.1.3.1) as EVs contain exosomal markers and arise from MVBs 

whilst chondrocyte-derived EVs arise from a direct budding of the plasma membrane 

(216). Mϕ within atherosclerotic lesions are also capable of releasing EVs that 

promote local microcalcification (217). Interestingly, these Mϕ were also shown to 

possess an M1-like phenotype (217) suggesting a proinflammatory role for Mϕ in 

addition to calcifying capabilities. Microcalcification within atherosclerotic plaques 

causes the plaque to become unstable, hence increasing the risk of rupture and 

subsequent MI or stroke (218). A recent review of EV-mediated vascular 

calcification suggested that calcifying EVs are “erroneously caught in the ECM” and 

inadvertently induce microcalcification in vessel walls due to being trapped in the 

ECM (219). In light of the data presented here, this notion seems unfounded as it 

appears EVs produced by changes in the extracellular environment are specifically 

packaged with a cargo to deliberately induce an osteogenic phenotype in vessels. 



Page | 45  

 

Obesity is a major risk factor for CVD and has also been associated with an altered 

profile of circulating EVs. Studies have found increases in circulating EVs in 

“healthy” obese women (with no clinical presentation of CVD or diabetes) compared 

to healthy lean women (220,221). Increases in specific subsets of EVs such as 

platelet-EVs (220,222,223) and endothelial EVs (220,223–225) were also found in 

healthy obese subjects versus healthy lean controls. An increase in platelet-EVs was 

also observed in obese women with PCOS compared to age- and body mass index 

(BMI)-matched controls (226). However, this increase may not be due to obesity as 

others have found increases in annexin V positive EVs and platelet-derived EVs in 

PCOS women over a range of BMIs compared to age/BMI-matched controls 

(76,227). A number of studies have also observed reductions in platelet- and 

endothelial-derived EV concentrations in obese subjects following weight loss 

accompanied by a reduction in procoagulant markers (222,228,229) suggesting 

weight loss in apparently “healthy” but obese subjects, may have cardiovascular 

benefits. Further work is needed to analyse EVs associated with obesity, particularly 

those from other cellular sources. For example, our own group is currently analysing 

circulating EVs carrying inflammatory and adipocyte markers in a group of subjects 

across a range of BMIs. 

 

1.1.9.2 EVs in cancer 

The intercommunication of tumour cells with non-tumour cells via EVs is an 

intensely studied area of EV research. Tumour cells utilise EVs to promote tumour 

survival and progression through evasion of the immune system, modulating the 

tumour microenvironment and promoting angiogenesis for metastases.  

Remodelling of the extracellular milieu allows the tumour to control the 

microenvironment so that tumour growth, proliferation and angiogenesis are 

supported (230). Tumour cells can both release EVs and modulate the EV release of 

MSCs to reduce tumour suppression and promote tumour growth (231). Tumour cell 

EVs also assist tumour progression and angiogenesis by driving the transition of 

stromal fibroblasts towards a myofibroblast phenotype via transfer of transforming 

growth factor (TGF)-β and induction of α-smooth muscle actin expression (232). 
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Tumours also use EVs to avoid immune recognition, helping to establish the tumour 

in the early stages of growth. Tumour cells shed the ligand for the natural killer 

group 2D (NKG2D) receptor via EVs to reduce recognition and destruction of 

tumour cells by cytotoxic NK and CD8
+
 T cells (233). Transfer of TGF-β within 

tumour-derived EVs plays an important role in immune evasion by preventing 

dendritic cell antigen presentation (234) and encouraging the transition of CD8
+
 

cytotoxic T cells towards a regulatory T cell phenotype (235). Additionally, tumour 

EVs express Fas ligand on their surface which is able to bind to Fas
+
 lymphocytes 

and suppress their response (236), and induce lymphocyte apoptosis (237). 

The ability of tumours to induce neovascularisation enables tumour growth and 

enhances metastatic potential. EVs facilitate tumour-mediated angiogenesis through 

a number of mechanisms, usually by targeting VEGF expression. As described in 

Section 1.1.8.3, the Notch ligand Dll4 is carried by endothelial EVs and is essential 

for angiogenesis (186). Tumour EVs also harbour Dll4 and VEGF which stimulate 

local angiogenesis (238). Alternatively, tumour EVs were shown to carry a mutated, 

but functional form of the epidermal growth factor receptor (EGFR) (239). The 

mutated EGFR could be transferred to other tumour cells via EVs, increasing VEGF 

expression and oncogenic activity in these cells (240). These EVs could also be 

detected in the serum of glioblastoma patients, illustrating the mobility and 

metastatic potential of these EVs once in the systemic circulation. A major stimulus 

for tumour-mediated angiogenesis in vivo is hypoxia which results from rapid 

tumour growth. Secretion of EVs enriched in angiogenic proteins and mIRs is 

enhanced in hypoxic cancer cells in a hypoxia-inducible factor (HIF)-dependent 

manner (241). HIF proteins are able to regulate Rab22a which is involved in EV 

release. Inhibition of Rab22a abrogated tumour metastasis, highlighting the role of 

hypoxic-derived EVs in the co-ordination of tumour progression.  

 

1.1.9.3 EVs in inflammatory diseases  

In stark contrast to the immunosuppressive role of EVs in cancers, the general role of 

EVs in inflammatory disorders is immune-activating, highlighting the diversity of 

biological functions of EVs. EVs have been shown to possess auto-antigens that 

trigger and/or aid the progression of a number of autoimmune diseases such as 
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Rheumatoid arthritis (RA), systemic lupus erythematosus and multiple sclerosis 

(242). RA is an autoimmune disorder characterised by chronic inflammation of 

joints. Platelet-derived EVs have been strongly implicated in RA as circulating 

concentrations are elevated compared to healthy controls and the number of platelet 

EVs correlates with the severity of disease (243). However, very few platelet-derived 

EVs are detected within the synovial fluid of arthritic joints (244), suggesting a more 

systemic role for platelet-derived EVs in RA, perhaps by increasing the risk of CVD. 

Leukocyte EVs, particularly those derived from granulocytes were found to be the 

predominant EV population in RA synovial fluid (244,245). These EVs were highly 

annexin V positive and thrombogenic, suggesting a role in stimulating local 

coagulation and fibrin formation (244). Furthermore, these EVs enhanced the 

secretion of proinflammatory cytokines interleukin (IL)-8 and IL-6, and cytokines 

including monocyte chemoattractant protein (MCP)-1, soluble ICAM-1 and VEGF 

from synovial fibroblasts in an autologous fashion (245). Therefore, leukocyte EVs 

within synovial fluid may mediate and sustain inflammation within the arthritic joint. 

EVs were also shown to exacerbate inflammation caused by infectious diseases. Mϕ 

infected with Mycobacterium tuberculosis release EVs containing microbial antigens 

and pathogen-associated molecular patterns that induce an inflammatory response in 

uninfected Mϕ via toll-like receptor activation (246). Also, cells infected with the 

malaria parasite produce EVs that strongly stimulate Mϕ activation and TNF-α 

secretion, contributing to the systemic inflammation associated with malaria (247). 

Systemic inflammation from sepsis is also associated with increases in circulating 

platelet and endothelial-derived EVs. Injection of EVs from septic patients into mice 

induces proinflammatory cytokine production and oxidative stress, further 

highlighting the potential immune-activating roles of EVs (248). 

 

Evidently, EVs have a variety of different roles in the induction, progression and 

maintenance of disease pathology. Those covered here are summarised in Figure 

1.1.12. 
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Figure 1.1.12: Roles of EVs in disease. A summary of the potential roles of EVs in cardiovascular diseases, cancers and inflammatory diseases. CAD = 

coronary artery disease; DC = dendritic cell; Dll4 = Delta-like 4; EGFR = epidermal growth factor receptor; HIF = hypoxia inducible factor; Mϕ = 

macrophage; MSC = mesenchymal stem cell; NKG2D = natural killer group 2D; TF = tissue factor; TGF-β = transforming growth factor-β; TNF-α = tumour 

necrosis factor-α; VEGF = vascular endothelial growth factor; VSMC = vascular smooth muscle cell 
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1.1.10 Therapeutic applications of extracellular vesicles 

The biological properties of EVs and their roles in cell-cell communication has 

prompted research into their potential use as therapeutic agents, and also, their 

capacity to be altered in disease has highlighted EVs as potential circulating 

biomarkers. The potential clinical applications of EVs as therapeutic agents and 

biomarkers of disease are outlined below. 

 

1.1.10.1 EV therapeutics  

EVs can be used as delivery vehicles for pharmacological agents, but also nucleic 

acids such as mIRs. EVs have been shown to be superior to liposomes in this respect 

as the lipid and protein content are more compatible than synthetic liposomes. MSCs 

genetically modified to produce mIR-143 were shown to produce EVs containing the 

transfected mIR which could then go on to inhibit the migration of osteocarcinoma 

cells (249). Similarly, DCs modified to overexpress IL-10 were shown to produce 

IL-10 containing EVs which were capable of suppressing the onset of collagen 

induced arthritis in a mouse model (250). Alternatively, other methods have 

exploited the native antigens expressed on EVs to generate therapeutic agents. For 

example, pulsing of antigen presenting cells with tumour-derived EVs isolated from 

ascites resulted in the presentation of the tumour antigen. This was then shown to 

prime a set of leukocytes specifically targeted to the tumour for expansion (251). 

EVs produced from microbe-infected cells have also been used effectively as 

vaccines (252). A further example of using unmodified EVs for therapy is the use of 

stem cell EVs. Stem cell therapy has received a great deal of attention in previous 

years as a novel therapeutic strategy for a wide variety of conditions. However, 

potential issues include the proliferation of undifferentiated stem cells towards an 

oncogenic phenotype and the poor survival of transplanted stem cells (253). Stem 

cell EVs may help to circumvent these problems by eliminating the need for cellular 

transplantation. For example, in vivo delivery of EVs from cardiac progenitor cells to 

a mouse model of myocardial infarction diminished caspase activation and 

subsequent apoptosis of cardiomyocytes (254). Finally, EVs themselves could be 

targeted to attenuate cell-cell communication. For example, inhibition of heparin 
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sulphate proteoglycans required for EV uptake was shown to reduce migration of 

cancer cells (255). 

 

1.1.10.2 EVs as biomarkers of disease 

The application of more in-depth analyses such as proteomics and lipidomics to EVs 

has allowed for identification of a number of novel biomarkers in a range of 

diseases, particularly using cancer EVs. For example, myeloma EVs were shown to 

express CD44 which was shown to be prognostic for disease progression (156). 

Prostate cancer EVs have also been shown to express prostate specific membrane 

antigen which indicates the progressive status of the tumour (256). Less laborious 

methods have also been suggested for the use of EVs as biomarkers. For example, 

circulating levels of TF
+
 EVs may be useful in predicting the risk of venous 

thrombosis (176). 

 

EVs offer a non-invasive approach to diagnostics due to their presence in a number 

of biological fluids. However, the field is currently hindered by a lack of 

standardisation of nomenclature and pre-analytical processing that makes inter-study 

comparison a challenge. As our understanding of the composition and roles of EVs 

in homeostasis and disease continues to expand, the therapeutic manipulation and 

targeting of EVs is likely to be an extremely important and exciting area of research. 

In parallel with these developments however, standardisation of pre-analytical 

protocols is essential for the progression of the EV field towards clinical diagnostics 

and therapeutics.  
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1.2 ADIPOSE TISSUE 

In the early 1970‟s, adipose tissue (AT) was shown to possess aromatase activity for 

the enzymatic conversion of circulating reproductive hormones (257). Despite such 

evidence for the participation of AT in endocrine signalling and a known association 

of obesity with cancers of the female reproductive tract, AT was long regarded as a 

latent storage tissue. It was over 20 years later before AT became firmly established 

as an endocrine organ through the identification of the “fat gene” and adipocyte-

derived protein, leptin (258). In the past 20 years, over fifty different proteins have 

been shown to be produced by adipocytes within AT, termed „adipokines‟, with 

diverse biological functions (259). This section will examine AT in more detail, with 

a specific focus on adipocytes and their role in physiology and disease. 

 

1.2.1 Types of adipose tissue 

There are currently 3 distinguishable types of AT: white AT (WAT), brown AT 

(BAT) and the more recently discovered beige AT (260). The composition and 

characteristics differ between types of AT (Figure 1.2.1), and consequently, the 

tissues serve different functions.  

 

1.2.1.1 White adipose tissue 

WAT is commonly stored subcutaneously (more so in women) and within the 

peritoneum (visceral, more so in men), forming the major reserve for surplus energy 

intake from the diet. In addition to storage of energy, WAT also provides basic 

insulation and cushioning of internal organs, including blood vessels (perivascular 

AT). White adipocytes are the primary constituents of WAT though preadipocytes, 

adipocyte progenitors (such as MSCs), immune cells and endothelial cells (261) also 

form a major part of WAT. White adipocytes are histologically simple, consisting of 

a unilocular triglyceride lipid droplet with a small number of mitochondria. In fact, 

triglycerides constitute more than 85% of WAT mass (262) and lipid droplets can 

comprise up to 90% of cellular volume (263), illustrating the dominance of lipid 

storage in white adipocytes. Adipokines such as leptin and adiponectin are released 

from white adipocytes allowing proximal and distal endocrine signalling of WAT. 
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White adipocytes are also capable of expansion (hypertrophy) to cater for increases 

in triglyceride influxes and are typically between 50 and 100 μm in diameter (264) 

but can reach up to 200 μm in diameter in obese AT (265,266). If the storage 

capacity of the adipocyte is exceeded, tissue-resident preadipocytes and adipocyte 

progenitors are induced to differentiate into mature adipocytes (hyperplasia) to 

accommodate the extra lipid. This allows WAT to safely store lipid and prevent 

ectopic lipid deposition and lipotoxicity in other organs. Hypertrophy and 

hyperplasia of white adipocytes may allow the indefinite expansion of WAT, as 

demonstrated in morbidly obese patients where WAT can account for over 50% of 

total body weight (261). 

 

1.2.1.2 Brown adipose tissue 

BAT is essential for thermogenesis in neonates and is thought to be progressively 

lost into adulthood as skeletal muscle and other thermogenic mechanisms develop 

(267). However positron emission tomography (PET) imaging studies have 

suggested regions of BAT are present in adults, predominantly located in cervical 

and supraclavicular locations (268). PET imaging also found BAT was more 

abundant in: women; the youngest and least obese individuals; and those with the 

lowest levels of fasting glucose (268). Brown adipocytes contain large amounts of 

mitochondria and very few, multilocular lipid droplets (263). This abundance of 

mitochondria (which are usually large with multiple cristae) is responsible for the 

utilisation of fat by BAT as opposed to the storage of fat in WAT. The expression of 

uncoupling protein (UCP)-1 on the inner mitochondrial membrane of brown 

adipocytes drives oxidative phosphorylation of cellular respiration away from ATP 

production, towards the dissipation of energy as heat (261). BAT is densely 

vascularised with capillary networks and innervated by noradrenergic fibres. Under 

cold conditions, sympathetic nerve stimulation of BAT via noradrenaline and β3 

adrenoreceptors activates lipolysis of triglycerides, liberating free fatty acids (FFAs) 

which in turn activate thermogenesis (267). Interestingly, ablation of UCP-1 in mice 

not only leads to a lack of thermogenic control, but also to obesity (269). 

Furthermore, BAT is reduced in obese subjects (263,268). Together, this suggests 

that activation of BAT is triggered by changes in temperature and diet and the 
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reduction in BAT in obesity may aid weight gain in order to restore the thermogenic 

balance. 

 

1.2.1.3 Beige adipose tissue 

Beige adipocytes are so called due to their intermediary morphology between white 

and brown adipocytes. They are also referred to as “brite (brown-in-white)” or 

“paucilocular” adipocytes and are generally found within WAT (263). Similarly to 

brown adipocytes, beige adipocytes contain high numbers of mitochondria and 

express UCP-1 (270). Unstimulated beige adipocytes also share similarities in gene 

expression with white adipocytes, including fatty acid binding protein (FABP) 4, 

adiponectin, and peroxisome proliferator-activated receptor (PPAR) γ (271). In 

addition to the shared similarities with white and brown adipocytes, beige adipocytes 

are enriched in distinct genes such as TBX1 and surface markers including CD137 

(271). Several factors are implicated in the browning of WAT, including cyclic 

guanosine monophosphate (cGMP) as stimulation of the β3 adrenoreceptor leads to 

downstream increases in cGMP levels (272,273). Prostaglandins and nitric oxide 

(NO) signalling pathways also converge on cGMP generation, both of which (NO 

via reduction from inorganic nitrate) were shown to stimulate browning of WAT 

(272,273). Roberts et al., also showed that the nitrate-induced beige phenotype was 

only achieved with differentiating adipocyte progenitors and not with mature 

adipocytes (273), suggesting beige adipocytes originate from adipocyte progenitors 

and not transdifferentiation of white adipocytes. Analysis of BAT from adult humans 

has shown gene expression patterns similar to those of beige adipocytes, suggesting 

that the presumed BAT in adults may actually be beige AT (271). 

 

1.2.1.4 Adipocyte lineage 

It is well established that white and brown adipocytes originate from different 

mesodermal lineages. White adipocytes derive from mesodermal stem cells that give 

rise to adipoblast progenitors, followed by preadipocytes and finally mature 

adipocytes (274). Conversely, BAT arises from a progenitor population of the 

mesoderm expressing Pax7
+
/Myf5

+
 genes which also give rise to skeletal muscle 
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cells (275). The transcriptional regulator PR domain-containing 16 (PRDM16) 

controls the fate of progenitor cells by activating PPARγ to induce adipogenesis and 

promote differentiation to brown adipocytes (275). The exact lineage of beige 

adipocytes is unclear though two theories have been proposed. The first suggests that 

white adipocytes may undergo transdifferentiation to beige adipocytes in response to 

cold environments or prolonged β3 adrenoreceptor activation (263,276). However, 

recent evidence suggests that adipocyte progenitors within WAT respond to low 

temperatures and/or increased sympathetic activity by differentiating into beige 

adipocytes to increase thermogenesis and utilisation of energy stores to produce heat 

(270,273). It has also been hypothesised that beige adipocytes may be capable of 

transdifferentiation to white adipocytes in conditions of high energy influx (270). 

Therefore, the plasticity often associated with WAT may be attributed to the ability 

of adipocyte progenitors and subsequent beige adipocytes to respond to changes in 

the microenvironment.  

 

Figure 1.2.1: Types of AT. A simplified summary of the 3 main types of AT and their 

typical characteristics.   
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1.2.2 Adipose tissue depots 

In addition to total body fat, the distribution of adiposity is also an important 

determinant for metabolic health. The deposition of fat in specific anatomical 

locations and the association with metabolic disease and CVDs has been an area of 

great controversy in recent years. Depots of WAT can be visualised using imaging 

techniques such as computed tomography and are broadly grouped into subcutaneous 

(SC), visceral and perivascular, each of which seem to have specialised compositions 

and functions. 

 

1.2.2.1 Subcutaneous AT 

Typically, up to 85% of body fat is SC (277) most of which is stored in abdominal, 

gluteal and femoral regions. Women tend to have greater proportions of SC AT than 

men, perhaps to aid the continuous supply of energy to the foetus during pregnancy, 

as lipolysis in SC AT is slow and continuous (278). The lifespan of a typical SC 

white adipocyte is reportedly 8-10 years (279) illustrating the stability and slow 

turnover of adipocytes. Cells of the SC stromal vascular fraction (containing 

adipocyte progenitors and preadipocytes) show a high efficiency of differentiation 

(270) (usually in response to PPARγ) (280), suggesting SC AT expansion is 

mediated through adipocyte hyperplasia. The general size of adipocytes in SC AT is 

debated with some studies reporting high proportions of small adipocytes which are 

more insulin sensitive (281) and others arguing the presence of large diameter 

adipocytes that secrete the majority of adipokines (such as leptin) and adipocyte-

derived oestrogens (from aromatase conversion of androgens) (280). SC AT 

deposition is generally regarded as physiological, as the primary function of 

adipocytes is “liposynthetic” characterised by high levels of insulin sensitivity (280). 

In fact, the obesity of SC AT that is not associated with metabolic syndrome may be 

characterised as “metabolically healthy” (282). This phenotype tends to be 

associated with gluteal and femoral SC adiposity as opposed to abdominal SC AT 

deposition which is associated with an increased risk of CVD and type 2 diabetes 

(T2D) (283).  

 



Page | 56  

 

1.2.2.2 Visceral AT 

Visceral or intra-abdominal AT surrounds the internal organs and accounts for up to 

10% of total body fat in women and up to 20% in men. Visceral AT is associated 

with a rapid energy release state, perhaps a conserved evolutionary mechanism to 

quickly liberate high amounts of energy for hunting (278). Visceral adipocytes are 

reportedly smaller in women, suggesting a reduced capacity for rapid calorie release 

(280). Visceral adipocytes are indeed highly lipolytic, due to a high level of 

triglyceride influx, sympathetic nerve fibre innervation and expression of β3 

adrenoreceptors (280). Increased catecholamine stimulation of visceral AT induces 

lipolysis and liberation of FFAs, which are drained into the circulation (via the liver) 

by the portal vein. Obesity with accompanying metabolic syndrome is associated 

with an increased circulating level of FFAs (284), suggesting visceral AT activity 

may play an important role. Furthermore, visceral adipocytes are much less sensitive 

to the anti-lipolytic effects of insulin than SC adipocytes (280) suggesting an 

increased mass and/or activity of visceral AT could contribute to the reduced 

sensitivity of insulin in metabolic syndrome and obesity. Unlike SC AT, 

adipogenesis within visceral AT is not induced by PPARγ and adipocytes 

predominantly expand by hypertrophy (285). Similarly to abdominal SC AT, 

visceral AT is associated with an increased risk of developing CVD and T2D (283).  

 

1.2.2.3 Perivascular AT 

Perivascular AT is a form of visceral AT surrounding blood vessels that is able to 

directly affect the responsiveness of the underlying vessel due to the absence of a 

fascial plane between the vessel and AT (286). Perivascular AT of resistance vessels 

is predominantly WAT whereas larger vessels are surrounded by a combination of 

WAT and BAT (286). In vitro isolated vessel experiments have traditionally 

removed perivascular AT prior to testing however, Soltis et al., showed the 

vasoconstriction of noradrenaline was attenuated when the perivascular fat was left 

intact (287). This effect was later attributed to a soluble substance, termed adipose-

derived relaxing factor (ADRF), as transfer of bath solution from aortic rings with 

perivascular AT intact to aortic rings with fat removed induced rapid relaxation 

(288). The identity of ADRF is still unknown though adipocyte-derived vasodilators 
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have since been proposed (289) including adiponectin and angiotensin 1-7 which 

produce NO in an endothelium-dependent manner, and hydrogen peroxide which 

induces vasodilation in an endothelium-independent manner (290). Interestingly, 

perivascular AT has also been shown to enhance contractility of vessels via 

thromboxane A2 (291). Variations in the composition of perivascular AT and the 

type of vessel may result in differences in regulation of vessel tone. Perivascular fat 

volume is higher in men and shows a positive correlation with BMI, regardless of 

gender (292). The anti-contractile properties of perivascular AT in lean individuals 

was completely absent in obese individuals (293). Furthermore, the vasodilatory 

effects of lean perivascular AT were lost by addition of inflammatory mediators 

(TNF-α and IL-6) and hypoxia. This suggests that dysfunctional perivascular AT in 

obesity (and obese-like conditions) is unable to regulate vascular tone, and hence 

may increase the risk of hypertension. Increased contractility of small arteries could 

deprive tissues downstream of nutrients and O2, thus enhancing local inflammation 

and hypoxia (discussed in more detail in Section 1.2.5).  
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1.2.3 Methods of studying adipose tissue and adipocytes 

With various roles in homeostasis and disease (discussed in Sections 1.2.4 and 1.2.5 

respectively), understanding adipocyte function is hugely important. Several 

methods exist to study adipocytes in vitro and in vivo including the use of 

preadipocyte cell lines, isolation of adipocytes from primary human explants and 

genetic mouse models.  

 

1.2.3.1 Preadipocyte cell lines: 3T3-L1 

Much of our current understanding of adipocyte biology comes from the use of 

preadipocyte cell lines (Table 1.2.1), primarily using 3T3-L1 cells. Preadipocyte cell 

lines have undergone determination from mesodermal precursors and can therefore 

either remain as preadipocytes, or can be differentiated to mature adipocytes (294). 

3T3-L1 cells were the first preadipocyte cell line to be developed (295,296) and have 

been (and still are) used extensively to study adipocyte biology and adipogenesis 

(294). Differentiated 3T3-L1 cells possess the major hallmarks of mature adipocytes: 

lipid storage, insulin sensitivity and endocrine signalling. 

 

Cell line Origin Characteristics 

3T3-L1 Mouse Sub-line of 3T3 embryonic fibroblasts (295,296) 

3T3-F442A Mouse Sub-line of 3T3 embryonic fibroblasts (295,296) 

AP-18 Mouse Derived from sub-epidermis of ear skin from 

adult C3H/HeM mouse (297)  

SGBS Human Derived from SC AT stromal cells from an infant 

with Simpson-Golabi-Behmel syndrome (298) 

Ob 17 Mouse Derived from epididymal fat pad of C57BL/6J 

ob/ob mouse (299) 

HGFu Mouse Derived from epididymal fat pad of wild-type 

C57BL/6J mouse (300) 

Table 1.2.1: Preadipocyte cell lines. Details of commonly used, established preadipocyte 

cell lines to study adipogenesis.  



Page | 59  

 

Upon confluency, 3T3-L1 preadipocytes are stimulated to differentiate using a 

simple cocktail of adipogenic inducers (Figure 1.2.2). Differentiation cocktails 

always include insulin to stimulate insulin-like growth factor signalling pathways, a 

glucocorticoid (e.g. dexamethasone) to enhance nuclear gene expression (e.g. 

CCAAT/enhancer binding proteins (C/EBP)-δ), an agent to increase intracellular 

cyclic adenosine monophosphate (e.g. 3-isobutyl-1-methylxanthine or indomethacin) 

to stimulate specific G-protein pathways and C/EBPβ, and serum (containing 

essential growth factors and cytokines) (294,301). 

 

Figure 1.2.2: 3T3-L1 differentiation. Major stages and genes involved in 3T3-L1 

differentiation from a preadipocyte to a mature adipocyte. Upon confluency, lipoprotein 

lipase (LPL) expression is induced, one of the earliest markers of differentiation. Around 48 

hr post-confluency differentiation cocktail (DC) is added and genes including c-myc and 

C/EBPβ and δ are rapidly induced. c-myc induces clonal expansion of preadipocytes (~2 

rounds of mitosis) before cellular growth arrest. C/EBP-β and δ enhance PPARγ and CEBP-

α expression which induce the transcription of adipocyte genes such FABP4, adiponectin 

and GLUT-4 that generate and sustain the mature adipocyte phenotype. Markers highlighted 

in bold are used in this thesis to assess the stage of differentiation in 3T3-L1 cells and EVs. 

 

Adipogenesis is a complex process of co-ordinated transcriptional activation to 

differentiate the fibroblast-like preadipocyte to a rounded cell containing lipid 

droplets. Differentiation is usually confirmed by morphological changes (i.e. 

rounding, lipid accumulation), observed using light microscopy and lipid droplet 
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accumulation, which can be visualised and measured (semi-quantitatively) using Oil 

Red O staining. Ideally, the above are performed in combination with qRT-PCR 

measurements of early adipogenic markers (e.g. preadipocyte factor (PREF)-1) and 

late adipogenic markers (e.g. FABP4) compared to housekeeping genes (e.g. 

GAPDH). 

A recent study also demonstrated the capability of 3T3-L1 adipocytes to acquire a 

brown adipocyte phenotype upon stimulation with noradrenaline (302). The authors 

of this study suggest this is due to a previously unidentified plasticity of 3T3-L1 

cells and that the differences in lineage between white and brown adipocytes may 

not be as straightforward as initially thought. Further characterisation of the 3T3-L1 

brown adipocyte is needed, though this may point to an additional application of 

3T3-L1 cells in vitro. Preadipocyte cell lines such as 3T3-L1 provide robust models 

from which to study adipocyte differentiation and biology. Their ease of use and 

accessibility make preadipocyte cell lines useful adipocyte research models.  

 

1.2.3.2 Primary human adipocyte culture  

Mouse and human primary adipocyte cultures have also been used as adipocyte 

research models. Excised AT can be digested using collagenase to separate adipocyte 

progenitor cells from free lipid and mature adipocytes. Preadipocytes can then be 

cultured in vitro and stimulated to differentiate for ~2 weeks to produce mature 

adipocytes (303). Mature adipocytes can also be separated using the collagenase 

digest (304,305), though their subsequent culture is tricky as the adipocytes float 

(and are therefore less likely to adhere) and are prone to bursting during isolation. 

The rate and extent of differentiation may differ between donors and AT depots, and 

may therefore introduce variation between experiments. 

Isolated pre- and mature primary adipocytes are also available commercially (e.g. 

PromoCell, Lonza). These adipocytes are isolated and fully characterised by the 

vendor to ensure an adipocyte population. Adipocytes from specific depots including 

SC and visceral AT, and from different disease sets, including obese and diabetic 

patients can be purchased allowing analysis of specific adipocyte populations. 

Unsurprisingly, these cells are often expensive. 
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Culture of AT explants has also been used to study adipocytes (306–308). In this 

setting, intact sections of AT may be analysed ex vivo and may be used to compare 

AT function between depots. However, the explant contains a mixture of cells 

present within AT, making it difficult to pinpoint the origin of any observed effects. 

 

1.2.3.3 Adipocyte progenitor cells  

The mesodermal origin of adipocytes provides an alternative source of precursory 

adipocyte cells that can differentiate in vitro into preadipocytes and subsequently, 

mature adipocytes (Figure 1.2.3). MSCs and pluripotent stem cells (PSCs) have both 

been used to generate adipocytes in vitro. MSCs can be isolated from bone marrow 

or AT extracts and are multipotent cells, capable of differentiating into osteocytes, 

myocytes, chondrocytes and adipocytes (309). Commercially available MSCs are 

also frequently used, reducing the need for invasive tissue sampling. Differentiation 

of MSCs to adipocytes follows a similar timeframe and differentiation cocktail to 

that of 3T3-L1 cells. Although as a human source, MSCs may provide a more 

relevant adipocyte population compared to 3T3-L1 cells, their use is disadvantaged 

by a limited proliferative potential and varied adipogenic differentiation between 

sources (310). 

Isolated human PSCs (hPSCs) can be cultured in vitro indefinitely whilst retaining 

their ability to differentiate along a variety of lineages, including adipocytes (311). 

Adipogenic medium requires the addition of a PPARγ agonist (e.g. Rosiglitazone) 

(311) to that described for 3T3-L1 cells. More recently, a lentiviral construct 

containing a PPARγ2 promoter has been shown to vastly improve the extent of hPSC 

differentiation (310). Interestingly, the use of a PRDM16 promoter-containing 

lentiviral construct could induce differentiation of hPSCs to a brown adipocyte 

population. Furthermore, when both hPSC-derived white and brown adipocytes were 

implanted in vivo, they were successfully incorporated and functional as brown and 

white AT (310). Culture in vitro to mature adipocytes typically takes ~3 weeks, and 

as described above, may require the use of more complex techniques to ensure 

sufficient adipogenic differentiation. However, the extent and variation of 

differentiation of hPSCs is superior to that of MSCs (310) and perhaps provides a 

more relevant adipocyte population compared to 3T3-L1 cells. 
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Figure 1.2.3: Mesodermal lineage of pluripotent stem cells. The mesodermal lineage; 

both pluripotent stem cells and mesenchymal stem cells can be used to generate adipocytes. 

 

1.2.3.4 Genetic mouse models of obesity  

Genetic mouse models have also been employed to analyse the in vivo role of AT. 

The most widely used mouse model is the ob/ob mouse carrying a mutation in the 

“obese” gene that encodes for the adipokine leptin, resulting in leptin deficiency 

(258). Mice with the ob mutation display a phenotype akin to that in morbid obesity, 

becoming profoundly obese, developing diabetes, demonstrating hyperphagia, and 

showing impairments in immune and reproductive function (258,312). Alternatively, 

db/db mice carry a mutation in the “diabetic” gene that encodes for the leptin 

receptor. These mice also become significantly obese and develop diabetes and 

dyslipidaemia (313). Furthermore, leptin mRNA increases ~20 fold in db/db mice 

(314). Though ob/ob mice are more frequently used db/db mice may provide a more 

accurate representation of obesity, as leptin is present and increased in obese subjects 

(Sections 1.2.4.1 and 1.2.5.1).  
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1.2.4 Adipokines and the role of AT in physiology 

The majority of research into endocrine factors released from AT has focused on 

those derived from WAT, as this is the largest store of AT in the body. A diverse 

range of factors have been identified, collectively termed “adipokines” to encompass 

factors produced and released from WAT. Adipokines can act locally within AT in 

an autocrine and/or paracrine fashion, and also distally in the central nervous system 

and systemic circulation in an endocrine manner. Consequently, adipokines play 

important roles in a range of physiological functions. 

Mice carrying a genetic mutation that prevents the actions of C/EBP transcription 

factors (Figure 1.1.2) leaves them devoid of WAT. These mice also display stunted 

development, infertility, an enlarged liver, diabetes, elevated levels of circulating 

glucose and lipids and eventually premature death (315). This provides a stark 

illustration of the importance of WAT not only in the regulation of lipid metabolism 

and deposition, but also in normal growth and development.  

 

1.2.4.1 Regulation of lipid metabolism and appetite  

The major endocrine factor produced by adipocytes for energy homeostasis is leptin. 

Leptin is produced by adipocytes and the circulating levels of leptin relate to the 

level of energy storage, i.e. leptin tends to be elevated in fed states and reduced 

during fasted states (316). The effects of leptin are mediated through the leptin 

receptor (LR), of which there are several isoforms. LR-b is highly expressed in 

hypothalamic regions of the brain, where leptin mediates the majority of its 

metabolic effects. Binding of leptin to hypothalamic receptors induces the expression 

of anorectic peptides (e.g. α-melanocyte stimulating hormone) and also stems the 

secretion of orexigenic hormones (e.g. neuropeptide Y (316)). The combined effect 

leads to release of appetite-suppressing hormones such as oxytocin. Release of these 

hormones also increases fatty acid oxidation and decreases circulating glucose levels 

to restore energy balance following feeding.  

Adiponectin also plays a role in regulating lipid metabolism and is produced 

exclusively by mature adipocytes. Adiponectin displays a multimeric conformation 

and can exist in high, middle and low molecular weight forms (317). Two main 



Page | 64  

 

isoforms of the adiponectin receptor have been described, adipoR1 which is highly 

expressed in muscle, and adipoR2 which shows high prevalence in the liver, though 

both receptors are also expressed in other peripheral tissues and the brain (318). 

Adiponectin confers its metabolic effects via phosphorylation of adenosine 

monophosphate-activated protein kinase (AMPK) leading to increased fatty acid 

oxidation and an inhibition of hepatic gluconeogenesis. The latter gives rise to the 

insulin-sensitising properties of adiponectin by reducing circulating glucose levels 

(319). The importance of adiponectin and AT in the regulation of insulin sensitivity 

is highlighted by pharmacological insulin-sensitising agents such as 

thiazolidinediones (TDZs) which increase circulating adiponectin levels (317). The 

actions of adiponectin in peripheral areas such as skeletal muscle help to induce 

energy expenditure, thereby reducing the risk of ectopic lipid deposition (318). 

The transcription factor PPARγ is highly expressed in adipocytes, particularly the 

PPARγ2 isoform. In addition to controlling adipocyte differentiation, PPARγ 

regulates transcription of genes central to metabolism (301,320) such as lipoprotein 

lipase (involved in the storage, release and transport of lipids (321)). PPARγ also has 

an insulin-sensitising effect by directly inducing insulin-mediated uptake of glucose 

thus decreasing levels of FFAs and promoting lipid storage (321). PPARγ also 

reduces ectopic lipid deposition in the liver and muscles by mobilising lipids from 

these sites and promoting adipocyte storage. Furthermore, activation of PPARγ 

signalling leads to a redistribution of lipids from visceral to SC depots (321), thereby 

reducing the risks associated with visceral AT storage. TDZs such as Pioglitazone 

are pharmacological PPARγ agonists used to improve insulin sensitivity in T2D 

(322). Interestingly, as indicated above, treatment with TDZs can also increase 

adiponectin levels (317,322) suggesting PPARγ also regulates adiponectin secretion. 

FABP4 is a cytosolic and secretory fatty acid trafficking protein highly expressed in 

adipocytes, accounting for ~1% of the total protein (323). FABP4
-/-

 mice display 

increased circulating levels of triglycerides and FFA, and up to a 40% reduction in 

cellular lipolysis (324). This suggests FABP4 is involved in the cellular uptake and 

trafficking of lipids into adipocytes and their subsequent metabolism. 

Resistin is a hormone that is preferentially secreted by adipocytes. Similarly to 

FABP4, the role of resistin was elucidated using knockout or gene silencing models 
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(325). Silencing RNA targeting resistin was shown to reduce the activity of 

transcription factors controlling lipogenic gene expression. Furthermore, lipid 

droplet size was reduced in resistin knockout adipocytes. Therefore, resistin seems to 

play a role in controlling lipid accumulation in the early stages of adipogenesis.  

Visfatin is a relatively newly identified adipokine that was initially thought to be 

specific to visceral AT (326) though it has now been identified in SC AT. Visfatin is 

able to both control the secretion of insulin from pancreatic β-cells (327) and mimic 

the signalling effects of insulin (326). 

 

1.2.4.2 Role in vascular function 

As discussed in Section 1.2.2.3, perivascular AT is able to control local vascular 

function through the secretion of adipokines. Adipocytes in SC and visceral depots 

also secrete adipokines that can regulate haemostasis, angiogenesis and blood 

pressure that help AT to meet metabolic and physical demands. Circulating 

adiponectin induces NO production and reduces reactive oxygen species (ROS) 

generation in endothelial cells (328) thereby promoting vasodilation and protecting 

against ROS-induced vascular damage. Plasminogen activator inhibitor (PAI)-1 is a 

small protein secreted from a number of cells including adipocytes (329). As its 

name suggests, PAI-1 inhibits plasminogen which is involved in fibrinolysis. PAI-1 

is produced by mature adipocytes and its expression is controlled by both resistin 

and PPARγ (330). The precise role of adipocyte-derived PAI-1 is unclear, though it 

may play both local and systemic roles in haemostasis. TF expression and release has 

also been observed in AT though similarly to PAI-1, the reason behind the presence 

of TF in AT is unknown (331). TF is a well-known initiator of coagulation and 

therefore may represent a mechanism for AT to control local haemostasis. TF is also 

vital for vascular development and may therefore play a role in formation of the AT 

microcirculation. Visfatin has also been shown to induce relaxation of aortic rings 

and stimulate endothelial proliferation and angiogenesis, the latter effect being 

through the generation of VEGF (332). 

Adipocytes grow in close proximity to endothelial cells within AT in order to 

efficiently exchange nutrients and waste (333). As part of their adipokine repertoire, 
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adipocytes secrete factors that promote endothelial cell growth and angiogenesis. In 

fact, the growth of AT in ob/ob mice was inhibited by anti-angiogenic factors (334), 

indicating AT expansion is dependent  upon local angiogenesis. Adipocytes express 

and secrete VEGF to promote local angiogenesis, but also leptin (335). Leptin was 

shown to induce angiogenesis of endothelial cells in vitro and in vivo indicating a 

peripheral role for leptin in addition to its central role in energy homeostasis. 

Adipocytes also contain several components of the renin-angiotensin system (RAS), 

allowing them to regulate blood pressure. Angiotensinogen produced by adipocytes 

can be converted into angiotensin II by angiotensin converting enzymes present in 

AT (336) which can go on to induce vasoconstriction.  

 

1.2.4.3 Immune interaction of AT 

AT is recognised as an immunological organ, due to a vast network of immune cells 

present within WAT. The most abundant of these cells are Mϕ which are polarised 

towards an M2, anti-inflammatory phenotype. M2 Mϕ secrete IL-10 that helps to 

maintain insulin sensitivity and regulate glucose homeostasis (337). Polarisation of 

Mϕ towards an M2 phenotype is regulated by: adipocyte PPARγ expression (338); 

AT-resident eosinophils which secrete IL-4 (339); and a specialised subset of NK 

cells and Treg cells that secrete IL-10. Additionally, Treg cells participate in 

important crosstalk with adipocytes by reducing adipocyte secretion of MCP-1 and 

enhancing adipocyte insulin sensitivity via PPARγ (338).  

 

1.2.4.4 AT and ageing 

Ageing is associated with phenotypic and functional changes in AT. AT mass 

declines with age, coinciding with an accumulation of lipid in ectopic sites such as 

the liver and bone (340). Therefore, although AT mass undergoes redistribution, the 

overall proportion of body fat remains unchanged. Increases in ectopic lipid 

deposition account for many age-associated conditions, for example, the deposition 

of lipid in bone decreases mineral density, leading to osteoporosis and insulin 

resistance (IR) (341). Furthermore, preferential SC AT tissue cachexia prior to 
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visceral AT increases the risk of metabolic syndrome (340). The precise mechanisms 

behind age-related changes in AT are unknown, though several important alterations 

have been identified. Expression of pre-adipogenic markers (such as C/EBP and 

PPARγ) is reduced in aged AT, therefore reducing the capacity of preadipocytes to 

undergo adipogenesis (342). Additionally, increased differentiation of other cells, 

such as Mϕ towards an adipocyte-like phenotype has been reported, which express 

FABP4 and drive the progression of atherosclerosis (343). AT PAI-1 expression is 

also elevated with ageing, suggesting an increased procoagulant propensity of AT 

(329), though this may be a consequence of an increased ratio of visceral to SC AT. 

 

Through the secretion of adipokines, AT is able to play a role in a diverse range of 

physiological functions from establishing metabolic functioning before birth to 

operating as an immune organ (summarised in Figure 1.2.4). Clearly, AT plays an 

important role in a number of homeostatic mechanisms in addition to its basic roles 

in energy storage, structural support and insulation.  

 

Figure 1.2.4: Physiological role of WAT. A summary of the physiological processes 

regulated by WAT and the adipokines involved.  
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1.2.5 Adipose tissue in disease 

The ability of AT to serve as an endocrine organ facilitates its role in physiological 

processes. However, this endocrine signalling becomes detrimental in disease. The 

major cause of AT dysfunction is obesity. In 2014, just under 2 billion adults were 

overweight (39% of the world‟s adult population) (344). Dysregulation of AT in 

obesity leads to increased risks of CVD, diabetes and cancer; three of the leading 

causes of mortality. Obesity is caused by an imbalance between energy intake and 

expenditure, and is therefore, largely preventable.  

 

1.2.5.1 Metabolic dysregulation in obese AT 

A hallmark of AT disease and obesity is the dysregulated secretion of adipokines. 

Two major adipokines involved in the physiological regulation of lipid metabolism 

are dysregulated in obesity. Leptin deficient, ob/ob mice are severely obese, insulin 

resistant and hyperlipidaemic (312) highlighting the importance of leptin signalling 

in regulating lipid metabolism and appetite. Paradoxically, circulating levels of leptin 

are increased in diet-induced obesity. This may be a consequence of leptin 

resistance, perhaps due to decreased efficiency of leptin signalling in the 

hypothalamus (345). Contrastingly, circulating adiponectin levels are decreased in 

obese subjects (346). Plasma adiponectin levels directly correlate with insulin 

sensitivity and mutations in the adiponectin gene predisposes the carrier to IR 

(317,346). This draws attention to the insulin-sensitising role of adiponectin and 

suggests a causal role for reductions in adiponectin in the development of IR. 

Conversely, resistin which is increased in obesity induces IR by reducing the action 

of insulin (347). 

FABP4
-/-

 mice fed a high fat diet become obese but do not become insulin resistant. 

Additionally, these mice lacked TNF-α production in AT (associated with 

inflammation and IR). Together this suggests a direct link between FABP4 and the 

development of IR in obesity (324). In human studies, circulating levels and 

adipocyte expression of FABP4 are increased in subjects with obesity and metabolic 

syndrome (348,349). An inhibitor of FABP4 was also shown to prevent and treat 

T2D and atherosclerosis in an experimental model (350) indicating the inhibition of 

FABP4 may be an effective target for obesity-induced CVDs and co-morbidities. 
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1.2.5.2 Vascular dysfunction in obese AT  

Dysregulated adipokine secretion in obesity can also lead to a hypertensive, 

hypercoagulable state (351,352). PAI-1 is increased in obesity, positively correlating 

with BMI, and has been suggested as a link between obesity and CVD (305,329). 

The main increase in PAI-1 in obesity is due to elevated adipocyte-derived PAI-1 

production; expression was 5-fold higher in both SC and visceral AT of ob/ob mice 

compared to lean controls (353). Furthermore, PAI-1 expression is induced by TNF-

α, insulin, TGF-β and FFAs, all of which are elevated in obesity. Visceral AT PAI-1 

expression was also elevated compared to SC AT further emphasising the 

cardiovascular risk associated with android obesity (329). Moderate weight loss 

restored the haemostatic balance in obese subjects by reducing circulating levels of 

PAI-1 and hence reducing the risk of thrombosis (228). TF may also increase the 

hypercoagulable state in obesity. Several adipokines upregulated in obesity such as 

leptin, TNF-α and TGF-β induced TF expression in adipocytes (351). Expression of 

TF mRNA is increased in obese AT in response to TGF-β (331) perhaps highlighting 

TGF-β as a promoter of obesity-induced thrombosis. Furthermore, PPARγ and 

adiponectin modulate TF production, though their expression is decreased in obesity, 

relinquishing their inhibition of TF production (351). Leptin was also shown to 

induce platelet aggregation (354) suggesting increased leptin levels in obesity may 

contribute to a pro-thrombotic state and increase cardiovascular risk.  

Imbalances in adipokine secretion may also increase local and systemic blood 

pressure. AT angiotensinogen expression is elevated in obesity, particularly in 

visceral AT (336) suggesting greater activation of the adipocyte-RAS. Additionally, 

increased adipocyte angiotensin II expression induces ROS generation from NO, 

thereby enhancing endothelial dysfunction and vasoconstriction (328). Elevated 

angiotensin II also enhances PAI-1 and endothelial integrin expression, promoting 

leukocyte adhesion and migration (328). Circulating levels of visfatin are increased 

in obesity (326,355), although the reason for this is unclear. Visfatin may promote 

leukocyte adhesion to endothelial cells (via increased integrin expression) (356) and 

increase the instability and rupture of atherosclerotic plaques (357). 

AT VEGF expression may harbour a protective role in obesity. Mouse models have 

shown overexpression of VEGF in AT increases vascularisation and M2 Mϕ 
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recruitment (358). In response to a high fat diet, mice overexpressing VEGF 

displayed an increased insulin sensitivity, suggesting VEGF was able to protect 

against metabolic complications of diet-induced obesity. Furthermore, 

overexpression of VEGF in AT enhanced PPARγ expression and induced browning 

of white adipocytes by increasing UCP-1 expression (359). Conversely, ablation of 

VEGF within AT reduced the ability of AT to expand resulting an increase in ectopic 

lipid deposition (360). Therefore, AT VEGF may serve important functions not only 

in regulating angiogenesis and growth of AT, but in the maintenance of adipocyte 

lipid deposition and insulin sensitivity. VEGF has been proposed as a therapeutic 

target for improving adipocyte dysregulation in obesity (358,359). However, plasma 

VEGF is elevated in obese subjects and correlates with endothelial IL-8 expression 

which promotes atherogenesis (361). Therefore, further work is needed to elucidate 

whether targeting VEGF feasible for the treatment of obesity. 

 

1.2.5.3 AT-derived inflammation 

Dysfunctional AT in obesity has profound effects on the role of AT as an 

immunological organ by promoting a transition towards a proinflammatory state 

(Figure 1.2.5). Numbers of eosinophils, NK cells and Treg cells are all reduced in 

obese AT (337,339) thereby reducing the IL-4/IL-10-induced M2 phenotype of Mϕ. 

The loss of pro-M2 signals in combination with other obesity-driven factors 

promotes the transition of Mϕ towards a proinflammatory M1 phenotype (338). The 

proinflammatory, hypoxic environment of obese AT promotes adipocyte necrosis 

which leads to the classical arrangement of M1 Mϕ around necrotic adipocytes in so 

called “crown like structures” (CLSs). This further enhances AT inflammation 

through FFA release from ruptured adipocytes and enhanced TNF-α and IL-6 

secretion from M1 Mϕ. The overriding effect is vicious cycle of excessive local 

inflammation within AT which leads to systemic inflammation and IR.  

Sustained elevations in plasma leptin levels stimulates the release of 

proinflammatory cytokines from Mϕ (328) thereby adding to the systemic 

inflammation observed in obesity. Circulating and AT levels of TNF-α are elevated 

in obesity, showing a positive correlation with IR (259). TNF-α inhibits 

phosphorylation of the insulin receptor in AT and muscles thereby reducing insulin 
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sensitivity. Weight loss directly reduces levels of TNF-α and improves insulin 

sensitivity, suggesting the involvement of a network of obesity-related factors in the 

development of IR. For example, IL-6 has also been reported to affect hepatic insulin 

signalling and levels correlate strongly with adiposity (259). Furthermore, IL-6 has 

been shown to enhance hepatic C-reactive protein (CRP) release (259), an 

inflammatory cytokine used to predict cardiovascular risk (352). Levels of other 

proinflammatory cytokines such as IL-8, IL-1β and TGF-β are also elevated in obese 

AT, suggesting dysfunctional AT is a prime source of proinflammatory cytokines 

which may give rise to the systemic inflammation that is closely associated with 

obesity. In addition to the proinflammatory transition of AT Mϕ, the number of AT 

Mϕ also increases, suggesting an increased infiltration of Mϕ into AT. Resistin was 

shown to induce pro-inflammatory cytokine production and enhanced endothelial 

adhesion molecule expression, thereby promoting leukocyte adhesion (327). 

Furthermore, TNF-α induces adipocyte MCP-1 production to enhance Mϕ 

chemotaxis and infiltration in AT, further promoting AT inflammation. Visceral AT 

was shown to contain a higher number of M1 Mϕ, again supporting the notion that 

visceral AT plays a greater role in IR and metabolic syndrome in obesity (338,352). 

 

Figure 1.2.5: Obese AT inflammation. A simplified schematic summarising the transition 

of lean AT with an anti-inflammatory phenotype to obese AT with a proinflammatory 

phenotype.  
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1.2.6 Adipose tissue hypoxia 

Section 1.2.2.1 alluded to the presence of a “metabolically healthy” obese phenotype, 

where obesity is not accompanied by obesity-related metabolic co-morbidities such 

as T2D, IR and dyslipidaemia. A study of overweight and obese individuals reported 

~30% of the study population were metabolically healthy and were not at an 

increased risk of future cardiovascular events (282). Conversely, obese individuals 

with associated metabolic syndrome were at a greater risk of future cardiovascular 

events. As described in the previous section, AT tissue dysfunction is the initiator of 

the pathophysiological roles of AT in disease, suggesting dysfunctional AT is the 

root cause of co-morbidities in obesity with metabolic syndrome. The mechanism 

behind the development of AT dysfunction is not fully understood, though a number 

of theories have been proposed. One theory is that AT has a limited capacity to 

expand safely, which may vary on an individual basis (362). Therefore, controlled 

accommodation and storage of increases in energy influx into AT may retain 

metabolic health. Conversely, surpassing the limit of AT expandability may enhance 

ectopic lipid deposition and dysregulated adipokine secretion from maximally filled 

adipocytes. Deficiency of O2 (hypoxia) of AT has also been proposed to initiate and 

exacerbate AT dysfunction and inflammation in obesity (259). 

 

1.2.6.1 Rationale for AT hypoxia  

It has been suggested that progressive obesity is associated with localised regions of 

hypoxia and that AT dysfunction and inflammation may stem from a local response 

of adipocytes to hypoxia (259). Adipocyte hypertrophy in obese AT can result in 

adipocytes spanning between 100-200 μm in diameter (265,266) which may surpass 

the limit of the adipocyte for safe lipid accumulation. Additionally, large diameter 

adipocytes may single-handedly exceed the maximal diffusion distance of O2 from 

blood vessels, which is reported to be 100 μm (363). In general, WAT is considered 

to be poorly perfused (364), and this perfusion is further reduced in obese WAT 

(365,366). An abundance of large adipocytes in combination with poor vascular 

support is highly suggestive of a hypoxic environment. Unfortunately, the 

measurement of O2 tension (partial pressure, pO2) of AT in vivo or in situ is 
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challenging (Section 1.2.6.2), making it hard to concretely confirm the presence of 

hypoxia within AT. 

 

1.2.6.2 Measurement of AT hypoxia 

The presence of hypoxia in AT can be ascertained by monitoring the expression of 

molecular markers known to be associated with hypoxia, directly measuring AT O2 

tension, or by measuring the AT blood flow/perfusion (AT-BF). 

Molecular approaches to measuring hypoxia usually involve the measurement of 

HIF-1α expression. HIFs are a group of transcription factors that regulate the cellular 

response to O2 with HIF-1α being the most studied of the molecular O2 sensors. HIF-

1α is constitutively expressed but is immediately ubiquinated and targeted for 

degradation under normoxic conditions (364). In hypoxia, this inhibition is 

relinquished enabling HIF-1α to modulate gene expression. Elevated HIF-1α mRNA 

and protein expression has been detected in SC WAT of obese mice (367–369) and 

humans (370). The probe pimonidazole has also been used to report AT hypoxia at a 

molecular level in obese mice (367,369,371). Pimonidazole was originally used to 

detect hypoxic regions of tumours as the probe is activated in an O2-dependent 

manner (372). 

Alternatively, a number of studies have used electrodes and sensors to measure the 

pO2 of AT and thus gauge the level of oxygenation (Table 1.2.2). Though this 

approach allows direct in vivo measurement of AT pO2, results between studies show 

great variation both in lean and obese subjects. This may be because different of 

types of electrodes or sensors were used. Additionally, a caveat of electrode-based 

measurement is the limited area of sample measurement as only the region 

immediately surrounding the electrode or sensor will be measured (single point 

measure). AT hypoxia is more likely to exist in “pockets” of hypoxic tissue due to 

variations in adipocyte size and vascularisation throughout AT. Therefore, pO2 

measurements may not provide an accurate measure of the hypoxic state of AT. A 

number of studies have found decreases in AT pO2 in obese subjects, though others 

have found no difference or even increases compared to lean controls (Table 1.2.2). 
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Species (Reference) Technique Location Population PO2 Equivalent O2  

Human (373) Polarographic 

electrode tonometer 

SC, upper arm Lean (BMI 24) 

Obese (BMI 51) 

57 mmHg 

36 mmHg 

7.5% 

4.7% 

Human (374) Clark electrode SC, upper arm Lean (BMI 24) 

Obese (BMI 46) 

57 mmHg 

41 mmHg 

7.5% 

5.3% 

Mouse (369) Fibre-optic sensor Visceral, epididymal fat 

pad 

Lean controls 

ob/ob 

47.9 mmHg 

15.2 mmHg 

6.2% 

2.0% 

Human (375) Polygraphic micro-

oxygen sensor 

SC, deltoid Lean (BMI 22) 

Obese (BMI 46) 

52 mmHg 

58 mmHg 

6.8% 

7.6% 

Mouse (368) Fibre-optic sensor Visceral, epididymal fat 

pad 

Lean controls 

ob/ob 

60.4 mmHg 

20.1 mmHg 

7.9% 

2.6% 

Human (376) Clark electrode SC, abdominal Lean (BMI 22) 

Obese (BMI 32) 

55 mmHg 

47 mmHg 

7.2% 

6.1% 

Mouse (377) Fibre-optic sensor Visceral, epididymal fat 

par 

SC, Inguinal fat pad 

Young (6 months) 

Old (23 months) 

Young (6 months) 

Old (23 months) 

36 mmHg 

21.7 mmHg 

33 mmHg 

37 mmHg 

4.7% 

2.8% 

4.3% 

4.8% 

Human (365) Optochemical sensor 

with microdialysis 

SC, abdominal Lean (BMI 23) 

Obese (BMI 34) 

47.7 mmHg 

67.4 mmHg 

6.2% 

8.8% 

Table 1.2.2: A summary of studies measuring the partial pressure (PO2) in adipose tissue (AT). BMI = body mass index; SC = subcutaneous. 
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AT-BF has been used to indicate the oxygenation state of AT. Though the 

physiological growth of AT is dependent upon increases in vasculature (334), obese 

AT expansion is not accompanied by increases in blood flow (374). Lean AT-BF is 

highly responsive to changes in circulating nutrient levels, showing large 

postprandial increases. Therefore, AT-BF plays a major role in regulating AT lipid 

metabolism and clearance of lipids from the circulation (378). AT-BF is reduced in 

obese subjects (365) and hence may lead to a dysregulation of lipid metabolism. AT-

BF can be measured by monitoring removal of injected labels such as 
133

Xe and 

ethanol, or by imaging techniques such as PET scanning (277). Blood oxygen level-

dependent magnetic resonance imaging (BOLD-MRI) has recently been used to 

evaluate AT-BF and AT oxygenation of multiple fat depots simultaneously (379). 

Therefore BOLD-MRI may provide a promising alternative to assessing AT 

oxygenation that enables measurement of the tissue as a whole. 

 

1.2.6.3 Impact of hypoxia on AT function  

Hypoxia is known to induce functional changes in adipocytes which drive the 

dysfunction and inflammation of AT. Adipocyte hypoxia results in a metabolic 

switch from oxidative phosphorylation to anaerobic glycolysis (364). Consequently, 

reduced generation of ATP results in an increased requirement for glucose, thereby 

increasing the expression of glucose transporters (GLUTs) (380). GLUT-1 is 

particularly upregulated and is often used as a marker of adipocyte hypoxia (364). 

Increased anaerobic respiration also increases the lactate production, which again is 

used to indicate adipocyte hypoxia. Activation of HIF-1α downregulates PPARγ 

production in adipocytes and preadipocytes (381), thereby attenuating further 

adipocyte differentiation. This may favour expansion of AT by adipocyte 

hypertrophy rather than hyperplasia, hence exacerbating adipocyte hypoxia. 

Preadipocytes within hypoxic AT were also shown to secrete leptin (largely 

restricted to mature adipocytes) which may drive leptin resistance (364). 

In addition to metabolic alterations, hypoxia also induces changes in adipokine 

levels, reducing secretion of adiponectin and increasing expression of leptin, IL-6 

and IL-1β (380,382). Increases in these proinflammatory cytokines are associated 

with development of local and systemic IR (259,380,382) suggesting hypoxia-
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induced release of these adipokines may initiate and drive the progression of IR. 

Hypoxic AT displays increased numbers of Mϕ which are associated with the 

development of AT inflammation (367). Hypoxia may induce apoptosis and necrosis 

of adipocytes, driving subsequent Mϕ infiltration to neutralise the necrotic cell. The 

hypoxic and inflammatory environment may then induce Mϕ towards an M1 

phenotype forming CLSs around the necrotic adipocyte. Furthermore, MCP-1 

expression is increased in hypoxic adipocytes (380) suggesting hypoxia may initiate 

the infiltration of additional Mϕ into AT which are phenotypically modified by the 

local environment to an M1 phenotype, therefore aiding the progression of AT 

inflammation. 

Local hypoxia in obese AT may drive the dysregulation of adipokine secretion and 

adipocyte metabolism thereby stimulating local inflammation and Mϕ infiltration. 

Hypoxia may therefore be the initiator of AT dysfunction that leads to a 

metabolically unhealthy obese phenotype (Figure 1.2.6).  

 

Figure 1.2.6: The role of hypoxia in AT inflammation and dysfunction. Adipocyte 

hypoxia increases release of HIF-1α, IL-6, IL-1β, leptin and MCP-1 which together lead to 

metabolic dysfunction of adipocytes, IR, Mϕ infiltration and further AT inflammation. 

Hypoxia also induces adipocyte necrosis releasing free fatty acids (FFAs) and further 

enhancing Mϕ infiltration which surround necrotic adipocytes, forming CLSs.  
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1.2.7 EVs as novel adipocyte communicators 

In comparison with the wealth of data for both the adipocyte field and the EV field, 

studies into adipocyte-derived EVs are scarce. Some characteristics and functional 

aspects of adipocyte-derived EVs have been established using 3T3-L1 cells, primary 

adipocyte cultures, and AT explants. 

 

1.2.7.1 Characteristics of adipocyte-derived EVs 

Evidence for adipocyte-derived EVs was first published in 2007 where 3T3-L1 EVs 

were shown to contain the exosomal protein, MFG-E8 and adiponectin (66). EV 

release was also responsive to obese-mimicking conditions (high glucose, insulin 

and TNF-α), suggesting a role for EVs in adipocyte dysfunction. Studies using 3T3-

L1 cells have since shown the presence of adiponectin and FABP4 in EVs (383–

385). The majority (~99%) of EVs derived from visceral and SC AT explants were 

also shown to be positive for FABP4 (386), perhaps indicating this protein as a 

useful marker for adipocyte-derived EVs. However, little is known about the specific 

EV populations released from adipocytes and no data exist detailing the lipid 

composition of adipocyte-derived EVs. 

 

1.2.7.2 Effects of adipocyte-derived EVs on metabolism 

Adipocyte derived EVs may induce several metabolic effects on a variety of 

recipient cells. Large diameter rat primary adipocytes were shown to release EVs 

containing lipid droplet-associated factors such as perilipin, CD73 and specific mIRs 

which were able to induce lipogenesis in smaller adipocytes (387–389). Therefore, 

adipocytes may utilise EVs to shift the burden of lipid synthesis from large to small 

adipocytes thereby ensuring safe adipocyte hypertrophy. Conversely, adipocytes may 

utilise EVs to mediate pathological signals, for example, EVs derived from hypoxic 

3T3-L1 cells were enriched in enzymes for de novo lipogenesis (390). As outlined in 

Section 1.2.6, hypoxic AT may drive AT dysfunction and inflammation. Therefore, 

hypoxic EVs harbouring a pro-lipogenic cargo may promote ectopic lipid deposition. 

EVs derived from visceral and SC AT explants were also shown to impair insulin 
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and TGF-β signalling in hepatocytes, suggesting adipocyte-derived EVs may 

contribute to hepatic IR and dysfunction in vivo (307,391).  

 

1.2.7.3 Immunomodulatory properties of adipocyte-derived EVs 

A number of interactions of adipocyte-derived EVs with AT-resident immune cells 

have been reported. Both primary adipocytes and visceral and SC AT explant-

derived EVs induced differentiation of monocytes to Mϕ with a phenotype akin to 

AT Mϕ (306). Furthermore, EVs derived from visceral AT explants were enriched in 

IL-6 and MCP-1 compared to SC AT (307), were capable of inducing monocyte-to-

Mϕ differentiation, and contained elevated levels of FABP4 which induced 

proinflammatory cytokine release from Mϕ (392). A recent study also demonstrated 

the ability of EVs derived from lipotoxic 3T3-L1 cells to enhance Mϕ migration both 

in vitro and in vivo (48). Together, these data suggest adipocyte-derived EVs may 

help to mediate the detrimental effects of visceral AT by enhancing local and 

systemic inflammation. 

 

1.2.7.4 Other effects of adipocyte-derived EVs 

EVs derived from mature 3T3-L1 cells contained pro-angiogenic factors including 

leptin and fibroblast growth factor-α, and were able to stimulate in vitro migration of 

HUVECs and in vivo angiogenesis (393). Adipocytes derived from MSCs also 

released EVs containing adipogenic mRNAs (such as PPARγ) which could be 

transferred and expressed in osteoblasts derived from MSCs (394), suggesting a role 

for EVs in modulating MSC lineage. 

Though the majority of research into adipocyte-derived EVs has focused on mature 

adipocytes, interesting effects of preadipocyte-derived EVs have also been 

documented. For example, 3T3-L1 cells were shown to shed the adipogenic 

repressor, Src3 using EVs (akin to reticulocytes shedding the transferrin receptor 

(395)), to allow adipogenesis to occur (396). Conversely, 3T3-L1 preadipocyte EVs 

promoted tumour growth in vivo (397) suggesting preadipocyte-derived EVs can 

exert both physiological and pathophysiological functions.  
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1.3 Thesis aims and objectives 

1.3.1 Rationale 

EVs are emerging as novel cell-cell communicators that may have potential 

functions in a wide range of diseases, and hence could be a new avenue for 

therapeutics. However, the EV field is currently hampered by a lack of 

standardisation of isolation and measurement protocols. Our current knowledge of 

adipocyte-derived EVs is limited, despite the known homeostatic role of adipocytes 

and their known role in disease progression. Therefore, adipocyte-derived EVs may 

provide an additional facet to the endocrine functions of adipocytes in both health 

and disease. 

 

1.3.2 Hypothesis 

Adipocytes release EVs that reflect the functional characteristics of adipocytes and 

may help to aid physiological processes such as adipocyte differentiation. In 

conditions mimicking metabolic stress (hypoxia), adipocytes release EVs with 

altered characteristics that may then enhance metabolic risk and obesity-related 

disease progression. As such, adipocyte-derived EVs may provide a novel circulating 

biomarker of adipocytes in vivo. 

 

1.3.3 Global thesis aim 

The overarching aim of this thesis was to explore extracellular vesicles as a novel 

mechanism of signalling for adipocytes in vitro and in vivo whilst learning about the 

current limitations of the field. 

 

1.3.4 Specific aims 

1. To understand the practical limitations of EV methodologies in order to 

provide a firm background on which to base the experimental protocols for 

EV work in this thesis. 
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2. To characterise the homeostatic release of EVs from 3T3-L1 adipocytes, 

using the transition from pre- to mature adipocytes as a model of 

physiological adipocyte function. 

3.  To assess the effect of O2 concentration on the characteristics of mature 3T3-

L1 adipocyte EV release to determine whether the pathological stimulus of 

hypoxia could induce a change in the composition and release of EVs from 

adipocytes. 

4. To monitor the effect of hypoxic 3T3-L1 adipocyte EVs on THP-1 Mϕ 

function by assessing their ability to alter the phenotype and migratory 

potential of Mϕ. 

5. To apply the knowledge acquired from previous chapters to determine the 

existence of adipocyte-derived EVs in the human circulation. 

6. To apply knowledge acquired from Results Chapter 1 to a clinical cohort of 

patients with familial hypercholesterolaemia to assess the practicalities of EV 

measurements in the clinic and to determine whether apheresis treatment 

could impact upon circulating EV concentrations.  
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2. General Methods 
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2.1 Reagent list 

Reagent/Chemical Supplier 

Annexin V binding buffer BD Biosciences, UK 

Ammonium persulphate (APS)  

Formaldehyde  

Glycine  

Isopropanol  

Methanol Fisher Scientific, UK 

10X Phosphate buffer saline (PBS)  

Sodium chloride (NaCl)  

Sodium dodecyl sulphate (SDS)  

Tris(hydroxymethyl)aminomethane  

Tween 20  

Sterile water Fresenius Kabi, UK 

DMEM (high glucose 4.5 g/L)  

FCS  Gibco (Life Technologies), UK 

Ham‟s F12 nutrient mix  

30% (w/v) acrylamide National Diagnostics, UK 

DELFIA® buffers PerkinElmer, UK 

Radioimmunoprecipitation assay (RIPA) lysis buffer Santa Cruz, CA 

Chloroform  

Developer  

Dexamthasone  

Fixer  

Indomethacin   

Insulin solution from bovine pancreas (10 mg/mL) Sigma Aldrich, UK 

β-mercaptoethanol  

Oil Red O  

Pyronin Y  

TEMED  

Trypan blue  
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2.2 3T3-L1 cells 

2.2.1 3T3-L1 culture 

3T3-L1 cells were kindly provided by Dr Mohd Shazli Draman (previously obtained 

from the American Type Culture Collection, ATCC). Cells were grown in specific 

media depending on their stage of differentiation (Table 2.1). 

Table 2.1: Media used to culture 3T3-L1 cells. Compositions of media used throughout 

3T3-L1 experiments. All % given are (v/v). CM = control medium; DM = differentiation 

medium; DMEM = Dulbecco‟s Modified Eagle Medium; FCS = foetal calf serum; MM = 

maintenance medium. 

 

Preadipocytes were maintained at no more than 70% confluence between passages to 

retain a preadipocyte phenotype. Figure 2.1 summarises the basic protocol used to 

culture 3T3-L1 cells for experiments in this thesis. 

 

2.2.2 Cell counting and viability  

Cells were gently removed from flasks using a cell scraper and pelleted by 

centrifugation at 1000 x g for 5 minutes. Cells were then resuspended in medium, 

diluted 1:1 (v/v) with trypan blue solution and counted using a Cellometer Auto T4 

(Nexcelom Biosciences, USA).  

Component CM DM MM 

DMEM (high glucose 4.5 g/L) 45% 45% 45% 

Ham‟s F12 nutrient mix 45% 45% 45% 

FCS 10% 10% 10% 

Penicillin/Streptomycin 1% 1% 1% 

Insulin - 10 µg/mL 10 µg/mL 

Indomethacin - 50 µM - 

Dexamethasone - 1 µM - 
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Figure 2.1: Timeline of 3T3-L1 culture. Details of 3T3-L1 growth for experimentation with accompanying images of confluent preadipocytes at day 0 (left) 

and mature adipocytes at day 15 (right). CM = control medium, DM = differentiation medium, MM = maintenance medium.
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2.2.3 Oil Red O staining 

3T3-L1 cells were cultured in 12 well plates and washed in sterile PBS prior to 

staining. Cells were then fixed in 10% formaldehyde (v/v in PBS) for 15 minutes at 

room temperature and subsequently washed with distilled water (dH2O). Oil red O 

working solution was freshly prepared from 0.5% oil red O stock solution (w/v in 

isopropanol) which was diluted 3:2 (v/v) with dH2O and left to stand for 15 minutes 

before being filtered through Whatman filter paper to remove precipitates. Cells 

were then stained with working solution for 15 minutes at room temperature. Excess 

stain was removed with 60% isopropanol (v/v in PBS) and washed twice with PBS 

before cells were photographed (Nikon Diaphot microscope, Nikon) at 10X 

magnification using ViewFinder™ software (version 3.0.1., Better Light Inc., USA). 

Cells were then washed a further two times with PBS, the intracellular stain was 

extracted using 100% isopropanol, and the optical density measured at 490 nm 

(Multiskan EX, MTX Lab Systems, Inc., USA). 
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2.3 Extracellular vesicle processing 

2.3.1 Isolation of cell-derived extracellular vesicles  

We (159) and others (113,398,399) have previously shown FCS-containing media 

harbours EVs that are co-pelleted with cell-derived EVs and could potentially 

overestimate EV concentration. 3T3-L1 cells were incubated in serum-free media for 

24 hours before EV isolation. Conditioned culture medium was then removed from 

cells and subjected to differential ultracentrifugation as described previously (400). 

Firstly, medium was centrifuged at 1000 x g for 5 minutes to remove any cells in 

suspension. Supernatants were then centrifuged at 15,000 x g for 15 minutes at 4°C 

to eliminate any cell debris and larger vesicles (e.g. apoptotic bodies). Finally, 

supernatants were ultracentrifuged at 100,000 x g for 1 hour at 4°C to pellet EVs. 

Vesicle preparations were then resuspended in 1X PBS, filtered using a 0.22 µm 

Millex® filter unit (Merck Millipore, Ireland) unless otherwise stated. EVs were 

resuspended in a 40-fold concentrate, i.e. EVs were resuspended in 25 μL PBS per 1 

mL conditioned medium centrifuged. 

 

2.3.2 Isolation of plasma-derived extracellular vesicles  

Blood from healthy volunteers was drawn gently into a syringe using a 21G butterfly 

needle (Hospira, UK) and divided between 3.2% (v/v) sodium citrate vacutainers 

(BD, UK). As recommendations are continually updated in the EV field, two 

different isolation protocols were used in this thesis. The first method, used in 

Chapters 3 and 8, obtained platelet-poor plasma (PPP) by immediately centrifuging 

blood at 1058 x g for 10 minutes at 4°C. PPP was then ultracentrifuged and 

resuspended as in Section 2.3.1, using a 4-fold concentrate.  

The second method was used in Chapter 7 and follows more recent 

recommendations. Blood samples were centrifuged twice at 2500 x g for 15 minutes 

at 21°C to isolate PPP and subsequently platelet-free plasma (PFP). PFP was then 

ultracentrifuged and resuspended as in Section 2.3.1, using a 10-fold concentrate. 
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2.3.3 Storage of extracellular vesicles  

Wherever possible, EVs were analysed within 1 day of isolation. For short-term 

storage (1-3 days) EVs were stored at 4°C and for longer term storage (3-14 days), 

EVs were aliquoted and frozen at 1°C/minute using a Mr Frosty™ 

(ThermoScientific, UK) to -80°C.  



Page | 88  

 

2.4 Nanoparticle tracking analysis 

2.4.1 Theory of operation 

As discussed in Chapter 1.1.7.3, NTA is one of the most popular methods used by 

researchers in the EV field to determine the size and concentration of EV samples. 

NTA utilises the laser-scattering properties of vesicles in suspension over time to 

give a visual representation of EV distributions. A laser beam is refracted into a 

diluted sample of EVs through a glass prism, resulting in a fine beam of laser-

illuminated particles in suspension. These EVs are then visualised real-time by a 

conventional light microscope (x20 magnification) with a high sensitivity digital 

camera attachment to allow the movement of EVs in suspension over time 

(Brownian motion) to be recorded (Figure 2.2). 

 

Figure 2.2: NTA operation. A 405 nm laser is refracted into the fluid suspension by a glass 

prism causing particles to scatter the laser light. This is then visualised by a microscope with 

a video camera attachment which traces the Brownian motion of illuminated particles over a 

set time period to calculate the size and concentration of EV samples. Image (A) ©Malvern 

Instruments Ltd. 
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The velocity and distance of individual EVs is tracked frame-by-frame so that the 

diffusion coefficient (Dt) of each vesicle can be determined from the Brownian 

motion over time. This can then be used with constant parameters such as 

temperature (T) and diluent viscosity (η) to calculate the particle size using a 

modified Stokes-Einstein equation (161) (Figure 2.3). 

 

             
     

    
 

 

Figure 2.3: Stokes-Einstein equation used by NTA software. NTA software inputs data 

from individually tracked vesicles into a modified Stokes-Einstein equation which calculates 

the particle size from the particle motion in two dimensions. (x,y)
2
 =  the squared average 

distance moved in the two dimensions; Dt = diffusion coefficient; KB = Boltzmann‟s 

constant; T = temperature of the diluent (K); ts = sampling time (ms); η = viscosity of the 

diluent; d = sphere-equivalent hydrodynamic diameter (particle size). 

 

2.4.2 Experimental methodology 

All NTA analyses were undertaken using a NanoSight LM10 configured with a 405 

nm laser and using software version 2.3 (Malvern Instruments Ltd, UK). Polystyrene 

beads (100 nm diameter) were measured prior to analysis of samples to ensure the 

machine was functioning properly and that the sample preparation was clear of 

contamination. Pre- and post-analytical settings were kept consistent to allow for 

intra- and inter-study comparison (Table 2.2). 

Samples were diluted in particle-free sterile water (Fresenius Kabi, UK) to achieve a 

concentration between 2 x 10
8
 and 1 x 10

9
 particles/mL. Videos of 60 seconds were 

recorded in replicates of 5 per sample. EV size is presented as the mode of the 

population (nm). The concentration of plasma EV samples is presented as EVs/mL 

of plasma whilst the concentration of cell-derived EVs is presented as EVs/viable 

cell. Size distribution graphs were generated by totalling the concentration of 

EVs/mL plasma or EVs/viable cell in each 50 nm range (bin width) for plasma and 

cell-derived EVs respectively.  
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 Setting Beads EVs 

Pre-analytical Camera shutter  450 450 

 Camera gain 250 250 

 High threshold 3025 2275 

 Low threshold 0 0 

Post-analytical Temperature 22 to 26 °C 22 to 26 °C 

 Screen gain 9-10 13-15 

 Detection threshold 6 4-6 

Table 2.2: Pre- and post-analytical settings used for NTA experiments. Details of all 

pre- and post-analytical settings used when analysing bead and EV samples using NTA.  
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2.5 Tunable resistive pulse sensing 

2.5.1 Theory of operation 

As previously discussed (Chapter 1.1.7.3), tunable resistive pulse sensing (TRPS) is 

a method also used for EV quantification and sizing. TRPS is based on the “Coulter 

Principle” which measures the electrical impedance (usually of cells) passing 

through an aperture to determine the size and concentration (401). TRPS uses 

tunable thermoplastic polyurethane nanopores which are suspended between two 

fluid cells both containing silver/silver chloride electrodes. The pore is mounted on 

an adjustable stage ensuring the pore is fixed in place, but also allowing the stretch 

of the pore to be adjusted. Fluid cells are filled with electrolyte buffer so that when a 

voltage is applied, a current passes through the pore between the wells (Figure 2.4). 

Electrolyte in the upper fluid cell can be replaced with a sample (diluted in 

electrolyte buffer) and voltage applied so that suspended vesicles pass through the 

pore with the current. Passage of vesicles through the pore causes a displacement of 

the electrolyte within the pore, temporarily increasing the resistance and hence 

decreasing the current. This is represented digitally by a “blockade event” (Figure 

2.4 D). The magnitude of the blockade event is directly proportional to the volume of 

the vesicle. Therefore, calibration beads of known diameter and concentration can be 

analysed using TRPS to give uniform blockade parameters. The accompanying 

software can then use the calculated blockade parameters of individual calibration 

particles in an extraction algorithm to determine the size and concentration 

distributions of unknown spherical vesicles. 
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Figure 2.4: TRPS assembly and theory. (A) The assembled IZON qNano machine and 

variable pressure module (VPM) (left) and a schematic of the core individual components. A 

nanopore is fixed across the lower fluid cell and stretched to a specific width. The upper 

fluid cell is clipped onto the lower fluid cell on top of the nanopore to form a central seal 

between the 3 layers. (B) Electrolyte is added to the fluid cells and a voltage is applied 

creating a current two across the silver/silver chloride electrodes in each fluid cell caused by 

the movement of ions across the pore. (C) The electrolyte current is represented digitally by 

a flat baseline. (D) Particles passing through the pore displace the electrolyte and decrease 

the current resulting in individual “blockade events” - indicated by blue arrows. Images 

adapted from IZON training modules. 

 

A fluid cell cap is secured upon the upper fluid cell acting as a Faraday cage 

(reducing the background noise of the system) but also serving as a point of 

attachment for the variable pressure module (VPM). The VPM applies pressure to 

the system which replaces electrophoretic mobility as the dominant force for vesicle 

movement through the pore. This enables equal transition of charged and uncharged 

vesicles across the pore and allows for determination of EV concentration. 
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2.5.2 Experimental methodology 

TRPS experiments were performed using the qNano, CPC (carboxylated polystyrene 

particles) calibration beads, tunable nanopores and software version 2.2 (all IZON 

Science, NZ)). Prior to EV analysis, calibration beads (Table 2.3) were used to 

adjust the stretch of the nanopore and the voltage applied to achieve a blockade 

magnitude of 0.3 nA. This not only ensured that a range of EVs smaller and larger 

than the calibration beads could be analysed, but also that this same range could be 

analysed between different experiments. Fresh 1X PBS (prepared as in Section 2.3.1) 

was used as the electrolyte buffer and as a medium for calibration bead/sample 

dilution. A bandwidth filter of 5 kHz was applied and recordings were stopped if 

background noise exceeded 10 pA. Applied pressure was kept at 7 mbar and the 

minimum recordable blockade magnitude was set to 0.05 nA. 

EV concentration data are presented as particles/mL plasma and the mode particle 

size (nm). 

CPC  Mode size (nm) Stock concentration 

(particles/mL) 

Recommended pore 

100 115 1.0 x 10
13 

np100 

200 203 1.3 x 10
12 

np200 

400 335 5.5 x 10
11 

np400 

500 475 3.6 x 10
11 

np400 

800 766 5.0 x 10
10

 np800 

1000 900 5.5 x 10
10 

np800/1000 

Table 2.3: IZON CPC calibration beads. Calibration beads and recommended nanopores 

supplied for use with the qNano. The mode size and stock concentration of each calibration 

bead is given.  
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2.6 Flow cytometry 

Flow cytometry (FC) is often used to analyse phenotypic surface makers of cells and 

EVs (Chapter 1.1.7.2). Figure 1.1.9 outlines the basic mechanism of FC. Here, FC 

was used to analyse the annexin V positivity (PS exposure) of 3T3-L1 cells and EVs 

(obtained from T75 cm
2
 flasks), the presence of adipocyte markers in plasma EVs, 

and the cellular origin of plasma derived EVs in a patient cohort. Specific methods 

are given in Chapters 7 and 8 for the measurement of plasma-derived EVs. Analyses 

were performed using a FACS Canto and FACS Diva™ software version 6 (both BD 

Biosciences, CA). Data were exported and subsequently analysed using FlowJo 

software version 10 (Tree Star Inc., OR). 

 

2.6.1 Annexin V positivity of 3T3-L1 cells 

Cells were gated based on their linear forward and side scatter properties with the 

assistance of Dr Kirsty Richardson. 3T3-L1 cells in PBS at a concentration of 1 x 

10
6
 cells/mL were analysed as a negative control. Cells were then pelleted at 1000 x 

g for 5 minutes and resuspended in 1X 0.22 µm-filtered annexin V binding buffer 

(BD Biosciences). Annexin V-FITC (Biolegend, CA) was added and cells were left 

to incubate in the dark for 15 minutes. Cells were then pelleted as before and 

resuspended in PBS for analysis, where 10,000 events per sample were recorded.  

 

2.6.2 Annexin V positivity of EVs 

The EV gate used was determined by Dr Gareth Willis using the logarithmic scatter 

of CPC beads (200 nm, 500 nm and 1µm, IZON Science). 3T3-L1 EVs were 

resuspended in annexin V binding buffer following ultracentrifugation as described 

in Section 2.3.1 and ran as an unstained control. EVs were then stained and analysed 

as in Section 2.6.1.  
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2.7 Gas Chromatography 

Lipid and phospholipid analysis of cells and EVs was performed with Dr Irina 

Guschina using gas chromatography with flame ionisation detection (GC-FID). In 

order to obtain enough EVs to perform phospholipid analysis, 7 x T175 cm
2
 flasks 

were grown in parallel and pooled. GC experiments used repeats of EVs from 1 x 

T175 cm
2
 flasks. An index of fatty acids is provided on Page VIII. 

 

2.7.1 Lipid extraction 

A 2:1 (v/v) solution of chloroform:methanol was added to the resuspension of cells 

and EVs in PBS. Further chloroform was added with Garbus solution (2 M KCl, 500 

µM KPO4, pH 7.4) and samples were vortexed and centrifuged at 250 x g for ~ 5 

minutes to separate the inorganic and organic phases (402). The lower organic 

(chloroform) phase was carefully transferred to fresh tubes and completely dried 

down under a steady stream of N2 gas at room temperature before being resuspended 

in chloroform. Lipids in chloroform were directly methylated for GC or prepared for 

phospholipid separation. 

 

2.7.2 Fatty acid methylation and gas chromatography  

A 2.5% sulphuric acid solution (v/v) in methanol:toluene (2:1, v/v) was used to 

methylate fatty acids for 2 hours at 70°C. Fatty acid methyl esters (FAME) were then 

extracted thrice with hexane for GC analysis. A known amount of C17:0 (margaric 

acid; Nu-Chek Prep, Inc,. Elysian, MN) was added as an internal standard so that 

subsequent quantification of peaks (and consequently lipids) could be performed. 

GC was undertaken using a Clarus 500 gas chromatograph (Perkin-Elmer, CT) fitted 

with a 30 m x 0.25 mm, i.d., 0.25 µm film thickness capillary column (Elite 225, 

Perkin-Elmer). The column temperature was held at 170°C for 3 minutes before 

being temperature-programmed to reach 220°C at 4°C/minute. Nitrogen was used as 

the carrier gas at a flow rate of 2 mL/minute. Data were acquired using Total Chrom 

Navigator (Perkin-Elmer) and the retention times of external standards (Supelco 37 

Component FAME Mix, Sigma Aldrich) were used to identify FAME. An example 
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of a chromatogram is shown in Figure 2.5. Fatty acid concentration is expressed in 

mg/mL plasma, mg/10
6
 cells or ng/10

6
 EVs. Compositions of individual fatty acids 

were calculated as a percentage of total fatty acid concentration. 

 

 

Figure 2.5: GC chromatogram. Example GC chromatogram data; long chain fatty acids 

have greater retention times and therefore take longer to elute.  
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2.7.3 Phospholipid separation 

Lipids in chloroform were separated by two-dimensional thin layer chromatography 

(TLC) using silica gel 60 plates (10 x 10 cm, Sigma Aldrich) impregnated with boric 

acid (1.2% in ethanol/water; 1:1, v/v). Lipids were separated in the first dimension 

using a solution of chloroform:methanol:ammonium hydroxide (65:35:10, v/v/v) and 

using N-butanol:acetic acid: water (90:20:20, v/v/v) in the second. Plates were then 

completely dried and sprayed with a 0.05% solution of 8-anilino-4-napthosulphonic 

acid in dry methanol (v/v) and visualised under UV light to enable identification of 

lipid classes (Figure 2.6). Individual lipids were then scraped from the plates and 

methylated for GC as in Section 2.7.2. Phospholipids are presented as a proportion of 

the total lipid. Individual fatty acids of each phospholipid group are presented as a 

percentage of the total fatty acid concentration of the phospholipid. 

 

Figure 2.6: TLC separation of lipids. Extracted lipids in chloroform were spotted onto the 

corner of a silica gel plate impregnated with boric acid. Lipid classes were then separated in 

two dimensions (directions indicated by numbered arrows) and visualised under UV light. 

CL = cardiolipin; PC = phosphatidylcholine; PE = phosphatidylethanolamine; PI = 

phosphatidylinositol; PS = phosphatidylserine; and Sph = sphingomyelin.   
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2.8 BCA protein assay 

2.8.1 Background 

The bicinchoninic acid (BCA) protein assay measures a colourimetric change in the 

oxidation state of copper caused by the presence of protein. The assay initially 

utilises the principles of the biuret reaction where cupric ions (Cu
2+

) present in the 

alkaline working solution are reduced by chelation with protein to form cuprous ions 

(Cu
1+

). BCA then reacts with free Cu
1+

 causing a colour change from blue to purple 

which can be measured colourimetrically. The BCA assay was used to calculate 

protein concentrations of cells and EVs for EV immunophenotyping and Western 

blotting experiments.  

 

2.8.2 Experimental procedure 

The Pierce™ BCA protein assay kit (Thermo Scientific, UK) was used to determine 

protein concentration. Cell and EV samples were compared against serially diluted 

bonvine serum albumin (BSA) standards. Standards and samples were diluted in 

PBS and 25 µL of each was added to 200 µL of working reagent in a 96 well plate 

(Greiner Bio-One, Germany) in triplicate. The plate was mixed for 30 seconds, 

wrapped in foil and left to incubate for 30 minutes at 37°C according to the 

manufacturer‟s protocol. The absorbance was read at 562 nm and concentrations 

determined from the standard curve in µg/mL (Figure 2.7, r
2
 value >0.99 for each 

assay). 

 

Figure 2.7: BCA assay standard curve. A typical 6-point standard curve obtained from a 

BCA assay. BSA standards diluted to 250, 125, 50, 25, 5 and 0 µg/mL.   
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2.9 Extracellular vesicle immunophenotyping 

An immunophenotying assay developed in the lab of Dr Aled Clayton (158) was 

used to determine the protein content of 3T3-L1 EV samples. The assay entails 

isolated vesicles being adhered to “sticky” ELISA plates then probing for antibodies 

of interest (Figure 1.1.10). The use of europium ensures a highly fluorescent signal 

enabling detection of less abundant antigens.  

 

2.9.1 Immunostaining of EVs 

EVs were immobilised on high protein binding ELISA plates (Greiner Bio-One) at a 

concentration of 1 µg (determined as in Section 2.8.2) per well and allowed to settle 

overnight at 4°C. RIPA (radioimmunoprecipitation assay) buffer (Santa Cruz, CA) 

was added for 1 hour at room temperature to permeabilise EVs for staining of 

antigens within the vesicles. EVs were then probed with primary antibodies diluted 

to 1µg/mL (Table 2.4) for 2 hours at room temperature on a plate shaker. Antigens 

were detected using specific biotin-labelled secondary antibodies and a streptavidin-

europium conjugate (all Perkin-Elmer). Three washes were performed between each 

addition (6 washes following addition of streptavidin-europium) using DELFIA® 

wash buffer (Perkin-Elmer). Plates were analysed using time resolved fluorescence 

using both a Wallac Victor
2
 plate reader (Perkin-Elmer) and a FLUOstar OPTIMA 

(BMG Labtech, UK). The focal height was set to 7.8 mm and the gain to 2048 a.u.. 

Each well received 200 flashes and the detection measurement started at 400 μs after 

the last flash and was recorded for 400 μs (integration “start” and “time” 

respectively). Data are presented in arbitrary TRF units which have been adjusted for 

background fluorescence by deducting negative control (EVs with no primary 

antibody) TRF values. 
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Antibody Manufacturer and 

product code 

Source Dilution 

Adiponectin 

(anti-mouse) 

CST: #2789 Rabbit 1:10 

Adiponectin 

(anti-human) 

Abcam ab18065 Rabbit 1:15 

Alix CST: #2171 Mouse 1:450 

CD9 Santa Cruz: sc-9148 Rabbit 1:200 

CD63 Santa Cruz: sc-15363 Rabbit 1:200 

FABP4 CST: #3544 Rabbit 1:1000 

HIF-1α Abcam: ab179483 Rabbit 1:117 

IL-6 CST: #12912 Rabbit 1:101 

IL-10 CST: #12163 Rabbit 1:101 

MCP-1 CST: #2029 Rabbit 1:16 

PPARγ CST: #2443 Rabbit 1:50 

PREF-1 CST: #2069 Rabbit 1:50 

TNFα CST: #11948 Rabbit 1:101 

TSG101 Santa Cruz: sc-227 Rabbit 1:200 

Table 2.4 Antibodies used for EV immunophenotyping. Details of primary antibodies 

used for EV immunophenotyping experiments. One μg/mL of each antibody was added to 

each well, accounting for the differences in dilution. CD = cluster of differentiation; FABP4 

= fatty acid binding protein-4; HIF-1α = hypoxia inducible factor-1α; IL = interleukin; 

MCP-1 = monocyte chemoattractant protein-1; PPARγ = peroxisome proliferator-activated 

receptor γ; PREF-1 = preadipocyte factor-1; TNF-α = tumour necrosis factor-α; TSG101 = 

tumour susceptibility gene -101. 
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2.10 Western Blotting 

2.10.1 Lysis of cells  

Cells were washed with 1X PBS on ice, before the addition of cold lysis buffer (50 

mM Trizma® base, 150 mM NaCl, 5 mM EGTA, 1% (v/v) Triton X100 in dH2O, 

pH 7.6) supplemented with protease inhibitor cocktail (PIC, cOmplete tablets, 

Roche, UK). Cells were gently removed from flasks using a scraper. Samples were 

then centrifuged twice (13,000 x g, 4°C, 20 minutes) to pellet cell and vesicle debris. 

Supernatants were then analysed for their protein concentration as in Section 2.8.2 

and stored in sterile Eppendorf tubes at -20°C until required. 

 

2.10.2 Separation of proteins by SDS-PAGE 

Ten to twenty μg of protein was denatured by diluting 1:1 with loading buffer (Table 

2.5), boiling for 5 minutes at 100 °C and centrifugation at 13,000 x g for 5 minutes. 

 

Component Volume (mL) 

10% SDS 2 

Glycerol 1 

0.5 M Tris (pH 6.8) 1 

Water 0.8 

0.2% Pyronin Y 0.1 

β-mercaptoethanol 0.1 

10X PIC 0.5 

Table 2.5: Loading buffer. Constituents and volumes used to make loading buffer; 

Percentages are given in w/v. SDS = sodium dodecyl sulphate; PIC = protease inhibitor 

cocktail. 

 

Proteins were then loaded onto freshly prepared polyacrylamide gels (Table 2.6) and 

separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-

PAGE). A pre-stained broad range colour ladder (11-245 kDa, Cell Signaling 
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Technologies, New England BioLabs, UK) was also loaded and samples were 

resolved at 200 V in 1X running buffer (Table 2.7) until bands reached the bottom 

of the running gel.  

 

Component Running gel (mL) 4% Stacking gel (mL) 

30% Acrylamide  

 

8% 

2.64 

10% 

3.30 

12% 

3.96 

15% 

4.95 

1.3 

Water 3.58 2.92 2.26 1.27 6.1 

1 M Tris (pH 8.8) 3.75 - 

0.5 M Tris (pH 6.8) - 2.5 

10% SDS 0.1 0.1 

10% APS 0.1 0.1 

TEMED 0.005 0.01 

Table 2.6: Polyacrylamide gels. Components and volumes of running and stacking gels 

used for SDS-PAGE. Running gels of differing acrylamide percentages were used 

depending on the size of the protein of interest. Gels and APS were freshly made on the day 

of experimentation. SDS = sodium dodecyl sulphate; APS = ammonium persulphate; 

TEMED = tetramethylethylenediamine. Percentages are given in w/v. 

 

Component Weight (g) 

Tris 15 

Glycine 72 

SDS 5 

Table 2.7: 5X Running buffer. Components of the running buffer made up to 1 L with 

distilled water and diluted 1:5 for running gels. 

 

2.10.3 Electroblotting 

Wet electroblotting was used to transfer proteins from the gel to a PVDF 

(polyvinylidene fluoride) transfer membrane (Amersham™ Hybond™-P 0.45, GE 

Healthcare, UK). Membranes were pre-wet briefly in methanol before transfer. 



Page | 103  

 

Proteins were transferred for 1 hour at 350 mA in blotting buffer (Table 2.8, cooled 

at -20°C for >1 hour prior to use) with a magnetic stirrer and ice pack. 

Component Amount 

Tris 3.025 g 

Glycine 13.66 g 

Water 800 mL 

Methanol 200 mL 

Table 2.8: Blotting buffer. Components and volumes used to make blotting buffer, stored 

at -20°C for >1 hour before use. 

 

2.10.4 Incubation of antibodies  

Following transfer of proteins, membranes were washed in tris-buffered saline with 

Tween 20 (TBS-T, Table 2.9). All subsequent washes were performed 3 times for 5 

minutes on an orbital shaker using TBS-T. 

 

Component Volume (mL) 

10X TBS* 100 

Water 900 

Tween 20 1 

Table 2.9: TBS-T wash buffer. Components and volumes of TBS-T wash buffer. *10X 

TBS was made from 24.2 g Tris, 80 g NaCl made up to 1 L with distilled water and adjusted 

to pH 7.6 with 10 M hydrochloric acid. 

 

Membranes were then blocked for 1 hour at room temperature on an orbital shaker in 

blocking buffer (5% (w/v) skimmed milk powder (Marvel, UK) in TBS-T). 

Membranes were incubated with rabbit anti-mouse monoclonal primary antibody 

(specific details given in each chapter) overnight at room temperature. Membranes 

were washed before adding ECL™ peroxidase labelled donkey anti-rabbit secondary 

antibody (GE healthcare) diluted 1:5000 in blocking buffer for 1 hour at room 
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temperature. Finally, membranes were washed thoroughly (2 x 30 seconds, 1 x 15 

minutes, and 3 x 5 minutes in TBS-T) to prepare for developing. 

 

2.10.5 Developing of blots  

Membranes were incubated in ECL Prime Western blotting detection reagent (GE 

Healthcare) for 5 minutes at room temperature before being exposed to photographic 

film (Amersham™ Hyperfilm ECL, GE Healthcare) in a dark room. Time of 

exposure varied with each antibody (see Table 2.10). Films were then developed 

using Kodak™ -D19 developer and fixer (Sigma Aldrich). 

 

2.10.6 Densitometry 

Densitometry analysis was conducted using ImageJ software (version 1.49, National 

Institutes of Health, USA). Raw densitometry values were then normalised to a 

control unless otherwise stated.   



Page | 105  

 

2.11 Statistical analysis 

Data in this thesis were analysed using GraphPad Prism (version 6.0, GraphPad 

sortware Inc., USA). Details of specific statistical analyses are given in the Methods 

section of each Results chapter. Data are presented as mean ± SD unless otherwise 

stated and a p value of <0.05 was considered statistically significant. 
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3. Results I: 

Developments in methodology 
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3. Perspective 

The work detailed in this chapter was conducted at the beginning of my PhD as I was 

learning about the practicalities of working with EVs and the field-wide lack of 

standardisation. Our lab was fortunate to have regular access to two EV 

measurement techniques; NTA and TRPS, the latter being an emerging/less-widely 

used technique. This therefore presented a good opportunity to compare the two 

techniques whilst learning about their relative benefits and weaknesses. Furthermore, 

our interests prior to beginning work with EVs were in clinical measurements and so 

we were first interested in studying EVs derived from plasma. Consequently, I 

decided to begin establishing the effects of different pre-analytical processes on EV 

measurements. This was conducted using TRPS with the support of IZON Science 

and in parallel with Chapter 8. 

Due to the novelty and ever increasing popularity of the EV field, much of the work 

in this chapter has since been conducted and published by others. Nevertheless, this 

chapter provides interesting and in-depth insights into methodological aspects and 

sample processing of EVs. 

 

 

 

 

 

 

  

Parts of this chapter have been published in: 

Connolly K, Morris K, Willis GR, Rees DA, James PE (2014). Do conditions of 

freezing and time-in-freezer really matter? Journal of Extracellular Vesicles. 3: 

24214; P8B-301. 
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3.1 Introduction 

In addition to discussing the potential of EVs as disease biomarkers and therapeutic 

targets, Chapter 1.1 also introduced the inconsistencies and lack of standardisation 

that exist within the EV field which make inter-study comparison difficult. This 

disparity has perhaps been exacerbated by the rapid growth in interest in EVs in 

recent years. Though attempts are being made to standardise EV isolation, analysis 

and storage (16), there are currently no gold standard protocols or techniques. 

At the outset of data collection for this chapter (2012-2013), many techniques were 

available to measure EV size and concentration including: TEM; DLS; FC; NTA 

(149,161,403) and the emerging TRPS. Each technique has its own advantages and 

disadvantages (149) and the use of a particular technique is often dependent on the 

desired outcome or variable to be measured (404). NTA, one of the most widely used 

of the techniques to measure EV size and concentration, video records the light 

scattering and Brownian motion of particles in suspension. NTA has been shown to 

give a better detection of polydispersity compared to DLS (405) which is often 

biased by the presence of larger vesicles, as scattered light from all EVs is pooled by 

a single detector (160,161). NTA is more user-friendly than TEM, requiring less 

sample preparation and hence reduces adverse effects on EV morphology (108). 

Finally, NTA provides superior sensitivity for EVs <300 nm compared with FC 

(161) where the lower detection limit and swarm detection of EVs may result in an 

underestimation of concentration (154). However, little was known about TRPS, 

which unlike other techniques, measures EVs on a particle-by-particle basis as they 

disrupt the current passing through a tuneable nanopore (406).  

As with EV measurement, there are no established protocols for the isolation and 

storage of EVs used prior to analysis. This is partly due to the diversity of EV 

sources (e.g. plasma, saliva, urine and conditioned culture media) that require 

different pre-analytical processing. This, combined with the use of different 

measurement techniques, results in significant inconsistencies in reported EV 

concentrations (407). Investigations into varying the time before processing, the 

anticoagulant, the number and speed of centrifugation steps, and freeze-thawing are 

all reported effect EV concentration (59,107,108,408,409). Increases in EVs were 

observed when blood was not processed immediately after isolation and following 



Page | 109  

 

storage at -80°C for 1 month (107). Additionally, chelating anticoagulants (citrate, 

ACD and EDTA) yielded fewer EVs compared with protease inhibitor 

anticoagulants (sodium heparin, hirudin) (59). Storage of platelet-poor plasma (PPP) 

at -80°C for 1 week also increased the detection of certain EV subtypes (409). 

However, freezing was also shown to decrease subsets of EVs (60,409) particularly 

with long-term storage (107). These conflicting effects of pre-analytical processing 

were measured directly using FC, which as discussed in Chapter 1, may be 

inaccurate due to the low refractive index and “swarming” of EVs (154). Therefore, 

the effects of pre-analytical processing on EV size and concentration (particularly 

EVs below the detection limit for FC) may have not been fully characterised. 

 

3.1.1 Aims 

This chapter sought to explore TRPS as an EV measurement technique and to utilise 

TRPS to measure changes in EVs prepared using different pre-analytical processes. 

The specific aims were: 

1. Using calibration beads, to test the technical aspects of TRPS in terms of; 

a. Linearity compared with NTA 

b. Limits of detection compared with NTA 

c. Detection of polydispersity compared with NTA, DLS and FC 

2. To use TRPS to assess the changes in plasma EV size and concentration 

following pre-analytical processing with: 

a. Citrate and EDTA vacutainers 

b. Filtering EV samples 

c. Method and length of storage of EVs 

 

3.1.2 Hypotheses 

TRPS may be an alternative technique for measuring EV size and concentration that 

overcomes the negatives of measuring EVs using light scattering-based techniques. 

Pre-analytical processing of EVs may change detected size and concentration of EVs 

detected by TRPS.  
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3.2 Methods 

3.2.1 Nanoparticle tracking analysis  

NTA analyses were carried out as described in Chapter 2.4.2 using the analytical 

settings for beads (Table 2.2). Calibration beads (50, 100, 300 and 1000 nm; 

Malvern, UK) were used for NTA experiments. To create a standard curve, six 

dilutions of 100 nm beads were prepared in sterile water over a 16-fold dilution 

range (1.5 x 10
8
 – 2.5 x 10

9 
particles/mL). To test the limits of detection, 50, 100, 

300 and 1000 nm beads were individually analysed and plotted together on one 

graph in particles/mL. Finally to test how NTA dealt with polydispersity, 50, 100 

and 300 nm beads were prepared at a 1:1:1 ratio and analysed in triplicate.  

 

3.2.2 Tuneable resistive pulse sensing  

TRPS analyses were conducted as indicated in Chapter 2.5.2 using CPC calibration 

beads (IZON Science, NZ) (Table 2.3). For the standard curve, an np200 pore was 

used with six dilutions of CPC200 beads in 1x PBS (filtered through a 0.22 µm pore 

prior to dilutions) over a 16-fold dilution range (5.5 x 10
8
 – 8.8 x 10

9
 particles/mL). 

For the limits of detection, CPC100, 200, 400, 500, 800 and 1000 nm beads were 

analysed using np100, np200, np400 and np800 pores. Nanopores were tested with 

each CPC bead until beads fell below the detection limit of the pore or the pore 

became blocked (which occurred frequently). Results were expressed as a percentage 

of the total count due to significant variations in concentrations between beads (see 

Table 3.3.1). Finally, to test the ability of TRPS to detect polydispersity, an np100 

pore was used to analyse a mix of CPC100, 200 and 400 beads prepared at a 1:1:1 

ratio. 

 

3.2.3 Dynamic light scattering 

A Zetasizer Helix (Malvern, UK) was assessed for its ability to detect individual 

populations of 50, 100 and 300 nm beads in a 1:1:1 mixture. 
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3.2.4 Flow cytometry 

A custom-built BD FACSAria II was used to analyse a mix of 200, 500 and 800 nm 

fluorescent beads (Submicron bead calibration kit, Bangs Laboratories Inc., USA) 

prepared at a 1:1:1 ratio. Experiments and analyses were performed with the help of 

Dr Kristin Ladell (Cardiff University). 

 

3.2.5 Isolation of plasma-derived extracellular vesicles  

Blood was collected from healthy volunteers as described in Chapter 2.3.2 using the 

first isolation method. Blood in this chapter was collected into both citrate and 

EDTA vacutainers for comparison of EV concentration. 

 

3.2.6 Filtering of extracellular vesicles  

Isolated plasma-derived EVs were further diluted in PBS (750 µL PBS for every 

250µL EVs) and 4 aliquots were prepared as depicted in Figure 3.2.1. Briefly, half 

of the EV aliquot was passed through a 1 µm filter and the filtrate was either 

analysed immediately (1) or frozen at -20°C overnight before being analysed (3). 

The remaining unfiltered aliquot was analysed immediately (2) and one aliquot was 

frozen at -20°C before being analysed (4). All EV samples were analysed using 

TRPS with np200, 400 and 1000 pores. 
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Figure 3.2.1: Filtering of EVs. Filtered and non-filtered plasma-derived EVs were analysed 

by TRPS. Freshly isolated EVs were filtered through a 1 µm pore (1) and analysed 

immediately by TRPS. Freshly isolated EVs were left unfiltered and analysed by TRPS (2). 

Filtered EVs were stored at -20°C overnight and analysed by TRPS (3) and finally unfiltered 

EVs were stored at -20°C overnight and analysed by TRPS (4). All samples were analysed 

using np200, np400 and np1000 pores where possible. 

 

3.2.7 Method and length of storage of extracellular vesicles  

Filtered (as above) plasma-derived EVs collected from 4 healthy volunteers were 

aliquoted and stored (Figure 3.2.2). Briefly, 6 different methods of storage and 4 

lengths of time in storage were analysed for their effect on EV size and 

concentration. Fresh samples were analysed immediately following collection using 

TRPS with an np200 pore. Methods of storage tested included fresh EV samples: put 

directly into the fridge; stored at -20°C; snap frozen in liquid nitrogen; slow frozen 

to -80°C in a Mr Frosty™ (Thermo Scientific, UK); mixed with 5% (v/v) glycerol 

(Fisher Scientific, UK) and slow frozen at -80°C in a Mr Frosty™; and mixed with 

0.05% (v/v) Tween 20 (Sigma Aldrich, UK) and slow frozen at -80°C in a Mr 

Frosty™. Aliquots were then stored for 1 day, 1 week, 1 month or 3 months and 

analysed by TRPS using an np200 pore. 
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Figure 3.2.2: Method and length of EV storage. Plasma EVs filtered through a 1 µm filter 

were analysed for the effect of storage on size and concentration using TRPS. Fresh EVs 

were analysed on the day of isolation and were used to compare other samples to. EVs were 

stored by 6 different methods for 1 day, 1 week, 1 month and 3 months. “Snap” refers to 

samples snap frozen in liquid nitrogen and then stored at -80°C. “Glycerol” and “Tween” 

refer to samples mixed with either 5% Glycerol (v/v) or 0.05% Tween 20 (v/v), slow frozen 

in a Mr Frosty and then stored at -80°C. 

 

3.2.8 Statistical analysis 

Data were analysed using GraphPad Prism version 6 (GraphPad software, USA). 

Samples were tested for normality using D‟Agostino and Pearson omnibus normality 

test to determine the need for a parametric or non-parametric statistical test. Data are 

presented as mean ± SD unless otherwise stated. An unpaired t-test or a Kruskal-

Wallis test (with a Dunn‟s multiple comparisons post-hoc test) were used to compare 

means whilst a general linear model was used to assess the difference in mean 

concentration of EVs over time of storage. A p value of <0.05 was considered 

statistically significant.  
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3.3 Results 

3.3 Part I: Comparison of EV methodologies 

Upon beginning this chapter of work and my research in the EV field (2012-2013), 

there was an evident lack of clarity across all EV research. This was recognised by a 

number of companies at the time leading to competition in supplying key 

instrumentation to researchers. However, little was known about the reliability of 

such instrumentation to measure EV size and concentration. Therefore, to learn 

about the practicalities and pitfalls, a comparison was undertaken between NTA 

(widely used at the time) and TRPS (an emerging technique at the time). 

 

3.3.1 Reliability of NTA and TRPS 

Calibration beads were measured using NTA and TRPS over a range of six dilutions. 

Both NTA and TRPS show good linearity between the actual and measured 

concentrations of calibration beads over a range of dilutions (r
2
 = 0.988 and 0.993 

for NTA and TRPS respectively; Figure 3.3.1 A/B). Mode size of beads detected 

was relatively uniform with varying concentrations of beads for both NTA and 

TRPS (Figure 3.3.1 C; dilutions are labelled 1-6 as different concentration ranges 

are covered by NTA and TRPS). NTA showed a slightly higher mode size for all 

dilutions which gradually increased with the concentration whereas TRPS showed 

more deviation from the manufacturer-provided mode (203 nm).  
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Figure 3.3.1: Calibration bead standard curves. Calibration beads were analysed over a range of dilutions using NTA with 100 nm beads (A) and TRPS 

with 200 nm beads and an np200 (B) respectively. The measured concentrations were then plotted against the diluted concentrations and fitted with linear 

regression. The effect of increasing bead concentration on mode size (C); circled points indicate the manufacturer recommended dilution. 
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3.3.2 Limits of detection 

Manufacturer-provided calibration beads of varying sizes were analysed using NTA 

and TRPS to assess detectability across the EV range. NTA was able to detect each 

size of bead as an individual population when a single bead size was analysed (50 

nm beads = 48 ± 6 nm, 100 nm beads = 97 ± 2 nm and 300 nm beads = 285 ±17 nm) 

though the size of 1000 nm beads was underestimated (703 ± 102 nm; Figure 3.3.2 

A). In order to view the beads detected with each nanopore on one graph, TRPS data 

are presented as a percentage of the population by count (Figure 3.3.2 B). TRPS 

detected individual bead sizes across the EV range when using different pores. 

However, the detected concentration and mode size of beads varied between 

nanopores, particularly at the upper and lower limits of each nanopore (Table 3.3.1).  

 

3.3.3 Detection of polydispersity  

EV samples often contain a range of vesicle sizes. Therefore it is important that the 

technique used to measure EVs is able to distinguish between sizes in polydispersed 

samples. Fortunately, at the time of undertaking this experiment, 4 techniques 

commonly used to measure EV samples were available to analyse polydispersed 

mixtures of beads (Figure 3.3.3). DLS detected beads from around 50 – 300 nm, 

however, this was represented by a single peak with a mode size of around 150 nm 

(A). NTA was able to clearly distinguish between 100 and 300 nm beads, however, 

50 nm beads were detected as a small shoulder on the 100 nm bead peak (B). The 

measured size of 300 nm beads was also underestimated in the polydispersed mix 

analysed with NTA. TRPS was able to identify each bead in the mixture as an 

individual population; however the measured mode size for each bead was under- or 

overestimated for CPC100/200 and CPC400 respectively (C). Finally, FC was able 

to distinguish between the 3 bead sizes (200, 500 and 800 nm); however, this was 

based on the fluorescence and side scatter of each bead (D). 
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Figure 3.3.2: Ranges of detectability. The ability of both NTA and TRPS to detect beads 

across the EV range was measured. (A) NTA; Individual bead preparations of 50, 100, 300 

and 1000 nm beads were analysed using NTA. (B) TRPS; CPC100, 200, 400, 500, 800 and 

1000 were analysed using np100, 200, 400 and 800. The expected mode size of each bead 

(as denoted by the manufacturer) is marked with a red cross. 
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Table 3.3.1: Variation between TRPS nanopores. Beads detected by each TRPS nanopore 

varied in both concentration and mode size. Mean concentration and mode size of beads are 

given in particles/mL and nm respectively. Designated calibration beads for each pore are 

highlighted in bold. Stock concentrations were: CPC100; 1.0 x 10
13

 particles/mL; CPC200; 

1.2 x 10
12

 particles/mL; CPC400; 5.5 x 10
11

 particles/mL; CPC500; 3.6 x 10
11

 particles/mL; 

CPC800; 5.0 x 10
10

 particles/mL and CPC1000; 5.5 x 10
10

 particles/mL. 

  

 np100 np200 np400 np800 

CPC100     

Concentration 

Mode size 

1.6 x 10
13 

115  

2.8 x 10
12

 

134 

  

CPC200     

Concentration 

Mode size  

2.5 x 10
12

 

203 

1.1 x 10
12

 

215 

1.4 x 10
12

 

194 

 

CPC400     

Concentration 

Mode size 

1.6 x 10
12

 

376 

1.2 x 10
12

 

350 

5.7 x 10
11

 

353 

3.7 x 10
10

 

360 

CPC500     

Concentration 

Mode size 

 3.7 x 10
11

 

524 

4.3 x 10
11

 

466 

7.9 x 10
10

 

513 

CPC800     

Concentration 

Mode size 

  1.3 x 10
11

 

723 

5.2 x 10
10

 

771 

CPC1000     

Concentration 

Mode size 

   1.6 x 10
10

 

947 
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Figure 3.3.3: Detection of polydispersity. Four techniques widely used in the field to analyse EVs were compared for their ability to separate individual 

populations in a polydispersed mixture of beads. DLS (A) and NTA (B) were tested with 50, 100 and 300 nm beads. TRPS (C) using an np100 pore was 

tested with 100, 200 and 400 nm beads and FC (D) was tested with fluorescent 200, 500 and 800 nm beads. 
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3.3 Part II: Effects of pre-sample processing 

Pre-sample processing of EVs - i.e. the steps taken to isolate EVs from the original 

source for analysis - is an area of great contention in the EV field. Again, a lack of 

standardisation makes comparisons between studies difficult. Therefore, the 

following experiments aimed to tackle some of the issues encountered with sample 

preparation and storage in relation to EV size and concentration. 

 

3.3.4 Choice of vacutainer 

Blood taken for subsequent EV isolation is usually treated with an anticoagulant. 

Here, EV concentration was compared in blood taken using citrate and EDTA 

vacutainers. TRPS analysis showed an increased number of EVs from blood taken 

into EDTA compared to citrate vacutainers (2.3 x 10
9
 ± 1.2 x 10

8
 vs. 7.2 x 10

8
 ± 4.1 

x 10
8
 particles/mL respectively; Figure 3.3.4). 

 

 

Figure 3.3.4: Choice of vacutainer. Citrate and EDTA vacutainers were used to collect 

blood from healthy volunteers. Isolated EVs from each vacutainer were then analysed by 

TRPS for their concentration. **p = 0.003 (n=3). EDTA = ethylenediaminetetraacetic acid.  
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3.3.5 Filtering of extracellular vesicles  

As EVs are classified as being submicron, a 1 µm filter was used to remove any 

potential contaminants from plasma-derived EVs before and after freezing (Figure 

3.3.5). Data from the np1000 showed a large reduction from unfiltered fresh to 

filtered fresh EVs (4.9 x 10
7
 to 1.7 x 10

6
 particles/mL; Figure 3.3.5 A/B). Frozen 

samples could not be detected with the np1000. The np400 also showed filtering 

fresh EVs reduced the concentration (7.6 x 10
8
 vs. 3.8 x 10

8
 particles/mL for fresh 

unfiltered and freshly filtered respectively; Figure 3.3.5 C/E). Filtering and then 

freezing EVs caused a slight increase in concentration (4.5 x 10
8
 particles/mL), but 

when EVs were frozen and then filtered, there was a large decrease in concentration 

(1.3 x 10
8
 particles/mL; Figure 3.3.5 D/E respectively). Finally, the np200 showed a 

large decrease in EVs that were filtered then frozen but a large increase in EVs that 

were frozen then filtered compared to fresh filtered EVs (Figure 3.3.5 F/G). 

Unfiltered fresh EVs could not be detected by the np200 due to frequent pore 

blocking. 
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Figure 3.3.5: The effects of filtering and freezing EVs. EVs isolated from plasma were 

analysed using TRPS after either being filtered through a 1 µm filter (fresh filtered), or left 

unfiltered. Both filtered and unfiltered EVs were then frozen at -20°C. Filtered EVs were 

then thawed and re-analysed using TRPS (filtered then (>) frozen). Unfiltered EVs were 

thawed and filtered through a 1 µm filter and analysed using TRPS as before (frozen then 

(>) filtered). Samples were analysed using np1000 (A/B), np400 (C-E) and np200 (F/G) 

nanopores (n=1). Concentration distributions generated with the Izon software are shown for 

the np1000 for unfiltered fresh and filtered fresh (A); for the np400 for unfiltered fresh and 

filtered fresh (C) and filtered then frozen and frozen then filtered (D); and the np200 for 

fresh filtered, filtered then frozen and frozen then filtered (F). Mean concentrations were 

then plotted in GraphPad Prism for np1000 (B), np400 (E) and np200 (G). 
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3.3.6 Method and length of extracellular vesicle storage  

Effective storage of EVs is vital to overcome the impracticalities of analysing 

samples on the same day as isolation. Therefore, it is important to know to what 

extent different methods and length of storage influence EV size and concentration. 

Five of the six methods of storage tested appeared to increase EV concentration 

compared to fresh EVs (analysed on the day of isolation) though this was not 

significant (Figure 3.3.6 A). Only EVs kept in the fridge seemed to retain the closest 

concentration to that of fresh EVs. Again, excluding EVs kept in the fridge, the 

method of freezing reduced the mode size of EVs, though this was not significant 

(Figure 3.3.6 B). Interestingly, the length of time for which EVs were stored caused 

an increase in EV concentration (p = 0.002, Figure 3.3.6 C). Past 1 week of storage, 

regardless of the initial method used to store EVs, measured concentration of EVs 

was increased, particularly by 3 months of storage compared with fresh samples 

(p<0.05). The mode size of EVs also decreased gradually with time in storage, 

however, this was not significant (Figure 3.3.6 D). Subsequent analysis using a 

general linear model indicated that length of storage was a significant factor in 

increasing EV concentration (p = 0.009).  
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Figure 3.3.6: The effect of storage on EV concentration and size. Plasma-derived EVs 

were analysed on the day of collection (fresh) by TRPS using an np200 pore. EVs were then 

aliquoted and stored by 6 different methods for 4 lengths of time. At each time point EVs 

were thawed and analysed as with fresh samples. Methods of freezing were then compared 

to EVs analysed fresh in terms of concentration (A) and mode size (B). The effect of storage 

time on EV concentration (C) and mode size (D) was also compared to fresh EVs. *p<0.05, 

Sample n numbers are provided; the 3 month time point has a lower n number due to 

insufficient EV sample. 
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3.4 Discussion 

3.4.1 Key findings 

Methodological comparisons: 

1. NTA and TRPS both show good linearity over a range of bead 

concentrations. 

2. TRPS accurately measures beads over a wider range than NTA, however this 

requires the use of multiple nanopores. 

3. Measured concentration between TRPS nanopores differs greatly, making it 

difficult to compare actual concentrations between nanopores. 

4. Techniques used to measure EVs differ vastly in their ability to detect 

individual populations in polydispersed samples. 

Pre-analytical processing: 

5. Blood collected in EDTA vacutainers yields a greater concentration of EVs 

than blood collected in citrate vacutainers.  

6. Filtering EVs (before or after freezing) reduces overall EV concentration. 

7. Length of storage, regardless of method, increases EV concentration. 

 

3.4.2 Main discussion 

One of the biggest challenges facing the EV field is the attainment of standardised 

methods for the isolation, storage and measurement of EV samples. Evidently, this is 

complicated by the heterogeneity of EV sources, user experience and available 

instrumentation. Complete clarity of methods used and fulfilment of ISEV “minimal 

requirements” (16) are currently the best available options for regulation of 

published EV data. Data presented in this chapter are from experiments conducted at 

the beginning of my PhD that helped me to learn about the methodological 

limitations faced in the field but also helped to make an informed decision on how to 

approach analysis of EVs in cell-based and clinical studies. 
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The measurement of EV size and concentration is often the first and most important 

step in EV analysis. Sizing of EVs confirms isolation of a submicron EV population 

or of singular populations such as exosomes. Determining EV concentration is 

important in identifying differences between groups, or if a set numbers of EVs is 

required in further experiments. Therefore the initial technique used to determine EV 

size and concentration should be reliable and relatively fast (if many samples need to 

be analysed or further experiments need to be undertaken). Despite there being a 

number of techniques available for measurement of EV size and concentration, there 

is no gold standard and each technique has accepted advantages and limitations. 

Here TRPS, a new technique in the EV field at the time, was assessed to compare the 

detection over a range of concentrations and sizes of calibration beads with NTA. 

Both NTA and TRPS showed good linearity over a range of concentrations of 

calibration beads with little deviation from the expected mode size. This is useful 

when dealing with biological samples which can show great inter-sample variability 

in size and concentration. Dilutions were chosen for each standard curve based 

around the recommended dilutions of the manufacturer and have since been 

presented by others for NTA (161,405,410) and for TRPS (411).  

It is essential for the measurement techniques to be able to accurately detect EVs 

over the whole EV range. Therefore the range of detection of both NTA and TRPS 

was measured using calibration beads of varying sizes. NTA accurately identified 

50, 100, and 300 nm beads; however the mode size of 1000 nm beads was 

underestimated. Others have measured beads at the upper end of the EV range (≥500 

nm) using NTA with greater accuracy (405,407,410). However, in these cases pre- 

and post-analytical settings were altered for each bead whereas in this chapter, they 

were kept the same. This means that here, although the settings may not be 

completely optimal for each bead size, the consistency of analysis was maintained 

between samples and the software was not then biased towards detecting a particular 

size. TRPS was able to detect six different bead sizes as distinct populations from 

100 – 1000 nm, though to achieve this, multiple nanopores were required. This was 

time consuming and often frustrating due to frequent pore blocking. Although 

nanopores are tuneable, they are limited to a particular size range and are typically 

best suited (as demonstrated here) to measure their namesake diameter, for example 

the np200 and CPC200 beads. Each pore was able to detect 3 or more different sizes 
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of beads; however the accuracy in the reported mode size was lost at either extreme 

of the pore. The reported concentration of the same beads seemed to differ greatly 

between pores, for example, the concentration of CPC400 beads differed by almost 

10 fold between np100 and np800 pore measurements. Generally, smaller nanopores 

reported higher concentrations of beads. This has been shown previously, though not 

directly alluded to (407) and little explanation has been offered (411).The most 

likely reason is that smaller nanopores are superior for the detection of small 

particles (which are able to have a higher concentration per unit volume than larger 

particles). Therefore larger pores report lower overall concentrations as smaller 

beads are below the detection limit or are indistinguishable from the noise of the 

pore. TRPS concentration is determined by comparing the particle rate and pressure 

of the sample to that of the calibration bead (164,411,412) used for the pore with a 

known stock concentration and mode size (Table 2.3). Here, the pores tended to 

overestimate the concentration of beads considered large for that pore and 

underestimate the concentration of beads considered small for that pore. For 

example, the concentration of CPC400 beads was overestimated 3-fold by the np100 

and underestimated 15-fold by the np800. Therefore the increased concentration of 

beads with smaller pores and decreased concentrations with larger pores cannot 

entirely be explained by the difference in sensitivity between pores. Perhaps because 

the stock concentration of beads used to calibrate smaller nanopores is higher (e.g. 1 

x 10
13

 particles/mL for CPC100 for np100), the pore is then predisposed to detect a 

higher overall concentration, particularly at the upper extremity of the pore. This 

could be tested by calibrating an np100 pore with CPC400 beads and seeing whether 

the concentrations of CPC100/200 beads are then underestimated.  

 

EV samples are almost always heterogeneous regardless of the biological source. 

When characterising a population of EVs it is important for the technique to be able 

to detect EVs across a range of diameters. Therefore, 4 techniques commonly used 

for EV detection were tested for their ability to separate beads of different sizes in a 

polydispersed mix. As outlined in Chapter 1.1.7.3, DLS calculates particle size and 

concentration from the scattered light of particles in suspension. The Brownian 

motion of particles causes a Doppler Shift (fluctuation in scattered light). These 

fluctuations in scattered light are measured by a photon detector and the data are 
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used in the Stokes-Einstein equation (Figure 2.3) to derive particle size and 

concentration. DLS has been shown to be highly accurate for sizing monodispersed 

suspensions, particularly those < 200 nm (413), though this accuracy is lost on 

heterogeneous samples. The scattered light is collected simultaneously (161) 

meaning the resulting size of particles is biased by a small number of large particles 

scattering more light (414). Here, DLS (using a mix of 50, 100 and 300 nm beads) 

showed a single peak from 50-300 nm with no distinction of bead populations, 

indicating the result was biased by the scattering of 300 nm beads. Others have 

shown that DLS gives more detailed size distributions and also detects differences in 

EV samples when the angles of detection for light scattering are increased and 

improved calculation algorithms are used (149,160). DLS is also simple to operate 

and requires minimal amounts of sample (415). However, until detection is 

improved, DLS is impractical and inaccurate for the measurement of polydispersed 

samples. 

NTA is technically similar to DLS though particles are visualised and video-tracked 

over time allowing measurement of individual particles (161). Here, NTA was able 

to distinguish 100 and 300 nm beads (as demonstrated by others (161)); however, 50 

nm beads were measured as a shoulder of the 100 nm peak. Though NTA gives 

superior detection compared to DLS, large particles can still influence measurements 

in polydispersed samples. With NTA, larger particles tend to scatter more light 

creating a “halo” effect around the particles (161) (Figure 3.4.1) which is sometimes 

measured as smaller particles leading to a decreased overall mode size. Alterations in 

pre- and post-analytical settings can also give rise to differences in size and 

concentration (411). However, despite the potential subjectivity, with a prior 

appreciation of the limitations and a small amount of training, NTA is a simple and 

rapid technique to measure EV size and concentration. A recent recommendation for 

measuring polydispersed EV samples is to use at least two dilutions of the sample 

and optimise pre- and post-analytical settings for each sample (149,161,162,407). 
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Figure 3.4.1: Measuring large particles with NTA. Still of a NTA video (left) measuring 

polydispersed beads. Larger beads scatter more light creating rings of light around the 

particle which are counted as smaller particles (right) causing an underestimation of mode 

size for larger particles.  

 

TRPS is a non-optical technique for measuring EV size and concentration that 

analyses samples on a particle-by-particle basis (416). Using an np100 pore, a mix of 

100, 200 and 400 nm beads were clearly visualised as individual populations. The 

mode size of each bead showed a slight deviation from the expected size though each 

was still within 15 nm of the actual size. Though TRPS (as illustrated here) is 

potentially more accurate in detecting individual sizes in polydispersed samples, the 

adoption of the qNano for measuring EV samples has been less successful than that 

for NTA. This may perhaps boil down to the usability of TRPS compared with NTA. 

Possibly the greatest limitation of TRPS is the frequent pore blocking due to a 

polydispersity range greater than that of the nanopore resulting in inconsistent data 

and time-consuming and frustrating measurements (411,412). Consequently TPRS 

requires at least one nanopore to measure an EV sample (containing vesicles ranging 

from 50 – 1000 nm) which has been referred to by others as “high and low 

sensitivity measurement” (407,411). Though in principle this is similar to measuring 

samples twice with NTA with different dilutions and settings, in reality the use of 

two pores requires more time and effort in changing and recalibrating new pores. 

Additionally, as discussed above the variation in measured concentration between 

pores may not entirely be due to differences in sensitivity. Therefore merging of data 

between pores (at the point of crossover of concentration) may lead to an 

overestimation of concentration. Finally, I and others have observed variation 

between different batches of the same nanopore, and also with the longevity of the 



Page | 131  

 

nanopore (411,417). This may be due to differences in the nanopore geometry 

(411,417,418) which result from inconsistencies in pore manufacturing. 

FC is one of the most widely-used applications to analyse EV populations (419), 

possibly because it is one of the most accessible of the four techniques and it has the 

potential to assess multiple functional markers. A flow cytometer measures the light 

scattered by samples as they pass through a laser beam. The use of different lasers 

allows for excitation of a variety of fluorophores, enabling measurement of surface 

markers as well as scatter profiles. Here, beads could be identified as separate 

populations when based on fluorescence but not when plotted by scatter. The 

forward and side scatter profiles give important information about the refractive 

index of particles. Unfortunately, the low refractive index of EVs (420) means that 

most flow cytometers are incapable of detecting EVs < 300 nm (149,155,421,422) 

which is the size range in which the vast majority of EVs fall (120,149). 

Furthermore, the refractive index of polystyrene beads (such as the ones used here) is 

much higher than that of EVs (423,424) causing incorrect assumptions of particle 

sizing and inaccurate gating strategies to be used for EVs (420). The current opinion 

is that FC is a useful tool to analyse surface markers (155) rather than size and 

concentration of EVs if it is employed correctly. Recent developments such as high 

resolution flow cytometers to detect EVs ~100 nm (155,425) and binding of EVs to 

micrometre beads (117) are helping to overcome the shortfalls of EV detection with 

FC.  

 

Every step taken from sample collection to the isolation of EVs introduces potential 

variation in final EV concentration. This is due to a lack of standardisation for pre-

analytical processing of EVs and results in great variations in reported EV 

concentrations. Therefore, the following work sought to identify and characterise 

sources where variation may be introduced in order to optimise our own protocols. 

When analysing blood-derived EVs, the anticoagulant used to collect the blood has 

been shown to affect EV concentration. Flow cytometric studies have found that 

chelating anticoagulants produce fewer EVs than protease inhibitor anticoagulants 

(59). Interestingly, administering heparin to thrombophilic women throughout 

pregnancy reduced in vivo EV concentration and reduced pregnancy loss (frequently 
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associated with thrombophilia) (426). Citrate has previously been shown to minimise 

changes in platelet morphology compared to EDTA (427), despite EDTA being a 

stronger chelator of Ca
2+

 (428). However, no study has compared the effects of 

anticoagulants on EV concentration using a more accurate technique than FC. Here, 

TRPS data showed that plasma-derived EVs from blood collected into EDTA 

vacutainers contained significantly higher concentrations of EVs than plasma EVs 

from citrated blood. Others have attributed the effects of different anticoagulants on 

EV counts to ex vivo microvesiculation from platelets (60,429) though György et al., 

observed a reduction in non-platelet as well as platelet-derived EVs in ACD 

vacutainers (429). This indicates that varying quiescence of platelets with differing 

anticoagulants does not entirely account for differences in EV counts. Jayachandran 

et al., concluded that differences in EV counts were due to a loss of EVs from 

calcium chelation rather than an ex vivo generation with protease inhibitors (59) no 

explanation is given as to how calcium chelation reduces EV production ex vivo. 

Furthermore, EV counts and origin were assessed using FC meaning the majority of 

EVs may not have been detected. In order for the effects of different anticoagulants 

on EV concentration and origin to be assessed completely, a direct comparison of the 

most commonly used anticoagulants (EDTA, citrate, ACD and heparin) needs to be 

undertaken using an accurate technique to enumerate and phenotype EVs. 

Differential ultracentrifugation is one of the most popular ways to isolate EVs from 

complex fluids. However, as well as requiring specialist equipment, pellets may also 

be contaminated with soluble components (125), protein aggregates and lipoproteins 

(118) which may contribute to the final EV concentration. Microfiltration has 

successfully been employed to enhance the isolation of exosomes from cell culture 

models (125,430). However, this has not been applied to the EV population as a 

whole. Here, the effect of passing plasma-derived EVs isolated with 

ultracentrifugation through a 1 µm filter was analysed across the EV range using 

TRPS with np1000, np400 and np200 nanopores. Initial analysis with the np1000 

confirmed removal of the majority of material above 1µm but also a great deal < 1 

µm with over a 96% reduction in EV concentration post-filtration. The same trend 

was observed when these samples were analysed with the np400 pore, though to a 

lesser extent with a 50% reduction in concentration. This difference in reduction may 

be because the np400 cannot measure larger particles present in the unfiltered fresh 
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sample but also because many smaller particles present in the filtered fresh sample 

are below the detection limit of the np1000. This is also illustrated by the np200 

which could not record the unfiltered sample due to frequent pore blocking from 

large particles. Unfortunately, as TRPS used in this context could only determine the 

size and concentration of samples, the identity of the material caught in the filter is 

unknown. Therefore though a reduction was seen using a 1 µm filter, we cannot be 

sure EVs were not also removed. The point at which EV samples were filtered was 

also analysed by filtering EV samples both before and after freezing (-20°C). Frozen 

EV samples could not be detected using the np1000, however the np400 showed that 

filtering before freezing had less of an effect on EV concentration than filtering after 

freezing, which decreased EV concentration. Interestingly, when the same samples 

were analysed with the np200, samples that were filtered before freezing showed a 

reduced concentration compared to freshly filtered EVs whilst EVs frozen and then 

filtered showed a large increase in concentration. One possible reason for this is that 

freeze-thawing of samples may cause damage and degradation of EVs. Therefore 

EVs filtered after freezing may appear to have a reduced concentration with an 

np400 but increased concentration with an np200 because larger particles present at 

the time of freezing disintegrated into smaller particles measured by the np200 but 

not the np400. Though filtering may well reduce the presence of large particulate 

contaminants, using TRPS alone we cannot be sure that EVs are not also removed by 

filtration. Future studies could assess this by monitoring changes in EV markers such 

as CD9 with filtration and visually check sample preparations with TEM. 

As EVs have the potential to be biomarkers for a number of diseases, it may become 

important for EV samples to be analysed in large scale studies where it would be 

impractical to analyse samples fresh. Previous studies have analysed the effects of 

storage on EV counts using FC with conflicting results (60,107,108,146,409,431). 

Therefore EV samples were stored using a variety of different methods and varying 

lengths of time to assess the effects on EV size and concentration. The method of 

storage used was not shown to have a significant effect on EV concentration or size, 

though all methods (apart from storing EVs in the fridge) seemed to increase EV 

concentration and decrease EV size compared with fresh EVs. Biological variation 

was high among volunteers so greater numbers may be required to further analyse 

the method of storage. However, others have also shown that the method of 
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cryopreservation had no effect on EV counts (432) or morphology (148). EV 

concentration was increased with the length of storage, independently of the method 

of storage used. After 3 months of storage, EVs were significantly increased 

compared to their original fresh samples. These effects may have been apparent after 

1 month of storage though this did not reach significance. There was also a decline in 

mode size, however this was not significant. Freezing by any method may cause an 

increase in EV concentration which becomes a significant problem the longer the 

sample is stored for. This increase may arise from fragmentation of EVs by the 

freeze-thaw process which is then measured as an overall rise in concentration. 

Others observing a rise in EV concentration with freezing have also attributed this to 

vesiculation from larger EVs and contaminants (146,409). Indeed, this may explain 

why some studies using FC observed a decrease in EV concentration with freezing 

(60,107,409) as larger EVs (>300 nm) normally detected by flow fragment and pass 

below the detection limit of the machine. Despite the reduced sensitivity of FC for 

particles <300 nm, reduced forward and side scatter profiles have been observed 

following freezing which was attributed to an increase in smaller EVs (409,431). 

Furthermore, flow cytometric studies (despite conflicting results of overall EV 

concentration), show increases in annexin V positivity and specific surface markers 

with freezing (59,60,107,409) with one study showing platelet-derived EVs to be 

more procoagulant following freezing (145). Effects on other EV components with 

freezing are not well characterised, though mRNA was reduced in EVs following 

freezing (148). Until the full effects of storage method and length are characterised 

for all aspects of EVs, measurements of EVs should be carried out fresh wherever 

possible or stored in the fridge and analysed within 1 week. It is important to keep 

methods the same between samples to allow for accurate comparison.  

 

3.4.3 Limitations 

Comparisons of DLS and FC with NTA and TRPS were only undertaken once for 

polydispersity measurements. Though our group have access to NTA and TRPS, we 

did not at the time have liberal access to DLS or FC. Therefore we were not able to 

make a complete methodological comparison of all 4 techniques here and relied on 

published data for comparisons of DLS and FC for reliability and limits of detection. 
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The effects of filtering EVs were only measured once using TRPS with 3 different 

pores. Therefore without repeating the study, the interpretations presented here are 

only speculations and require confirmation with repeated numbers. Finally, 

concentration measurements using TRPS were made using a one-point calibration 

(as advised by IZON at the time) where calibration beads were analysed once at one 

pressure (which was then maintained for samples). IZON have since updated their 

recommendations for concentration measurements to include a 3-point calibration 

where the calibration bead and subsequent samples are analysed at 3 different 

pressures (Figure 3.4.2). Particle concentration is now defined as being 

“proportional to the gradient of the fitted line” (IZON training module, version 3.2) 

as opposed to “calibration allows the particle rate to be used to determine the particle 

concentration of the sample” (IZON training module, version 2.0). This may help to 

account for differences observed in concentration of beads between pores if the 

incorrect gradient was applied.  

Figure 3.4.2: Revision of TRPS concentration analysis. Screenshots from the latest Izon 

training manual that explain how calibration beads are used to calculate sample 

concentration. The graph shows the importance of the relationship between applied pressure 

and particle rate between calibration beads and samples. The manual also indicates the 

negatives of using single-point calibration. 
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3.4.4 Conclusions 

The EV field as a whole is undergoing continuous development with a wide array of 

measurement, isolation and storage protocols being used. It may be impossible to 

completely standardise procedures due to the great variety of biological sources from 

which EVs can be derived. Here, TRPS and NTA were shown to be reliable 

techniques for measuring size and concentration of EV samples. However, 

knowledge of the theory of operation and training is required for each technique to 

avoid misuse and false reporting of EV size and concentration. FC is not suitable for 

determining EV size and concentration; however it is currently the simplest method 

for phenotyping surface antigens of EVs. Pre-analytical variables such as the choice 

of vacutainer, filtering and storage all affected EV concentration. Until some level of 

standardisation is introduced, it is imperative for researchers to understand the 

limitations and to report results of their chosen methodologies with complete clarity.  
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4. Results II: 

Characterisation of adipocyte-derived EVs 
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4. Perspective 

Having learnt about the variety of potential pitfalls with EV analysis from work 

presented in Chapter 3, I was able to implement this knowledge in work conducted 

in Chapter 4. For example, when EVs could not be analysed on the same day as 

isolation, they were slow frozen to -80°C in a Mr Frosty and stored for a maximum 

of 1 week to minimise the damaging effects of freezing. Also, NTA was chosen to 

size and quantitate EVs primarily because of its ease of use compared to TRPS. 

Multiple samples can quickly and easily be analysed in replicates with NTA, often 

meaning analysis can be performed on the same day as isolation of EVs. 

 

  
Parts of this chapter have been published in: 

Connolly KD, Guschina IA, Yeung V et al. Characterisation of adipocyte-derived 

extracellular vesicles pre- and post-adipogenesis. Journal of Extracellular Vesicles. 

2015 Nov 24; 4: 29159. 
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4.1 Introduction 

As discussed in Chapter 1, many different cell types secrete EVs into their 

extracellular space. The release of EVs from adipocytes is an emerging area in the 

EV field. The traditional view of AT as an inert storage organ has changed 

dramatically over recent years with the discovery of adipokines, revealing an 

endocrine role for adipocytes (433,434). Therefore, adipocyte EVs may provide a 

new dimension to adipocytes as endocrine communicators. 

The unipotent preadipocyte cell line 3T3-L1 is widely used to study adipocyte 

biology both at the pre- and mature adipocyte stage (294). The differentiation 

process of 3T3-L1 cells undergoes well defined stages of confluency and mitosis of 

preadipocytes followed by a growth arrest and commitment to a mature adipocyte 

phenotype (435). During this period, activation of various transcription factors 

trigger a variety of signalling pathways, inducing multiple changes in mRNA and 

protein expression (274). This tightly orchestrated process controls the transition of a 

fibroblast-like preadipocyte to a fully mature, rounded adipocyte capable of 

accumulating lipid (Figure 1.1.2). Previous research has focused on the intracellular 

role of transcription factors in adipocyte differentiation though there is evidence for 

external mediators in assisting the differentiation process (301). Adipocytes, 

including 3T3-L1 cells, have been shown to produce EVs in vitro 

(48,66,306,307,383,392,393). 3T3-L1 EVs contain both adipokines (66,383) and 

factors that promote angiogenesis in vivo (393). EVs derived from rat primary 

adipocytes act in an autocrine fashion to promote lipid esterification in neighbouring 

adipocytes (387). Human AT explants also produce EVs that modulate monocyte 

differentiation and alter insulin signalling in adipocytes (306) and hepatocytes (307). 

However, these studies have focused on potential functional aspects of adipocyte-

derived EVs without having first established the baseline characteristics of these EVs 

and how these characteristics may dictate EV function. Furthermore, these studies 

did not quantify adipocyte EVs by any means, or used sub-optimal techniques such 

as FC.  

Despite the growing evidence for roles of adipocyte EVs in autocrine and endocrine 

functions, little is known about the physiological characteristics of adipocyte EVs 

and whether these change (as the cell does) following adipogenesis. 
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4.1.1 Aims 

The aims of this chapter were to characterise adipocyte-derived EVs in terms of: 

 Morphology 

 Size and concentration 

 Annexin V positivity 

 Fatty acid concentration and composition 

 Phospholipid composition (and fatty acid composition) 

 Protein content 

This chapter aims to establish these parameters of the 3T3-L1 EVs, comparing them 

to their cell of origin and assessing the effect of adipogenesis on EV characteristics.  

 

4.1.2 Hypotheses 

EV release and character differs depending on the stage of differentiation. EVs share 

some characteristics of their cell of origin but may possess their own unique fatty 

acids and proteins.  

  



Page | 141  

 

4.2 Methods 

4.2.1 Cell culture 

3T3-L1 cells were cultured as outlined in Chapter 2.2. Post-confluence, serum-free 

CM was added to cells for 24 hours for subsequent EV isolation (day 0). Cells to be 

analysed at day 15 were differentiated (as outlined in Figure 2.1) and were placed in 

serum-free MM for 24 hours for EV isolation at day 15. Oil Red O staining was used 

to confirm the stage of adipogenesis of cells (methods detailed in Chapter 2.2.3). 

 

4.2.2 Western blotting 

Cell and EV lysates were prepared for Western blotting as described in Chapter 

2.10. Ten micrograms of protein was loaded for each sample, separated on running 

gels and probed for antigens of interest (Table 4.2.1). Loading controls were not 

used for cell lysates; however, FABP4 and PREF-1 blots of EV samples were 

washed in TBS-T overnight, blocked and re-probed with CD63. Densitometry was 

conducted as described in Chapter 2.10.6. 

Protein Polyacrylamide 

running gel 

Antibody dilution Typical exposure 

Adiponectin (CST 

#2789) 

12% 1:500 (5% 

BSA/TBS-T) 

15 minutes 

CD63 n/a 1:200 (5% 

milk/TBS-T) 

1 minute 

FABP4 15% 1:100 (5% 

BSA/TBS-T) 

15 seconds 

PREF-1 10% 1:100 (5% 

BSA/TBS-T) 

1 minute 

Table 4.2.1: Western blotting. Details of the proteins analysed by Western blotting and the 

acrylamide gels used to separate them. CD63 was used a control for EV proteins so an 

acrylamide percentage is not provided. BSA = bovine serum albumin; CD = cluster of 

differentiation; CST = Cell Signaling Technologies; FABP4 = fatty acid binding protein-4; 

PREF-1 = preadipocyte factor-1; TBS-T = tris-buffered saline – tween 20 (1% v/v).  
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4.2.3 Extracellular vesicle isolation  

After 24 hours in serum-free media, conditioned supernatants were immediately 

centrifuged and stored as described in Chapter 2.3.1 and 2.3.3 respectively. 

 

4.2.4 Scanning electron microscopy 

EM was performed with Dr Christopher Von Ruhland (Central Biotechnology 

Services, Cardiff University). Scanning EM (SEM) was used to visualise cells at day 

0 and day 15. Cells were cultured in 35 mm glass-bottomed dishes (Cellvis, USA). 

At day 0 and day 15, cells were washed in PBS and fixed in 1% gluteraldehyde (v/v 

in PBS) at room temperature for 1 hour. Fixed cells were kept in PBS at 4ºC until 

processing for SEM. Samples were then dehydrated through graded propan-1-ol (50, 

70, 90% and 2x100%) for 10 minutes at each grade followed by three exchanges in 

hexamethyldisilazane (5 minutes per exchange). Samples were air dried and splutter 

coated with gold and viewed at 5 kV in a JOEL 840 SEM (JEOL, Japan). Images 

were acquired with analysis software (Munster, Germany) and processed with 

Photoshop CS2 (Adobe, USA). 

 

4.2.5 Transmission electron microscopy 

TEM was used to visualise EVs at day 0 and day 15. EVs were isolated from cells 

grown in T175 cm
2
 flasks to ensure enough EV material for the TEM process and 

stored at 4ºC in PBS until analysis. EVs (50 µL droplets) were adsorbed onto 

formvar/carbon-coated grids for 20 minutes before fixation with 1% gluteraldehyde 

(v/v) for 10 minutes at room temperature. Grids were then washed (3 x 1 minute in 

PBS and 6 x 1 minute in water) before negative staining with 2% (w/v) uranyl 

acetate for 10 minutes. Surplus stain was shaken off and grids were allowed to air 

dry before being examined in a Philips CM12 TEM (FEI Ltd, UK) at 80 kV. Images 

were acquired with a Megaview III camera and processed using Photoshop CS2. 
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4.2.6 Optiprep™ separation of EVs 

Optiprep™ (60% w/v solution of Iodixanol in water, Sigma) was used to prepare 10 

fractions in 5% increments from 5-50% in PBS (v/v). Fractions (1 mL) were then 

carefully layered in ultracentrifuge tubes in a discontinuous gradient and EV samples 

from day 0 or day 15 (100 µL) were added to the top-most fraction (Figure 4.2.1). 

Centrifugation was then performed at 100,000 x g for 3 hours at 4ºC and 1 mL 

fractions were carefully removed and analysed using NTA (Chapter 2.4.2). 

 

Figure 4.2.1: Optiprep™ separation of EVs. Ten fractions (1 mL) of prepared Optiprep™ 

solution were layered into ultracentrifuge tubes as shown above. EV samples (100 µL) from 

day 0 or day 15 were gently floated on the top fraction before ultracentrifugation. 

 

4.2.7 Extracellular vesicle size and concentration analysis  

EV size, mean concentration and distributions were determined using NTA as 

detailed in Chapter 2.4.2. Cells to yield EVs were cultured using T175 cm
2 

flasks 

(Cellstar®, Greiner Bio-One, Germany).  
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4.2.8 Annexin V positivity  

Annexin V positivity of cells and their corresponding EVs at both day 0 and day 15 

was measured by FC (Chapter 2.6). Results are displayed as the percentage of 

annexin V positive events from the total population of cells or EVs. 

 

4.2.9 Fatty acid analysis 

GC-FID was used to determine fatty acid concentration and composition of cells and 

EVs at day 0 and day 15 (Chapter 2.7.1/2). Cells and EVs were isolated from T175 

cm
2
 flasks. Individual fatty acid data are presented as the change in composition 

from day 0 to day 15.  

 

4.2.10 Phospholipid analysis  

Proportions and fatty acid compositions of phospholipid groups of cells and EVs at 

day 0 and day 15 were determined by 2D-TLC followed by GC-FID (Chapter 2.7.3).  

 

4.2.11 Extracellular vesicle immunophenotyping 

EVs at day 0 and day 15 were probed for exosomal and adipocyte markers using an 

immunophenotyping assay described in Chapter 2.9. Details of EV (lightly shaded) 

and adipocyte (darker shaded) primary antibodies used are provided in Table 4.2.2. 

EV markers were chosen based on the ISEV minimal requirements for an EV 

population (Table 1.1.2) and adipocyte markers were selected to cover proteins 

expressed during different stages of adipogenesis (Figure 1.2.2). 
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Antibody Dilution 

Alix 1:450 

CD9 1:200 

CD63 1:200 

TSG101 1:200 

PREF-1 1:50 

PPARγ 1:49 

Adiponectin (CST #2789) 1:10 

FABP4 1:25 

Table 4.2.2 Antibodies used for EV immunophenotyping. Details of primary antibodies 

used for EV immunophenotyping experiments. One μg/mL of each antibody was added to 

each well, accounting for the differences in dilution. CD = cluster of differentiation; CST = 

Cell Signaling Technologies; FABP4 = fatty acid binding protein-4; PPARγ = peroxisome 

proliferator-activated receptor γ; PREF-1 = preadipocyte factor-1; TSG101 = tumour 

susceptibility gene -101. 

 

4.2.12 Statistical analysis  

Data were analysed using GraphPad Prism (version 6.0). Normality was tested using 

D‟Agostino and Pearson omnibus normality test before subjection to statistical 

analysis. An unpaired student‟s t-test or a one- or two-way ANOVA were used to 

analyse the differences between means. Data are presented as mean ± SD and p 

values <0.05 were considered statistically significant.  
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4.3 Results 

4.3.1 Confirmation of adipogenesis  

Oil red O staining was used for semi-quantitative analysis of lipid accumulation in 

cells at day 0 and day 15 (Figure 4.3.1). Lipid accumulation was greatly increased 

with differentiation, as illustrated by microscopy (Figure 4.3.1 A/B) and by 

absorbance (Figure 4.3.1 C). 

 

Figure 4.3.1 Confirmation of adipogenesis. 3T3-L1 cells at day 0 and day 15 were stained 

with oil red O to confirm the stage of adipogenesis. Degree of staining was analysed visually 

by microscopy: (A) day 0 cells and (B) day 15 cells; and by measuring the absorbance at 492 

nm (C). ****p<0.0001, (n=4).  

 

Adipogenesis was further confirmed by Western blot analysis of cell lysates from 

both timepoints (Figure 4.3.2). PREF-1 was significantly higher in day 0 cell lysates 

compared with day 15 (day 0: 57,801 ± 6,743; day 15: 572 ± 784 raw densitometry 

units, p = 0.0054; Figure 4.3.2 A). Both adiponectin and FABP4 were higher in day 

15 cell lysates compared to day 0 (adiponectin: day 0; 729 ± 824, day 15; 14,371 ± 
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2,849 raw densitometry units, p = 0.0076, Figure 4.3.2 B; FABP4: day 0; 1,547 ± 

2,629, day 15; 88,112 ± 6,688 raw densitometry units, p = 0.0014, Figure 4.3.2 C). 

 

 

Figure 4.3.2: Western blot analysis of cell lysates. Western blots of day 0 and day 15 cell 

lysates were probed for the preadipocyte marker, PREF-1 (A), and mature adipocyte 

markers adiponectin (B) and FABP4 (C). Raw differences in densitometry are shown for 

each protein. **p<0.01, (n=3). Western blots were performed without loading controls; 

therefore conclusions should not be drawn between differences in band density between 

markers. 
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4.3.2 Electron microscopy 

EM was used to visualise 3T3-L1 cells and EVs at both time points. SEM images 

show cells at day 0 are connected by long projecting networks that connect multiple 

cells (Figure 4.3.3 A). Preadipocytes also seem to be quite flat with little evidence of 

lipid accumulation. Cells at day 15 however, have a rounder morphology and are 

much larger in diameter (Figure 4.3.3 B). Mature adipocytes appear more 

individualised and spherical with large vacuole-like structures. 

TEM images show that EVs at both time points are polydispersed in nature and 

display a classic “cup-like” morphology (Figure 4.3.3 C/D). 

 

Figure 4.3.3: 3T3-L1 cells and EVs viewed by EM at day 0 and day 15. Cells pre- (A - 

day 0) and post-adipogenesis (B - day 15) were visualised using SEM. Isolated 3T3-L1 EVs 

at day 0 (C) and day 15 (D) indicated by red arrows were imaged using TEM. Note the 

differences in scale bars between preadipocytes and mature adipocytes and between cells 

and EVs. 
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4.3.3 Optiprep™ separation of extracellular vesicles  

Optiprep™ was used to examine any differences in buoyancy of EV isolates from 

day 0 and day 15. EVs from both day 0 and day 15 have a range of buoyant 

densities, however a greater proportion of EVs from day 15 were present in the 

lower density fractions compared to EVs from day 0 (Figure 4.3.4). 

 

Figure 4.3.4: Optiprep™ separation of EVs. EVs from both day 0 and day 15 were added 

to a discontinuous gradient of Optiprep™ solution. Each fraction was then analysed using 

NTA. Data are expressed as the percentage of the total EV sample present in each fraction at 

each time point (n=1). 
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4.3.4 Extracellular vesicle size and concentration  

The number of viable cells was measured using trypan blue exclusion and showed an 

increase of ~3 fold from day 0 to day 15 (1.7 x 10
6
 ± 5.1 x 10

5
 to 5.2 x 10

6
 ± 8.4 x 

10
5
cells/mL, p<0.0001, Figure 4.3.5 A). NTA was used for size and concentration 

analysis of EVs. EV production was higher per cell at day 0 compared with day 15 

(992.7 ± 226.2 to 276.5 ± 104.8 EVs/viable cell, p<0.0001, Figure 4.3.5 B). Mode 

size of EVs did not change between the two time points (135.4 ± 8.9 to 137.1 ± 7.6 

nm, p = 0.6,). When the concentration was split into 50 nm bin-widths, the decrease 

in EVs at day 15 was observed across the EV spectrum, particularly in EVs <300 nm 

(Figure 4.3.5 C).  

 

Figure 4.3.5: 3T3-L1 EV size and concentration. The effect of differentiation of 3T3-L1 

cells on: (A) viable cells/mL; (B) EV production per viable cell; and (C) EV size and 

concentration distribution. **** p<0.0001, ***p<0.001, ***p<0.01, day 0 (n=6) and day 15 

(n=5).  
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4.3.5 Annexin V positivity 

PS exposure of cells and EVs was determined by annexin V binding measured by 

FC. Annexin V positivity of cells fell from day 0 to day 15 (2.1 ± 1.7 to 0.4 ± 0.2%, 

p=0.04, Figure 4.3.6 A). The same trend was observed with EVs however this was 

non-significant (6.3 ± 6.6 to 2.9 ± 2.2%, p = 0.3, Figure 4.3.6 B). Generally, EVs 

possessed a higher annexin V positivity than that of cells. 

 

Figure 4.3.6: Annexin V positivity of 3T3-L1 cells and EVs. Changes in 

phosphatidylserine exposure of 3T3-L1 cells (A) and EVs (B) with differentiation were 

measured by annexin V binding. *p<0.05, (n=6). 
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4.3.6 Fatty acid concentration and composition  

GC-FID was used to determine the concentration and composition of fatty acids of 

cells and EVs. Total concentration of fatty acids in both cells and EVs was increased 

from day 0 to day 15 (Cells: 0.1 ± 0.04 to 0.7 ± 0.2 mg/10
6
 cells, p<0.0001, Figure 

4.3.7 A and EVs: 12.2 ± 1.7 to 27.3 ± 10.1 ng/10
6
 EVs, p=0.005, Figure 4.3.7 C). 

The fatty acid compositions of both cells and EVs were greatly altered by 

differentiation. Out of 25 fatty acids detected, the compositions of 18 in cells and 17 

in EVs changed significantly from day 0 to day 15 (Figure 4.3.7 B and D 

respectively). 
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Figure 4.3.7: Fatty acid analysis of 3T3-L1 cells and EVs. (A) Total fatty acid 

concentration of 3T3-L1 cells and (C) EVs at day 0 and day 15 of differentiation. (B) 

Proportional changes of individual fatty acids in cells and (D) EVs between day 0 and day 

15 of differentiation. **** p<0.0001, ***p<0.001, **p<0.01, *p<0.05, 
x
 indicates a fatty 

acid present at only one time point, day 0 (n=6) and day 15 (n=5). 
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The majority of fatty acids were reduced (in proportion to the total) with 

differentiation in cells and EVs, for example, arachidonic acid (C20:4n6). Generally, 

differentiation caused the same trends in proportional changes of fatty acids; 

however the effect was sometimes unique to the cell or EV. For example, oleic acid 

(C18:1n9) was decreased in cells but increased in EVs from day 0 to day 15. Certain 

fatty acids were also unique to the stage of differentiation, for example, 

eicosatrienoic acid (C20:3n3) was only present in cells and EVs at day 0.  

The composition of lipid classes was also altered with adipogenesis, and when 

comparing the EV to its corresponding cell (Figure 4.3.8). EVs in particular seemed 

to contain a higher proportion of polyunsaturated fatty acids (PUFAs) compared to 

cells. Individual changes in fatty acids within each class are provided in Appendix: 

Table I. 

 

Figure 4.3.8: Changes in lipid classes. Alterations in lipid classes between (A) day 0 cells, 

(B) day 15 cells, (C) day 0 EVs and (D) day 15 EVs. SFA = saturated fatty acids, MUFA = 

monounsaturated fatty acids; PUFA = polyunsaturated fatty acids, day 0 (n=6) and day 15 

(n=5).  
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4.3.7 Phospholipid analysis  

Phospholipids were separated from lipid extracts using 2D-TLC. The proportions 

(percentage of total) of each phospholipid class present in cells and EVs pre- and 

post-adipogenesis are presented in Figure 4.3.9. Between day 0 and day 15, the 

proportion of phosphatidylethanolamine (PE) increased in cells and EVs whereas the 

proportions of phosphatidylinositol (PI) and sphingomyelin decreased in cells but 

increased in EVs. Phosphatidylcholine (PC) was the most abundant phospholipid 

present in all samples (45.0 – 62.3%), slightly increasing in cells following 

adipogenesis but decreasing in EVs over the same time. Cells and EVs had higher 

proportions of PS at day 0. Cardiolipin was detectable only in cells, increasing with 

adipogenesis. 

 

Figure 4.3.9: Phospholipid composition pre- and post-adipogenesis. Proportions of 

individual phospholipids present in cells and EVs pre- and post-adipogenesis. Proportions 

were calculated as a percentage of the summed total of all phospholipids. (A) day 0 cells; 

(B) day 15 cells; (C) day 0 EVs; (D) day 15 EVs (n=1). PE = phosphatidylethanolamine; PC 

= phosphatidylcholine; PS = phosphatidylserine; PI = phosphatidylinositol.  
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Phospholipid extracts were also analysed by GC to give individual fatty acid 

compositions of each phospholipid (Appendix: Table II). Phospholipids contained a 

range of saturated fatty acids (SFAs), mono unsaturated fatty acids (MUFAs) and 

PUFAs in cells and EVs at both time points, and these seemed to differ both with 

differentiation and between cells and EVs. In particular, phospholipids from day 0 

cells and EVs were highly enriched in PUFAs, specifically arachidonic acid which 

decreased following adipogenesis. 
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4.3.8 Immunophenotyping of extracellular vesicles  

An immunophenotyping assay was used to measure the content of vesicular and 

adipocyte proteins within EVs at each time point (Figure 4.3.10). No differences 

were observed in exosomal markers pre- and post adipogenesis. Of the adipocyte 

markers, PPARγ showed no change. However, adiponectin showed an increase pre- 

to post-adipogenesis (76,242 ± 11,501 to 161,886 ± 30,371 arbitrary TRF units, 

p<0.0001). Both FABP4 and PREF-1 were shown to decrease in EVs following 

adipogenesis (108,256 ± 7,640 to 93,088 ± 4,804, p = 0.002 for FABP4 and 86,958 ± 

18,164 to 58,918 ± 7,485 arbitrary TRF units, p = 0.006 for PREF-1 respectively). 

 

Figure 4.3.10: Protein content of EVs pre- and post-adipogenesis. Exosomal (CD9, 

CD63, TSG101 and alix) and adipocyte (FABP4, PREF-1, adiponectin and PPARγ) proteins 

in EVs from day 0 and day15 cells were analysed by an immunophenotyping assay. 

Proteins were detected using a streptavidin-europium conjugate and measured using TRF 

(given in arbitrary units). **p<0.01, ****p<0.0001, (n=3).  
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4.3.9 Retrospective Western blot analysis  

Following analysis of data from the immunophenotyping of EVs using EV 

immunophenotyping, Western blots were performed for day 0 and day 15 EVs 

probing for PREF-1 and FABP4 (Figure 4.3.11). Western blots showed that in fact, 

PREF-1 was barely detectable at day 15 and FABP4 was highly abundant at day 15. 

This contradicts data from Figure 4.3.10 which shows a modest, but significant 

decrease in PREF-1 and FABP4 from day 0 to day 15.  

Figure 4.3.11: Western blot analysis of EV lysates. Lysed EVs were analysed for 

expression of the preadipocyte marker, PREF-1, the mature adipocyte marker, FABP4 and 

the exosomal protein, CD63. Densitometry was then performed and PREF-1 (A) and FABP4 

(B) are presented as relative expression to CD63. *p<0.05, **p<0.01 (n=3). 
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4.4 Discussion 

4.4.1 Key findings 

1. EVs from 3T3-L1 adipocytes display a classic EV morphology. 

2. EV release is higher prior to adipogenesis, particularly vesicles <300 nm. 

3. Cellular and EV fatty acid composition is altered following adipogenesis. 

4. EVs display a different fatty acid composition to that of their cells of origin. 

5. Adipogenesis seems to alter phospholipid (and associated fatty acid) 

composition in EVs and cells. 

6. EVs contain exosomal and adipocyte proteins, some of which are altered 

following adipogenesis. 

 

4.4.2 Main discussion 

From Chapter 3, it is clear that the EV field is still developing, requiring further 

clarity and standardisation. As such, a fundamental protocol was developed when 

our group began to study adipocyte-derived EVs. This method has been used 

throughout the thesis to ensure consistency, but these methods also addresses key 

elements outlined in the ISEV position paper (16). With the growing popularity of 

EV research, more and more cell types are being reported to release EVs, yet often 

little information is given concerning the characteristics of these vesicles. In this 

chapter, I sought to characterise EVs from pre- and mature adipocytes using the 

well-established 3T3-L1 adipocyte cell line. 

Until relatively recently, AT was regarded as little more than a passive store of 

excess energy. It is now recognised as an endocrine organ that plays an influential 

role in many important physiological processes both within AT itself and 

systemically with other organs and tissues. These interactions are primarily 

orchestrated through the secretion of adipokines released directly from adipocytes 

(316). More recently, adipocytes have been shown to shed EVs in vitro, perhaps 

providing an additional method of adipocyte communication 

(66,306,307,383,387,393). However, little is known about the characteristics of these 

EVs. 
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Transition from a preadipocyte to a mature adipocyte phenotype is a complex 

process involving a chronological pattern of gene expression and changes in cell 

cycle status (294). At day 0, the cell-cell contact between preadipocytes is crucial in 

initiating differentiation (436) and intercellular communication is known to peak in 

preadipocytes at confluency then rapidly decline during differentiation (437). 

Consistent with this, SEM images of 3T3-L1 cells at day 0 show long projections 

suggesting networks of intercommunication between cells. Additionally, EV 

production per cell was greater at day 0, particularly in exosomes and smaller 

microvesicles (<300 nm) despite there being no change in the overall mode size of 

EVs. This may be a consequence (or perhaps a cause) of the differentiation process 

such that EVs act as intercellular communicators to aid initiation of the transition to 

a mature adipocyte. Conversely, cells at day 15 are much larger and rounder with 

multiple lipid vacuoles. Taken together with the lower EV production per cell, this 

suggests that cells at this time point may be less communicative. 

 

Many studies support the principle that the release of EVs is preceded by a 

disruption of the normal phospholipid asymmetry of the plasma membrane, 

subsequently exposing PS. However, it is debated whether this externalised PS is 

retained on the EV (63,67). Therefore PS exposure of EVs and their original cells 

was characterised using annexin V binding. Cells and EVs at both time points 

showed a relatively low annexin V positivity (<10%); lower than the reported 50-

90% reported for plasma-derived EVs (55,56,76). However, it is hypothesised that 

the majority of plasma-derived EVs are of platelet origin and that their high annexin 

V positivity - and hence high density PS exposure - can aid promotion of coagulation 

(438). It is unlikely that adipocyte-derived EVs would promote coagulation perhaps 

partially explaining their lower annexin V positivity. 

 

Much of the research within the EV field is focused towards how changes in the 

quantity or genetic content of EVs may potentially affect their function. Little has 

been reported about the potential effects of lipid composition on EV function, 

despite the known role of lipids as precursors to many signalling pathways and their 

importance as signalling molecules in their own right. Therefore GC-FID was used 
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to comprehensively characterise the fatty acid composition of 3T3-L1 cells and EVs 

pre- and post-adipogenesis. As expected, the total lipid content of cells increased 

with adipogenesis and interestingly, this was also reflected in the EVs. Perhaps as 

the cells at day 15 are so lipid laden, the resulting EV incorporates some of this lipid 

during its formation. EVs at day 15 certainly seemed to have a lower overall density 

as shown by their Optiprep™ separation where the majority of EVs at this time point 

were found in the upper fractions containing the least Optiprep™ solution. This 

suggests these EVs are less dense, perhaps because they contain more lipid per 

volume. 

The fatty acid composition of cells and EVs was clearly affected by differentiation, 

likely reflecting the transition in function from a preadipocyte to mature adipocyte. 

For instance, palmitic acid, the most abundant storage fatty acid in animals (439) 

showed a large increase with adipogenesis as cells accumulated lipid. The transition 

in function was also represented by the presence or lack of some fatty acids at each 

time point. For example, the PUFA eicosatrienoic acid is generally detected in 

tissues where levels of FFAs are low. Here, eicostrienoic acid was present at day 0 

but not at day 15. Cells at day 15 are likely to be abundant in FFAs perhaps 

ameliorating the need for eicosatrienoic acid at this time point. Additionally it has 

been reported that PUFAs, particularly n-3 PUFAs, are better activators of PPARγ 

(upon which adipocyte differentiation is dependent) than other fatty acids (440). 

Here, cells at day 0 contained a greater proportion of PUFAs than cells at day 15 

suggesting that preadipocytes are equipped with a greater reserve of PUFAs to aid 

PPARγ activation. Cells and EVs at day 0 also had a greater proportion of 

arachidonic acid - a major precursor for many signalling pathways - than those at day 

15. Taken together with the increased concentration of EVs at day 0, this supports 

the notion that EVs may be enhancing intercellular communication in the initial 

stages of differentiation. In keeping with this, exosome isolates from human adipose-

derived stem cells (hASCs) undergoing adipogenic differentiation were recently 

shown to assist the transition of undifferentiated hASCs towards a mature adipocyte 

phenotype (441). 
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As well as maintaining the structural integrity of cells, organelles and vesicles, 

phospholipids are also part of a variety of signalling pathways. The major 

phospholipid classes of 3T3-L1 cells and their corresponding EVs pre- and post-

adipogenesis were separated by TLC before subsequent GC-FID to determine 

individual fatty acid composition of individual phospholipids. A common theme 

among the fatty acids within phospholipid groups was the high degree of saturation. 

The primary role of phospholipids is to form a bilayered membrane to support the 

structure of the cell and to enclose its contents. The predominance of SFA acid tails 

of phospholipids here likely provides enough rigidity to the cell membranes for 

structural support but the presence of MUFAs and PUFAs ensure enough fluidity 

remains for membrane components to remain dynamic. 

PC and PE were the most abundant phospholipids in all samples, accounting for 

around half of all phospholipids measured. PC and PE have previously been shown 

to be the most abundant phospholipids in adipocytes (442) and in blood-derived 

microparticles (443); the data in this thesis suggests this is also the case for 

adipocyte-derived EVs. The proportion of PE in 3T3-L1 cells and EVs increased 

with differentiation, a concept previously reported in 3T3-L1 cells (444). 

As observed with the total fatty acid composition of cells and EVs, arachidonic acid 

was more abundant in cells and EVs at day 0 within 4 of the 6 phospholipids 

analysed here. Arachidonic acid is a major precursor to many intracellular signalling 

molecules, principally eicosanoids (445). Therefore higher proportions of 

arachidonic acid at day 0 suggest both cells and EVs harbour a greater reserve of 

signalling fatty acids. The composition of PUFAs at day 0 was also much higher 

compared with day 15. PUFAs, as described before can act as ligands for PPARγ 

(445) which is essential to differentiation. Increased amounts of PUFAs at day 0 may 

help to initiate PPARγ activation to bring about differentiation and also illustrates the 

role of PE in cell signalling as well as membrane structure.  

Sphingomyelin is often associated with brain tissues where this class of 

phospholipids coat axons to accelerate transmission of action potentials. However, 

sphingomyelin is also an important phospholipid in many eukaryotic plasma 

membranes providing structural support and sphingolipid signalling molecules such 

as ceramide which as described in Chapter 1.1.3.1, play a role in classical exosome 
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formation (25,446). Sphingomyelin has been shown to form a high content in EVs 

providing structural rigidity and resistance to physiochemical changes (169). Here, 

sphingomyelin was decreased in cells following adipogenesis, suggesting day 0 cells 

have a higher capacity for ceramide production and subsequent exosome formation. 

This is reflected in the EV concentration data, which shows a greater proportion of 

EVs in the exosomal range at day 0. 

Cardiolipin was present in cells at both time points but was not detected in EVs. 

Cardiolipin is a major phospholipid of the mitochondrial membrane and is known to 

interact with and facilitate the actions of mitochondrial proteins such as cytochrome 

c (447). As well as mitochondrial proteins, cardiolipin is also known to interact with 

adipocyte cytosolic proteins such as FABP4, particularly when there is a greater 

degree of unsaturation (448). Here, the composition of cardiolipin was higher in day 

15 cells and the level of unsaturation at this time point was also greater. Cellular 

FABP4 was increased at day 15 perhaps reflecting the increased need to interact with 

proteins such as FABP4 at this time point.  

PS is an anionic phospholipid which resides predominantly on the inner membrane 

leaflet (under physiological conditions) and consequently has roles in many 

intracellular signalling pathways (449). The negative charge associated with PS 

allows interaction with key signalling molecules bearing positively charged moieties 

such as tyrosine kinases, Ras/Rho GTPases, protein kinase C and annexin V (450). 

The overall proportion of PS was higher in cells and EVs at day 0 as was the 

composition of arachidonic acid of PS at day 0. Taken together, this suggests that 

cells at day 0 have an increased intracellular signalling capacity which may also 

transferred to day 0 EVs. Therefore, EVs at day 0 are potentially equipped with a 

greater cargo of bioactive signalling fatty acids which could be used to enhance 

intercellular communication and initiate differentiation.  

 

A subject of great interest in the EV field is how changes in EV protein expression 

can occur following stimulation or stress of the cell of origin (451). The most 

popular techniques for measuring changes in vesicular protein expression are 

currently FC and Western blotting. However, as discussed in Chapter 3, there are 

several disadvantages to these techniques, primarily the limits of detection and lack 
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of sensitivity for FC and the amount of EV sample required for Western blotting. 

Here, an immunophenotyping method (36,158)) was used to analyse surface and 

intravesicular EV proteins pre- and post-adipogenesis. Analysis of EV proteins by 

this method allows simultaneous analysis of multiple markers, using low amounts of 

sample (1 µg/well). The use of europium as the reporter probe allows detection of 

signal over a wide dynamic range ensuring a good sensitivity for lowly and highly 

expressed antigens. Results have been shown to be comparable with Western blot 

data (36,158) and the technique has been used by others in the EV field (119). Levels 

of transmembrane (CD9/CD63) and intravesicular (alix/TSG101) exosomal markers 

showed no change in EVs pre- vs. post-adipogenesis. This suggests that although the 

number of EVs (particularly exosomes) is higher at day 0, the relative expression of 

exosomal proteins within EVs does not change between time points. A range of 

adipocyte markers that are known to be present at different stages of adipogenesis 

(301,320) were selected for analysis within EVs. PREF-1 represses differentiation 

and promotes a preadipocyte phenotype (452). As confirmed by Western blot 

analysis of cell lysates (Figure 4.3.2 A), PREF-1 expression is higher at day 0. In 

keeping with this, EV PREF-1 decreased from day 0 to day 15, allowing progression 

to a mature adipocyte phenotype. However, at day 15 there is still PREF-1 present in 

EVs whereas expression within cells seems to be absent. The reasons for this could 

be a combination of factors. Firstly, the immunophenotyping detection is more 

sensitive than Western blotting and so PREF-1 may still be present in cells but the 

expression far less than that at day 0. Secondly, in vitro differentiation of adipocytes 

is never 100% efficient and therefore some preadipocytes are still present in the 

culture. Therefore these residual preadipocytes may be producing EVs containing 

PREF-1 that is detectable by immunophenotyping but not by Western blotting in the 

total day 15 cell lysate. PPARγ is a nuclear receptor required for both the induction 

(including the growth arrest of cells (301)) and the maintenance of adipogenesis 

(320). Here, EV PPARγ content was unchanged pre- vs. post-adipogenesis 

suggesting that PPARγ produced by cells to initiate growth arrest around day 0, and 

by cells at day 15 to maintain an adipocyte phenotype is transferred to corresponding 

EVs. Adiponectin is an adipocyte-specific adipokine produced by mature adipocytes 

(453) with roles in regulating insulin sensitivity and glucose metabolism (454). The 

content of adiponectin in cells was higher at day 15 compared with day 0 (Figure 

4.3.2 B), which was again mirrored in the EVs at this time point. Finally, FABP4 is a 
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cytosolic fatty acid trafficking protein (455) that is highly expressed in mature 

adipocytes (confirmed in Figure 4.3.2 C) accounting for ~1% of the total protein of 

the cytosolic fraction (323). FABP4 within EVs decreased from day 0 to day 15 

perhaps reflecting a role for EVs that is independent of their cell of origin or perhaps 

a specific packaging of FABP4 into EVs. 

Retrospective Western blot data contradicted the results of EV immunophenotyping 

for PREF-1 and FABP4. Indeed, blots were conducted in hindsight for these two 

proteins after evaluating the immunophenotyping results, which were unexpected. It 

is not clear why these two techniques gave such differing results. One potential 

explanation is that the immunophenotyping may need validation for different types 

of EV and for different antibodies. Concentrations of EVs and antibodies used in this 

chapter were based on a protocol for prostate cancer-derived exosomes, which 

yielded similar results when analysed by Western blot (119,232). Additionally, the 

exosomes used for immunophenotyping in these studies had been washed following 

isolation and therefore may have a higher purity than the EVs in this chapter. 

Therefore, 1 µg (the amount of EVs loaded per well) may be very different between 

the two EV preparations. Furthermore, as the immunophenotyping is a novel 

technique, commercial antibodies that were used to probe for the antigens are not yet 

validated for this technique as they are for Western blotting. Hence, a different 

working concentration of antibody may be required for optimal detection. 

 

4.4.3 Limitations 

There are several potential limitations of this study. Firstly, 3T3-L1 cells were used 

throughout the chapter for characterisation. Others have successfully isolated EVs 

from primary adipocyte sources such as mouse AT (392), rat primary adipocytes 

(387,456) and human AT explants (306,307). Though 3T3-L1 cells are not a primary 

cell line, they are widely used as a reliable model to study adipocyte biology (294). 

Their use here also enabled more detailed analyses requiring large sample amounts 

such as TLC and GC-FID to yield novel data about lipid and phospholipid profiles of 

adipocyte EVs. The data presented here also tally with data from primary adipocyte 

EV sources in terms of the presence of adipocyte and exosomal protein within EVs. 
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There are currently a number of issues surrounding standardisation of protocols in 

the EV field, meaning preparatory techniques are constantly being updated. Here, 

differential centrifugation was used to isolate adipocyte EVs as described previously 

(393). Intermediary centrifugation steps of 10,000 – 20,000 x g have recently been 

reported to pellet larger microvesicles (17). Therefore the use of a 15,000 x g spin 

may pellet larger microvesicles as well as cell debris and apoptotic bodies, thus 

removing them from the final EV sample. However, NTA detected EVs up to 1 µm 

in diameter (Figure 4.3.5 C), indicating the presence of larger microvesicles. 

A further practical limitation of this study was the use of FC to assess the annexin V 

positivity of EVs. As discussed in Chapter 3, many conventional flow cytometers 

have a practical lower limit of ~300 nm due to the low refractive index of EVs (420), 

meaning smaller microvesicles and exosomes may not be detected by this method. 

Therefore the annexin V positivity may have been underestimated here, particularly 

if a proportion of larger microvesicles (known to have a greater annexin V positivity) 

were removed by the 15,000 x g spin. Future studies could couple EVs to 1 µm latex 

beads before assessment with FC (117) or use a dedicated small particle high 

resolution flow cytometer (155) to ensure capture of the whole EV spectrum. 

Immunophenotyping of EVs, whilst potentially less time- and sample-consuming 

than Western blotting, was not optimised for use with adipocyte-derived EVs in this 

chapter. Background fluorescence of day15 EVs alone (without primary antibody), 

was often significantly higher than day 0 EVs. Interestingly, when cells and EVs 

were analysed by FC for annexin V positivity, unstained day 15 cells (and EVs to a 

lesser extent) showed significant auto-fluorescence in the FITC channel. Perhaps 

because cells (and EVs) at day 15 contain more lipid, this may auto-fluoresce to 

cause higher levels of background noise compared to day 0 samples which contain 

significantly less lipid. My colleagues have since performed a validation of the 

immunophenotyping assay for the detection of EV proteins in plasma-derived EVs. 

Firstly, the concentration of EVs used per well was found to be extremely important. 

Lower concentrations of EVs per well gave higher background TRF readings 

(without the presence of primary antibody). This effect was eventually saturated for 

plasma EVs by using higher concentrations of around 5 x 10
10

 particles/mL of EVs 

in each well. Therefore, the number of EVs per well must be titrated for each source 

of EV. Here, 1 µg of EVs were added to each well which equated to around 2 x 10
8
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particles at day 0 and 5 x 10
7
 particles at day 15. Therefore, too few EVs may have 

been added per well (particularly for day 15 EVs) resulting in higher background 

signals. Secondly, the concentration of primary and secondary antibodies was shown 

to be important. Following titration, it was found that a concentration of 3 µg/mL of 

primary antibody was sufficient to detect maximal signal. Here, a concentration of 1 

µg/mL was used, so some antibodies may not have been at an optimal concentration 

to detect the entirety of available antigen. Evidently, validation is needed to ensure 

agreement with Western blot analysis before this technique can replace Western blot 

for adipocyte EV protein analysis. 

Finally, serum-free media was used for the 24 hour conditioning period prior to EV 

isolation to avoid contamination of FCS-derived EVs (159). The requirements of the 

cells at each time point are different and hence serum-free media was supplemented 

with insulin prior to EV isolation at day 15, whereas media at day 0 was not. This 

was to minimise changes to normal media components at each time point, however, 

it is possible that the addition of insulin may have affected EV release at day 15. 

 

4.4.4 Conclusions 

To summarise, the production of adipocyte EVs is shown to be significantly affected 

by the differentiation process. Prior to adipogenesis, EV concentration is higher and 

EVs are enriched in fatty acids and phospholipids with known involvement in cell 

signalling. This suggests that EVs released prior to adipogenesis may aid 

communication between preadipocytes to enhance the transition to mature 

adipocytes. EVs retained certain aspects of their cell of origin including annexin V 

positivity, fatty acid content and protein expression, but also possessed unique 

differences in fatty acid composition and protein content. These concurrent 

similarities and differences may allow EVs to represent their cell of origin but to also 

harbour unique qualities that potentially confer different functional properties. Future 

studies should explore the functional impact of EVs on the control of adipogenesis 

and their wider implications in the role of AT as an endocrine organ. 
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5. Results III: 

Effects of hypoxia on adipocyte-derived EV 

production 
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5. Perspective 

Having completed a comprehensive characterisation of adipocyte-derived EVs using 

3T3-L1 cells in Chapter 4, I was able to apply these techniques to analyse EVs 

derived from adipocytes exposed to disease-like conditions (hypoxia). It should be 

noted that EV immunophenotyping used and described in Chapter 4 was also used in 

this chapter to characterise vesicular protein content. However, a set number of EVs 

were added per well instead of a set amount of EV protein to attempt to address 

some of the issues experienced in Chapter 4. The number of EVs used (5 x 10
9
 EVs) 

was based on pilot data from my colleague, Mr Nick Burnley-Hall, who had found 

this concentration of EVs to be sufficient for the detection of exosomal and other 

markers in EVs derived from an endothelial cell line. 
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5.1 Introduction 

As discussed in Chapter 1, dysfunctional adipose tissue AT is a risk factor for 

obesity-related complications such as IR and T2D (378), though the root cause of 

dysfunction remains to be elucidated. AT hypoxia has been proposed as a potential 

instigator of impaired AT functioning and AT from obese subjects is known to have 

a reduced blood supply compared to that from lean subjects (366). Hypoxic 

conditions have also been shown to alter EV release and functionality in prostate 

cancer cells (457). Therefore, hypoxic adipocyte EVs may play a role in the 

development of AT dysfunction. 

Growth and expansion of AT occurs through adipocyte hyperplasia and hypertrophy 

(458). In obese AT, hypertrophy of adipocytes can result in cells up to 200 µm in 

diameter (265,266) which is at the upper limit of the diffusion distance of oxygen 

(O2) in a tissue (363). Despite the increase in AT mass, blood flow to AT is reduced 

in obesity (365,366), suggesting that blood vessel growth in AT is insufficient to 

maintain the same blood flow as provided to lean AT. It is likely therefore, that 

obese AT is littered with regions of hypoxia. Indeed, obese AT has been shown to 

have a reduced oxygen tension (partial pressure, pO2) in both obese mice models 

(368,369,377) and human studies of obesity (373–376), though the reported pO2 of 

AT varies greatly between studies (Table 1.2.2). In vitro studies of adipocytes in 

hypoxia shows the transition towards a pro-inflammatory state through the 

production of inflammatory adipokines such as TNF-α, IL-6 and PAI-1 (380). 

Upregulation of these adipokines is primarily attributed to the activation of HIF-1α 

during hypoxia (459). HIF-1α in hypoxia also targets the activation of genes 

controlling angiogenesis and metabolism such as VEGF and leptin to attempt to 

restore oxygenation (380). Unfortunately, the overarching effect is AT inflammation 

which leads to dysregulation of lipid metabolism, storage and adipokine secretion 

(352,460–462). Obesity is associated with low grade systemic inflammation (352), 

though whether this is the cause or consequence of AT inflammation is unknown.  

Given that EV release is often increased in response to conditions of cellular stress, it 

is no surprise that hypoxia has been shown to increase EV generation in a number of 

cell types (241,463,464). HIF-1α is thought to play a central role in this response as 

data from our lab and others show that knockdown or silencing of HIF-1α reduces 
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hypoxia-induced EV formation (241,463). Studies into the hypoxic enhancement of 

EV release have largely focused on cancer cell lines, where the hypoxic EVs can 

promote angiogenesis to fulfil the demands of the growing tumour and to encourage 

metastasis (253,463,465,466). 3T3-L1-derived EVs from unstimulated cells have 

been shown to induce angiogenesis in vivo (393); an effect which may been 

enhanced in hypoxic conditions. Despite the potential similarities between the 

growth of obese AT to tumour progression (259), to date only one study exists 

detailing hypoxic adipocyte-derived EVs (390). This study focused on the metabolic 

enhancement of de novo lipogenesis by hypoxic 3T3-L1 exosomes; however, the 

authors did not quantitate the effects of hypoxia on EV characteristics such as EV 

size and concentration, lipids and protein content. 

 

5.1.1 Aims 

The aims of this chapter were to determine the effects of different ambient O2 levels 

on: 

1. Cell morphology, viability and lipid accumulation 

2. EV size and concentration 

3. Cell and EV annexin V positivity 

4. Cell and EV fatty acid composition 

5. Cell and EV phospholipid (and fatty acid) composition 

6. Cell and EV adipocyte and inflammatory protein expression 

 

5.1.2 Hypotheses 

Hypoxia may elevate EV concentration but also alter the lipid/protein content of the 

EV compared to normoxic EVs, and perhaps compared to hypoxic cells. 
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5.2 Methods 

5.2.1 Cell culture 

3T3-L1 cells were cultured as outlined in Chapter 2.2. Serum-free media was added 

to cells at day 14 post-differentiation and cells were either kept in the incubator (95% 

air with 5% CO2, “normoxic”), or transferred to an Invivo 2 hypoxic workstation 400 

(Baker Ruskinn, UK) and maintained under set Oxygen conditions (“hypoxic”) for 

24 hours. Oxygen (O2) conditions included: 1, 2, 5, 10 and 21% O2 and were 

monitored using a i-CO2N2 gas mixing system (Baker Ruskinn, UK).  

Cells were counted as described in Chapter 2.2.2; hypoxic cells were removed from 

flasks and added into cell counting slides in the hypoxic chamber. Morphological 

changes of cells were observed using a Nikon Diaphot microscope (Nikon) and 

images captured at 10X magnification using ViewFinder™ software (version 3.0.1, 

Better Light Inc., USA). Oil Red O staining was used to quantify changes in lipid 

droplets as described in Chapter 2.2.3 in 1% O2 experiments; fixing of 1% O2 cells 

was carried out in the hypoxic chamber. 

 

5.2.2 Isolation and measurement of extracellular vesicles  

After 24 hours of incubation, serum-free media was removed from cells and 

processed as described in Chapter 2.3.1. Media from cells in hypoxia was collected 

in the hypoxic chamber. Isolated EVs were stored as described in Chapter 2.3.3. 

NTA was used to measure EV samples as outlined in Chapter 2.4.2.  

 

5.2.3 Flow cytometry 

Flow cytometric analyses were conducted to assess the annexin V positivity of cells 

and corresponding EVs isolated from 1, 2, 5 10 and 21% O2, each with normoxic 

controls as described in Chapter 2.6. Due to variation between analyses, results are 

expressed as a delta change in percentage positivity from normoxic controls. 
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5.2.4 Gas chromatography 

Fatty acid concentration and composition of normoxic and hypoxic cells was 

measured using GC-FID as outlined in Chapter 2.7. Due to variation in reported 

fatty acid concentration for normoxic controls between experiments, fatty acid 

concentration of cells and EVs is presented as a change from the respective 

normoxic control (delta change).  

 

5.2.5 Thin layer chromatography 

Two-dimensional TLC was used to determine proportions of phospholipids present 

in normoxic and 1% O2 cells and EVs as described in Chapter 2.7.  

 

5.2.6 Western blotting 

Normoxic and 1% O2 cells were lysed as described in Chapter 2.10.1. Twenty to 

fifty µg of protein was loaded per well and were separated using specific running 

gels (Table 5.2.1) and probed with primary antibodies (incubated at room 

temperature overnight). Membranes were washed thoroughly in TBS-T overnight 

before being blocked and subsequently re-probed for β-actin. Densitometry was 

conducted as described in Chapter 2.10.6. 
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Protein Running gel Antibody dilution Typical 

exposure time 

β-Actin n/a 1:2000 (1% milk/TBS-T) 1 minute 

Adiponectin (CST 

#2789) 

12% 1:500 (5% BSA/TBS-T) 15 minutes 

FABP4 15% 1:1000 (5% BSA/TBS-T) 15 seconds 

HIF-1α 8% 1:500 (1% milk/TBS-T) 20 minutes 

IL-6 12% 1:500 (5% BSA/TBS-T) 15 minutes 

IL-10 15% 1:500 (5% BSA/TBS-T) 15 minutes 

MCP-1 15% 1:500 (5% BSA/TBS-T) 15 minutes 

PPARγ 10% 1:1000 (5% BSA/TBS-T) 2 minutes 

TNF-α 15% 1:500 (5% BSA/TBS-T) 15 minutes 

Table 5.2.1: Details of Western blotting. Details of the proteins analysed by Western 

blotting and the percentage of acrylamide gels used to separate them. Note, β-actin was used 

as a control for all proteins so a running gel acrylamide percentage is not provided. Dilutions 

and diluents for antibody preparation and exposure times for the development of membranes 

are given for each protein. BSA = bovine serum albumin; CD = cluster of differentiation; 

CST = Cell Signaling Technologies; FABP4 = fatty acid binding protein-4; HIF-1α = 

hypoxia inducible factor-1α; IL = interleukin; MCP-1 = monocyte chemoattractant protein-

1; PPARγ = peroxisome proliferator-activated receptor γ; TBS-T = tris-buffered saline – 

tween 20 (1% v/v); TNF-α = tumour necrosis factor – α. 

 

5.2.7 Extracellular vesicle immunophenotyping  

EVs from 1% O2 and normoxic cells were added to wells at a concentration of 5 x 

10
9
 EVs/well and analysed using TRF as described in Chapter 2.9 for an array of 

markers (Table 5.2.1). A set concentration of EVs was added per well as opposed to 

a set amount of protein of EVs per well (1 µg) following validatory data collected by 

Mr Nick Burnley-Hall using an endothelial cell line. The data indicated a level of 

background fluorescence from the ELISA plate. This could be abrogated by using a 
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concentration of EVs to sufficiently cover the bottom of each well. This 

concentration was found to be 5 x 10
9
 EVs per well for endothelial-derived EVs and 

so this concentration was applied to TRF in this chapter. 

 

Antibody Dilution 

CD9 1:200 

Adiponectin (CST #2789) 1:10 

FABP4 1:25 

PPARγ 1:49 

IL-10 1:101 

IL-6 1:101 

TNFα 1:101 

MCP-1 1:16 

HIF-1α 1:117 

Table 5.2.2: Primary antibodies used for EV immunophenotyping. Antibodies and 

dilutions used for EV immunophenotyping experiments. CD= cluster of differentiation; CST 

= Cell Signaling Technologies; FABP4 = fatty acid binding protein-4; HIF-1α = hypoxia 

inducible factor-1α; IL = interleukin; MCP-1 = monocyte chemoattractant protein-1; PPARγ 

= peroxisome proliferator-activated receptor γ; TNF-α = tumour necrosis factor – α. 

 

5.2.8 Statistical analysis 

Data were analysed using GraphPad Prism software (version 6.0). As hypoxic 

experiments were conducted at different times, each level of hypoxia required a 

normoxic control. Therefore, the variation between normoxic controls was compared 

using a one-way ANOVA with multiple comparisons for each parameter presented 

in this chapter. With the exception of flow cytometry and gas chromatography 

samples, normoxic control samples did not significantly vary between experiments, 

and so “normoxia” refers to normoxic data averaged from different hypoxic 

experiments.  
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5.3 Results 

5.3.1 Effect of hypoxia on adipocyte morphology, number and viability  

Following 24 hours incubation in normoxia or hypoxia, cells were imaged for 

potential morphological changes (Figure 5.3.1). Compared with normoxic cells 

(Figure 5.3.1 A), cells incubated from 2-21% O2 (Figure 5.3.1 C-F) showed no 

significant changes in cell morphology with cells still appearing rounded and lipid 

laden. However, cells at 1% O2 appeared less rounded with fewer lipid droplets 

(Figure 5.3.1 B). Cell number and viability showed no significant change with 

varying levels of hypoxia compared to normoxia (Figure 5.3.1 G/H respectively). 

 

 

Figure 5.3.1: Effect of hypoxia on adipocyte characteristics. Representative images of 

adipocytes after incubation in normoxia (A) or hypoxia: (B) 1%; (C) 2%, (D) 5%, (E) 10% 

and (F) 21% O2. Cell number (G) and viability (H) was measured from each condition using 

Trypan Blue exclusion, (n=3).  
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5.3.2 Oil Red O staining 

When lipid accumulation was assessed by Oil Red O staining, there was no 

significant difference between 1% O2 and normoxic cells (Figure 5.3.2). 

 

Figure 5.3.2: Oil Red O staining. Cells from normoxia (A) and 1% O2 (B) were fixed and 

stained with Oil Red O to assess lipid accumulation. (C) The stain was then extracted and 

the absorbance measured at 492 nm (n=4).  
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5.3.3. Effect of hypoxia on extracellular vesicle size and concentration  

EV concentration and size from 3T3-L1 cells incubated in normoxia and hypoxia 

were measured using NTA (Figure 5.3.3). EVs from 1% O2 cells were significantly 

increased compared to normoxia (137.3 ± 42.4 to 391.1 ± 219.8 EVs/viable cell, p = 

0.003; Figure 5.3.3 A). Other hypoxic conditions showed no effect on EV 

concentration compared to normoxia. The mode size of EVs showed no change with 

varying levels of hypoxia (Figure 5.3.3 B).  

 

Figure 5.3.3: EV concentration and size following hypoxia. EVs collected from normoxic 

and hypoxic cells were measured using NTA and (A) expressed as concentration of 

EVs/viable cell and (B) mode particle size in nm **p = 0.003 (n=6). 

 

When EV concentration was split into 50 nm bin-widths, the most significant 

changes were observed in 1% O2 EVs which were increased between 50 and 200 nm 

compared to normoxic controls (Figure 5.3.4). EVs from 2% O2 cells were also 

significantly elevated compared to normoxic controls between 100 and 200 nm. No 

significant changes were observed in other hypoxic conditions. 
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Figure 5.3.4: Size and concentration distribution. EV concentration was split into 50 nm bin-widths over the EV range for normoxic (n=5) and hypoxic (1, 

2, 5, 10 and 21% O2, n=6) EVs. ****p<0.0001, **p<0.01.
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5.3.4 Effect of hypoxia on annexin V positivity 

FC was used to assess the annexin V positivity of adipocytes and corresponding EVs 

in response to hypoxia. Unfortunately, measurements varied greatly between O2 

experiments, particularly within normoxic controls (Figure 5.3.5/6 A). However, 

when normalised to their respective normoxic control, 1% O2 cells were significantly 

more annexin V positive (1.0 ± 0.0 to 1.3 ± 0.05 for normoxic and 1% O2 cells 

respectively; p = 0.0004; Figure 5.3.5 B). Annexin V positivity of cells from 2-21% 

O2 was not different from respective normoxic controls (Figure 5.3.5 C-F).  

 

Figure 5.3.5: Cellular annexin V positivity. (A) Raw percentage of annexin V positivity. 

Delta change compared to normoxic controls was calculated for (B) 1%, (C) 2%, (D) 5%, 

(E) 10% and (F) 21% O2 by normalising to respective normoxic values. ***p = 0.0004, 

(n=3). 
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EVs from 5% O2 cells had a lower annexin V positivity than normoxic EVs (1.0 ± 

0.0 to 0.4 ± 0.3 for normoxic and 5% O2 EVs respectively, p = 0. 04; Figure 5.3.6 

D). EVs from other percentages of O2 were not significantly different from normoxic 

controls. 

 

Figure 5.3.6: EV annexin V positivity. (A) Raw percentage of EV annexin V positivity. 

Delta change compared to normoxic controls was calculated for (B) 1%, (C) 2%, (D) 5%, 

(E) 10% and (F) 21% O2 by normalising to respective normoxic values. *p = 0.04, (n=3).
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5.3.5 Effect of hypoxia on fatty acid concentration and composition  

Total fatty acid concentration and individual compositions of cells and EVs was 

determined by GC-FID. Due to variation in fatty acid concentrations of normoxic 

cells and EVs between hypoxic experiments, results are presented as delta change 

from respective normoxic controls. No changes were observed between cells or EVs 

in fatty acid concentration compared to normoxic controls (Figure 5.3.7). 

 

Figure 5.3.7: Fatty acid concentration of cells and EVs. Total fatty acid concentrations of 

(A) cells and (B) EVs at varying percentages of O2 were determined by GC-FID. Due to 

inter-experiment variation between normoxic samples, data are presented as delta change 

(n=3). 

 

Analysis of individual fatty acids by GC-FID revealed significant changes in 4 fatty 

acids between normoxic and hypoxic cells (Figure 5.3.8). Palmitic acid was 

increased in 1, 2 and 5% O2 cells compared with normoxia (normoxia: 42.0 ± 2.0% 

to: 1% O2; 45.2 ± 1.0%, 2% O2; 44.0 ± 0.1%, 5% O2; 45.4 ± 2.0%, p<0.0001 for all) 

and was decreased in 21% O2 cells compared with normoxia (normoxia: 42.0 ± 

2.0%, 21% O2: 37.2 ± 1.2%, p<0.0001). Palmitoleic acid was decreased in 1, 2 and 

5% O2 cells compared with normoxic controls (normoxia: 32.9 ± 1.5% to: 1% O2; 

27.8 ± 0.9%, 2% O2; 27.6 ± 0.1%, 5% O2; 29.4 ± 1.2%, p<0.0001 for all) and was 

increased in 21% O2 cells compared with normoxia (normoxia: 32.9 ± 1.5%, 21% 

O2: 35.5 ± 0.9%, p<0.0001). Stearic acid was increased in 1 and 2% O2 cells 

compared with normoxic controls (normoxia: 3.1 ± 0.2% to: 1% O2; 4.3 ± 0.05%, 

2% O2; 4.3 ± 0.07%, p<0.05 for both).  
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Figure 5.3.8: Cellular fatty acid composition. Significant changes in individual fatty acid compositions of normoxic and hypoxic cells. ****p<0.0001, 

**p<0.01, *p<0.05, normoxia (n=15) and 1, 2, 5, 10, 21% O2 (n=3). 
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Finally, oleic acid was increased in 2% O2 cells compared to normoxic controls 

(normoxia: 12.1 ± 0.7%, 2% O2: 13.6 ± 0.08%, p<0.001). No changes were observed 

in the remaining detected fatty acids between normoxic and hypoxic cells 

(Appendix: Table III).  

The same 4 fatty acids differed significantly between normoxic and hypoxic EVs 

(Figure 5.3.9). Palmitic acid was increased in 1 and 21% O2 EVs compared to 

normoxic controls (normoxia: 36.2 ± 2.6% to: 1% O2; 40.5 ± 0.05%, p<0.05, 21% 

O2; 45.1 ± 3.0%, p<0.0001). Palmitoleic acid was decreased in 1% O2 EVs and 

increased in 2 and 10% O2 EVs compared to normoxia (normoxia: 19.2 ± 6.4 to: 1% 

O2; 8.3 ± 0.1%, 2% O2; 26.2 ± 0.01%, 10% O2; 23.8 ± 0.01%, p<0.0001 for all). 

Stearic acid was decreased in 2% O2 EVs compared with normoxia (normoxia: 14.5 

± 3.7%, 2% O2: 10.3 ± 0.0%, p<0.05). Finally, oleic was increased in 1% O2 EVs 

compared with normoxic controls (normoxia: 13.1 ± 2.4%, 1% O2: 16.9 ± 0.03%, 

p<0.05). No changes were detected in other fatty acids in EVs or fatty acids classes 

from normoxia to hypoxia (Appendix: Table IV). 

Differences were observed in classes of fatty acids in cells with hypoxia, particularly 

with 1% O2 (Figure 5.3.10). For example, SFA were higher in 1% O2 cells compared 

with normoxic cells (normoxia: 48.1 ± 2.6% to: 1% O2; 52.6 ± 1.2% p<0.01). 

MUFA were significantly lower in 1% O2 cells compared with normoxic cells 

(normoxia: 49.2 ± 2.9% to: 1% O2; 41.4 ± 1.2%, p<0.0001). No differences were 

observed in cellular PUFA or EV lipid classes with hypoxia, however, similarly to 

Chapter 4, PUFAs were enriched in EVs compared with cells. The effects of the 

remaining hypoxic conditions on cellular lipid classes and individual fatty acids are 

given in Appendix Table III. 
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Figure 5.3.9: EV fatty acid composition.  Significant changes in individual fatty acid composition between normoxic and hypoxic EVs. ****p<0.0001, 

**p<0.01, *p<0.05, normoxia (n=15) and 1, 2, 5, 10, 21% O2 (n=3).
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Figure 5.3.10: Changes in lipid classes with hypoxia. Alterations in major lipid classes 

between (A) normoxic cells, (B) 1% O2 cells, (C) normoxic EVs, and (D) 1% O2 EVs. SFA 

= saturated fatty acids, MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty 

acids, (n=3). 

 

When comparing the fatty acid composition of cells with their corresponding EVs, 

hypoxic EVs showed more differences compared to hypoxic cells than normoxic 

samples (Appendix: Table V). In particular, hypoxic EVs were enriched in PUFAs 

such as arachidonic acid and α-linolenic acid compared to hypoxic cells.  



Page | 187  

 

5.3.6 Effect of hypoxia on phospholipid composition  

From here on in, 1% O2 was chosen (and is referred to) as the hypoxic challenge. 

From the data presented above, 1% O2 gave the most significant hypoxic challenge 

(without affecting the cell viability) and also the remaining experiments required a 

large amount of EV sample, so only one hypoxic challenge was practical.  

Two-dimensional TLC was used to separate phospholipid groups in normoxic and 

hypoxic cell and EV samples. Proportions of each phospholipid were calculated as a 

percentage of the total concentration (Figure 5.3.11). Changes in phospholipids were 

marginal in normoxic and hypoxic cells. EVs showed increases in PC and PS and 

decreases in PE, sphingomyelin and cardiolipin in hypoxia compared with normoxia. 

PC and PE were the most abundant phospholipids present in all samples. 

 

Figure 5.3.11: Phospholipid composition of cells and EVs. Phospholipids were separated 

using TLC in normoxic and hypoxic (1%) cells and EVs. Proportions of each phospholipid 

were calculated as a percentage of the total concentration of all phospholipids. (A) normoxic 

cells; (B) hypoxic cells; (C) normoxic EVs; (D) hypoxic EVs (n=1). PE = 

phosphatidylethanolamine; PC = phosphatidylcholine; PS = phosphatidylserine; PI = 

phosphatidylinositol.   
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Separated phospholipids were then further analysed by GC to identify individual 

fatty acids present within phospholipid fractions (Appendix: Table VI). Similarly to 

Chapter 4, EVs were enriched in PUFAs, particularly in hypoxic conditions where 

arachidonic acid was abundant. Interestingly, the PUFA, α-linolenic acid was 

reduced in hypoxic EV samples. 
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5.3.7 Effect of hypoxia on cellular protein content  

Cell lysates from normoxic and hypoxic cells were analysed for their expression of 

adipocyte and inflammatory proteins by Western blotting (Figure 5.3.12). Of the 

adipocyte proteins, adiponectin appeared to be decreased in hypoxic cells, though 

this was not significant (A). Expression of FABP4, though not significant, increased 

in hypoxic cells (B). PPARγ expression was significantly reduced in hypoxic cells 

(normoxia: 2.37 ± 0.08; hypoxia: 0.85 ± 0.2 relative expression compared to β-actin, 

p = 0.0003; C). Inflammatory proteins (TNF-α and IL-10) showed no change 

between normoxia and hypoxia (D/E). IL-6 could not be detected by Western 

blotting despite maximisation of the amount of protein loaded, the concentration of 

antibody used and exposure time. No change was observed in MCP-1 (F), however 

hypoxic cells contained significantly more HIF-1α (normoxia: 0.2 ± 0.2; hypoxia: 

1.7 ± 0.7 relative expression compared to β-actin, p = 0.02; G). 

 

 

30 kDa 15 kDa 

57 and 

53 kDa 
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Figure 5.3.12: Western blot analysis. Western blots of cell lysates from normoxia and 1% 

O2 cells probed for adipocyte markers: (A) adiponectin, (B) FABP4, (C) PPARγ and 

inflammatory markers: (D) TNF-α, (E) IL-10, (F) MCP-1 and (G) HIF-1α. Differences in 

densitometry values compared to β-actin are presented as well as representative bands of the 

protein of interest and β-actin control. Observed molecular weights are given for each 

protein (β-actin = 42 kDa)*p<0.05, ***p<0.001 (n=3). 

  

~12 kDa ~130 kDa 
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5.3.8 Effect of hypoxia on EV protein content  

EV protein content of normoxic and hypoxic EVs was measured using EV 

immunophenotyping (Figure 5.3.13). The exosomal protein CD9 and adipocyte 

proteins, adiponectin, FABP and PPARγ, showed no difference between normoxia 

and hypoxia. Levels of inflammatory proteins, IL-6, TNF-α and IL-10 were not 

changed with 1% O2. MCP-1 was significantly increased in hypoxic EVs (17,615 ± 

3,249 to 26,946 ± 6,928 arbitrary TRF units, p = 0.01). No change was observed in 

EV HIF-1α between normoxia and hypoxia. 

 

 

Figure 5.3.13: Protein content of normoxic and hypoxic EVs. The exosomal protein CD9, 

adipocyte proteins; adiponectin, FABP4 and PPARγ, inflammatory proteins; IL-6, TNF-α 

and IL-10, and MCP-1 and HIF-1α were analysed in normoxic and hypoxic EVs using EV 

immunophenotyping. Europium was used as the assay reporter and was measured using 

time resolved fluorescence (TRF). Data are presented in arbitrary TRF units, *p<0.05 (n=3). 
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5.4 Discussion 

5.4.1 Key findings 

1. Hypoxia (1-21% O2) had no effect on adipocyte number or viability. 

a. Cells in 1% O2 had an altered morphology but their lipid storage was 

unchanged. 

2. EV production is increased in hypoxia (1% O2), particularly EVs <200 nm. 

3. Hypoxia (1% O2) increased cellular annexin V positivity, EVs from 5% O2 

cells were less annexin V positive than controls. 

4. Fatty acid composition was affected by hypoxia with similar compositional 

changes in cells and EVs. 

5. Apportion and fatty acid composition of phospholipids was effected by 

hypoxia in cells and EVs. 

6. Cellular expression of PPARγ and HIF-1α were altered by hypoxia. 

7. MCP-1 was increased in hypoxic EVs. 

 

5.4.2 Main discussion 

Obesity is associated with local inflammation in AT and increases in circulating 

inflammatory makers, both of which increase the risk of cardiovascular co-

morbidities (352). Obese AT is prone to hypoxic areas which leads to a functional 

reprogramming of endocrine and metabolic processes within AT and results in AT 

inflammation (Figure 1.2.6). EV release is also increased during hypoxic conditions 

and functional studies have shown hypoxic EVs may enhance disease pathology. 

Therefore, EVs released from hypoxic adipocytes may initiate or enhance the shift 

towards inflamed adipocytes which are associated with an increased cardiovascular 

risk. This chapter sought to characterise the effects of O2 on adipocyte EV release. 

 

The actual concentration of O2 surrounding adipocytes in vivo is unknown, largely 

due to the complexity and diversity of AT between individuals. The most recent 

estimation of AT pO2 is between 3 and 11% (365) though values vary greatly 

between studies. A major reason for the observed differences in reported pO2 values 
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may be due to the use of different techniques to measure AT oxygenation (see 

Chapter 1.2.6). Furthermore, the majority of techniques used to measure AT pO2 are 

probe-based meaning O2 is only measured in a specific part of the tissue so the 

reading may not represent that of the whole tissue. Therefore in this chapter, 3T3-L1 

adipocytes were incubated at a range of different O2 levels (1% to 21%) for 24 hours 

to compare differences in both the cells and the EVs following this period, but also 

to establish a pathologically relevant “hypoxic” condition for 3T3-L1 adipocytes. 

Morphology, cell number and viability were unchanged between different O2 

conditions, though 1% O2 cells bore more of a resemblance to preadipocytes. Lipid 

droplet accumulation has been shown to be reduced in 3T3-L1 adipocytes incubated 

in 5% O2 (for 1 week) due to increased lipolysis (467). Mobilisation of FFAs is 

increased in hypoxic adipocytes (368,467) and in obesity (468,469). Oil Red O 

staining of 1% O2 cells showed no difference compared to normoxic cells, though 

this technique may not be sensitive enough to detect more subtle metabolic changes 

(470). 

 

Previous studies have shown increased concentrations of EVs in hypoxia in: cancer 

cell lines (241,463,471); endothelial cells (472); and increased exosomal protein 

content of placental- (473) and adipocyte-derived EVs (390) from hypoxia. Data 

presented in this chapter are in agreement with these studies. A significant elevation 

in adipocyte-derived EV concentration was observed only in 1% O2, with no 

difference in overall mode size compared to normoxic controls. Interestingly, when 

EV concentrations were plotted in 50 nm bin-widths, this increase in 1% O2 samples 

was shown to be attributable to EVs in the range of 50 – 200 nm. Also EVs from 2% 

O2 samples were increased in the range of 100 – 200 nm compared to normoxia. This 

suggests a propensity for hypoxia to induce secretion of exosomes and small 

microvesicles in adipocytes which has been previously attributed (in part) to HIF-1α. 

Silencing of HIF-1α abates the hypoxia-induced increase in EV production in breast 

cancer cells (463) though the exact mechanisms through which this occurs and 

whether other transcription factors are involved are unknown. Hypoxia may induce a 

stress response (perhaps via HIF-1α) causing alterations in plasma membrane lipids 

and receptors. Such alterations may lead to an endocytic remodelling of the plasma 

membrane which may in turn favour an increase in EV formation (474). Indeed, 
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induction of HIF-1α has been shown to activate reorganisation of the actin 

cytoskeleton (475); a key requirement for EV formation (476). 

 

Plasma membrane remodelling during hypoxia may also lead to changes in 

phospholipid distribution across the plasma membrane. Reorganisation of the normal 

phospholipid asymmetry is thought to be a precursory event in EV generation, 

primarily though the externalisation of PS. To assess this, hypoxic (1-21% O2) and 

normoxic cells and EVs were analysed for their annexin V positivity, a measure of 

PS exposure. Unfortunately, there was great variation in the reported baseline 

annexin V positivity of cells and EVs between hypoxic experiments, therefore 

hypoxic samples were expressed as a delta change from normoxic annexin V 

positivity for a given experiment. Cells from 1% O2 were significantly more annexin 

V positive than normoxic cells. This is in keeping with hypoxia increasing exposure 

of PS on the outer leaflet of the plasma membrane as a precursor to increased EV 

generation. Interestingly, there was no change in the annexin V positivity of 1% O2 

EVs compared to normoxic controls. As discussed in Chapter 4, the PS exposure of 

EVs is often used as an indicator of the procoagulant potential of EVs which is 

unlikely to be an important feature of adipocyte-derived EVs. Furthermore, the 

increased PS positivity of 1% O2 cells may serve as a reservoir for increased EV 

generation and therefore the concentration of EVs increases but the annexin V 

positivity of individual EVs remains the same. The annexin V positivity of 5% O2 

EV was significantly reduced compared to normoxic EVs indicating exposed PS was 

reduced in 5% O2 EVs. However, the raw percentage of annexin V positivity 

(Figure 5.3.6 A) shows great deviation between 5% EV replicates, meaning the data 

are likely to be skewed by an outlier. Therefore, greater „n‟ numbers may be required 

to ensure this reduction is real. 

 

Lipids play fundamental roles in forming energy reserves and in maintaining cell and 

organelle structure, though they are often overlooked as potential signalling 

mediators. It is estimated that up to two-thirds of the EV volume is composed of 

lipids (78), indicating an important role for lipids in EV function. Here, the fatty acid 

composition of normoxic and hypoxic (1-21% O2) cells and EVs was analysed to 
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evaluate potential functional changes. No changes were observed in overall fatty acid 

concentration between hypoxic and normoxic cells and EVs. Fatty acid 

concentration of 1% O2 cells was reduced compared to normoxic cells though this 

was not significant. This is in agreement with morphological data of 1% O2 cells 

which looked to have reduced lipid droplet accumulation, though no difference was 

observed in Oil Red O staining. GC-FID is a more sensitive assessment of the 

presence of lipids than Oil Red O staining which may account for difference between 

the two techniques. 

Analysis of individual fatty acids revealed compositional differences in four fatty 

acids between normoxic and hypoxic EVs. Palmitic acid was increased in hypoxic 

cells compared to normoxic cells. Palmitic acid is a major storage fatty acid (439) 

however, lipid storage (as indicated by total fatty acid concentration and Oil Red O 

staining) was not different between normoxic and hypoxic cells. Diets enriched in 

SFAs promote ectopic lipid storage, increase mean adipocyte size, and promote 

adipose tissue inflammation (477). Here both stearic acid and SFAs overall were 

increased in lower O2 conditions (<2% O2) perhaps indicating a shift towards 

dysfunction compared to normoxic cells. Conversely, MUFAs as a whole, including 

palmitoleic acid were decreased in hypoxic cells. Palmitoleic acid has been shown to 

have beneficial effects on glucose metabolism in adipocytes compared to palmitic 

acid (478). Therefore glucose metabolism in lower O2 conditions may be impaired 

due to a decreased abundance of palmitoleic acid. A simultaneous increase in SFAs 

and decrease in MUFAs in hypoxia may be due to reduced activity of stearoyl-CoA 

desaturase enzymes which require O2 to desaturate SFAs to MUFAs (479). 

Interestingly, the MUFA oleic acid was upregulated in 2% O2 cells. Oleic acid has 

been shown to improve IR and have anti-inflammatory effects (480) suggesting the 

negative effects of lower O2 may be abrogated slightly in 2% O2 cells. 

The same four fatty acids were altered in EVs with hypoxia though the effects were 

not always the same as in the cell of origin. Palmitic acid was increased and 

palmitoleic acid was decreased in 1% O2 EVs compared to normoxia, largely 

reflecting 1% O2 cells. Oleic acid was increased in 1% O2 EVs, however, suggesting 

EVs may reflect the fatty acid profile of the cell to some extent, but also possess 

unique differences. The enrichment of oleic acid in 1% O2 EVs may help to 
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counteract the potential negative effects of palmitic acid in EVs. Intriguingly, when 

the fatty acid composition of 1% O2 EVs was compared directly with 1% O2 cells, a 

number of compositional differences were observed. Hypoxic EVs (1% O2) were 

preferentially enriched in SFAs and less abundant in MUFAs than 1% O2 cells. In 

tumour cells, increased SFAs in hypoxia were shown to promote stress of the 

endoplasmic reticulum (ER) (479), suggesting hypoxic EVs may be more potent at 

inducing ER stress. Furthermore, hypoxic EVs were richer in PUFAs compared to 

hypoxic cells, particularly arachidonic acid and α-linolenic acid. This suggests that 

hypoxic EVs harbour greater signalling potential compared to their corresponding 

cells as arachidonic acid and α-linolenic acid are precursors for eicosanoid signalling 

molecules (445,481). Additionally, α-linolenic acid can also induce PAI-1 

expression, an adipokine with connotations in the development of inflammatory AT 

(482,483). However, α-linolenic acid is an ω-3 fatty acid, and is generally regarded 

as anti-inflammatory (484). Together, the results confirm that EVs are specifically 

packaged with a particular cargo and do not merely reflect uptake of the cellular 

milieu. 

 

Phospholipids form the structural basis of cell membranes, providing a permeability 

barrier but also a source of bioactive fatty acids (485). Two-dimensional TLC was 

used to identify the major phospholipid groups followed by GC to characterise 

individual fatty acids within each phospholipid group in normoxic and hypoxic cells 

and EVs. No changes were observed in the proportions of phospholipids between 

normoxic and hypoxic cells. One may have expected an increased proportion of PS 

in hypoxic cells given their increased annexin V positivity. However, annexin V 

positivity is a measure of the external exposure of PS whereas TLC with GC-FID 

measures the total proportion of PS in the phospholipid membranes of the cell. 

Therefore, externalisation of PS may be higher in hypoxic cells but the overall 

proportion of cellular PS is not changed from normoxia. EVs showed a number of 

proportional changes in phospholipids between normoxia and hypoxia which are 

discussed below with respect to changes in individual fatty acids. 

Across all phospholipid samples measured, the most abundant fatty acids were 

usually palmitic acid, palmitoleic acid and stearic acid and hence overall, SFAs and 
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MUFAs were the dominant classes of lipids. This is likely due to their roles in 

membrane structure as SFAs maintain structural rigidity of membranes (439) whilst 

MUFAs add flexibility to preserve membrane dynamics. Again, as noted in Chapter 

4, EVs contained a higher composition of PUFAs compared to cells. PUFAs can be 

used to generate eicosanoids such as arachidonic acid that can go on to activate a 

number of signalling pathways. Indeed, arachidonic acid was also enriched in EVs, 

particularly hypoxic EVs, suggesting EVs may be equipped with a greater cargo of 

signalling fatty acids compared to cells and normoxic EVs. 

PE and PC were the dominant phospholipids detected in both cells and EVs, as 

reported in Chapter 4 and elsewhere (442,443). The proportion of PE was reduced in 

hypoxic EVs despite no change in cellular PE. PE and PS are known to be co-

regulated (486) so perhaps the increase in PS in hypoxic EVs caused a concurrent 

decrease in PE.  

Sphingomyelin, a major structural lipid and component of plasma membrane lipid 

rafts, was reduced in hypoxic EVs. Reduced sphingomyelin content has previously 

been shown to enhance insulin sensitivity in cells (487). Impaired insulin sensitivity 

is a hallmark of obesity and related disorders, therefore hypoxic EVs may have a 

reduced sphingomyelin content in an attempt to maintain insulin sensitivity in 

deteriorating AT. As in Chapter 4, sphingomyelin samples contained high 

proportions of SFAs which may contribute to the structural role of sphingomyelin. 

Sphingomyelin is also known to be required for exosome secretion by providing the 

required lipids for ceramide production (25). Unfortunately, ceramide content of EVs 

was not measured here, though the proportion of sphingomyelin was reduced in 

hypoxic EVs, perhaps indicating an increased conversion to ceramide in order to 

generate the increased concentration of EVs observed in hypoxia. 

The mitochondrial phospholipid, cardiolipin, was found to be present in all samples, 

and was decreased in hypoxic EVs. A previous study found no change in the 

proportion of cardiolipin between normoxic and hypoxic prostate cancer cells (488). 

Though the proportion of cardiolipin was not changed between normoxic and 

hypoxic cells, the fatty acid composition was very different. Cardiolipin in normoxic 

cells was rich in MUFAs whilst hypoxia cells were rich in SFAs. A greater degree of 

unsaturated fatty acids is associated with an increased interaction with cytosolic 
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proteins such as FABP4 (448). Therefore, the increased saturation of fatty acids in 

hypoxic cells may impair their ability to interact with cytosolic proteins such as 

FABP4. Despite being a mitochondrial-associated phospholipid, cardiolipin was 

detected in both normoxic and hypoxic EVs. This may be due to experimental error 

when scraping TLC plates for GC as cardiolipin is close to PE after separation 

(Figure 2.5), perhaps resulting in PE contamination. However, the profiles of fatty 

acids of cardiolipin in EVs detected are very different to those detected in PE in EVs, 

arguing against significant PE contamination. Profiles of fatty acids in EVs were also 

similar to those of cells, suggesting EVs contain cardiolipin in a similar composition 

to that of the cell. 

As discussed before, PS is predominantly distributed on the inner leaflet of the 

plasma membrane. The anionic nature of PS allows it to serve as a point of initiation 

for intracellular signalling cascades for second messengers such as protein kinase C 

(449,450). PS was increased in hypoxic EVs, again suggesting that hypoxic EVs 

have an increased signalling capacity compared to normoxic EVs. Normoxic EVs 

had a higher composition of α-linolenic acid compared to hypoxic EVs in PS, but 

also in the majority of other phospholipids. α-linolenic acid has been shown to be 

important in normal adipocyte functioning (440) and may have anti-inflammatory 

effects (484), suggesting that a reduced amount (as in hypoxic EVs) may be 

detrimental to the recipient adipocytes. 

 

Adipocytes are known to synthesise and secrete an array of adipokines, many of 

which are dysregulated in obese AT. Here, a selection of adipocyte, hypoxia-

associated, and inflammatory proteins were analysed in cells and EVs to determine 

differences between normoxia and hypoxia. Cell lysates were analysed using 

Western blotting and compared using optical density of bands relative to that of β-

actin. EVs were analysed using an immunophenotyping method, described in 

Chapter 4. 

Of the three adipocyte proteins analysed, cellular levels of FABP4 appeared to be 

increased by hypoxia whilst adiponectin showed a slight reduction and PPARγ was 

significantly reduced. No changes were observed in EV adipocyte proteins between 

normoxia and hypoxia. FABP4 expression is abundant in AT due to its role in 
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shuttling fatty acids and lipid molecules around and between cells (455). However, 

FABP4 has been implicated in a number of obesity-related pathologies such as heart 

disease (489), metabolic syndrome (349) and atherosclerosis (490). Indeed, mouse 

models have illustrated that silencing FABP4 prevents mice from developing IR 

(324) and can ameliorate the symptoms of type 2 diabetes and atherosclerosis (350). 

Here, hypoxia looked to increase cellular protein expression of FABP4 despite 

previous studies indicating a reduction in FABP4 expression in hypoxic adipocytes 

(491,492). However, these studies measured the mRNA levels of FABP4 which 

were not monitored here. The apparent increase in cellular FABP4 here is likely due 

to decreased β-actin content in hypoxic cells probed for FABP4. β-actin was not 

shown to be different in other Western blots, suggesting a slight discrepancy in the 

β-actin result of the FABP4 blot. Vesicular FABP4 content was not changed between 

normoxic and hypoxic cells, indicating no effect of hypoxia on EV FABP4 content. 

The nuclear receptor PPARγ is required for both the induction and maintenance of 

adipogenesis (320). Previous studies have shown that hypoxia blunts preadipocyte 

differentiation through inhibition of PPARγ gene expression, and levels of PPARγ 

mRNA are lower in hypoxic adipocytes (371,381). Here, PPARγ protein expression 

was significantly reduced in hypoxic adipocytes, suggesting hypoxia effects PPARγ 

expression at both the gene and protein level. PPARγ content of hypoxic EVs, 

however, was not different to normoxic EVs suggesting this change in PPARγ 

expression was not passed on to the EV. 

Adiponectin is an adipokine that can be detected in the circulation with metabolic 

and anti-inflammatory properties (371). Circulating adiponectin levels of obese 

subjects have been shown to be lower than those of healthy subjects (493) suggesting 

a role for adiponectin in physiological AT function. Cellular adiponectin expression 

was decreased in hypoxic cells though this was not significant. Previous studies have 

found that hypoxia reduces adiponectin mRNA expression through negative 

regulation of the adiponectin promoter (371). Adiponectin content of EVs was not 

different between normoxia and hypoxic EVs again suggesting this change in 

adipocyte protein expression was exclusive to the cell. 

Of the inflammatory markers measured in cell lysates, no changes were observed in 

TNF-α or IL-10 between normoxia and hypoxia, and IL-6 could not be detected. No 
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changes were observed in the EV protein content of TNF-α, IL-6 or IL-10 between 

normoxia and hypoxia. The systemic inflammation in obesity is characterised by 

elevated circulating levels of IL-6 and TNF-α (364) and levels of IL-6 and TNF-α 

mRNA have been shown to be elevated in hypoxic adipocytes (380). The latter study 

also conducted a time-course of expression of inflammatory genes showing that 

upregulation of TNF-α mRNA is transitory, peaking at 2 hours incubation in hypoxia 

then returning to normoxic levels by 4 hours. Therefore, the hypoxia-induced 

increase in TNF-α may have been missed in the experiments conducted as part of 

this thesis due to the 24 hour incubation time. Wang et al., also showed that IL-6 

mRNA expression reached a peak at 24 hours in hypoxia (380) though here cellular 

IL-6 protein expression could not be detected after 24 hours in hypoxia. IL-6 is often 

secreted into the supernatant or extracellular space, so if the protein expression did 

indeed change, this protein may have been secreted from the cell without changing 

the intracellular levels. Indeed, hypoxia has previously been shown to induce IL-6 

and TNF-α secretion into 3T3-L1 supernatants (494). Perhaps the same is also true 

for IL-10, an anti-inflammatory adipokine, which showed no change in cellular 

protein expression following hypoxia. IL-10 has previously been detected in 3T3-L1 

supernatants (495), suggesting the majority of these cytokines may be secreted. IL-6, 

TNF-α and IL-10 were detected in EVs but no changes were observed between 

normoxia and hypoxia suggesting that hypoxic EVs do not have an altered 

inflammatory protein profile to normoxic EVs.  

Hypoxia in any cell type is usually characterised by an elevated expression of HIF-

1α, a transcription factor which regulates the cellular response to hypoxia. In fact, 

HIF-1α is thought to inhibit the gene expression of PPARγ and adiponectin (369) 

which may explain the reduced level of PPARγ and the non-significant reduction in 

adiponectin here in hypoxic adipocytes. Cellular levels of HIF-1α were significantly 

increased in hypoxic cells, confirming hypoxia at the molecular level and in keeping 

with previous in vitro hypoxia studies. Furthermore, HIF-1α expression is increased 

in obese mouse (369) and human AT (370), confirming both a role for HIF-1α in the 

adipocyte response to hypoxia, and also the presence of hypoxia in AT. No change 

was observed in HIF-1α content of EVs; however, recent data from our lab suggests 

that increased EV release from endothelial cells in hypoxia may, in part, be mediated 

by HIF-1α. 
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Adipocyte hypoxia is thought to stimulate the activation and migration of tissue-

resident and distal Mϕ towards the site of hypoxia where they become 

proinflammatory and create AT dysfunction (Figure 1.2.6). MCP-1 is a protein 

secreted from a number of cell types (including adipocytes) to stimulate recruitment 

of monocytes and T cells. Cellular MCP-1 mRNA and secretory protein has 

previously been shown to be elevated in hypoxic adipocytes and was subsequently 

shown to be responsible for Mϕ recruitment to hypoxic adipocytes (494). Here, 

cellular MCP-1 protein showed no change between normoxia and hypoxia, though 

again, this may be because the majority of MCP-1 is secreted from the cell into the 

surrounding milieu. Interestingly, levels of MCP-1 were increased in hypoxic EVs, 

suggesting that hypoxic vesicles have an increased capacity to drive Mϕ migration.   
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5.4.3 Limitations 

Many of the same limitations outlined in Chapter 4.4.3 apply to this chapter 

including the use of 3T3-L1 cells to study adipocyte EVs, the differential 

ultracentrifugation protocol to isolate EVs, the use of FC to assess the annexin V 

positivity of EVs, and the use of serum-free media for EV isolation. 

A hypoxic chamber was used to control O2 levels, meaning only one hypoxic 

condition could be analysed at a time. Therefore different O2 conditions were 

conducted as individual experiments with their own normoxic controls so that 

comparisons could be made between experiments. Variation was observed between 

different hypoxic experiments meaning some data had to be expressed as a change 

from the respective control. However, great care was taken to ensure consistency 

was maintained between experiments to minimise potential variation. 

The duration of the hypoxic challenge used in this study was 24 hours in serum-free 

media. Proteins such as TNF- α have a rapid response to hypoxia (<2 hours) (380) 

meaning peaks in protein expression may have returned to baseline by 24 hours. 

However, 24 hour incubation was required to ensure adequate EV generation for 

subsequent analyses. Future experiments could look to analyse changes in cellular 

and EV protein over a series of time points in order to capture the full spectrum of 

changes. Other studies have also observed changes in mRNA expression with 

hypoxia. These could also be analysed in EVs to see whether functional changes in 

mRNA in hypoxic adipocytes are incorporated into hypoxic vesicles. 

Immunophenotyping in this chapter was conducted slightly differently to that 

described in Chapter 4 in an attempt to reduce the previous limitations. However, the 

concentration of EVs used per well was based on pilot data from endothelial EVs, 

which may possess different characteristics to adipocyte-derived EVs; therefore EV 

immunophenotyping data should be validated using Western blotting. 

The increased exposure of PS measured in 1% O2 cells could be inferred as hypoxia-

induced is induced apoptosis in these cells. Apoptosis also causes PS externalisation 

and release of apoptotic bodies (which are included in by many in the EV field as 

EVs, though they often form vesicles > 1µm) (17). However, the overall viability of 

1% O2 cells was not affected and the hypoxia-induced increase in EV concentration 

was observed in the exosomal and smaller microvesicle range. This suggests that 1% 
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O2 presented a genuine hypoxic challenge that did not induce apoptosis, and release 

of apoptotic bodies was not responsible for the observed increase in EV release. To 

completely confirm this however, propidium iodide could be used in combination 

with annexin V to fully assess the apoptotic state of adipocytes using FC. 

Finally, “normoxia” in this thesis refers to a standard cell culture incubator which 

provides cells with a gas mixture of 95% air and 5% CO2. As previously described, 

the actual pO2 of adipocytes and AT is unknown, but is estimated to be 3-11% O2 

(365). Therefore a “normoxic” condition of 95% air (containing 21% O2) may 

provide slightly hyperoxic conditions to adipocytes. However, AT pO2 measurement 

is extremely difficult and is often representative of the area surrounding the oxygen 

probe, meaning measurements are only reflective of small sections of tissue. Until 

more accurate measurements of adipocyte and AT pO2 are published, the most 

sensible option for normoxic conditions seems to be cell culture incubators. 

 

5.4.4 Conclusions 

In summary, hypoxia significantly affected the production of adipocyte-derived EVs, 

particularly at 1% O2. Hypoxic cells released a greater overall concentration of EVs 

(predominantly exosomes and small microvesicles). These hypoxic EVs were 

equipped with fatty acids associated with negative effects on adipocyte function, and 

a change in phospholipid fatty acids that is suggestive of an increased signalling 

potential. Hypoxia seemed to interfere with specific aspects of adipocyte functioning 

such as regulation of adipokine production and lipid droplet storage. Hypoxic EVs 

were also enriched with MCP-1 suggesting these EVs may facilitate the recruitment 

of Mϕ to hypoxic adipocytes thereby promoting a proinflammatory, hypoxic 

environment. Therefore, hypoxic EVs may assist the progression of adipocyte 

dysfunction in hypoxia. Future studies should look to further characterise these EVs 

for functional changes in mRNA and microRNA expression and determine whether 

these EVs can have a detrimental effect on adipocytes and other cells resident in AT 

such as Mϕ and endothelial cells. 
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6. Results IV: 

The effects of hypoxic adipocyte-derived 

extracellular vesicles on macrophage function 
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6. Perspective 

Having shown that hypoxia could increase the concentration and change the 

characteristics of EVs released from adipocytes in Chapter 5, I wanted to test 

whether this translated into differential functionality. Therefore, this chapter 

examines the potential effects of hypoxic EVs on Mϕ phenotype and migration. 

Unfortunately due to logistical problems and practical issues with establishing the 

model system at the laboratory of a collaborator, experimental repetitions could not 

be completed in time and thus data presented in this chapter present beginnings of 

work that is on-going. 

 

 

 

 

 

  

Parts of this chapter have been published in: 

Connolly KD, Guschina IA, Chauhan P, Devitt A, Hassan N, Morris K, Clayton A, 

Rees DA, James PE (2015). Extracellular vesicles secreted from adipocytes 

exposed to hypoxia and their effects on macrophage chemotaxis and phenotype. 

Journal of Extracellular Vesicles. 4: 27783; P-VIII-16. 
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6.1 Introduction 

As discussed in Chapters 1 & 5, obesity is complex condition associated with a 

variety of comorbidities and diseases such as CVD, T2D, metabolic syndrome, 

cancer and many others (496–498). Obesity is also characterised by a low grade of 

systemic inflammation and inflamed AT (352) though the sequence of events leading 

to obesity-associated inflammation are unknown. Hypoxia, caused by expanding AT, 

is one possible initiator of the production of localised and circulating 

proinflammatory factors by adipocytes and AT-resident Mϕ (352,371,460,461). 

Chapter 5 illustrated how hypoxic conditions can enhance EV release, suggesting 

hypoxic adipocyte-derived EVs could have a part to play in the initiation of 

inflammation induced by hypoxia. 

Tissue resident Mϕ are highly heterogeneous (499) and are found in a variety of 

tissues including the liver, kidneys, bone, the central nervous system and AT (500). 

As well as tissue specific functions, tissue-resident Mϕ are important regulators of 

innate immunity as they are able to phagocytose foreign and necrotic material and 

initiate the recruitment of additional Mϕ and leukocytes (501). However, a specific 

role for Mϕ in AT has not been identified. The heterogeneity of Mϕ allows their 

phenotype to be influenced by the tissue microenvironment. Changes in Mϕ 

phenotype generally follow two lines of polarisation: M1 and M2 (499). 

Proinflammatory mediators such as lipopolysaccharide and interferon-γ induce 

polarisation towards a classically activated (M1) phenotype which further promotes a 

proinflammatory environment through the production of cytokines such as TNFα, 

IL-1β and IL-6 (338,502). Alternatively activated (M2) Mϕ are produced in response 

to anti-inflammatory stimuli such as IL-4, and promote an anti-inflammatory 

phenotype through increased generation of IL-10, IL-1 receptor antagonist (IL-1Ra) 

and dectin-1 (338,503,504). Mϕ in lean AT are predominantly of an M2 phenotype, 

whereas Mϕ in obese AT are of an M1 phenotype (Figure 1.2.5) (338,502). High-fat 

feeding of mice has been shown to induce a phenotypic shift in polarisation of AT 

Mϕ from an anti-inflammatory M2 state to a pro-inflammatory M1 phenotype (338). 

Furthermore, the production of proinflammatory cytokines such as TNFα and IL-6 

by M1 Mϕ in obese AT can inhibit insulin signalling within adipocytes, contributing 

to the emergence of IR (460). 
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In addition to an altered phenotype of tissue-resident Mϕ, obese AT is also infiltrated 

by increased numbers of Mϕ (460,500,505), though the mechanism by which this 

occurs is unknown. Mϕ within obese AT often form crown-like structures (CLSs), 

surrounding necrotic and apoptotic adipocytes (506). CLSs in obese AT have also 

been found in association with hypoxia (507), suggesting a link between hypoxia and 

the infiltration of Mϕ (Figure 1.2.6). Hypoxia is likely to induce activation of 

adipocytes and eventually apoptosis and necrosis if the hypoxia persists or remains 

unresolved (e.g. by new blood vessel growth). Chapter 5 illustrated how hypoxia 

(1% O2) induced the release of EVs from adipocytes that were enriched in MCP-1 

and pro-signalling fatty acids. Recently, Eguchi et al., demonstrated how adipocytes 

activated by palmitic acid produced microparticles that actively cause Mϕ migration 

in vitro and in vivo (48) highlighting the potential functional interactions of 

adipocyte EVs with Mϕ. Therefore, hypoxic adipocyte-EV release may cause 

recruitment of Mϕ to hypoxic AT which may further exacerbate the 

hypoxic/inflammatory environment and contribute to the development of obesity-

associated inflammation. 

 

6.1.1 Aims 

This chapter aimed to compare the effects of normoxic and hypoxic adipocyte-

derived EVs on: 

 M1 Mϕ cytokine release  

 M2 Mϕ gene expression markers 

 Mϕ migration 

 

6.1.2 Hypotheses 

Hypoxic adipocyte-derived EVs may promote a proinflammatory phenotype in Mϕ 

by increasing M1 cytokine production, decreasing M2 gene expression and 

enhancing Mϕ migration. The release of EVs from hypoxic adipocytes may therefore 

contribute to the initiation of inflammation in obese AT.  
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6.2 Methods 

6.2.1 3T3-L1 culture and extracellular vesicle isolation 

3T3-L1 cells were cultured using T175 cm
2
 flasks to a mature phenotype (14 days 

post-differentiation) as described in Chapter 2.2. Cells were then exposed to 

normoxic or hypoxic conditions as outlined in Chapter 5.2.1. Conditioned serum-

free media for EV isolation was collected and processed as before (Chapter 5.2.1). 

The concentration of EV isolates was measured by NTA on the day of isolation and 

EVs were then stored as described in Chapter 2.3.3. 

 

6.2.2 THP-1 phenotype assay 

Human promyelocytic cells (THP-1) were cultured by Mr Nurudeen Hassan (Cardiff 

Metropolitan University) in RPMI 1640 (Gibco, UK) supplemented with 10% heat-

inactivated FCS (Labtech International), 1% sodium pyruvate, 1% non-essential 

amino acids and 1% penicillin (100 IU/mL )/streptomycin (100 µg/mL, all given 

(v/v), Gibco). THP-1 were differentiated into Mϕ in vitro using 6 x 10
5
 cells/mL 

treated with 8 nM phorbol-myristate-acetate (PMA; Sigma) for 48 hours. 

Differentiation was maintained using serum-free media without PMA for a further 

48 hours. Normoxic or hypoxic EVs (100µL) were then added to cells in 6 well 

plates. Following a 24 hour incubation with EVs, cell supernatants were collected for 

assessment of classical M1 cytokine secretion by ELISA. Cells were then processed 

for RNA isolation and qPCR of classical M2 markers. 

 

6.2.3 ELISA 

Human TNF-α and IL-1β DuoSet® ELISA kits (R&D systems, UK) were used to 

quantify the release of M1 cytokines into cell supernatants following incubation with 

normoxic or hypoxic EVs. M1 cytokines were analysed by ELISA as they are more 

readily secreted compared to M2 cytokines. Assays were completed according the 

standard manufacturers protocol.  
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6.2.4 Quantitative reverse transcription PCR 

RNA was isolated from Mϕ following incubation with EVs using TRI Reagent (Life 

Technologies, ThermoFisher, UK) according to the manufacturer‟s instructions. 

Isolated RNA was converted to cDNA using a High Capacity cDNA Reverse 

Transcription kit (Applied Biosystems, UK). M2 marker gene expression was then 

analysed using reverse transcription (RT)-PCR with Fast SYBR® Green and a Fast 

7500 Real-Time PCR System (Applied Biosystems). Relative gene expression was 

compared to GAPDH and calculated using the comparative CT method (2
-ΔΔCT

). 

Primer sequences are given in Appendix: Table VII. 
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6.2.5 THP-1 migration assay 

THP-1 cells for migration assays were cultured by Miss Parbata Chauhan (Aston 

University). A sterile glass coverslip (22 x 22 mm) was carefully added to each well 

of a 6 well plate and coated with poly-D-lysine hydrobromide solution (0.1 mg/mL 

in sterile water). THP-1 culture medium consisted of RPMI 1640 (Sigma, UK) 

supplemented with 10% (v/v) FCS, 2 mM L-glutamine, 100 µg/mL streptomycin and 

100 IU/mL penicillin (all Gibco, UK). THP-1 cells (at a density of 4 x 10
5
 cells) 

were stimulated with 100 nM 1,25-dihydroxvitamin 3 and added to each well 

containing a coverslip. Mϕ were then incubated for up to 3 days at 37°C and 5% 

CO2. 

Once the Mϕ had sufficiently adhered to the glass coverslips, the Dunn chamber 

(DCC100, Hawksley, UK) was prepared for the migration assay (Figure 6.2.1 A). 

Both inner and outer wells were filled with chemically defined Mϕ medium (Gibco, 

UK) and the glass coverslip was placed atop the Dunn chamber with the adhered Mϕ 

on the underside. The coverslip was then gently positioned to expose a small slit of 

the outer well and was fixed into place using candle wax. The outer well was drained 

of Mϕ medium using Whatman filter paper, and 100 µL of normoxic or hypoxic EVs 

was slowly introduced, avoiding any air bubbles. The outer well and edges of the 

coverslip were then completely sealed with candle wax and coated with Vaseline® 

petroleum jelly (Unilever, UK) to prevent air bubbles being introduced and drying 

out of the chamber.  

The Dunn chamber was then placed under a Zeiss Axiovert 200 M fluorescent 

microscope (Carl Zeiss Ltd., UK) in a humidity-controlled sealed chamber that was 

preheated to 37°C. The microscope was focused over the bridge between wells 

(Figure 6.2.1 B) at 10X magnification for 2 hours, with an image being captured by 

a Hamamatsu Orca camera driven by Volocity™ (version 6.3, Perkin-Elmer, UK) 

every 10 minutes (eventually creating 13 frames).  
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Figure 6.2.1: Mϕ migration assay using a Dunn chamber. Schematic summarising the 

experimental theory of using a Dunn chamber to monitor Mϕ migration. (A) Set-up of the 

Dunn chamber. A glass coverslip with Mϕ adhered to the underside was positioned so that a 

small slit of the outer well was exposed allowing for draining and filling. The coverslip was 

secured in place using wax and the outer well was filled with 100 µL of normoxic or 

hypoxic EVs. The filling slit and the edges of the coverslip were then completely sealed with 

wax. (B) A cross-section of the Dunn chamber illustrates how Mϕ adhered to the coverslip 

can migrate across the bridge between inner and outer wells, which is 20 µm in diameter. 

 

Images collected over the course of the assay were then exported as stacked tagged 

image file format files, and imported into ImageJ software (version 1.49, National 

Institutes of Health, USA). Forty cells were individually tracked per sample using 

the “Manual Tracking” plugin (Figure 6.2.2 A). Tracks were then saved and 

imported into the Chemotaxis and Migration Tool plugin (Ibidi GmbH, Germany). 

Mϕ migration was then plotted as illustrated in Figure 6.2.2 B (with Mϕ beginning 

at the intersect and the hypothesised chemoattractant at the northern point). Mϕ were 

then assessed for: 

 Angle of migration 

 Accumulated distance (cumulative distance migrated, μm) 

 Euclidean distance (as the crow flies, μm) 
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 Directionality (Euclidean distance/accumulated distance): 0 (indirect) → 1 

(direct) 

 yFMI (forward migration index along the y axis/accumulated distance) 

 Velocity (speed of migration, µm/sec). 

 

Figure 6.2.2: Tracking and analysis of Mϕ. Stacked images of Mϕ were manually tracked 

using ImageJ software and analysed using a chemotaxis and migration tool. (A) An example 

of the manual tracking of an individual Mϕ over 13 frames creating a path of migration 

(yellow). (B) An example plot of forty individual Mϕ tracks from which the overall 

migration of the sample is analysed by a series of parameters. The intersect marks the 

starting position of the cells and the northern point indicates the position of the hypothesised 

chemoattractant. 

 

6.2.6 Statistical analysis 

Data were analysed using GraphPad Prism software (version 6.0). Normoxic and 

hypoxic data were compared using an unpaired Students t-test, data are presented as 

mean ± SD (unless otherwise stated) and a p values of <0.05 was considered 

statistically significant. 
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6.3 Results 

6.3.1 M1 cytokine secretion 

The effect of normoxic and hypoxic adipocyte EVs on M1 cytokine secretion was 

measured by ELISA. No difference was observed in the secretion of IL-8 and TNF-α 

with incubation of normoxic or hypoxic EVs (IL-8: normoxia; 55.6 ± 14.8 pg/mL vs. 

hypoxia; 65.2 ± 8.7 pg/mL, Figure 6.3.1 A, TNF-α: normoxia; 9.5 ± 1.2 pg/mL vs. 

hypoxia; 10.7 ± 0.2 pg/mL, Figure 6.3.1 B). Mϕ secretion of IL-1β was reduced 

following incubation with hypoxic adipocyte EVs (normoxia; 2.4 ± 0.06 pg/mL vs. 

hypoxia; 1.0 ± 1.2 pg/mL, Figure 6.3.1 C). 

 

6.3.2 M2 mRNA expression 

The effect of normoxic and hypoxic EVs on M2 gene expression was measured 

using qRT-PCR. Mϕ expression of IL-10 and IL-1Ra were unchanged between 

incubations of normoxic or hypoxic EVs (IL-10: normoxia; 1.2 ± 0.3 fold change vs. 

hypoxia; 1.2 ± 0.1 fold change, Figure 6.3.1 D, IL-1Ra: normoxia; 1.4 ± 0.3 fold 

change vs. hypoxia; 1.3 ± 0.2 fold change, Figure 6.3.1 E). Expression of dectin-1 

showed a slight increase following incubation with hypoxic EVs (normoxia; 0.9 ± 

0.1 fold change vs. hypoxia; 1.3 ± 0.2 fold change, Figure 6.3.1 F). 
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Figure 6.3.1: Effects of hypoxic adipocyte EVs on Mϕ phenotype. Alterations in the 

phenotypic characteristics of THP-1 Mϕ following incubation with normoxic or hypoxic 

3T3-L1 adipocyte-derived EVs. Release of M1 cytokines including (A) IL-8, (B) TNF-α and 

(C) IL-1β (pg/mL) were measured by ELISA. Gene expression of M2 markers including (D) 

IL-10, (E) IL-1Ra and (F) Dectin-1 (fold change compared to GAPDH) were measured by 

qRT-PCR. Technical repeats (n=3), experimental repeats (n=1).  



Page | 215  

 

6.3.3 Mϕ migration 

The migration of Mϕ towards normoxic and hypoxic vesicles was measured using a 

Dunn chamber. Of the parameters measured (Figure 6.3.2), the distance migrated 

(both accumulated and Euclidean) and the velocity of migration showed no 

difference between normoxic and hypoxic EVs (accumulated distance: normoxia; 

189 ± 13.9 μm vs. hypoxia; 183.7 ± 19.8 μm, Figure 6.3.2 B, euclidean distance: 

normoxia; 105.6 ± 15.9 μm vs. hypoxia; 112.8 ± 23.9 μm, Figure 6.3.2 C, velocity: 

normoxia; 4.3 ± 0.9 μm/min vs. hypoxia; 4.5 ± 0.5 μm/min, Figure 6.3.2 F). There 

was a trend towards a decreased angle of migration (normoxia; 109.5 ± 20.2° vs. 

hypoxia; 91.2 ± 11.6°, Figure 6.3.2 A) and an increased directionality and yFMI 

(directionality: normoxia; 0.4 ± 0.1 a.u. vs. hypoxia; 0.6 ± 0.9 a.u., Figure 6.3.2 D, 

yFMI: normoxia; 0.3 ± 0.1 a.u. vs. hypoxia; 0.5 ± 0.1 a.u., Figure 6.3.2 E) towards 

hypoxic EVs compared to normoxic EVs. 
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Figure 6.3.2: Mϕ migration towards adipocyte-derived EVs. The migration of THP-1 Mϕ towards normoxic and hypoxic adipocyte-derived EVs was 

measured using a Dunn chamber setup. Migration was assessed by (A) the angle of movement (degrees), (B) the accumulated distance (μm), (C) the 

Euclidean distance (μm), (D) directionality (a.u.), (E) the FMI (a.u.) and (F) velocity (µm/min). Technical repeats (n=3), experimental repeats (n=1).
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6.4 Discussion 

6.4.1 Key observations 

The key observations of this chapter were: 

1. Hypoxic EVs may reduce the secretion of the inflammatory M1 marker, IL-

1β. 

2. Hypoxic EVs may enhance the gene expression of the anti-inflammatory M2 

marker, dectin-1. 

3. Mϕ may tend to migrate more efficiently towards hypoxic EVs. 

 

6.4.2 Main discussion 

Hypertrophy of adipocytes combined with a lack of supporting vascular growth in 

obesity highly increases the risk of localised hypoxia within AT (259,365). 

Alterations in adipocyte gene expression in response to hypoxia results in the release 

of an altered adipokine profile that promotes local inflammation, IR and Mϕ 

infiltration (Figure 1.2.6). Chapter 5 showed that hypoxic adipocytes also release an 

increased concentration of EVs that are enriched in MCP-1. Therefore, hypoxia may 

provide a mechanism for the onset of AT dysfunction that ultimately leads to local 

and systemic inflammation that is characteristic of obesity. This chapter sought to 

investigate whether hypoxic adipocyte-derived EVs may exacerbate this process by 

promoting the migration and phenotypic transition of Mϕ. 

Circulating monocytes and tissue-resident Mϕ are highly plastic cells, capable of 

responding rapidly to changes in the microenvironment by altering their phenotype 

and thus their function (508). AT contains a variety of immune cells, the majority of 

which are M2 Mϕ that help to maintain insulin sensitivity, glucose homeostasis and 

limit inflammation (337,508). An M2 phenotype is promoted in lean AT through the 

actions of IL-10 and PPARγ (338). However, expression of M2 polarising agents are 

reduced in obese AT and secretion of proinflammatory cytokines (such as IL-6 and 

TNF-α) from dysfunctional adipocytes is elevated, resulting in a phenotypic shift of 

AT-resident Mϕ towards an M1 phenotype (338). As hypoxia may initiate 

dysregulated adipokine secretion and alter EV production from adipocytes, M1 and 
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M2 markers were measured using THP-1 Mϕ following incubation with normoxic 

and hypoxic 3T3-L1 adipocyte-derived EVs. The M1 Mϕ phenotype is very well 

defined and M1 cytokines are readily secreted. Therefore, M1 phenotype was 

measured using ELISA to assess the release of M1 cytokines into THP-1 

supernatants. The pilot data presented here indicated that the secretion of M1 

cytokines IL-8 and TNF-α is no different between normoxic and hypoxic adipocyte 

EV incubation. The secretion of IL-1β however is reduced following incubation of 

Mϕ with hypoxic EVs. Levels of IL-1β are increased in obese AT, most likely due to 

the predominance of M1 Mϕ, and levels of IL-1β correlate with IR (502). Therefore, 

a decrease in IL-1β secretion following incubation with hypoxic EVs suggests that 

these EVs may aim to attenuate the proinflammatory response and improve insulin 

signalling. TNF-α also plays an important role in regulating insulin sensitivity in 

obesity (259) and secretion of TNF-α was not reduced by hypoxic EVs, indicating 

the anti-inflammatory properties of hypoxic adipocyte EVs may act in a TNF-α-

independent manner. In contrast to M1 Mϕ, the M2 Mϕ phenotype seems less well 

defined and may follow more of a continuum of multiple phenotypes with subtle 

changes in cytokine expression. Furthermore, markers of an M2 phenotype are not as 

widely secreted as M1 cytokines, therefore qRT-PCR was used to identify potential 

alterations in gene expression of classical M2 markers. Gene expression of IL-10 and 

IL-1Ra did not differ between normoxic and hypoxic adipocyte EV incubation. 

Previous studies have found IL-1Ra to be elevated in obese AT (509). As IL-1Ra is 

an endogenous antagonist of the proinflammatory cytokine, IL-1, this increase in 

obesity may be an attempt to combat the proinflammatory environment by blocking 

IL-1. Conversely, IL-10 expression is reduced in obese AT though expression of the 

IL-10 receptor is unchanged between lean and obese AT (338). Together, this 

suggests that obese AT attempts to maintain an anti-inflammatory environment but is 

eventually overwhelmed by proinflammatory cytokine expression. Dectin-1, a 

pattern recognition receptor expressed on the Mϕ cell surface, was slightly increased 

with hypoxic EV incubation compared to normoxic EVs. Previous studies have 

shown dectin-1 activation to lead to IL-10 mRNA expression (503) again suggesting 

the initial interaction of hypoxic adipocyte EVs with Mϕ may stimulate anti-

inflammatory pathways. 
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In addition to a transition of AT-resident Mϕ towards a proinflammatory M1 

phenotype in obese AT, the number of Mϕ present within AT is also increased 

(460,500,505), suggesting a higher rate of infiltration. Adipocyte-derived MCP-1 

seems to play a critical role in the recruitment of Mϕ to obese AT and is also 

elevated in circulating plasma and AT of obese subjects (510). Interestingly, a recent 

study found that MCP-1 expression was partially controlled by specific microRNAs 

which are dysregulated in obese subjects leading to elevated Mϕ infiltration and AT 

inflammation (511). MCP-1 mRNA and secretory protein have previously been 

found to be elevated in hypoxic adipocytes (494), and analysis of the protein content 

of EVs in Chapter 5 showed increases in MCP-1 protein in hypoxic EVs. Therefore, 

in addition to secreted MCP-1 protein, hypoxic adipocyte-derived EVs may also be 

capable of inducing Mϕ migration. Therefore, the ability of normoxic and hypoxic 

adipocyte EVs to stimulate THP-1 Mϕ migration was assessed using a Dunn 

chamber. No difference was observed in the distance (accumulated or euclidean) or 

the velocity of Mϕ movement between normoxic and hypoxic adipocyte EV. The 

angle of Mϕ movement was slightly reduced and the index of directionality was 

slightly increased with hypoxic EVs. Furthermore, the y fmi, which provides an 

indication of the efficiency of forward migration of cells along the y axis (Figure 

6.2.2 B) showed a slight increase with hypoxic EVs. Together this suggests Mϕ may 

migrate more directly towards hypoxic EVs than towards normoxic EVs. Mϕ 

migration was recently shown to be enhanced by EVs derived from adipocytes 

stimulated with palmitic acid (48). FFAs such as palmitic acid are often released 

from apoptotic and necrotic adipocytes and are able to stimulate Mϕ migration in 

order to resolve the resultant lipotoxicity. Interestingly, palmitic acid content was 

increased in hypoxic cells and EVs (Figure 5.3.8/9), suggesting hypoxia may act 

upstream of adipocyte apoptosis and necrosis by altering fatty acid metabolism to 

increase reservoirs of chemotactic lipids. Therefore, hypoxic EVs may aid the 

progression of initial Mϕ migration into hypoxic AT, perhaps due to their increased 

cargo of MCP-1 and chemotactic fatty acids. 
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6.4.3 Limitations 

The major limitation of this chapter is the lack of experimental repeats. Due to 

unforeseen circumstances, the remaining repeats could not be analysed in time for 

the submission of this thesis. It is however, anticipated that these data will be 

completed to form part of a paper on the effects of hypoxia on adipocyte-derived 

EVs and the potential influence on Mϕ migration and phenotype. The delay in 

sample processing has given me an opportunity to evaluate the experimental 

methodology and therefore, 2 alterations will be made to future experiments. Firstly, 

EVs will be added to Mϕ at set concentrations (5 x 10
9
 and 1 x 10

10
 EVs and a 1:10 

dilution of the EV resuspension) to determine whether the effects are concentration-

dependent and/or whether any observed effects are due to changes in EV 

composition between normoxia and hypoxia. Secondly, chemotaxis experiments will 

be undertaken with a pre-incubation of EVs with Mϕ, and the migration towards a 

standard chemoattractant (such as MCP-1) monitored. The EVs themselves may not 

be strong chemoattractants, however, in vivo, these EVs may be able to enhance Mϕ 

migration into hypoxic AT.  

Though MCP-1 was found to be increased in hypoxic EVs and is suspected to play a 

role in the potential chemotactic ability of hypoxic adipocyte-derived EVs, the role 

of MCP-1 was not assessed in these experiments. Future experiments could look to 

downregulate MCP-1 expression of adipocytes to see if phenotypic alterations and 

migratory ability of Mϕ are changed. However, it is also important to highlight that 

Mϕ infiltration of AT may not be solely due to increases in MCP-1 and that other 

factors may play a role. A recent study indicated that knockdown of MCP-1 only 

partially inhibited Mϕ infiltration into AT of mice fed a high fat diet (512), 

indicating a role for other adipocyte-derived chemoattractants. 

A further limitation of this study may be the time point used for Mϕ supernatant 

collection for ELISA experiments. As outlined in Chapter 5, some cytokines such as 

TNF-α may have a more rapid response time, and therefore may have peaked and 

returned to baseline by the 24 hour measurement point. Therefore, future 

experiments may seek to analyse a range of time points in order to capture the 

spectrum of response.  
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Additionally, these pilot experiments have used 3T3-L1 adipocytes and THP-1 Mϕ 

which are well-established cell lines of adipocytes and monocytes/Mϕ respectively. 

In addition to these sources being cell-lines, they are also of differing origin, with 

3T3-L1 cells being of murine origin and THP-1 cells being of human origin. 

Therefore there is a potential for sub-optimal interactions between these two cell 

lines due to species differences. However, it is hoped that these studies will provide 

important pilot data for our group that will be used to examine the interaction 

between human adipocytes and leukocytes in obesity. 

 

6.4.4 Conclusions 

To summarise, hypoxic adipocyte-derived EVs may enhance an M2 Mϕ phenotype 

by reducing IL-1β secretion and increasing dectin-1 expression. Furthermore, these 

hypoxic EVs may increase the directionality of Mϕ migration. Taken together, EVs 

derived from hypoxic adipocytes may initially intend to recruit Mϕ into hypoxic AT 

to resolve the consequences of adipocyte hypoxia (including adipocyte necrosis and 

lipotoxicity) by promoting an M2 phenotype. However, upon entering the hypoxic 

AT, the recruited Mϕ may be forced towards an M1 phenotype by the 

proinflammatory milieu generated by hypoxic adipocytes. Infiltrated Mϕ may then 

exacerbate AT inflammation by forming CLSs and adding to local secretion of 

proinflammatory cytokines which increase systemic inflammation and IR. Future 

studies should assess the ability of hypoxic adipocyte-derived EVs to stimulate Mϕ 

migration into AT in vivo and examine mechanisms to reduce this, such as inhibitors 

of EV biogenesis. 
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7. Results V: 

Evidence for adipocyte-derived extracellular 

vesicles in vivo
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7. Perspective 

The overarching focus of this thesis was to characterise the release of EVs from 

adipocytes; thus, I sought to confirm their existence in vivo. The work in this chapter 

presents pilot data to show the presence of adipocyte markers in plasma-derived EVs 

using the variety of methods used to characterise adipocyte EVs in this thesis. Data 

in this chapter also formed the basis for a successful project grant application that is 

currently on-going and continuing on from this work. 
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7.1 Introduction 

Chapter 1.2 details the importance of the autocrine, paracrine and endocrine actions 

of adipocytes and AT both in health and disease. As illustrated in Chapters 4, 5 and 

6 and by other researchers, adipocytes produce EVs in vitro (66,383,387,393). These 

EVs may facilitate differentiation of adipocytes (Chapter 4); are able to respond to 

conditions of hypoxia (Chapter 5) through interaction with Mϕ (Chapter 6 and 

(48,306)); are able to affect metabolism of neighbouring adipocytes (387) and 

promote angiogenesis in vivo (393). Despite growing evidence for autocrine and 

paracrine roles of adipocyte-derived EVs, their potential endocrine roles in vivo 

remain largely unexplored. This may be due to a number of reasons. Firstly, although 

“adipocyte-specific” proteins exist (e.g. adiponectin and PPARγ2), these adipokines 

are secretory making it difficult to identify a specific marker for adipocyte-derived 

EVs. Secondly, adipocytes in vivo exist within AT, therefore presenting a number of 

barriers between adipocyte-derived EVs and the systemic circulation.  

The initial hypothesis when undertaking this work was that adipocyte EVs could be 

identified in the circulation using adipocyte markers such as FABP4, PPARγ and 

adiponectin. During the course of undertaking this project, preliminary evidence has 

emerged for the presence of these adipocyte markers in plasma-derived EV fractions. 

FABP4-containing microvesicles in human plasma have been detected using FC 

(54). However, the use of FC for EV measurement is sub-optimal as the lower limit 

of many conventional flow cytometers is ~300 nm. Though FABP4 is largely 

generated in adipocytes, it is also expressed in Mϕ (513) and therefore should not be 

used in isolation to determine an adipocyte-derived EV population. Circulating 

levels of FABP4 correlate with IR and the metabolic dysfunction associated with 

obesity (324,348,349). Therefore, adipocyte EV-associated FABP4 may provide an 

important indication of the metabolic status of AT. Adiponectin has also been shown 

to be associated with exosomes isolated from mouse serum using Western blotting 

(514), though this has not been confirmed in human plasma-derived EVs. 

Adiponectin is specifically generated in adipocytes and is involved in maintaining 

insulin sensitivity and vascular function (319,328). Therefore, the presence of 

adiponectin in adipocyte EVs may provide a reflection of the physiological 

functioning of AT. Proteomic profiling of plasma-derived EVs also revealed an 

association of PPARγ with human plasma-derived exosomes (515). PPARγ is a 
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transcription factor predominantly produced in adipocytes with a critical role 

adipogenesis and maintaining adipocyte function (321). Therefore, similarly to 

adiponectin, detection of PPARγ in plasma-derived EV fractions could provide an 

indication of the regular functioning of AT. None of the above studies detecting 

adipocyte markers in plasma EVs measured the size or concentration of EVs to 

confirm an EV population, with the exception of Looze et al., who used TEM to 

confirm an EV population (515). Recently, it has also been suggested that adipocyte-

specific material packaged within exosomes may circulate in vivo following transfer 

into leukocytes (516).  

There is evidently great potential for an endocrine role of adipocyte-derived EVs in 

vivo. However, lack of specific markers and use of sub-optimal techniques has so far 

prevented confirmation of their existence in circulating plasma-EV fractions. 

Therefore, there is a need for comprehensive evidence for the existence of adipocyte-

derived EV in vivo in order to further explore their potential as novel circulating 

communicators of adipocytes and AT in vivo. 

 

7.1.1 Aims 

This chapter aimed to detect adipocyte-derived EVs within the population of 

circulating EVs of healthy volunteers, specifically by: 

1. Isolating and measuring the size and concentration of plasma-derived EVs. 

2. Assessing isolated plasma-derived EVs for the presence of FABP4, 

adiponectin and PPARγ using: 

a. Western blotting 

b. Flow cytometry 

c. Time resolved fluorescence 

3. Testing isolated leukocytes for the presence of adipocyte makers. 

 

7.1.2 Hypotheses 

Adipocyte-derived EVs can be detected in a population of circulating plasma-derived 

EVs using multiple adipocyte-markers and measurement techniques.  
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7.2 Methods 

7.2.1 Cell culture and extracellular vesicle isolation  

3T3-L1 cells were cultured to a mature adipocyte phenotype (14 days post-

differentiation) as described in Chapter 2.2.1. EVs were isolated as described in 

Chapter 2.3.1 using a 24 hour incubation with serum-free media and differential 

ultracentrifugation. Cells and isolated EVs were then lysed and processed to isolate 

protein as outlined in Chapter 2.10.1 and stored at -20°C until analysis.  

 

7.2.2 Plasma extracellular vesicle isolation  

Plasma-derived EVs were isolated from the blood of healthy volunteers using the 

second isolation method outlined in Chapter 2.3.2. Isolated EVs were resuspended in 

either 1 X PBS (0.22 µm-filtered) for NTA measurements, FC analyses and TRF 

measurements, or lysis buffer for Western blotting.  

 

7.2.3 Nanoparticle tracking analysis  

Cell and plasma-derived EVs were quantified using NTA as described in Chapter 

2.4.2. To compare the distribution of EVs between 3T3-L1- and plasma-derived 

EVs, the raw NTA distributions were plotted without adjusting for NTA dilution and 

ignoring differences in reported concentrations.  

 

7.2.3 Leukocyte isolation 

Blood (10 mL, collected as above) was gently transferred to a universal container 

containing 100 µL heparin sodium solution (5000 I.U./mL; Wockhardt Ltd). To this, 

2.5 mL 6% (w/v) Dextran (Sigma Aldrich) was added, mixed gently by inversion 

and transferred to a fresh universal container to settle for ~45 minutes at room 

temperature. The “buffy coat” layer was carefully transferred to a fresh universal 

container and centrifuged (258 x g, 1 minute) to pellet leukocytes. Leukocytes were 

briefly resuspended in 1 mL distilled water to lyse any contaminating erythrocytes, 
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and then osmolarity was restored by adding 20 mL balanced salt solution (130 mM 

NaCl, 2.65 mM KCl, 8 mM Na2HPO4 adjusted to pH 7.4). Leukocytes were 

centrifuged (258 x g, 2 minutes) and resuspended in lysis buffer, processed and 

stored as outlined in Chapter 2.10.1. 

 

7.2.4 Western Blotting 

Western blotting was undertaken using protocols described in Chapter 2.10. Ten µg 

of cell lysate and 20 µg of EV lysate were loaded per well using running gels and 

primary antibodies outlined in Table 7.2.1. Two antibodies were required to detect 

both human (leukocytes/ plasma EVs) and mouse (3T3-L1 cells and EVs) 

adiponectin. Loading controls were not used as only the presence/lack of markers 

was being observed. However, for this reason, no comparisons between band 

densities should be made. 

Antibody Polyacrylamide 

running gel 

Antibody dilution Typical exposure 

Adiponectin 

(Abcam ab18065) 

12% 1:2500 (5% 

milk/TBS-T) 

15 minutes 

Adiponectin (CST 

#2789) 

12% 1:500 (5% 

BSA/TBS-T) 

1 minute 

FABP4 15% 1:1000 (5% 

BSA/TBS-T) 

15 seconds 

PPARγ 10% 1:1000 (5% 

BSA/TBS-T) 

1 minute 

Table 7.2.1: Details of Western blotting. Details of the antibodies and polyacrylamide gels 

used for Western blotting. Two antibodies were required for detection of human (Abcam) 

and mouse (CST) adiponectin in leukocyte/plasma EV samples and 3T3-L1 samples 

respectively. BSA = bovine serum albumin, CST = Cell Signalling Technologies, FABP4 = 

fatty acid binding protein-4, PPARγ = peroxisome proliferator-activated receptor γ, TBS-T = 

tris-buffered saline – Tween 20 (1% v/v).  
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7.2.5 Flow cytometry 

Isolated plasma EVs in PBS were immediately placed on ice and fixed in cold 

formaldehyde (2% v/v) for 5 minutes. EVs were then pelleted by ultracentrifugation 

(as before) and resuspended in 1 X PBS tween (0.1%, v/v). EVs were blocked in 

rabbit serum for 1 hour at room temperature before being pelleted and resuspended 

as before. EVs were incubated with antibodies to adiponectin (Abcam ab18065), 

FABP4 and PPARγ or no antibody (negative control) overnight at room temperature. 

EVs were again pelleted and resuspended to allow for incubation with 

AlexaFluoro®488 goat anti-rabbit IgG (Life Technologies) for 1 hour at room 

temperature. EVs were pelleted for the final time and resuspended in 1X PBS (0.22 

µm-filtered), gated and analysed with a BD FACSCanto as outlined in Chapter 2.6. 

 

7.2.6 Extracellular vesicle immunophenotyping 

Immunophenotyping of adipocyte markers in plasma EVs was conducted as 

described in Chapter 2.9 using TRF by Dr Justyna Witczak as part of a larger 

clinical study. A concentration of 5 x 10
10

 EVs were laid down per well in duplicate 

and allowed to settle overnight. EVs were then probed with anti-human rabbit 

monoclonal antibodies to adiponectin (Abcam, ab18065), FABP4 (Abcam, 

ab92501), PPARγ (Abcam, ab191407), CD9 as a marker for EVs (Abcam ab92726) 

and a negative control (no primary antibody).  

 

7.2.7 Statistical analysis 

Graphical representation of data was generated using GraphPad Prism software 

(version 6.0). Where applicable, data are presented as mean ± SD. No statistical 

analyses were conducted in this chapter as data were not being compared and only 

the presence or lack of adipocyte markers was being assessed.  
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7.3 Results 

7.3.1 Quantitation of adipocyte- and plasma-derived extracellular 

vesicles 

The raw NTA distributions of EVs from 3T3-L1 adipocytes were compared to those 

of plasma derived-EVs (Figure 7.3.1). 3T3-L1-derived EVs (mode size ~140 nm) 

showed a greater distribution across the EV range compared to plasma EVs (mode 

size ~90 nm). Due to the 100 fold difference in reported concentrations of 3T3-L1 

and plasma-derived EVs, distributions were not adjusted for NTA dilutions so that 

the range of EV sizes of both samples can be compared on the same graph. 

 

Figure 7.3.1: NTA distributions of 3T3-L1- and plasma-derived EVs. Raw size 

distributions (not adjusted for NTA dilutions) for 3T3-L1- and plasma-derived EVs. Data are 

presented as the mean (solid line) ± the SD (lighter shade), (n=5).  
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7.3.2 Western blot analysis of adipocyte markers  

Western blotting was used to analyse samples for the presence of adipocyte markers 

(Figure 7.3.2). 3T3-L1 cells and corresponding EVs were used as controls (to 

illustrate characteristic expression). FABP4 and PPARγ were enriched in 3T3-L1 

cells compared with corresponding EVs, however adiponectin seemed to be enriched 

in 3T3-L1 EVs. No adipocyte markers were detected in leukocyte samples whilst all 

adipocyte markers were present in plasma-derived EVs. 

 

Figure 7.3.2: Western blot analysis of adipocyte markers. Adiponectin, FABP4 and 

PPARγ were analysed by Western blot in 3T3-L1 cells, 3T3-L1 EVs, leukocytes and 

plasma-derived EVs. Representative blots (n=3). As the presence/lack of markers was being 

observed, loading controls were not used. 
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7.3.3 Flow cytometric analysis of adipocyte markers  

Plasma-derived EVs were probed for adiponectin, FABP4 and PPARγ and analysed 

using flow cytometry (Figure 7.3.3). EVs were positive for both adiponectin and 

FABP4; PPARγ could not be detected. Overall positivity of plasma-derived EVs for 

adipocyte markers was low (adiponectin: 0.4 ± 0.7%; FABP4: 0.5 ± 0.6%). 

 

Figure 7.3.3: Flow cytometric analysis of adipocyte markers. Isolated plasma-derived 

EVs were fixed, blocked and stained with antibodies to adiponectin, FABP4 and PPARγ. 

EVs falling within the pre-defined gate (A) were then analysed for their fluoresence 

compared to a negative control and plotted as a percentage of the total plasma EVs (B). 

FSCA- = forward scatter area; SSC-A = side scatter area, (n=3). 

  



Page | 232  

 

7.3.4 Detection of adipocyte markers using immunophenotyping 

Isolated plasma-derived EVs were probed for adipocyte markers using 

immunophenotyping (Figure 7.3.4). The exosomal marker, CD9, was detected in 

plasma-derived EVs (11,666 ± 2,716 arbitrary TRF units). Adiponectin, FABP4 and 

PPARγ could all be detected within plasma-derived EVs (adiponectin: 26,400 ± 

2,339; FABP4: 3,850 ± 2,459; PPARγ: 3,144 ± 2,407 arbitrary TRF units). Negative 

control values (EVs with no primary antibody) were subtracted to give the raw TRF 

values presented below. 

 

Figure 7.3.4: Immunophenotyping of adipocyte markers. Adipocyte markers were 

detected in plasma-derived EVs using TRF. Data are presented as raw TRF values (with 

negative IgG control values subtracted), (n=3). 
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7.4 Discussion 

7.4.1 Key findings 

The key findings of this chapter were: 

1. The size distribution of plasma EVs are different to those of 3T3-L1 

adipocyte-derived EVs. 

2. Adiponectin, FABP4 and PPARγ can be detected in plasma-derived EVs by 

Western blotting. No adipocyte markers were detected in lysed leukocytes. 

3. Adiponectin and FABP4 could be detected by flow cytometry in plasma-

derived EVs; PPARγ was not detected. 

4. Adiponectin, FABP4 and PPARγ were detected by TRF along with the 

exosomal marker, CD9. 

 

7.4.2 Main discussion 

The endocrine role of adipocytes and AT in both health and disease is becoming 

ever-more apparent. EVs released from adipocytes are being shown to play a novel 

part in crosstalk between adipocytes and other systems such as the vasculature, the 

immune system and the brain. However, the measurement of adipocyte-derived EVs 

in the circulation has not been concretely reported. This chapter therefore aimed to 

strengthen the evidence for the existence of adipocyte-derived EVs in plasma by 

using three markers of adipocytes and using three different measurement techniques. 

The distribution of EV sizes was compared between 3T3-L1- and plasma-derived 

EVs. Though not shown here, the concentration of plasma-derived EVs was ~100 

fold higher than that measured for 3T3-L1 derived EVs. This is unsurprising given 

they represent two very different model systems: the greater reservoir of EV sources 

in blood (such as platelets, endothelial cells, leukocytes and erythrocytes) compared 

to the singular source of adipocyte-derived EVs from 3T3-L1 cells. Furthermore, 

EVs in culture are collected from a limited amount of medium and a restricted 

number of cells in a flask, whereas plasma will come in contact with many more 

cells and will represent the circulating EV population. When the relative size 

distributions of EVs were compared by NTA, the majority of 3T3-L1 EVs detected 
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were between 50 – 400 nm, showing a greater range of EV sizes compared to plasma 

EVs which were mainly between 50 – 200 nm. This suggests that circulating plasma-

derived EVs contain a higher proportion of exosomes compared to EVs from 

adipocyte culture.  

Mature adipocytes can be characterised by the expression of hallmark proteins such 

as FABP4, adiponectin and PPARγ (320,323,453). Their secretion into the 

circulation, in combination with the lack of a distinct marker for adipocyte-derived 

EVs presents a challenge for their detection on EVs in vivo. Therefore, plasma EVs 

from healthy volunteers were probed for all three adipocyte markers using a range of 

techniques. Firstly, EVs were assessed for adipocyte markers using Western blotting, 

with 3T3-L1 cell and EV lysates as adipocyte and antibody controls. Adiponectin, 

FABP4 and PPARγ were all detected in plasma EV lysates, suggesting the presence 

of these adipocyte markers in the plasma EV fraction. Ogawa et al., have previously 

illustrated that adipocytes can transfer mRNA to Mϕ via EVs and that this may in 

part account for the presence of adipocyte-specific mRNA in the circulation (516). 

However, in our studies none of the adipocyte markers could be detected in 

leukocytes isolated from the same blood sample as plasma-derived EVs, suggesting 

that the presence of these markers in plasma-derived EVs is due to direct adipocyte 

origin. The expression looked to be fairly consistent between adipocyte markers in 

plasma EVs, though a loading control was not used to confirm this.  

As previously discussed in this thesis, the use of FC to analyse EVs often results in 

inaccuracies as the majority of EVs pass below the detectability of conventional 

cytometers, as evidenced by NTA data presented above. However, it remains widely 

used as a technique to phenotype the origin of EVs due to its potential for dual (or 

multiple) staining of markers. Therefore, plasma-derived EVs were assessed for 

adipocyte markers using FC. As all three adipocyte markers are likely to be 

contained within EVs (as opposed to surface-bound - adiponectin and FABP4 are 

cytoplasmic and secreted, and PPARγ is nuclear-localised), EVs were first fixed and 

permeabilised to allow antibody access. Both adiponectin and FABP4 could be 

detected by FC though the percentage of total plasma-derived EVs exhibiting these 

markers was very low (<0.5%). FABP4 has previously been reported to be present in 

adipocyte-derived microvesicles at ~0.5% of the total population (54). PPARγ could 

not be detected in plasma-derived EVs using FC. The low detection of adiponectin 



Page | 235  

 

and FABP4 and lack of PPARγ may represent the low relative population of 

adipocyte-derived EVs in comparison to the total plasma EV pool. Alternatively, 

adipocyte markers may be more closely associated with smaller microvesicles and 

exosomes which are below the detection limit of FC. Indeed, previous data has found 

both adiponectin and PPARγ to be associated with plasma exosomes (514,515). As 

illustrated by the size distribution of plasma-derived EVs, the majority of EVs are 

<300 nm and so are unlikely to have been detected by the cytometer. 

Adipocyte markers in plasma-derived EVs were also assessed using TRF 

immunophenotyping. All three adipocyte markers could be detected in EVs, with 

adiponectin giving the highest fluorescent signal. This again supports the presence of 

adipocyte-derived material in the circulating plasma EV fraction. Furthermore, CD9 

was also detected in this fraction, a marker commonly associated with EVs (16) 

indicating a “true” EV fraction. Indeed, data recently amassed by our group indicate 

a strong positive correlation (r=0.54, p<0.001) of CD9 with FABP4 in a population 

of forty healthy individuals across a range of BMIs, indicating FABP4 is likely 

associated with EVs (Figure 7.4.1). No correlations were observed between 

adiponectin and PPARγ with CD9 though, as suggested above, these markers may be 

specifically associated with exosomes (514,515). As CD9 may now emerging as a 

more generic EV marker (53), the correlations with adiponectin and PPARγ may 

have been lost. Therefore, future work should look to compare these markers with 

exosomal markers such as CD63, alix or TSG101. 

 

Figure 7.4.1: Relationship between CD9 and FABP4. Correlation between CD9 and 

FABP4 TRF values of healthy individuals over a range of BMIs (n=40). Data are courtesy of 

Dr Justyna Witczak, a.u. = arbitrary units.  
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Evidence presented in this chapter is highly suggestive of the presence of adipocyte-

derived EVs amongst the plasma EV population. However, adipocytes are located 

within AT, which presents a physiological barrier between adipocyte-derived EVs 

and access to the circulation. Hence, an obvious question is how do adipocyte-

derived EVs make it into the systemic circulation? Lean AT is relatively well 

vascularised by capillary networks and evidence is emerging for the intracellular 

trafficking of EVs in a number of different cell types (Chapter 1.1.5). Therefore, 

adipocyte-derived EVs in the AT extracellular matrix could traverse single 

endothelial cells of capillaries and be transported intact into the AT microcirculation. 

As outlined in Chapter 1.2, obese AT is often poorly vascularised, which may 

reduce the likelihood of this route of exit for adipocyte EVs from AT. Local and 

systemic inflammation result in an increased vascular permeability due to a loss of 

endothelial tight junction barriers (517). Therefore, the inflammation associated with 

obesity may increase the permeability of AT microvasculature, thereby providing a 

route for adipocyte-derived EVs exit from AT in between “leaky” endothelial cells 

into the circulation. These hypotheses will be tested by our group as part of the 

newly awarded grant, using endothelial cell transwell experiments and monitoring 

adipocyte-derived EVs in upper and lower wells. Different conditions will also be 

tested including inflammatory endothelial cells, and also adipocyte-derived EVs will 

be generated under hypoxic and inflammatory conditions. 

 

7.4.3 Limitations 

The data presented in this chapter harbours some potential limitations. Western 

blotting experiments were performed without the use of a housekeeping gene such as 

β-actin for cells and CD9 or CD63 for EVs. This therefore prevented semi-

quantitative analysis to compare the levels of the three markers. However, as the aim 

of the present chapter was to simply illustrate the detectability of adipocyte-derived 

EVs in vivo, future studies could quantify the proportions of these markers in 

plasma-derived EVs.  

Leukocytes were isolated and lysed from the buffy coat without further separation of 

leukocyte subsets, such as Mϕ. Therefore adipocyte protein may have been present 

within Mϕ, but diluted by the total protein in the leukocyte fraction. Further 
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experiments could specifically isolate Mϕ to lyse and analyse for adipocyte markers 

to ensure the detection in plasma EV fractions is not due to Mϕ EV contamination. 

Additionally, the leukocyte fraction would have ideally been probed for a typical 

leukocyte maker such as CD45, to confirm the successful isolation of the leukocyte 

population. 

As EVs were isolated by differential ultracentrifugation, the co-pelleting of soluble 

proteins with EVs cannot be eliminated. Therefore, our group are currently trialling 

SEC columns, density gradient ultracentrifugation and immuno-affinity magnetic 

bead methods to determine the extent of soluble protein contamination of EV 

samples following ultracentrifugation. 

 

7.4.4 Conclusions 

To summarise, adipocyte-derived EVs can be reliably detected in plasma-derived EV 

fractions. Adipocyte markers within plasma EVs were clearly visible by Western 

blot and TRF. Flow cytometry could barely detect adiponectin and FABP4 and was 

unable to detect PPARγ within plasma EVs, most likely due to the majority of EVs 

being <300 nm. Future studies could use the markers presented in this chapter to 

specifically isolate adipocyte-derived EVs from plasma and compare the properties 

of these EVs between lean and obese and healthy and diseased individuals. 

Adipocyte-derived EVs in vivo could eventually be novel circulating markers for the 

functional status of AT and hence act as important indicators of future cardiovascular 

risk. As stated above, this work is currently being pursued in a newly awarded grant 

based on the data presented in this chapter. 
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8. Results VI: 

Lipoprotein apheresis reduces circulating EVs 

in individuals with familial 

hypercholesterolaemia 
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8. Perspective 

At the time of starting my PhD, our group was beginning a clinical study to evaluate 

EVs in individuals with familial hypercholesterolaemia with an interest in the 

potential cardiovascular applications of EV concentrations in a patient cohort. This 

work was carried out in parallel with Chapter 3 and therefore it was also a good 

opportunity to compare two of the most widely-used techniques to measure EVs 

(TRPS and NTA) in a clinical setting. The study represented an in vivo model that 

allowed us a unique opportunity to study the influence of a method that could 

selectively remove certain EV populations.  

At the time, FC was the most established technique for the detection of cellular 

epitopes on the surface of EVs. It is important to highlight that during the course of 

this PhD study and in line with the fast moving development in the EV field, 

Chapters 3 – 7 show how technical and methodological aspects have been further 

developed and/or superseded. Nevertheless, techniques used in this chapter were 

optimised at the time of study. 

 

 

 

 

 

 

  

Parts of this chapter have been published in: 

Connolly KD*, Willis GR*, Datta DB, Ellins EA, Ladell K, Price DA, Guschina 

IA, Rees DA, James PE (2014). Lipoprotein-apheresis reduces circulating 

microparticles in individuals with familial hypercholesterolemia. Journal of Lipid 

Research. 55 (10): 2064-72. 
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8.1 Introduction 

High cholesterol, particularly low-density lipoprotein (LDL) cholesterol is a risk 

factor for CVD. Familial hypercholesterolaemia (FH) is a common genetic disorder 

that causes elevated levels of atherogenic lipoproteins in the plasma, particularly 

LDL. The LDL receptor is mutated in more than 85% of cases of FH, rendering 

these receptors unable to bind or internalise LDL and leading to an accumulation of 

LDL in the plasma (518). FH is an autosomal dominant disorder, resulting in 

heterozygote, or more serious homozygote forms (519). Severe FH is typically 

difficult to treat by alterations in diet or lipid lowering medications alone as these 

interventions are insufficient to adequately lower LDL levels to completely abate 

atherosclerotic plaque formation (520). These patients therefore require frequent 

lipoprotein-apheresis (hereafter termed “apheresis”) treatments in combination with 

dietary and pharmacological intervention to regulate LDL levels (521). 

Apheresis involves the blood being drawn from one arm and passed through a 

column to remove atherogenic lipoproteins before being returned to the body via the 

other arm. Different types of apheresis columns and procedures may be utilised, 

though all show equal efficacy, with approximately 70% of circulating LDL 

removed immediately following treatment (522–525). However, LDL levels are 

known to rebound to 50% of pre-treatment values within 2-4 days of apheresis 

treatment (526). Despite this transiency, apheresis is associated with superior long-

term cardiovascular benefits compared with alternative therapies (527–531). 

Increased concentrations of EVs in the circulation, particularly platelet-derived EVs, 

have been previously reported in CVD (Chapter 1.1.9.1, (532,533)). Platelet EVs are 

thought to amplify the physiological and pathophysiological roles of platelets, for 

example helping to regulate haemostasis but also promoting coagulation and 

thrombus formation. The surface of platelet EVs is reportedly up to 100-fold more 

procoagulant than that of the surface of activated platelets (438), highlighting platelet 

EVs as important biomarkers for risk of CVD. Furthermore, EVs contain a bioactive 

cargo of lipid and genetic signalling mediators that can be transferred to target cells, 

though the mechanism of interaction is still unclear and may be cell-specific 

(Chapter 1.1.5). To date, little is known about the lipid composition and profile of 
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plasma-derived EVs, though platelet EVs have been shown to transfer 

proinflammatory lipids to platelets leading to activation (534). 

Individuals with FH have previously been shown to have increased circulating levels 

of endothelial- and leukocyte-derived EVs compared to individuals with non-FH 

hypercholesterolaemia (535,536). However, quantification of EVs in these studies 

was achieved using FC, and therefore may be suboptimal, due to the techniques lack 

of sensitivity for vesicles <300 nm. To date, no data exist detailing the effects of 

apheresis treatment on EVs in individuals with FH, though other extracorporeal 

methods have been previously shown to remove EVs (537,538). 

 

8.1.1 Aims 

The aims of this chapter were to characterise the effect of apheresis on individuals 

with FH in terms of: 

1. EV size and concentration 

2. EV origin 

3. Plasma and EV fatty acids 

4. EV thrombin generation 

This chapter also aimed to compare the profile of EVs from individuals with FH to 

those of healthy volunteers. Finally, this chapter sought to compare the results of two 

well-established techniques for EV measurement in a clinical cohort. 

 

8.1.2 Hypotheses 

Routine apheresis treatment may alter the profile of circulating EVs in individuals 

with FH. The concentration of EVs may be elevated in individuals with FH 

compared to healthy volunteers. 

  



Page | 242  

 

8.2 Methods 

8.2.1 Apheresis and sample collection  

Twelve patients undergoing fortnightly apheresis consented to take part in the study. 

The individuals were previously characterised by Dr Dev Datta as having clinically 

significant dyslipidaemia and were attending the Lipid Unit at University Hospital 

Llandough, Cardiff for apheresis treatment as part of their routine clinical care. For 

clinical reasons, three different apheresis techniques (described previously (539)) 

were used: polyacrylate whole blood adsorption (DALI®; n=8), whole blood dextran 

sulphate adsorption (n=1) and plasma dextran sulphate adsorption (n=3). Individuals 

had fasted for at least 4 hours prior to apheresis treatment and had continued to take 

prescribed medications for at least 1 hour prior to the study. Individuals taking 

vasoactive medications were asked to refrain from taking these prior to the study. 

Routine anthropometric measurements were carried out prior to apheresis treatment. 

Ethical approval for collecting blood samples was obtained by Miss Elizabeth Ellins 

(as part of a parallel study) and was provided by South East Wales Research Ethics 

Committee. Individuals were rested for 15 minutes before vascular access using 16 

gauge 25 mm fistula needles into two anatomically distinct upper limb veins, or by 

arteriovenous fistula. Blood samples were then drawn prior to, and immediately 

following completion of apheresis (approximately 3 hours later). Seven healthy 

volunteers (free from CVD and medication) also consented to take part in the study 

for comparison of EV concentration, size distribution, cellular origin and fatty acids 

with FH individuals. 

 

8.2.2 Biochemical measurements  

Blood samples were collected as described above into EDTA or citrate vacutainers. 

Total serum cholesterol (TC), HDL and triglycerides were measured using an 

Architect automated analyser (Abbott Diagnostics, UK). LDL was then estimated 

using the Friedwald equation (Figure 8.2.1). Glucose levels were determined using 

the Architect chemistry system (Abbot Diagnostics) and high sensitivity C-reactive 

protein (hs-CRP) was measured using nephelometry (BN™ II system, Dade Behring, 

UK). Blood pressure (BP) measurements were taken by Miss Elizabeth Ellins with 
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individuals seated using the Vicorder system (Skidmore Medical, UK) as part of a 

separate study into vascular measurements following apheresis. 

 

                (
             

   
) 

Figure 8.2.1: The Friedwald equation. Details of the Friedwald equation used to calculate 

LDL cholesterol (LDLc) from the levels of total cholesterol (TC), HDL cholesterol (HDLc) 

and triglycerides. 

 

8.2.3 Isolation of extracellular vesicles  

Blood samples were collected into both EDTA and citrate vacutainers and were 

processed by myself and Dr Gareth Willis using the first isolation method (Chapter 

2.3.2). PPP from EDTA vacutainers was snap frozen in liquid nitrogen for GC 

analysis. PPP from citrate vacutainers used to pellet EVs. The EV pellet was then 

either resuspended in filtered PBS (as in Chapter 2.3.1) and snap frozen in liquid 

nitrogen (for GC analysis), or resuspended in 1X filtered PBS containing 0.05% 

(v/v) Tween 20 (for EV size and concentration analysis). The latter was then passed 

through a 1 µm filter (Supelco, Sigma, UK) and slow-frozen overnight at -80°C in a 

Mr Frosty (Nalgene, ThermoScientific, UK). Plasma and EVs were maintained at -

80°C until analysis. 

 

8.2.4 Nanoparticle tracking analysis  

Size and concentration of EV samples was analysed using NTA as described in 

Chapter 2.4.2 by Dr Gareth Willis.   
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8.2.5 Tunable resistive pulse sensing  

Size and concentration of EV samples was also analysed using TRPS (undertaken by 

myself) as outlined in Chapter 2.5.2 using np100 and np200 nanopores.  

 

8.2.6 Flow cytometry 

Cellular origin of EVs was analysed using FC and conducted by myself and Dr 

Kirstin Ladell (Cardiff University) using a custom-built BD FACSAria II (BD 

Biosciences, USA) in the laboratory of Dr David Price. Forward scatter area (FCS-

A) and side scatter area (SSC-A) were set to log scale and EVs were gated based on 

their FSC-A/SSC-A profile and in relation to platelets in fresh plasma. EVs were 

resuspended in 1X 0.22 µm-filtered annexin V binding buffer (BD Biosciences) and 

100 µL of this was used for staining. EVs were stained (in the dark for 15 minutes at 

room temperature) with annexin V-FITC,  and antibodies against CD41-

phycoerythrin (PE)- cyanine (Cy) 5, CD11b-PE-Cy7, CD144-allophycocyanin 

(APC) and CD235a-pacific blue (PB) as markers of EVs, platelets, monocytes, 

endothelial cells and erythrocytes respectively (BioLegend, USA). Data were 

exported and analysed as described in Chapter 2.6. 

 

8.2.7 Gas chromatography 

GC-FID was conducted by Dr Gareth Willis and Dr Irina Guschina to determine the 

fatty acid concentration and composition of plasma and EV fractions. Lipids were 

extracted as described in Chapter 2.7.1 from 200 µL plasma or 250 µL isolated EVs.  

 

8.2.8 Thrombin generation 

The procoagulant potential of EVs was tested by their ability to stimulate thrombin 

generation and was conducted by myself and Dr Gareth Willis. To provide a working 

reservoir of plasma in which to test the thrombin generation of EVs, blood from 

healthy volunteers was taken into a syringe containing trisodium citrate (Sigma) and 

20 µg/mL corn trypsin inhibitor (Cambridge BioScience, UK). Blood was 
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immediately centrifuged as in Section 8.2.3 to isolate “vehicle” PPP which was 

stored at -80°C until analysis. 

Calibrated automated thrombography (CAT) was used with minor modifications to a 

previously described protocol (540) to assess EV thrombin generation. Samples were 

measured in duplicate using 96-well plates (round-bottomed, Immulon 2HB, 

ThermoScientific). Eighty microliters of vehicle PPP (containing endogenous 

clotting factors) was added to each well with 20 µL of diluted HEPES/NaCl buffer 

(pH 7.4) tissue factor (TF) solution to yield a final concentration of 1 pM (Innovin, 

Sysmex UK Ltd., UK). FH EV samples were assayed for thrombin generation with 

and without exogenous TF addition. Therefore, EVs (20 µL) were added to sample 

wells with the addition of either saline (20 µL, 0.9 % (w/v) NaCl) or TF (20 µL, 1 

pM final). Each sample was calibrated to a well containing 80 µL of PPP and 40 µL 

of thrombin calibrator (600 nM, Synapse BV, Netherlands). The plate was then 

warmed to 37°C for 5 minutes before addition of fluorogenic substrate (20 µL, 

benzyloxycarbonyl-Gly-Gly-Arg-7-amido-4-methylcoumarin, Bachem, UK). The 

fluorescent signal was then measured using a Fluoroskan Ascent plate reader 

(ThermoLabsystems, Finland) equipped with a 390/460 nm filter set 

(excitation/emission) at 15 second intervals until the thrombin generation reaction 

was complete. Data were analysed using Thrombinoscope™ software (Synapse BV) 

and correlated with EV concentration data. 

 

8.2.9 Statistical analysis 

Data were analysed by myself and Dr Gareth Willis using GraphPad Prism (version 

6.0) and are presented as mean ± SEM. A paired t-test (two-tailed) or a Wilcoxon 

matched pairs test was used for parametric and non-parametric data respectively. A p 

value of <0.05 was considered statistically significant.  
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8.3 Results 

8.3.1 Anthropometric and biochemical data  

Of the 12 participants in the study, 9 were male and 3 were female with a mean age 

of 57.9 ± 10.3 years and a mean BMI of 30.0 ± 4.0 kg/m
2
. The healthy volunteer 

comparison group were 7 males with a mean age of 34.0 ± 8 years and a mean BMI 

of 25.0 ± 3.0 kg/m
2
. A summary of biochemical measurements is given in Table 

8.3.1. TC, HDL, triglycerides, LDL, and hsCRP were reduced post-apheresis. 

Systolic BP was increased following apheresis. No changes were observed in 

glucose levels, diastolic BP or heart rate with apheresis. 

Parameter Pre-apheresis Post-apheresis p-value 

TC (mmol/L) 6.1 ± 0.5 2.7 ± 0.2 <0.0001 

HDL (mmol/L) 1.1 (0.4 – 2.3) 0.9 (0.2 – 2.1) 0.003 

Triglycerides (mmol/L) 1.8 ± 0.2 0.9 ± 0.1 <0.0001 

LDL (mmol/L) 4.1 ± 0.4 1.4 ± 0.2 <0.0001 

TC/HDL 5.8 (3.3 – 10.0) 3.1 (1.9 – 8.2) 0.0005 

Glucose (mmol/L) 5.7 ± 0.3 6.1 ± 0.3 0.07 

hsCRP 0.8 (0.2 – 16.9) 0.6 (0.2 – 13.8) 0.003 

Systolic BP (mmHg) 140 ± 5 148 ± 6 0.02 

Diastolic BP (mmHg) 81.8 ± 2.8 82.8 ± 2.7 0.45 

Heart rate (bpm) 55.8 ± 2.9 58.8 ± 3.4 0.09 

Table 8.3.1: Biochemical and physiological measurements pre- and post-apheresis. 

Baseline and post-apheresis biochemical and physiological measurements with 

accompanying p values. Data are presented as mean ± SD for parametric data or as median 

(interquartile range) for non-parametric data. Significant p values are in italics, (n=12). TC = 

total cholesterol, HDL = high density lipoprotein, LDL = low density lipoprotein, hsCRP = 

high sensitivity C-reactive protein, BP = blood pressure, bpm = beats per minute. 
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8.3.2 Effect of apheresis on extracellular vesicle size and concentration  

The concentration and size distribution of EVs from individuals with FH (pre-

apheresis) were compared with those of healthy volunteers (Figure 8.3.1). No 

change was observed in the mean concentration of EVs, though there was a trend 

towards an increased concentration of EVs in FH (A). Comparison of the size 

distributions revealed an increase in EVs between 50 – 100 nm in individuals with 

FH compared to healthy volunteers (B). 

 

Figure 8.3.1: EVs of healthy volunteers vs. individuals with FH. Comparison of the mean 

EV concentration (A) and the size distribution of EVs (B) from healthy volunteers vs. 

individuals with FH, as measured by NTA. Healthy volunteers (n=7), FH (n=12), *p<0.05. 
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To assess the effect of apheresis on EV size and concentration, two techniques were 

used: TRPS (using np100 and np200 nanopores) and NTA (Figure 8.3.2). No 

difference in mode EV size was detected using TRPS np100 (81.1 ± 19.6 nm to 78.4 

± 16.7 nm, p = 0.3; Figure 8.3.2 A). No significant difference was observed in EV 

concentration pre-post apheresis with this technique (4.6 x 10
11

 ± 1.3 x 10
11

 

particles/mL to 3.1 x 10
11

 ± 1.0 x 10 
11

 particles/mL, p = 0.2; Figure 8.3.2 B). TRPS 

np100 showed no preferential reduction according to EV size (Figure 8.3.2 C). 

 

Figure 8.3.2 A-C: TRPS np100 EV size and concentration pre- and post-apheresis. EV 

samples pre- and post-apheresis were measured using TRPS with an np100 nanopore. (A) 

Mode size of EVs, (B) mean concentration of EVs and (C) size distribution of EV 

concentration (n=12). 
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No difference was found in mode size of EVs with TRPS np200 (170.3 ± 40.6 nm to 

163.6 ± 29.2 nm, p = 0.18; Figure 8.3.2 D. Concentration of EVs measured by 

TRPS np200 was significantly reduced post-apheresis (4.7 x 10
10

 ± 8.8 x 10
9
 

particles/mL to 3.1 x 10
10

 ± 5.6 x 10
9
 particles/mL, p = 0.01; Figure 8.3.2 E). TRPS 

np200 size distribution revealed this reduction predominantly to be in EVs between 

200-249 nm (p = 0.01, Figure 8.3.2 F). 

 

Figure 8.3.2 D-F: TRPS np200 EV size and concentration pre- and post-apheresis. EV 

samples pre- and post-apheresis were measured using TRPS with an np200 nanopore. (D) 

Mode size of EVs, (E) mean concentration of EVs and (F) size distribution of EV 

concentration. *p<0.05, (n=12).  
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As with TRPS, NTA detected no change in overall mode EV size following 

apheresis (93.3 ± 21.0 nm to 88.2 ± 14.7 nm, p = 0.3; Figure 8.3.2 G). Mean 

concentration as measured by NTA was reduced post-apheresis (1.9 x 10
12

 ± 2.4 x 

10
11

 particles/mL to 1.5 x 10
12

 ± 2.4 x 10
11

particles/mL, p = 0.03; Figure 8.3.2 H). 

However, no specific reduction in EV size distribution was observed with NTA 

(Figure 8.3.2 I). 

 

Figure 8.3.2 G-I: NTA EV size and concentration pre- and post-apheresis. EV samples 

pre- and post-apheresis were measured using NTA. (G) Mode size of EVs, (H) mean 

concentration of EVs and (I) size distribution of EV concentration *p<0.05 (n=12). 
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Following measurement of all apheresis samples using both techniques, the range of 

detection of TRPS and NTA was compared using pre-apheresis samples. The range 

of EVs detected by TRPS (np100 and np200) and NTA were similar (Figure 8.3.3), 

though the reported concentration of EVs varied greatly between the two techniques, 

and also between TRPS nanopores (Table 8.3.3). 

 

Figure 8.3.3: Range of detection of EV measurement techniques. Comparison of the 

ranges of detection of TRPS (np100 and np200) and NTA. Data are presented as mean ± 

SEM, (n=12). 
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Size range (nm) np100 np200 NTA 

0 – 49 7.2 x 10
7
 ± 7.2 x 10

7 
0 1.3 x 10

11
 ± 4.9 x 10

10
 

50 – 99 3.6 x 10
11

 ± 1.1 x 10
11

 0 7.8 x 10
11

 ± 1.2 x 10
11

 

100 – 149 8.25 x 10
10

 ± 2.6 x 10
10 

1.2 x 10
10

 ± 5.7 x 10
9 

6.8 x 10
11

 ± 1.1 x 10
11 

150 – 199 1.1 x 10
10

 ± 4.3 x 10
9
 1.8 x 10

10
 ± 4.7 x 10

9 
2.5 x 10

11
 ± 4.8 x 10

10 

200 – 249 2.4 x 10
9
 ± 1.1 x 10

9
 1.2 x 10

10
 ± 3.6 x 10

9 
7.2 x 10

10
 ± 1.8 x 10

10 

250 - 299 1.1 x 10
9 

± 6.0 x 10
8 

3.3 x 10
9
 ± 1.1 x 10

9 
2.2 x 10

10
 ± 7.1 x 10

9 

300 – 349 6.5 x 10
7
 ± 4.8 x 10

7 
1.0 x 10

9
 ± 2.6 x 10

8 
7.4 x 10

9
 ± 1.8 x 10

9 

350 – 399 0 4.0 x 10
8
 ± 1.5 x 10

8 
2.1 x 10 ± 6.8 x 10

8 

400 – 449 4.6 x 10
7
 ± 4.6 x 10

7
 2.0 x 10

8
 ± 7.7 x 10

7 
9.8 x 10

8
 ± 3.5 x 10

8 

450- 499 0 1.1 x 10
8
 ± 4.4 x 10

7 
7.1 x 10

8
 ± 3.5 x 10

7
 

500 -549 0 7.2 x 10
7
 ± 3.3 x 10

7
 3.8 x 10

8
 ± 2.1 x 10

8 

550 -599 0 4.0 x 10
7
 ± 1.9 x 10

7
 4.5 x 10

8
 ± 4.0 x 10

8
 

600 – 649 0 3.5 x 10
7
 ± 2.8 x 10

7
 4.1 x 10

8
 ± 4.1 x 10

8
 

650 – 699 0 1.9 x 10
7
 ± 1.4 x 10

7
 1.2 x 10

8
 ± 1.2 x 10

8
 

700 - 749 0 1.8 x 10
7
 ± 1.4 x 10

7
 1.0 x 10

7
 ± 1.0 x 10

7
 

Table 8.3.3: Concentration differences between EV measurement techniques. 

Differences in detected concentrations of EVs measured by TRPS (np100 and np200) and 

NTA. Data are presented as mean ± SEM, (n=12). 
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8.3.3 Extracellular vesicle origin pre- and post-apheresis 

The majority of EVs from both healthy volunteers and individuals with FH (pre-

apheresis) were annexin V positive with no difference between healthy volunteers 

and FH (healthy volunteers: 88.1 ± 4.8%; FH: 88.9 ± 3.7%; Figure 8.3.4 A). 

Individuals with FH had a significantly higher proportion of endothelial-derived EVs 

(healthy volunteers: 0.4 ± 0.2%; FH: 1.9 ± 0.6%; p = 0.03; Figure 8.3.4 B). No 

differences were found in apportions of platelet, monocyte or erythrocyte EVs 

between healthy volunteers and individuals with FH. 

 

Figure 8.3.4: Flow cytometric analysis of EVs from healthy volunteers and FH. (A) EVs 

from healthy volunteers and individuals with FH were first compared for their annexin V 

positivity. (B) Annexin V positive EVs were then subsequently analysed for positivity of 

platelet (CD41), endothelial (CD144), monocyte (CD11b) and erythrocyte (CD235a) 

markers. Healthy volunteers (n=7), FH (n=12),* p<0.05. 

 

The gate used to analyse EVs was determined by analysing FSC-A and SSC-A 

profiles of EVs in relation to platelets in fresh plasma, and was subsequently used to 

analyse EVs from FH samples pre- and post-apheresis (Figure 8.3.5 A). No 

difference was observed in EV annexin V positivity following apheresis, though the 

majority of EVs were found to be annexin V positive (pre-apheresis: 88.9 ± 3.7%; 

post-apheresis: 88.4 ± 5.1%, p = 0.9, Figure 8.3.5 B). Annexin V positive EVs were 

then analysed for their expression of platelet (CD41), endothelial (CD144), 

monocyte (CD11b) and erythrocyte (CD235a) markers (Figure 8.3.5 C). No changes 
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were observed in the markers tested in EVs pre- to post-apheresis. Annexin V-

platelet positive EVs occupied the greatest proportion in pre- and post-apheresis 

samples (~90%). 

 

Figure 8.3.5: The effect of apheresis on EV origin. EVs from pre- and post-apheresis 

samples were analysed using flow cytometry to determine their cellular origin. The FSC-A 

and SSC-A properties of EVs were compared to those of platelets in fresh plasma in order to 

define a submicron gate (A). (B) EVs falling within this gate were then assessed for their 

annexin V positivity. (C) Annexin V positive EVs were then stained for markers of platelets 

(CD41), endothelial cells (CD144), monocytes (CD11b) and erythrocytes (CD235a). Data 

are presented as mean ± SEM, (n=12). 
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8.3.4 Effect of apheresis on fatty acid concentration and composition  

GC-FID was used to compare the fatty acids of the EV fraction to those of the 

surrounding plasma (Figure 8.3.6). Total fatty acid concentration was elevated in 

plasma (healthy volunteers: 1.5 ± 0.2 mg/mL plasma; FH: 2.4 ± 0.4 mg/mL plasma; 

p = 0.02; A) and EVs (healthy volunteers: 0.01 ± 0.002 ng/10
6
 EVs; FH: 0.03 ± 

0.006 ng/10
6
 EVs; p = 0.02; C) in individuals with FH compared to healthy controls. 

The composition of several plasma and EV fatty acids differed between healthy 

volunteers and individuals with FH (Figure 8.3.6 B/D). Generally, the same fatty 

acids were altered in both plasma and EVs. cis-vaccenic acid (C18:1n7) and 

eicosapentaenoic acid (EPA; C20:5n3) were increased in both plasma and EVs of 

individuals with FH. Stearic acid, docosanoic acid (C22:0), docosapentaenoic acid 

(C22:5n3) and lignoceric acid (C24:0) were decreased in plasma and EVs of 

individuals with FH. Whilst palmitoleic acid was increased in plasma of FH 

individuals, it was decreased in corresponding EVs. Similarly, cis-7-hexadecanoic 

acid (C16:1n9) was decreased in plasma in FH individuals but increased in 

corresponding EVs. Oleic acid was also decreased specifically within EVs of FH 

individuals. 
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Figure 8.3.6: Fatty acid analysis. Comparison of the total fatty acid concentration of plasma (A) and EVs (C) and the individual fatty acid composition of 

plasma (B) and EVs (D) of healthy volunteers versus FH. Healthy volunteers (n=7), FH (n=12); ****p<0.00001, **p<0.01, *p<0.05. 
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Total plasma fatty acid concentration was reduced following apheresis (pre: 2.4 ± 1.3 

mg/mL to post: 1.3 ± 0.2 mg/mL, p = 0.01; Figure 8.3.7 A) though this was not 

mirrored in the EV fraction (pre: 0.03 ± 0.006 ng/10
6
 EVs to post: 0.04 ± 0.009 

ng/10
6
 EVs, p = 0.2; Figure 8.3.7 C). 

The composition of five fatty acids were significantly altered post-apheresis in the 

plasma (Figure 8.3.7 B). Myristic acid (C14:0), cis-vaccenic acid, EPA, and 

docosatrienoic acid (C22:3n3) were increased in post-apheresis plasma samples 

whilst stearic acid was decreased following apheresis. Three of these fatty acids were 

also altered in EV samples following apheresis (Figure 8.3.7 D). Stearic acid was 

increased whilst myristic acid and cis-vaccenic acid were decreased post-apheresis in 

EV samples. 

A number of significant differences were also observed from directly comparing 

plasma fatty acid composition with corresponding EV fatty acids (Table 8.3.4). Ten 

fatty acids were compositionally different between plasma and EVs in both pre- and 

post-apheresis samples. Interestingly, these 10 fatty acids were not the same in pre-

and post-apheresis samples. 

  



Page | 258  

 

 

Figure 8.3.7: Effect of apheresis on fatty acids. Comparison of the total fatty acid concentration of plasma (A) and EVs (C) and the individual fatty acid 

composition of plasma (B) and EVs (D) pre- and post-apheresis (n=12); ****p<0.00001, **p<0.01, *p<0.05. 
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 Pre-apheresis Post-apheresis 

Fatty acid Plasma (%) EVs (%) p value Plasma (%) EVs (%) p value 

C14:0 0.6 ± 0.1 1.1  ± 0.1 0.04 0.9 ± 0.1 0.6 ± 0.07 0.008 

C14:1 0.04 ± 0.01 0.1 ± 0.02 0.006 0.06 ± 0.1 0.1 ± 0.08 NS 

C16:0 15.7 ± 3.2 27.3 ± 3.2 NS 10.5 ± 3.9 25.1 ± 1.2 0.002 

C16:1n9 2.5 ± 0.6 3.4 ± 0.4 NS 2.0 ± 0.8 4.6 ± 0.7 0.02 

C16:1n7 5.0 ± 0.8 8.2 ± 0.9 NS 3.1 ± 1.3 10.6 ± 0.6 <0.001 

C18:0 15.0 ± 4.2 6.2 ± 3.3 0.04 10.1 ± 6.0 17.7 ± 5.4 NS 

C18:1n9 11.3 ± 4.2 32.5 ± 3.4 0.003 31.8 ± 7.0 17.4 ± 5.4 NS 

C18:1n7 22.2 ± 5.8 13.3 ± 1.7 0.03 14.0 ± 3.6 15.3 ± 1.2 NS 

C20:2n6 1.7 ± 1.0 0.6 ± 0.09 NS 1.5 ± 0.1 0.8 ± 0.09 <0.001 

C20:5n3 0.9 ± 0.2 0.7 ± 0.15 0.03 2.2 ± 0.4 0.9 ± 0.15 0.002 

C22:0 0.3 ± 0.05 0.1 ± 0.06 0.02 0.5 ± 0.07 0.1 ± 0.04 0.001 

C22:3n3 0.1 ± 0.03 0.2 ± 0.09 NS 0.2 ± 0.04 0.02 ± 0.01 <0.001 

C22:3n6 0.4 ± 0.1 0.2 ± 0.1 NS 0.9 ± 0.4 0.03 ± 0.03 0.004 

C22:5n3 0.2 ± 0.06 0.07 ± 0.04 0.04 0.2 ± 0.1 0.3 ± 0.3 NS 

C24:0 0.07 ± 0.03 0.002 ± 0.002 0.009 0.2 ± 0.05 0.02 ± 0.02 0.003 

C24:1n9 0.9 ± 0.2 0.2 ± 0.1 0.006 1.6 ± 0.7 0.04 ± 0.02 NS 

Table 8.3.4: Comparison of plasma and EV fatty acids. Individual fatty acid 

compositions of plasma and EV samples were directly compared pre- and post-apheresis. 

Data are presented as mean ± SEM (n=12), only statistically significant p values are given, 

NS = non-significant. 
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8.3.5 Extracellular vesicle thrombin generation 

Thrombin generation of EVs pre- and post-apheresis was measured using CAT. EV 

thrombin generation over time was not shown to change following apheresis (pre: 

764.8 ± 171.0 area under curve (AUC); to post: 676.0 ± 133.4 AUC; p = 0.7; Figure 

8.3.8 A). However, EV thrombin generation over time showed significant correlation 

with EV concentration as measured by TRPS (np100) and NTA (r= 0.6, p = 0.001 

for TRPS np100; Figure 8.3.8 B; and r=0.4, p = 0.04 for NTA; Figure 8.3.8 D). No 

correlation was found between thrombin generation over time and EV concentration 

as measured by TRPS using the np200 nanopore (r= -0.1, p = 0.7; Figure 8.3.8 C). 

 

Figure 8.3.8: Thrombin generation potential of EVs in FH. (A) Thrombin generation of 

EVs over time was measured pre- and post-apheresis. EV thrombin generation over time 

was then correlated against EV concentration measured using TRPS: (B) np100, (C) np200 

and (D) NTA; (n=12), AUC = area under curve. 
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8.4 Discussion 

8.4.1 Key findings 

The key findings of this chapter were: 

1. Circulating exosomes were elevated in individuals with FH compared to 

healthy volunteers. Apheresis reduced the concentration of EVs, particularly 

those between 200 – 250 nm. 

2. The origin of circulating EVs in individuals with FH was similar to that of 

healthy volunteers, though endothelial-derived EVs were elevated in FH. 

Apheresis did not alter the proportion of circulating EVs from a particular 

cellular origin, the majority of which were annexin V/platelet-positive. 

3. Plasma and EV fatty acid concentration was elevated in FH compared to 

healthy volunteers. Fatty acid composition of plasma and EVs was altered 

between healthy volunteers and FH. Apheresis reduced plasma fatty acid 

concentration and altered the composition of certain fatty acids in both 

plasma and EVs. The fatty acid composition of EVs was different to that of 

surrounding plasma. 

4. The thrombin generation potential of EVs did not differ following apheresis. 

However, thrombin generation was positively correlated with EV 

concentration in FH as measured by TRPS np100 and NTA. 

 

8.4.2 Main discussion 

Circulating EVs are elevated in a number of diseases including in patients with 

severe hypercholesterolaemia (541,542). This chapter presents novel data regarding 

the effects of apheresis on EV size, concentration, origin, fatty acid concentration 

and thrombin generation in patients with FH. Apheresis reduces the circulating EV 

concentration, the majority of which are annexin V/platelet-positive EVs. 

Several methods exist to measure EVs, though often the technique employed is 

heavily dictated by the research question and protocol, and each exhibits unique 

advantages/limitations. Thus two well-established methods for EV measurement 

were employed in order to capture the full spectrum of EV sizes. At the time, TRPS 
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and NTA had not previously been subjected to a direct comparison in biological 

samples. The data presented here illustrate that the range of detectability of TRPS 

(np100 and np200) and NTA are similar, and although they differ vastly in reported 

EV concentration reported, taken together there is considerable agreement. This is 

consistent with bead-based experiments conducted in Chapter 3. 

No change was observed with TRPS or NTA in mode particle size pre- versus post-

apheresis. TRPS using the np200 and NTA both measured a fall in EV concentration 

pre- versus post-apheresis. EVs within the range of 200-250 nm were reduced the 

most, which is greater than the size of LDL particles (543), indicating the techniques 

are measuring a reduction EVs and not LDL. No difference was found in EV 

concentration with the np100 following apheresis. This further supports that the 

observed fall in EV concentration by the np200 and NTA was not due to either 

technique detecting LDL, as the particulate size of LDL lies within the sensitivity of 

the np100 pore range. Compared to health volunteers, EVs were elevated in the 

exosomal range in individuals with FH, despite apheresis reducing EVs between 

200-250 nm. However, the healthy volunteers used for comparison to FH individuals 

were not matched for age and BMI and therefore do not represent true matched 

controls. Total EV concentration was elevated in individuals with FH though this did 

not quite reach significance.  

Flow cytometric measurement of EVs revealed no changes in annexin V positivity or 

cellular origin following apheresis. In keeping with data at the time (56,542,544), 

EVs were mostly annexin V positive and of platelet origin (88.9 ± 13%). Taken 

together with the fall in EV concentration this would suggest that apheresis non-

selectively removes EVs, the majority of which are annexin V positive and derived 

from platelets. These EVs have not only been shown to be elevated in an array of 

disease states (545–550) but also to promote coagulation (438), atherosclerotic 

plaque formation (551) and to be associated with atherothrombotic events (547). 

Non-selective removal of these EVs by apheresis may reduce the risk of thrombus 

formation by slowing the progression of atherosclerotic lesions thereby 

complementing the effect of LDL removal. EVs in healthy volunteers were also 

found to be mainly annexin V positive and of platelet origin, though individuals with 

FH had a greater concentration of these circulating annexin V/platelet positive EVs 

compared to healthy volunteers. Individuals with FH had a greater proportion of 
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endothelial-derived EVs, perhaps suggesting a higher level of endothelial activation 

compared to healthy volunteers, although the percentage of the total population of 

EVs was still relatively low (<2%). 

GC-FID was used to measure fatty acid concentration and composition of plasma 

and EVs pre- and post-apheresis. The relative atheroprotective mechanisms of 

MUFAs and PUFAs are well documented (552) as are the data implicating SFAs in 

arterial wall lipid accumulation and atherosclerotic plaque formation (553). EVs 

have been shown to carry a specific cargo of proteins, genetic material and small 

molecules including fatty acids (554) that can initiate a pro-inflammatory response in 

target cells (534). Here, concentration of fatty acids was increased in both plasma 

and EV fractions of FH individuals compared to healthy volunteers. Evidently, 

individuals with FH have an increased circulating reservoir of lipids compared to 

healthy volunteers, though intriguingly, some of these excess lipids are incorporated 

into EVs. Apheresis reduced total fatty acid concentration of plasma. However, this 

was not reflected in the EV fraction following apheresis. Thus, although the overall 

number of EVs decreases pre- versus post-apheresis, the fatty acid concentration per 

EV remains the same. The composition of several fatty acids were different in 

individuals with FH compared to healthy volunteers in both plasma and EVs, 

however affected fatty acids and the trends (i.e. increase or decrease) were the same. 

Surprisingly, plasma and EVs from individuals with FH were more enriched in 

mono- and polyunsaturated fatty acids such as EPA and contained fewer saturated 

fatty acids compared to healthy volunteers. However, further work with more 

reliable healthy controls is needed to confirm these potential differences. EV fatty 

acids altered following apheresis in FH were the same as those altered in the plasma 

fraction with apheresis, however the trend of change was specific to EVs or plasma. 

The physiological relevance of these contradictory changes between plasma and EVs 

remains to be elucidated. Furthermore, when plasma was directly compared with the 

EV fraction, the composition of fatty acids was found to be different between 

compartments. This suggests that the fatty acid composition of EVs is independent to 

that of surrounding plasma, a concept previously found in a separate cohort of 

patients with PCOS (76) and data presented in Chapter 4 (159).  

The potential of EVs to generate thrombin was assessed using CAT. No change was 

observed in EV peak thrombin generation following apheresis. However, total EV 
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concentration measured by either TRPS (np100) or NTA showed a positive 

correlation with the total thrombin AUC whereas EV concentration measured by 

TRPS (np200) showed no correlation. Taken together, this suggests a reduction in 

EVs is associated with decreased thrombin generation capacity and that smaller EVs, 

particularly exosomes, are associated with an increased total thrombin generation 

over time. This conclusion was met based on the fact that both TRPS (np100) and 

NTA have an increased sensitivity for EVs in the exosomal range compared to TRPS 

(np200). Furthermore, individuals with FH were shown to have an increased 

circulating population of smaller EVs compared with healthy volunteers. Both TRPS 

(np100) and NTA showed a trend towards reduction in exosomal populations of EVs 

following apheresis, though this did not reach significance. This may suggest that the 

increased circulating population of exosomes in individuals with FH contributes to a 

more procoagulant EV fraction. Apheresis treatment non-selectively removes EVs 

and could potentially reduce the procoagulant potential of exosomes and smaller 

EVs. In keeping with previous data, (555,556) our results confirm EVs have 

endogenous TF activity and can stimulate thrombin generation. When exogenous TF 

was added to EVs to stimulate thrombin generation, the correlation between EV 

concentration and AUC was lost, indicating saturation of thrombin generation. 

 

8.4.3 Limitations 

As this study was an additional part of the normal clinical care received by 

individuals with FH, three different types of apheresis treatment were used. The 

present study was not designed to address the effects of the type of apheresis 

treatment on EVs in FH, though observationally, there were no differences in EV 

concentration between the techniques. In vitro studies have shown that the surface 

morphology of the adsorbent polymer may effect EV production (557), though this 

requires confirmation in vivo. Having now established that apheresis directly reduces 

EV concentration, future longitudinal studies should establish whether the reduction 

in atherogenic EVs is maintained between apheresis treatments and explore the 

physiological relevance this reduction in EVs has in regards to CVD pathology.  

FC measurements to assess cellular origin of EVs pose some potential limitations. 

EVs were initially gated based on their annexin V positivity meaning only annexin V 
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positive EVs were analysed for cellular origin. However, not all EVs display annexin 

V positivity (63). Given the majority of EVs measured in this study were annexin V 

positive (~90%) and the routine use of annexin V positivity to gate EV populations 

(56,558,559), these EVs were selected for subsequent staining for markers of cellular 

origin. In hindsight, the cellular origin of annexin V positive and negative EVs 

should have been assessed for cellular origin. The rationale at the time however was 

based on data showing annexin V positive EVs to be more procoagulant (63). 

As discussed in previous chapters, many flow cytometers have a practical lower limit 

of ~300 nm. Therefore smaller EVs, particularly exosomes, are below the 

detectability of these cytometers, and the fluorescence data obtained from a given 

sample does not completely reflect the full range of EV sizes observed by NTA and 

TRPS. Despite this, FC is still one of the most popular techniques to assess surface 

antigen expression of EVs, mainly because of its wide availability.  

Finally, the thrombin generation of patient EV samples was measured in the 

presence of pooled, healthy plasma to specifically test the activity of EVs as opposed 

whole patient plasma (that would likely reflect the influence of apheresis). Future 

studies should assess the procoagulant activity of plasma pre- to post-apheresis to 

confirm this reduction in atherogenic EVs. 

 

8.4.4 Conclusions 

In summary, apheresis reduces the concentration of circulating EVs in patients with 

FH, the majority of which are annexin V/platelet-positive. Though EV concentration 

was reduced, apheresis had no effect on the total fatty acid concentration of EVs. 

Fatty acid composition of EVs is unique and does not reflect that of surrounding 

plasma. EV concentration (particularly in the exosomal range) positively correlated 

with total thrombin generation, suggesting that a reduction in EV concentration via 

apheresis in FH may reduce the ability of EVs to produce thrombin. The removal of 

EVs that are predominantly annexin V and platelet-derived is a novel finding, 

supporting the notion that apheresis may have beneficial cardiovascular effects 

beyond lipoprotein removal. Future work should establish whether EV reduction 

during apheresis correlates with the longer-term benefits of this treatment.
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9. General Discussion 
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9.1 Thesis overview 

The primary aim of this thesis was to explore the characteristics and potential 

functional applications of adipocyte-derived EVs. Initially, this thesis sought to 

address issues surrounding methodological and pre-analytic processing of EVs to 

provide a firm background and understanding which could be applied to the 

remaining chapters. Adipocyte-derived EV release was then characterised using the 

well-established adipocyte cell line, 3T3-L1. The physiological characteristics of 

adipocyte EV release were monitored during adipogenesis. Hypoxia was then used 

as a pathophysiological stimulus for adipocyte EV generation, and these EVs were 

characterised according to the methods derived in earlier chapters and assessed for 

their ability to influence Mϕ function. The potential clinical implication of EVs in 

vivo was then considered. A variety of methodologies were used to assess the 

presence of adipocyte-derived EVs within plasma EV isolates. Finally, plasma EVs 

were analysed in a clinical cohort undergoing a routine treatment to determine the 

profile of EVs in CVD and the effects of an acute treatment modality on circulating 

EVs. 

The promise of EVs as novel circulating biomarkers is great in both physiological 

and disease states. However, EV research is currently hampered by an overall lack of 

standardisation in the isolation, storage and measurement of EVs, resulting in gross 

inconsistencies of reported EV protocols and data. It is important to reflect that 

during the course of this work, the field has progressed and my work has adapted 

accordingly – thus practice adopted in earlier experiments may not be mirrored in 

later chapters. Recent recommendations encourage EV researchers to provide 

evidence of an EV population from “minimal requirements” outlined in Table 1.1.2 

(16). Currently, these are preferably achieved using isolation techniques such as 

density ultracentrifugation or SEC to ensure separation of EVs from contaminating 

materials, particularly in plasma samples. EVs are then typically measured using a 

combination of TEM to visualise and size EV populations; NTA to determine EV 

concentration and FC (with micrometre beads) or proteomics/lipidomics to 

phenotype EVs. However, there are still no gold standard protocols or techniques for 

EV measurements. As such, different methods of EV detection and pre-analytical 

processing may be used to achieve these outlined requirements for an EV population; 

therefore, it is important to understand how these methodologies compare.  
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Two techniques used for EV size and concentration measurements, NTA and TRPS, 

were compared in Chapter 3. At the time of undertaking this comparison, TRPS was 

an emerging technique for EV quantification and little was known about how this 

non-optical, impedance-based method compared with the more popular technique, 

NTA which uses light scattering. Data presented in this thesis suggest that both NTA 

and TRPS are able to measure calibration beads over a wide range of concentrations, 

with TRPS being able to detect beads over a greater size range than NTA. However, 

to achieve this greater range of detection, TRPS requires the use of multiple 

nanopores. Not only does this increase the labour intensiveness of sample 

measurement, but data presented in Chapter 3 also showed that the detected 

concentration of the same calibration bead varied between nanopores; a concept 

since observed by others (407,411). Therefore, the additional time taken and the 

discrepancy in accuracy between pores may render TRPS less advantageous over 

NTA, despite the greater range of detection of calibration beads of TRPS. 

Furthermore, TRPS pores were subject to frequent blocking when using polydisperse 

samples, making measurements frustrating. NTA and TRPS were also compared in a 

clinical cohort in Chapter 8 (discussed below) for their measurement of EV size and 

concentration in individuals with FH. Interestingly, in contrast to bead measurements 

in Chapter 3, polydisperse plasma EVs were detected over a similar size range using 

NTA and TRPS (np100 and np200), though the total reported concentration of EVs 

varied greatly between techniques. 

Since the completion of this work, guidelines have been proposed for the use of high 

and low-sensitivity settings for both NTA and TRPS measurements 

(149,161,162,407,411). These settings for TRPS involve two different combinations 

of voltage and stretch being applied to each nanopore to improve accuracy of 

detection at the extremities of the pore. For NTA, larger particles measured using 

NTA tend to scatter more light, resulting in a “halo” of scattered light which may be 

counted by NTA software as smaller particles (Figure 3.4.1), perhaps partially 

explaining the reduced sensitivity of NTA for larger particles. Therefore, recent 

suggestions to analyse polydisperse samples at two dilutions (high and low 

sensitivity) with optimised analytical settings may overcome this problem. 

Furthermore, NTA software has been updated since this work was undertaken to 

reduce the subjectivity of analytical settings (162).  
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Despite the limitations of both NTA and TRPS, both techniques were superior at 

detecting individual populations within polydisperse bead samples compared to FC 

and DLS (Chapter 3). In addition to technical comparisons, Chapter 3 also 

addressed a selection of the methodological issues of the EV field by comparing 

protocols at different stages of pre-analytical processing. As others have since 

shown, the choice of anticoagulant used to collect blood for EV processing, and 

subsequent isolation and purification steps (such as filtering) can all impact upon the 

resultant EV population. As current guidelines are still lacking clarity, the best 

approach currently seems to be consistency in isolation protocols between samples, 

and to be clear and honest in reporting of protocols to allow comparison with others 

in the field. As such, from data presented in Chapter 3 which showed the negative 

effects of long-term storage on EV size and concentration, experiments conducted in 

later chapters (Chapters 4-7) aimed to utilise freshly isolated EVs wherever possible. 

As outlined in Chapter 1, AT is a highly active endocrine organ with diverse roles in 

regulating lipid metabolism, appetite, blood pressure and androgen levels through the 

secretion of adipokines (347). EVs have also been implicated in a number of 

homeostatic mechanisms, though research generally focuses on EVs derived from 

platelets and endothelial cells. However, little is known about EV release from 

adipocytes and their potential roles in local and endocrine AT function. Data 

presented in Chapter 4 provide a detailed characterisation of EVs released from 

adipocytes pre- and post-adipogenesis. EVs released from both pre- and mature 

adipocytes display a classical EV morphology and EV markers including CD9, in 

accordance with the ISEV minimal requirements for an EV population (16). 

Adipocyte EVs also bear adipocyte protein markers such as PPARγ and adiponectin 

that reflect their stage of adipogenesis. Data presented in Chapter 4 were also the 

first to show detailed analyses of the lipid composition of adipocyte EVs including 

fatty acid composition, phospholipid composition and phospholipid fatty acid 

composition. Interestingly, preadipocytes were shown to release more EVs per cell 

than mature adipocytes which were enriched in fatty acid signalling entities such as 

arachidonic acid. This suggests that EVs released from preadipocytes may facilitate 

communication in the early stages of differentiation; a notion recently supported by 

evidence from hASCs (441). Data has also shown that adipocyte-derived EVs are 
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able to modulate lipogenesis in neighbouring adipocytes (388) providing further 

evidence for a functional role of EVs in adipocyte intercommunication. 

In addition to the physiological role of EVs in the cardiovascular system, EVs are 

also elevated in a number of CVDs, and have been shown to have a detrimental role 

in atherosclerotic plaque formation (207) and arterial stiffening (213). Obesity is a 

major risk factor for the development of CVD and other comorbidities due to the 

dysregulation of adipocyte and AT functioning. Chapters 5 and 6 exposed 

adipocytes to hypoxia, a potential instigator of adipocyte dysfunction in obesity, to 

determine the effects on EV characteristics and function. Hypoxia at 1% O2 was 

found to induce a significant increase in EV production, without affecting adipocyte 

viability, and was therefore selected as the hypoxic stimulus. Previous studies have 

observed increases in EV release following stimulation with 1% O2 (241,463,471) 

though never before in adipocytes, with just one study finding an increase in 

exosomal protein from adipocytes following a hypoxic insult (390). This hypoxic 

induction of adipocyte-derived EV release could be mediated via HIF-1α as HIF-1α 

protein was increased in hypoxic adipocytes and silencing of HIF-1α has previously 

been shown to abate hypoxia-induced EV secretion (463). However, further work is 

needed to confirm this in hypoxic adipocyte-derived EV release. Chapter 5 also 

presents novel data on the effect of hypoxia on lipid and phospholipid composition 

of adipocytes and adipocyte-derived EVs. A similar profile of fatty acids was altered 

in adipocytes and corresponding EVs in hypoxia, suggesting that hypoxia-induced 

changes in cellular lipid metabolism are transferred to the EV. However, comparison 

of the fatty acid compositions between hypoxic adipocytes and corresponding EVs 

highlighted a number of compositional differences, generally suggesting EVs were 

enriched with a greater repertoire of signalling PUFAs. Therefore a greater number 

of EVs may be released by adipocytes in hypoxia that have a higher signalling 

capacity, promoting intercellular communication in AT. Indeed, the monocyte 

chemoattractant protein, MCP-1 was found to be enriched in hypoxic EVs, 

suggesting a greater potential of these EVs to communicate with monocytes and Mϕ. 

Obese AT is associated with an increased infiltration of proinflammatory Mϕ which 

feed the inflammation and dysfunction of AT in obesity. Hypoxia is able to induce 

AT dysfunction (380) and data in this thesis indicates that hypoxia also increases the 

release of EVs from adipocytes capable of interacting with Mϕ. I therefore 
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hypothesised that hypoxic adipocyte-derived EVs may participate in this cycle of 

adipocyte hypoxia and Mϕ inflammation by inducing a phenotypic shift of Mϕ 

towards a proinflammatory, M1 phenotype and stimulating the migration of 

additional Mϕ. Unfortunately, due to experimental issues with collaborators, 

experimental repeats could not be completed. However, preliminary data presented 

in Chapter 6 suggest that hypoxic adipocyte-derived EVs may have an alternative 

motive to that originally hypothesised in Mϕ interaction. The migration of Mϕ 

indeed looked to be more direct towards hypoxic adipocyte EVs, suggesting a 

greater chemotactic potential of these EVs. However, the M1 cytokine, IL-1β was 

decreased and the M2 marker, dectin-1 was increased in Mϕ following incubation 

with hypoxic adipocyte EVs. This suggests that the initial interaction of hypoxic 

adipocyte EVs with Mϕ may intend to encourage an M2, anti-inflammatory 

phenotype, perhaps to promote the resolution of hypoxia-induced damage in AT. 

However, upon recruitment to hypoxic AT, the local environment of dysfunction and 

inflammation may stimulate the transition of Mϕ to an M1 phenotype, thereby 

further exacerbating the metabolic dysregulation. However, further repeats need to 

be completed to ascertain the true intention of hypoxic adipocyte-derived EVs 

towards Mϕ.  

In vitro experiments played an important part in establishing the characteristics and 

potential functional interactions of adipocyte-derived EVs in this thesis, enabling the 

identification of specific markers which may be used to probe for the existence of 

adipocyte-derived EVs in vivo. The metabolic and inflammatory status of adipocytes 

in vivo may dictate the development and severity of obesity-related co-morbidities, 

and therefore adipocyte-derived EVs may provide a novel circulating biomarker of 

adipocyte functioning. However, the presence of adipocyte-derived EVs in the 

circulating plasma EV fraction had not previously been reported. Data presented in 

Chapter 7 confirms the presence of adipocyte markers in plasma EV isolates and 

was used to secure a project grant application. Adiponectin, FABP4 and PPARγ 

were detected in plasma EVs using a range of techniques from previous chapters in 

this thesis and others have also confirmed our findings (54,514,515). As discussed in 

Section 9.2 below, our group is continuing this work to attempt to isolate adipocyte-

derived EVs from circulating plasma EVs in order to investigate these EVs in 

different patient populations as potential biomarkers of disease. 
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Alterations in circulating EVs have been associated with a number of diseases, 

generally manifesting as an increase in circulating EV concentration. Therefore, the 

therapeutic reduction of EVs in diseases with elevated EV concentrations may help 

to abate EV-mediated disease progression. Novel data presented in Chapter 8 show 

that individuals with FH have higher circulating levels of plasma EVs compared to 

healthy volunteers. Furthermore, routine apheresis treatment received by these 

individuals as part of their normal clinical care reduced the concentration of 

circulating EVs as well as LDL. These EVs were primarily annexin V positive and 

of platelet origin which, as discussed in Chapter 1.1.8.2, can be strongly 

procoagulant. Additionally, the thrombin generation potential of EVs correlated with 

EV concentration, which indicates that a reduction in these EVs by apheresis may 

reduce the EV-mediated procoagulant potential in FH individuals. Intriguingly, 

apheresis treatment provides a long-term reduction in cardiovascular risk for 

individuals with FH, though the reduction of LDL following apheresis treatment is 

transient (526). This suggests that the removal of LDL alone by apheresis does not 

completely account for the long-term cardiovascular benefits of the treatment. The 

removal of procoagulant EVs by apheresis may therefore provide additional 

cardiovascular benefits to individuals with FH, though further work is needed to 

determine whether this removal of EVs accounts for the long-term benefits of 

apheresis treatment. 

Data presented in this thesis provide new insights into the characteristics and 

potential functions of adipocyte-derived EVs in normal adipocyte processes such as 

adipogenesis and in disease-like conditions such as obesity-induced hypoxia. 

Though the EV field is hampered by a lack of standardisation, EVs are emerging as 

novel cellular communicators and adipocyte-derived EVs in particular may 

participate in the autocrine, paracrine and endocrine functions of AT. EVs are 

therefore likely to feature heavily in future biomarker and therapeutic research in a 

number of different diseases. As such, adipocyte-derived EVs may become 

important biomarkers of AT function and metabolic risk in obesity. 
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9.2 Future research 

It is hoped that future research into EVs will resolve many of the standardisation 

issues in EV isolation and measurement. Although this is a challenging task due to 

the breadth and variety of research within the EV field, it is essential for progression 

of the field towards the use of EVs as biomarkers of disease and potentially as 

therapeutic targets.   

From an adipocyte EV perspective, data in this thesis provide a number of interesting 

opportunities for continuation. For example, Chapter 4 indicated that preadipocytes 

were much more active in generating EVs than mature adipocytes. The main focus of 

the pathological role of adipocyte-derived EVs however focused on EV release from 

mature adipocytes (Chapters 5 and 6). Preadipocytes and adipocyte precursors form 

an important part of AT, largely accounting for the tissue‟s innate plasticity. 

Therefore, the release of preadipocyte-derived EVs may be an interesting avenue of 

research. For instance, a recent study has observed that exposure of preadipocytes 

undergoing differentiation to intermittent hypoxia results in a population of mature 

adipocytes with greater insulin sensitivity and ability to store triglycerides (560). 

Our own work with adipocyte-derived EVs will continue with data from Chapters 5 

and 6 currently being extended to analyse the effects of hypoxia and inflammation 

on adipocyte-derived EV release. It is hypothesised that the combination of hypoxia 

and inflammation may have a synergistic effect on stimulating adipocyte-derived EV 

release, which may in turn enhance leukocyte recruitment to AT via breakdown of 

endothelial barriers. Characterisation of adipocyte-derived EVs will also continue 

using more primary adipocyte sources; both commercial primary adipocyte cells and 

those isolated by our group directly from human AT. We hope to continue our 

characterisation of adipocyte-derived EVs and confirm our results from 3T3-L1 

adipocytes, but also to examine adipocyte-derived EVs from adipocytes from 

patients of varying BMIs and diseases (such as T2D). It may be that adipocyte-

derived EVs from obese or metabolically dysfunctional individuals differ to those 

from healthy individuals, thus potentially leading to the identification of novel 

biomarkers. 

In parallel with this, our in vivo research into adipocyte-derived EVs will also 

continue by applying data from this thesis to attempt to isolate adipocyte-derived 
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EVs from circulating plasma EV populations. Our group are currently trialling a 

magnetic bead-based approach to selectively isolate specific populations of EVs, 

including adipocyte-derived EVs. It is hoped this technique can be combined with 

other techniques such as FC and TRF to allow for dual staining of adipocyte markers 

to definitively confirm an adipocyte origin. 
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 DAY 0 DAY 15 

Fatty acid Cells (%) EVs (%) p value Cells (%) EVs (%) p value 

SFA 39.96 ± 1.55 53.42 ± 4.49 <0.0001 51.81 ± 1.64 34.89 ± 4.65 <0.0001 

C14:0 0.43 ± 0.05 0.16 ± 0.13 0.003 3.27 ± 0.27 0.34 ± 0.16 <0.0001 

C15:0 0.36 ± 0.07 0.67 ± 0.11 0.0004 0.36 ± 0.02 0.24 ± 0.08 0.03 

C16:0 16.81± 0.47 23.45 ± 2.08 0.0004 44.22 ± 1.16 17.51 ± 3.67 <0.0001 

C18:0 20.82 ± 0.70 26.12 ± 1.76 0.0003 3.79 ± 0.18 15.79 ± 0.65 <0.0001 

C20:0 0.72 ± 0.18 2.19 ± 0.28 <0.0001 0.10 ± 0.00 0.79 ± 0.04 <0.0001 

C24:0 0.82 ± 0.08 0.83 ± 0.13 ns 0.07 ± 0.01 0.22 ± 0.05 0.003 

MUFA 23.38 ± 1.39 24.75 ± 5.51 <0.0001 39.33 ± 1.35 26.51 ± 6.23 <0.001 

C14:1 0.15 ± 0.09 0.05 ± 0.09 ns 0.10 ± 0.02 0.04 ± 0.04 0.02 

C16:1n9 1.88 ± 0.17 2.37 ± 0.31 0.0004 23.39 ± 0.67 7.21 ± 3.37 <0.0001 

C16:1n7 1.31 ± 0.10 2.16 ± 0.67 0.03 ND ND - 

C18:1n9 14.02 ± 0.65 11.63 ± 1.35 0.006 12.86 ± 0.51 14.96 ± 0.89 0.003 

C18:1n7 3.69 ± 0.21 3.66 ± 0.16 ns 2.80 ± 0.13 1.11 ± 0.78 0.008 

C20:1n9 0.74 ± 0.07 0.44 ± 0.11 0.0004 0.13 ± 0.01 2.98 ± 1.00 0.003 

C22:1n9 ND 3.15 ± 2.58 - ND ND - 

C24:1n9 1.38 ± 0.10 1.29 ± 0.24 ns 0.05 ± 0.01 0.21± 0.15 ns 

PUFA 32.13 ± 2.39 19.34 ± 6.99 <0.0001 1.1 ± 0.1 37.54 ± 8.76 <0.0001 

C18:2n6 2.63 ± 0.37 12.05 ± 4.44 0.003 0.23 ± 0.01 32.80 ± 7.77 0.0007 

C18:3n3 1.02 ± 0.60 1.09 ± 1.11 ns 0.05 ± 0.01 3.63 ±0.38 <0.0001 

C20:2n6 3.57 ± 0.10 0.96 ± 0.18 <0.0001 0.12 ± 0.01 0.15 ± 0.05 ns 

C20:3n3 1.40 ± 0.07 0.60 ± 0.13 <0.0001 ND ND - 

C20:4n6 13.92 ± 0.68 2.91 ± 0.52 <0.0001 0.56 ± 0.04 0.63 ± 0.33 ns 

C22:2 0.88 ± 0.04 0.28 ± 0.09 <0.0001 ND ND - 

C22:3 1.81 ± 0.10 ND - ND ND - 

C22:5n3 2.66 ± 0.19 0.63 ± 0.34 <0.0001 0.13 ± 0.01 0.21 ± 0.09 ns 

C22:6n3 4.14 ± 0.24 0.82 ± 0.18 <0.0001 0.01 ± 0.02 0.15 ± 0.14 ns 

Other 2.93 ± 0.55 2.12 ± 0.38 ns 0.92 ± 0.05 0.74 ± 0.17 ns 

C16 Ac 2.18 ± 0.31 1.76 ± 0.30 0.04 0.53 ± 0.03 0.43 ± 0.13 0.15 

C18 Ac 0.75 ± 0.24 0.36 ± 0.08 0.009 0.39 ± 0.02 0.31 ± 0.04 0.009 

Table I: Cell to EV fatty acid analysis. Comparison of individual fatty acid proportions of 

3T3-L1 cells and their corresponding EVs at day 0 (n=6) and day 15 (n=5). Ac = acetals; 

SFA = saturated fatty acid; MUFA = monounsaturated fatty acid; PUFA = polyunsaturated 

fatty acid; ND = not detected, ns = non-significant.  
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A 

Fatty acids (% 

of total) 

Day 0 Day 15 

Cells EVs Cells EVs 

Phosphatidylethanolamine 

SFA 16.6 32.5 25.6 37.9 

C16:0 3.2 11.0 15.7 16.4 

C18:0 13.4 20.9 9.9 17.8 

C20:0 - 0.6 - 0.9 

C24:0 - - - 2.8 

MUFA 11.0 24.3 38.3 34.3 

C16:1n9 0.8 3.3 - 6.4 

C16:1n7 0.7 1.3 21.7 11.5 

C18:1n9 7.4 15.1 12.6 13.1 

C18:1n7 2.1 3.8 4.0 3.3 

C20:1n9 - 0.8 - - 

PUFA 66.9 37.9 28.2 23.0 

C18:2n6 0.9 1.7 0.8 0.7 

C18:3n3 0.7 5.2 - 8.8 

C20:2n6 7.4 4.3 1.4 1.3 

C20:3n6 1.5 1.7 - 0.6 

C20:4n6 37.7 13.5 13.9 7.8 

C20:5n3 5.4 1.5 3.1 1.4 

C22:2n6 2.1 1.3 - - 

C22:3n3 4.2 2.5 - - 

C22:4n6 0.9 - - - 

C22:5n3 6.1 3.0 2.6 - 

C22:6n3 - 3.2 6.4 2.4 

Other 4.2 4.6 5.0 3.9 

C16 acetals 4.2 4.6 5.0 3.9 
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B 

  

Fatty acids (% 

of total) 

Day 0 Day 15 

Cells EVs Cells EVs 

Sphingomyelin 

SFA 67.3 62.6 81.3 61.8 

C14:0 - 0.7 0.6 0.9 

C16:0 26.9 34.8 44.4 31.6 

C18:0 15.1 17.7 16.1 16.9 

C20:0 4.9 3.3 5.8 2.8 

C22:0 8.9 6.1 10.5 4.9 

C24:0 11.5 - 3.9 4.7 

MUFA 30.9 6.2 12.6 14.1 

C16:1n9 0.9 4.4 1.9 7.9 

C16:1n7 0.6 - 1.4 - 

C18:1n9 0.6 1.8 0.9 1.9 

C24:1n9 28.8 - 8.4 4.3 

PUFA 1.9 31.4 5.8 24.0 

C18:2n6 - 0.7 - 0.6 

C18:3n3 - 0.8 1.7 - 

C18:3n6 1.9 7.7 2.9 8.7 

C20:2n6 - 1.6 - 2.2 

C20:3n6 - - - 0.6 

C20:4n6 - - - - 

C22:3n3 - - 1.2 3.8 

C22:4n6 - - - 8.1 

C22:5n3 - 8.2 - - 

C22:6n3 - 12.4 - - 
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C 

  

Fatty acids (% 

of total) 

Day 0 Day 15 

Cells EVs Cells EVs 

Phosphatidylcholine 

SFA 37.3 52.1 41.1 48.7 

C14:0 - 0.7 - 0.6 

C16:0 21.8 37.8 29.7 30.9 

C18:0 15.5 13.6 11.4 17.2 

MUFA 30.3 36.4 52.9 43.1 

C16:1n9 2.3 3.9 0.6 2.1 

C16:1n7 1.6 1.9 32.1 20.6 

C18:1n9 18.4 22.9 15.0 14.8 

C18:1n7 7.4 7.1 5.2 5.6 

C20:1n9 0.6 0.6 - - 

PUFA 28.9 9.6 4.6 6.3 

C18:2n6 2.7 1.8 0.5 0.7 

C18:3n3 - 1.2 0.3 2.9 

C20:2n6 3.6 1.0 0.5 - 

C20:3n6 1.8 0.9 0.3 - 

C20:4n6 13.6 2.9 2.0 1.4 

C20:5n3 2.1 - 0.5 - 

C22:2n6 - - 0.0 - 

C22:3n3 1.0 - 0.1 - 

C22:5n3 1.5 0.9 0.3 0.6 

C22:6n3 2.6 0.9 0.6 0.7 

Other 1.1 - - - 

C16 acetals 1.1 - - - 
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D 

  Fatty acids (% of 

total) 

(% of total) 

Day 0 

Cells 

Day 15 

Cells 

Cardiolipin 

SFA 26.7 11.3 

C16:0 12.1 7.4 

C18:0 14.6 3.9 

MUFA 35.4 79.0 

C16:1n9 2.4 - 

C16:1n7 2.6 54.6 

C18:1n9 19.4 14.1 

C18:1n7 11.0 10.3 

PUFA 36.3 7.2 

C18:2n6 9.6 2.2 

C18:3n3 4.3 1.6 

C20:2n6 2.3 - 

C20:3n6 4.2 0.8 

C20:4n6 9.9 1.7 

C20:5n3 1.5 - 

C22:3n3 0.9 - 

C22:4n6 - - 

C22:5n3 1.3 - 

C22:6n3 2.3 0.9 

Other 0.8 0.8 

C16 acetals 0.8 0.8 
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E 

  

Fatty acids (% 

of total) 

Day 0 Day 15 

Cells EVs Cells EVs 

Phosphatidylserine 

SFA 46.0 59.0 49.3 62.5 

C14:0 - - - 1.5 

C16:0 1.0 13.0 7.3 22.9 

C18:0 43.8 44.2 42.0 33.4 

C20:0 - 1.1 - - 

C22:0 0.6 - - - 

C24:0 0.6 0.7 - 4.7 

MUFA 22.3 24.5 33.7 18.2 

C16:1n9 0.7 3.4 0.7 7.0 

C16:1n7 - - 15.7 3.9 

C18:1n9 18.6 16.4 12.8 7.3 

C18:1n7 2.4 3.5 3.8 - 

C20:1n9 0.6 - - - 

C24:1n9 - 1.2 0.7 - 

PUFA 30.2 14.9 15.1 19.3 

C18:2n6 1.3 1.3 0.9 1.1 

C18:3n6 - 0.9 - - 

C18:3n3 0.7 6.8 1.6 13.1 

C20:2n6 2.2 0.6 - 4.4 

C20:3n6 3.3 1.8 0.6 - 

C20:4n6 8.1 1.4 3.2 0.7 

C20:5n3 0.6 - - - 

C22:2n6 1.3 0.6 - - 

C22:3n3 3.0 - 0.9 - 

C22:5n3 4.5 0.7 2.8 - 

C22:6n3 5.2 0.8 5.1 - 
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F 

Table II: Phospholipid fatty acid compositions following adipogenesis. Individual 

phospholipids from cells and EVs pre- and post-adipogenesis were separated using 2D-TLC 

and then subjected to GC. Compositions of individual fatty acids are presented for (A) 

phosphatidylethanolamine; (B) sphingomyelin; (C) phosphatidylcholine; (D) cardiolipin; (E) 

phosphatidylserine; and (F) phosphatidylinositol. Only fatty acids >0.5% are presented. 

Totals of saturated, monounsaturated and polyunsaturated fatty acids (SFA, MUFA and 

PUFA respectively) are given (n=1). 

Fatty acids(% 

of total) 

Day 0 Day 15 

Cells EVs Cells EVs 

Phosphatidylinositol 

SFA 43.1 54.9 39.3 65.1 

C14:0 - 0.6 - 0.8 

C16:0 1.6 17.5 19.9 21.5 

C18:0 41.5 36.8 19.4 34.3 

C20:0 - - - 1.6 

C24:0 - - - 6.9 

MUFA 7.1 19.5 33.1 11.2 

C16:1n9 - 8.9 - 3.8 

C16:1n7 - - 7.6 - 

C18:1n9 5.5 8.9 18.3 7.4 

C18:1n7 1.6 1.7 7.2 - 

PUFA 49.2 25.2 26.0 23.7 

C18:2n6 - 1.1 0.7 0.8 

C18:3n3 1.1 17.1 1.0 15.2 

C20:2n6 9.9 2.4 3.2 4.5 

C20:3n6 1.1 - 0.7 1.2 

C20:4n6 30.0 4.6 14.9 2.0 

C20:5n3 1.4 - 1.9 - 

C22:2n6 0.6 - - - 

C22:3n3 1.3 - 0.6 - 

C22:5n3 2.2 - 1.5 - 

C22:6n3 1.6 - 1.5 - 
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 O2 condition 

Fatty acid Normoxia 1% 2% 5% 10% 21% 

SFA 48.1 ± 2.6 52.6 ± 1.2 50.7 ± 0.2 52.2 ± 2.4 45.1 ± 0.8 43.1 ± 1.4 

C14:0 2.9 ± 0.3 3.2 ± 0.2 2.5 ± 0.09 3.2 ± 0.3 3.0 ± 0.03 2.8 ± 0.2 

C16:0 42.0 ± 2.0 45.2 ± 0.9 44.0 ± 0.07 45.4 ± 2.0 41.9 ± 0.8 37.2 ± 1.2 

C18:0 3.1 ± 0.2 4.3 ± 0.05 4.3 ± 0.07 3.6 ± 0.2 3.2 ± 0.02 3.1 ± 0.1 

MUFA 49.2 ± 2.9  41.4 ± 1.2 45.6 ± 0.2 45.2 ± 2.1 49.0 ± 0.6 53.1 ± 1.7 

C14:1 0.6 ± 0.1 0.5 ± 0.1 0.5 ± 0.02 0.3 ± 0.1 0.5 ± 0.03 0.8 ± 0.2 

C16:1n9 0.6 ± 0.1 0.9 ± 0.01 0.7 ± 0.03 0.4 ± 0.06 0.5 ± 0.02 0.8 ± 0.05 

C16:1n7 32.9 ± 1.5 27.8 ± 0.9 27.6 ± 0.1 29.4 ± 1.2 33.3 ± 0.4 35.5 ± 0.9 

C18:1n9 12.1 ± 0.8 12.3 ± 0.1 13.6 ± 0.08 11.9 ± 0.4 11.4 ± 0.06 11.9 ± 0.2 

C18:1n7 3.2 ± 0.5 2.9 ± 0.1 3.2 ± 0.02 3.2 ± 0.3 3.4 ± 0.1 4.2 ± 0.4 

PUFA 1.4 ± 0.4 1.3 ± 0.03 1.9 ± 0.04 1.4 ± 0.2 1.6 ± 0.1 1.9 ± 0.2 

C18:3n3 0.3 ± 0.06 0.3 ± 0.01 0.3 ± 0.01 0.2 ± 0.04 0.3 ± 0.02 0.4 ± 0.05 

C20:4n6 0.6 ± 0.2 0.6 ± 0.01 0.9 ± 0.03 0.6 ± 0.07 0.7 ± 0.04 0.8 ± 0.08 

C20:5n3 0.2 ± 0.05 0.2 ± 0.00 0.2 ± 0.01 0.2 ± 0.03 0.2 ± 0.02 0.2 ± 0.02 

C22:5n3 0.1 ± 0.05 0.1 ± 0.01 0.2 ± 0.01 0.1 ± 0.01 0.1 ± 0.01 0.2 ± 0.02 

C22:6n3 0.3 ± 0.06 0.2 ± 0.01 0.4 ± 0.03 0.3 ± 0.02 0.3 ± 0.02 0.3 ± 0.02 

Table III: Fatty acid composition of hypoxic cells. Compositional changes in cellular fatty 

acids between normoxic controls and hypoxic conditions. Data are presented as the mean 

percentage composition ± standard deviation. Significant changes (p<0.05) from normoxic 

values are in bold italics. Normoxia (n=15), 1, 2, 5, 10, 21% O2 (n=3). SFA = saturated fatty 

acids; MUFA = monounsaturated fatty acids; PUFA = polyunsaturated fatty acids. 
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 O2 condition 

Fatty acid Normoxia 1% 2% 5% 10% 21% 

SFA 51.2 ± 6.9 59.1 ± 0.1 46.3 ± 0.02 48.0 ± 0.06 49.7 ± 0.02 56.8 ± 8.3 

C14:0 0.6 ± 0.6 1.5 ± 0.0 1.6 ±0.0  ND ND  0.5 ± 0.9 

C16:0 36.2 ± 2.6 40.5 ± 0.1 34.3 ± 0.01 32.7 ± 0.03 37.3 ± 0.01 45.1 ± 3.0 

C18:0 14.5 ± 3.7 17.1 ± 0.1 10.3 ± 0.0 15.3 ± 0.03 12.4 ± 0.01 11.2 ± 4.4 

MUFA 39.1 ± 12.1 31.6 ± 0.2 46.1 ± 0.03 44.2 ± 0.06 44.0 ± 0.03 37.7 ± 4.6 

C14:1 0.1 ± 0.2 0.4 ± 0.0 0.9 ± 0.01 ND ND 0.1 ± 0.2 

C16:1n9 0.6 ± 0.5 0.4 ± 0.01 1.0 ± 0.0 ND 0.4 ± 0.0 0.2 ± 0.4 

C16:1n7 19.2 ± 6.4 8.3 ± 0.1 26.2 ± 0.01 20.7 ± 0.03 23.8 ± 0.01 20.6 ± 2.6 

C18:1n9 13.1 ± 2.4  16.9 ± 0.03 13.1 ± 0.01 15.0 ± 0.01 13.4 ± 0.01 11.5 ± 0.5 

C18:1n7 4.6 ± 1.4 5.0 ± 0.01 4.5 ± 0.0 6.1 ± 0.01 4.9 ± 0.0 4.4 ± 0.3 

C20:1n9 1.5 ± 1.3 0.7 ± 0.0 0.4 ± 0.0 2.5 ± 0.01 1.4 ± 0.0 0.9 ± 0.6 

PUFA 8.6 ± 12.6 7.4 ± 0.02 5.1 ± 0.01 6.9 ± 0.01 4.7 ± 0.01 3.9 ± 1.5 

C18:2n6 0.6 ± 0.5 1.3 ± 0.0 ND± 0.7 ± 0.0 0.5 ± 0.0 0.3 ± 0.2 

C18:3n3 2.4 ± 1.3 3.6 ± 0.01 2.0 ± 0.0  2.5 ± 0.01 1.3 ± 0.0 1.0 ± 0.6 

C20:2n6 0.4 ± 0.3 0.6 ± 0.0 0.3 ± 0.0 0.5 ±0.0 0.5 ± 0.0 0.5 ± 0.1 

C20:4n6 1.6 ± 0.6 1.4 ± 0.0  2.0 ± 0.0 2.3 ± 0.01 1.9 ± 0.0 1.7 ± 0.4 

C20:5n3 2.1 ± 5.5 0.6 ± 0.0 0.3 ± 0.0 0.6 ± 0.0 0.5 ± 0.0 0.4 ± 0.1 

C22:6n3 1.9 ± 4.6 ND 0.5 ± 0.0 0.4 ± 0.0 0.03 ± 0.0 ND 

Table IV: EV fatty acid composition. Compositional changes in EV fatty acids between 

normoxia and hypoxia. Data are presented as the mean percentage composition ± SD. 

Significant changes (p<0.05) from normoxic values are in bold italics. Normoxia (n=15), 1, 

2, 5, 10, 21% O2 (n=3), ND = not detected; SFA = saturated fatty acids; MUFA = 

monounsaturated fatty acids; PUFA = polyunsaturated fatty acids. 
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 Normoxia Hypoxia (1% O2) 

Fatty acid Cells (%) EVs (%) p value Cells (%) EVs (%) p value 

SFA 48.1 ± 2.6 51.2 ± 6.9 - 52.6 ± 1.2 59.1 ± 0.1 **** 

C14:0 2.9 ± 0.3 0.6 ± 0.6 * 3.2 ± 0.2 1.5 ± 0.0 **** 

C16:0 42.0 ± 2.0 36.2 ± 2.6 **** 45.2 ± 0.9 40.5 ± 0.1 **** 

C18:0 3.1 ± 0.2 14.5 ± 3.7 **** 4.3 ± 0.1 17.1 ± 0.1 **** 

MUFA 49.2 ± 2.9 39.1 ± 12.1 ** 41.4 ± 1.2 31.6 ± 0.2 **** 

C16:1n7 32.9 ± 1.5 19.2 ± 6.4 **** 27.8 ± 0.9 8.3 ± 0.1 **** 

C18:1n9 - - - 12.3 ± 0.1 16.9 ± 0.0 **** 

C18:1n7 - - - 2.9 ± 0.1 5.0 ± 0.0 **** 

C20:1n9 ND 1.5 ± 1.3 - ND 0.7 ± 0.0 ** 

PUFA 1.4 ± 0.4 9.0 ± 12.6 * 1.3 ± 0.0 7.4 ± 0.0 **** 

C18:2n6 ND 0.6 ±  0.5 - ND 1.3 ± 0.0 **** 

C18:3n3 - - - 0.3 ± 0.0 3.6 ± 0.0 **** 

C20:2n6 ND 0.4 ± 0.3 - ND 0.6 ± 0.0 * 

C20:4n6 - - - 0.6 ± 0.0 1.4 ± 0.0 *** 

C22:5n3 0.1 ± 0.1 ND - 0.1 ± 0.0 ND - 

Table V: Composition of cell versus EVs in hypoxia. Significant changes in fatty acid 

composition of normoxic and hypoxic cells versus their corresponding EVs. Values are 

given as a percentage of the total fatty acid composition. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. Normoxia (n=15), hypoxia (n=3), „-‟ indicates no change, ND = not detected 

(or below 0.05%). 
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A 

Fatty acid 

(% total) 

Cells EVs 

Normoxia Hypoxia Normoxia Hypoxia 

Phosphatidylethanolamine 

SFA 23.10 22.04 43.38 27.51 

C15:0 - - 0.99 0.51 

C16:0 13.36 11.23 27.49 11.91 

C18:0 9.74 10.81 14.38 15.09 

C20:0 - - 0.52 - 

MUFA 34.54 32.25 37.39 29.79 

C16:1n9 - - 1.67 1.63 

C16:1n7 20.73 17.65 18.37 13.21 

C18:1n9 9.41 9.05 12.33 11.12 

C18:1n7 4.40 5.55 5.02 3.83 

PUFA 28.11 31.24 14.18 31.84 

C18:2n6 0.81 1.00 0.74 - 

C18:3n3 - 0.61 6.32 5.60 

C20:2n6 1.33 1.80 4.50 1.95 

C20:3n3 - - - 0.73 

C20:4n6 12.38 13.76 - 11.96 

C20:5n3 4.53 4.71 1.48 3.79 

C22:2n6 - 0.53 - - 

C22:5n3 2.26 2.61 - 2.96 

C22:6n3 6.80 6.22 1.14 4.85 

Acetals 11.46 12.00 3.26 8.78 

C16 acetals 8.22 8.22 2.26 7.84 

C18 acetals 3.24 3.78 1.00 0.94 
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B 

Fatty acid 

(% total) 

Cells EVs 

Normoxia Hypoxia Normoxia Hypoxia 

Sphingomyelin 

SFA 78.85 74.42 65.79 71.41 

C14:0 0.64 0.68 - - 

C15:0 0.50 0.59 1.23 0.57 

C16:0 43.68 38.99 31.80 34.53 

C18:0 10.68 11.70 21.23 13.38 

C20:0 4.51 3.87 - 3.90 

C22:0 9.94 9.55 6.45 9.83 

C24:0 8.90 9.04 5.26 9.20 

MUFA 12.87 16.26 19.76 13.60 

C16:1n9 0.53 0.80 2.84 1.53 

C16:1n7 2.19 4.24 4.61 - 

C18:1n9 1.02 1.85 6.05 1.19 

C18:1n7 0.59 1.00 1.52 0.57 

C24:1n9 8.54 8.37 4.74 10.31 

PUFA 7.40 7.06 13.45 13.76 

C18:3n6 1.41 0.95 - 1.25 

C18:3n3 3.80 4.05 11.68 9.29 

C20:2n6 0.72 0.79 1.77 2.12 

C22:3n3 1.47 1.27 - 1.10 

Acetals - 0.71 - - 

C16 acetals - 0.71 - - 
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C 

Fatty acid 

(% total) 

Cells EVs 

Normoxia Hypoxia Normoxia Hypoxia 

Phosphatidylcholine 

SFA 37.22 40.88 44.06 41.90 

C14:0 0.42 0.72 - - 

C16:0 28.15 29.98 25.86 28.42 

C18:0 8.65 10.18 15.50 13.48 

MUFA 53.89 49.34 43.55 44.91 

C16:1n9 - - 2.00 1.30 

C16:1n7 34.81 30.57 17.65 20.30 

C18:1n9 12.42 11.12 15.74 15.31 

C18:1n7 6.66 7.65 8.16 8.00 

PUFA 5.37 5.59 12.46 10.07 

C18:2n6 0.63 0.76 0.95 0.88 

C18:3n3 - - 5.48 1.83 

C20:2n6 0.52 0.52 - 0.57 

C20:3n3 - - 0.87 0.78 

C20:4n6 2.42 2.60 2.31 2.66 

C20:5n3 1.03 0.93 0.64 0.71 

C22:5n3 - - 1.12 1.21 

C22:6n3 0.77 0.78 1.09 1.43 

Acetals 0.72 0.99 0.90 0.61 

C16 acetals 0.72 0.99 0.90 0.61 
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D 

Fatty acid 

(% total) 

Cells EVs 

Normoxia Hypoxia Normoxia Hypoxia 

Cardiolipin 

SFA 15.01 69.11 46.51 58.35 

C14:0 0.81 - 0.83 0.54 

C15:0 0.74 1.03 1.89 1.29 

C16:0 9.01 19.56 29.71 18.22 

C18:0 3.45 45.87 11.52 24.70 

C20:0 - 1.25 0.79 0.90 

C22:0 - 1.40 - - 

C24:0 - - 1.77 12.70 

MUFA 75.78 22.71 35.22 23.61 

C14:1 - 0.93 - - 

C16:1n9 - - 3.25 5.47 

C16:1n7 59.42 6.97 19.61 12.43 

C18:1n9 9.10 6.55 10.35 5.71 

C18:1n7 7.26 6.14 2.01 - 

C24:1n9 - 2.12 - - 

PUFA 6.99 5.75 15.79 16.56 

C18:2n6 1.45 1.12 0.64 - 

C18:3n3 4.07 2.18 12.82 13.07 

C20:2n6 - 1.89 2.33 2.70 

C20:3n3 0.57 - - - 

C20:4n6 0.90 0.56 - 0.79 
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E 

Fatty acid 

(% total) 

Cells EVs 

Normoxia Hypoxia Normoxia Hypoxia 

Phosphatidylserine 

SFA 42.20 49.34 39.75 49.06 

C15:0 - 0.54 1.75 1.91 

C16:0 10.35 7.28 17.14 18.04 

C18:0 31.83 40.96 20.86 27.99 

C20:0 - - - 1.12 

C22:0 - 0.56 - - 

MUFA 31.78 26.52 26.94 27.31 

C16:1n9 0.64 1.08 5.38 6.51 

C16:1n7 14.04 12.66 4.88 3.33 

C18:1n9 12.49 9.12 12.17 13.95 

C18:1n7 4.61 3.66 4.51 3.52 

PUFA 22.69 21.11 31.88 22.53 

C18:2n6 0.95 0.80 0.68 1.16 

C18:3n3 3.18 6.53 21.07 9.73 

C20:2n6 1.63 1.89 4.00 2.85 

C20:3n3 0.85 0.80 - - 

C20:4n6 8.35 4.28 6.13 7.52 

C20:5n3 1.69 0.79 - 1.27 

C22:2n6 0.60 0.63 - - 

C22:5n3 2.11 2.14 - - 

C22:6n3 3.33 3.25 - - 
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F 

Fatty acid 

(% total) 

Cells EVs 

Normoxia Hypoxia Normoxia Hypoxia 

Phosphatidylinositol 

SFA 34.41 39.08 51.91 50.89 

C14:0 - 2.25 - - 

C15:0 1.10 0.71 1.25 0.88 

C16:0 16.36 16.85 12.88 11.69 

C18:0 16.95 19.27 37.78 37.72 

C20:0 - - - 0.60 

MUFA 28.43 29.17 24.26 29.29 

C16:1n9 - - 4.57 1.88 

C16:1n7 7.24 8.79 7.36 11.72 

C18:1n9 15.86 13.14 10.26 11.56 

C18:1n7 5.33 7.24 2.07 4.13 

PUFA 34.80 27.29 21.71 18.24 

C18:2n6 - 1.38 - 0.56 

C18:3n3 9.31 6.96 16.51 9.01 

C20:2n6 3.33 2.74 2.86 1.42 

C20:3n3 0.75 0.85 - - 

C20:4n6 15.16 10.01 2.34 3.32 

C20:5n3 3.16 2.30 - - 

C22:3n3 - 0.82 - - 

C22:5n3 1.39 1.07 - 1.90 

C22:6n3 1.70 1.16 - 2.03 

Table VI: Phospholipid fatty acid composition of hypoxic and normoxic adipocytes. 

Individual fatty acids compositions of (A) PE; (B) sphingomyelin; (C) PC; (D) cardiolipin; 

(E) PS; and (F) PI. Only fatty acids >0.5% are presented. The most abundant individual fatty 

acid and class are highlighted in bold for each sample. Totals of saturated, monounsaturated 

and polyunsaturated fatty acids (SFA, MUFA and PUFA respectively) are given (n=1).  
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Gene Forward primer sequence Reverse primer sequence 

GAPDH 5‟-CATTGACCTCAACTACATG-3‟ 5‟-TCTCCATGGTGGTGAAGAC-3‟ 

IL-10 5‟-ACGGCGCTGTCATCGATT-3‟ 5‟- TGGAGCTTATTAAAGGCATTCTTC-3‟ 

IL-1Ra 5‟- GGCCTCCGCAGTCACC-TAATCAC-3‟ 5‟- GGACAGGCACATCTTCCCTCCAT-3‟ 

Dectin-1 5‟-GGAAGCAACACATTGGAGAATGG-3‟ 5‟-CTTTGGTAGGAGTCACACTGTC-3‟ 

Table VII: qRT-PCR primers. Details of the primers used for qRT-PCR. 


