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SUMMARY
The mammalian adult small intestinal epithelium is a rapidly self-renewing tissue that is maintained by a pool of cycling stem cells in-

termingledwith Paneth cells at the base of crypts. These crypt base stem cells exclusively express Lgr5 and requireWnt3 or, in its absence,

Wnt2b. However, the Frizzled (Fzd) receptor that transmits these Wnt signals is unknown. We determined the expression profile of Fzd

receptors in Lgr5+ stem cells, their immediate daughter cells, and Paneth cells. Herewe show Fzd7 is enriched in Lgr5+ stem cells and binds

Wnt3 and Wnt2b. Conditional deletion of the Fzd7 gene in adult intestinal epithelium leads to stem cell loss in vivo and organoid

death in vitro. Crypts of conventional Fzd7 knockout mice show decreased basal Wnt signaling and impaired capacity to regenerate

the epithelium following deleterious insult. These observations indicate that Fzd7 is required for robust Wnt-dependent processes in

Lgr5+ intestinal stem cells.
INTRODUCTION

The adult intestinal epithelium is a self-renewing tissue

with a high turnover rate maintained by intestinal stem

cells that reside at the base of glands (called crypts). Lgr5

(leucine-rich-repeat-containing G protein-coupled recep-

tor 5), aWnt/b-catenin target gene, exclusivelymarks these

long-lived crypt-based columnar (CBC) stem cells in the

mouse and human intestine (Barker, 2014; Barker et al.,

2007; Itzkovitz et al., 2012). Wnt/b-catenin signaling is

crucial for normal stem cell function in the intestinal

epithelium (Korinek et al., 1998; Sato et al., 2009). More

specifically, Wnt3 signaling, provided by flanking Paneth

cells, is necessary for the maintenance and function of

CBC stem cells (Sato et al., 2011). In the absence of

Wnt3, Wnt2b can compensate (Farin et al., 2012). The

weak short range Wnt signal is augmented by R-spondin

signaling through Lgr receptors (Carmon et al., 2011; de

Lau et al., 2011). R-spondins are incorporated into a com-

plex that contains Lrp (low-density lipoprotein receptor-

related proteins), Lgr, and Fzd (Frizzled); this complex

facilitates Fzd-coupled Wnt/b-catenin signaling. Although

studies show that Wnt is critical for stem cell function

(Farin et al., 2012; Sato et al., 2011), other studies question

the requirement for secreted Wnt and the source of
Stem
Wnt in vivo (for example, San Roman et al., 2014). Here

we circumvent these controversies by investigating Fzd

function.

Of the ten mammalian Fzds, only Fzd7 is frequently up-

regulated in stem cell populations and cancers from diverse

tissues (Vincan and Barker, 2008). Cell fractionation

(Mariadason et al., 2005) and in situ mRNA expression

(Gregorieff et al., 2005) studies show that Fzd7 is at the

base of intestinal crypts, the correct location to transmit

stem cell Wnt signals. Using tissue- and cell-specific gene

deletion, we demonstrate that Wnt-dependent Lgr5+

stem cell processes are impaired in the absence of Fzd7.
RESULTS

Fzd7 Expression Is Enriched in the Lgr5+ Stem Cells

First, we determined the expression profile of Fzd receptors

along the crypt axis using our gene array data (Agilent)

(Muñoz et al., 2012). We used the Lgr5EGFP-IRES-CreERT2

knockin mouse (Lgr5CreERT2 for simplicity) where expres-

sion of EGFP is under the control of the Lgr5 promoter (Fig-

ure 1A) (Barker et al., 2007). Isolated small intestine crypt

cells were analyzed by fluorescence-activated cell sorting

(FACS) and arbitrarily sorted into five fractions based on
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EGFP intensity. The half-life of EGFP is relatively long; thus,

the level of EGFP protein is diluted as the cells divide segre-

gating the cells along the crypt axis from CBC cell (5+,

highest EGFP) to dim daughter cells (1+). As expected,

expression levels of Lgr5 rapidly decreased along the crypt

axis away from the base (Muñoz et al., 2012). Similarly,

the Fzd gene profile of each fraction was compared with

fraction 5+. Fzd2 and Fzd7 tracked together, with highest

relative expression in the CBC stem cells and then

decreasing along the crypt axis away from the base. Expres-

sion of some Fzds did not change (Fzd5 and Fzd8), whereas

others (Fzd4) increased in cells with the least EGFP (Fig-

ure 1B). Independent FACS sorting into bulk EGFP+ and

EGFPneg populations and qRT-PCR expression analysis

confirmed that Fzd2/7 expression was enriched to the

EGFP+ fraction, which primarily contains the Lgr5+ (qRT-

PCR) CBC cells (Figure S1A).Mining our gene array analysis

(Affymetrix) (Muñoz et al., 2012) of CBC stem cells

(EGFPhi) compared with dim daughter cells (EGFPlow) iden-

tified high relative expression of Fzd2 and Fzd7 in CBC

stem cells (Figure S1B), while our comparison of CBC and

Paneth cells (Sato et al., 2011) showed Fzd9 highest in the

Paneth cells (Figure S1C).

Fzd7 Gene-Deleted CBC Cells Are Lost from the

Epithelium

To investigate the function of Fzd7 in adult Lgr5+ intestinal

stem cells, we generated floxed Fzd7 mice (Fzd7fl/fl) where

the Fzd7 coding region was flanked by LoxP sites (Figures

S1D–S1F). We then intercrossed Fzd7fl/fl with Lgr5CreERT2

mice to enable deletion of Fzd7 in Lgr5+ intestinal stem

cells. By also co-expressing the ROSA26 LacZ reporter, re-
Figure 1. Fzd Expression in the Intestinal Epithelium
(A) Immunohistochemical analysis of EGFP expression in the intestina
CBC (black arrowheads) between the Paneth cells (*) and decreasin
represents 50 mm.
(B) Crypt cells isolated from Lgr5EGFP-IRES-CreERT2mice were arbitrarily so
Fzd expression (Agilent array) in each sorted population was compar
(C) Histological analysis of LacZ activity showing recombined (black a
intestinal epithelium of Lgr5Cre;LacZ and Lgr5Cre;Fzd7fl/fl;LacZmice at
cells was scored and is shown as a percentage of total crypts counted (
Scale bar represents 100 mm.
(D) Representative histological images of LacZ activity showing cryp
arrowheads) CBC cells in intestinal crypts of AhCre;Fzd5fl/fl;LacZ and Ah
with recombined CBC cells was scored and shown as a percentage of
indicates crypt domain. Scale bar represents 100 mm.
(E) Gene expression (qRT-PCR) analysis on crypts isolated from AhCr
(CreInd) compared with controls (Cre) (mean ± SEM, *p < 0.05, n = 3
(F) Immunohistochemical analysis of PCNA expression to detect cyc
cycling cells located between Paneth cells in the intestinal crypts of in
and non-induced AhCre;Fzd7fl/fl;LacZ (Cre+ Cont) mice (mean ± SEM,
represents 50 mm.
See also Figures S1 and S2.

Stem
combined cells can be tracked and detected histologically

by detecting b-galactosidase activity (blue stain). When

adult Lgr5CreERT2;LacZ mice were subjected to a tamoxifen

pulse, recombined (blue) crypt cells were seen at 12 hr post-

induction and subsequently were proven to be the intesti-

nal stem cells as the entire crypt-villus axis derived from the

recombined stem cell stained blue, forming a continuous

blue ribbon (Barker et al., 2007). Consistent with this, we

observemultiple recombined crypt/villus units in the small

intestine one month post-induction with tamoxifen. In

stark contrast, there were markedly decreased blue ribbons

or blue crypts in the intestinal epithelium of induced

Lgr5CreERT2;Fzd7fl/fl;LacZ mice (Figures 1C and S2A). This

indicates that recombined (blue), Fzd7-deleted CBC stem

cells were lost from the epithelium.

The marked reduction of recombined CBC stem cells

following Fzd7 deletion suggests that loss of Fzd7 was dele-

terious to the CBC stem cells per se. Although all the intes-

tinal crypts harbor Lgr5+ CBC stem cells in the Lgr5CreERT2

mice, not all Lgr5+ cells express EGFP or Cre activity (Barker

et al., 2007; Figures 1C and S2A), making detailed molecu-

lar analysis difficult. Therefore, we next employedAhCre re-

combinase, which results in robust recombination in the

intestinal epithelium, targeting all cell types except the

Paneth cells (Ireland et al., 2004; van der Flier et al., 2009;

Figure S2B). One day after b-naphthoflavone (bNF) induc-

tion of AhCre;LacZ mice (Figure S2E) or another floxed

Fzd compound mouse, AhCre;Fzd5fl/fl;LacZ (Figure 1D), re-

combined blue cells were seen in the villi and crypts,

including the stem cells. However, blue, recombined cells

were absent from the base of the crypts when Fzd7 was

deleted in bNF-induced AhCre;Fzd7fl/fl;LacZ mice (Figures
l epithelium of Lgr5EGFP-IRES-CreERT2 showing highest expression in the
g gradient to dim daughter cells (yellow arrowheads). Scale bar

rted into five populations (5+ highest to 1+ lowest EGFP expression).
ed with the 5+ (CBC) fraction.
rrowheads) and non-recombined (red arrowheads) crypt-villi in the
1 month post-induction. The number of crypts with recombined CBC
mean ± SEM, *p < 0.05, n = 4 mice). Bracket indicates crypt domain.

ts with recombined (black arrowheads) and non-recombined (red
Cre;Fzd7fl/fl;LacZmice at 1 day post-induction. The number of crypts
total crypts counted (mean ± SEM, *p < 0.05, n = 4 mice). Bracket

e;Fzd7fl/fl;LacZ or AhCre;Fzd5fl/fl;LacZ mice at 1 day post-induction
mice).
ling cells (green arrowheads) and enumeration of the number of
duced AhCre;Fzd7fl/fl;LacZ (Cre+ bNF) and Fzd7fl/fl;LacZ (Cre neg bNF)
*p < 0.05, n = 3 mice). Bracket indicates crypt domain. Scale bar
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Figure 2. Fzd7 Is Required for Maintenance of Organoids
(A) Representative differential interference contrast (DIC) images
of intestinal organoids from AhCreFzd7fl/fl mice showing crypt
atrophy (arrow) and organoid death (#) after treatment with bNF;
and rescue with LiCl or CHIR99021 added 1 day after bNF; green
arrowheads indicate examples of healthy organoids. Scale bar
represents 100 mm.
(B) MTT cell viability assay 3 days after passage of vehicle (DMSO)
and induced (bNF-treated) organoids (mean ± SEM,*p < 0.05, n = 3
mice).
(C) Gene expression (qRT-PCR) analysis of organoids at 2 days
post-induction (bNF) compared with controls (DMSO) (mean ±
SEM, *p < 0.05, n = 3 mice).
(D) Immunofluorescence analysis of E-cadherin (green) and Lyso-
zyme (red) expression in induced (bNF) and control (DMSO) orga-
noid crypts of AhCreFzd7fl/fl mice showing Paneth cell (*) and CBC
(arrowheads) positioning (nuclei blue, DAPI). Scale bar represents
50 mm.
(E) PCRs to detect the Fzd7 mutant knockin allele (Fzd7 Mut) and
recombined product after Fzd7 gene deletion (DP), AhCre transgene
(AhCre), and a region of chromosome 1 close to Fzd7 locus (Chr1),
in genomic DNA extracted from organoids established from three
AhCreFzd7fl/fl mice (M1, M2, M3) at 2 days post-induction (PI).
See also Figure S3.
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1D and S2E). Molecular analysis by qRT-PCR of crypts iso-

lated from these mice identified that Lgr5 expression was

decreased in the crypts isolated from the Fzd7-deleted

mice, but not from the Fzd5-deleted mice (Figure 1E).

This indicates that the CBC cells were lost after Fzd7

deletion, but not after Fzd5 deletion. bNF treatment alone

did not result in changes in Fzd7 or Lgr5 expression

(Figure S2C).

The base of the crypts contain Lgr5+ CBC stem cells,

which are highly proliferative, juxtaposed by non-prolifer-

ating Paneth cells (Barker et al., 2007; Figure 1A). Thus, to

further investigate whether deletion of Fzd7 had led to

loss of CBC cells, immunohistochemistry was performed

for the proliferation marker proliferating cell nuclear anti-

gen (PCNA), and the number of proliferating cells counted.

The number of proliferating cells (PCNA+ nuclei) between

the Paneth cells was significantly reduced in Fzd7-deleted

crypts, further supporting the model in which Fzd7

deletion results in loss of CBC cells (Figure 1F). Cryptidin

in situ to detect Paneth cells also revealed that the Paneth

cells were packed side by side without intermingled,

unstained CBC cells in the crypts of Fzd7 deleted mice.

Enumeration of unstained cells between Paneth cells on

the cryptidin stained sections demonstrates a significant

reduction in CBC cells following Fzd7 deletion (Figure S2F).

As the recombined CBC stem cells were lost from the

epithelium of induced AhCre;Fzd7fl/fl;LacZ mice, the blue

cells were progressively ‘‘washed’’ off from the epithelium

through normal turnover. Thus, by 4 days post-induction,

the recombined cells had migrated up the crypt-villus axis,

and by day 7, recombined cells had been cleared from the

epithelium. Some escaper crypt-villi ribbons (blue) were

seen at days 4 and 7 (Figure S2E). By day 7, Lgr5 expression

had returned to WT levels, while Fzd7 expression was

increasing (Figure S2D). These observations are consistent

with a loss of recombined Fzd7-deleted CBC stem cells

from the crypts of induced AhCre;Fzd7fl/fl;LacZ mice.

Fzd7 Deleted Intestinal Organoids Do Not Regenerate

The loss of intestinal CBCs when Fzd7 was deleted in vivo

was transient because of the repopulation that this delete-

rious event triggers. To further investigate this loss of CBC

following Fzd7 gene deletion, we established organoid cul-

tures fromcrypts isolated from the proximal small intestine

of AhCre;Fzd7fl/fl mice and induced Cre-mediated recombi-

nation under defined conditions in vitro. Isolated crypts

cultured in vitrowith growth factors formmini-gut organo-

ids with characteristics of the intact epithelium (Sato et al.,

2009). Induction of Fzd7 gene deletion (Fzd7D/D) led to

atrophy of the crypts and organoid death (Figures 2A,

S3A, and S3B). Treatment of the organoids 1 day post-

induction with 10-mM LiCl (Klein and Melton, 1996)

or 5-mM CHIR99021 (Bennett et al., 2002) to activate
rs



Wnt/b-catenin signaling downstream of Wnt/Fzd rescued

this phenotype (Figure 2A). The Fzd7D/D organoids failed

to regenerate upon passage, suggesting that Fzd7 is

required for the maintenance and regeneration of new or-

ganoids (Figures 2B and S3D). Reduction of Fzd7 expression

in the bNF-treated cultures was confirmed by qRT-PCR

(Figures 2C and S3C). The concomitant decrease in Lgr5

expression (Figure 2C) indicated loss of CBC stem cells.

Achaete-Scute homolog 2 (Ascl2), a transcription factor

that is essential for the maintenance of Lgr5+ stem cells

(van der Flier et al., 2009), was also decreased in the bNF-

treated cultures. While, in contrast, markers of other puta-

tive intestinal stem cells (Barker, 2014) were unchanged or

below detection limits (telomerase reverse transcriptase

[mTert], homeodomain-only [Hopx], and leucine-rich

repeats and immunoglobulin-like domains protein 1

[Lrig1]; Figure 2C).

Immunofluorescence analysis of the organoids revealed

that the slenderCBCcellswere absent in the bNF-treated or-

ganoids (Figure 2D). Notably, a more marked reduction of

CBCs was observed when Fzd7 was deleted in organoids

comparedwith deletion in vivo (Figures 1F and S2F), which

indicates that there was no overlapping repopulation event

occurring in the organoids. To detect recombination, we

performed two PCRs on genomic DNA from organoids

2 days after bNF treatment. First, we observed excision of

the mutant Fzd7 allele (Fzd7 Mut PCR), which was partial

as recombination does not occur in Paneth cells (Ireland

et al., 2004; van der Flier et al., 2009; Figure S2B). Second,

PCR to detect the intact genomic DNA after gene excision

(DP PCR) illustrated efficient recombination in the induced

mice (Figure 2E). Cultured intestinal organoids from

AhCre;Fzd7+/+ mice (Figures 2B and S3E) and AhCre;Fzd5fl/fl

(Figure S3F) continued to grow and regenerate unimpeded

followingbNF treatment.Organoiddeathwas alsoobserved

when Fzd7was deleted fromorganoids using a different Cre

enzyme (VillinCreERT2) that targets the intestinal epithe-

lium (el Marjou et al., 2004) (Figures S3G–S3I).

Intestinal Epithelium Regeneration Is Impaired in

Fzd7 Knockout Mice

Collectively, these data show conditional deletion of the

Fzd7 gene was deleterious to CBC stem cells in vivo and

in vitro. The consequence of this deleterious insult was

CBC stem cell loss in vivo and organoid death in vitro. Like-

wise, the intestinal crypts of conventional Fzd7 knockout

mice (Fzd7NLS/NLS) showed impaired stem cell function.

The Fzd7NLS/NLS are viable and fertile with no overt intesti-

nal phenotype under basal, non-challenge conditions (Yu

et al., 2012) (Figures 3A and S4A). However, careful molec-

ular analysis by immunohistochemistry and qRT-PCR re-

vealed that c-Myc expressionwas reduced in crypts isolated

from Fzd7NLS/NLS mice when compared with WT mice (Fig-
Stem
ures 3C and S4B). This indicates a modest decrease in basal

Wnt/b-catenin signaling as c-Myc is the main effector of

active Wnt/b-catenin signaling in the crypt (Sansom

et al., 2007).

This impaired signaling was exacerbated upon injury

challenge to the epithelium. In the mouse intestine, tissue

injury can be experimentally stimulated by whole-body

exposure to ionizing radiation. After a whole-body single

14-Gy dose, the intestinal crypt cells die by apoptosis, and

subsequently, the tissue is denuded by 48 hr post-irradia-

tion. This triggers rapid repopulation by stem cells and

massive expansion of the crypt compartment (Ashton

et al., 2010). Consistent with this, we observed ablation of

the crypts at 48h and regeneration at 70 hr in WT mice.

However, regeneration was dramatically impaired in the

Fzd7NLS/NLS mice with significantly fewer regenerating

crypts scored per intestinal cross-section at 70h when

compared with WT (Figure 3A). c-Myc and several other

TCF/b-catenin transcriptional target genes known to be up-

regulated during regeneration (Ashton et al., 2010) were

decreased in Fzd7NLS/NLS crypts compared with WT mice at

this time point (Figure 3B). This failure of Fzd7NLS/NLS mice

to upregulate c-Myc after irradiation was confirmed by

immunohistochemistry (Figure 3C). Regeneration was

observed in the Fzd7NLS/NLS mice at 120 hr post-irradiation,

suggesting that loss of Fzd7 delays, rather than prevents, in-

testinal regeneration (Figure 3A). Thus, Fzd7 is required for

efficient, robust regeneration of the intestinal epithelium, a

process that requires high levels ofWnt/b-catenin signaling

(Ashton et al., 2010) and is documented to be absolutely

dependent on Lgr5+ stem cells (Metcalfe et al., 2014).

Closely Related Fzd Genes Cannot Compensate for

Fzd7 Loss

Fzd1, Fzd2, and Fzd7 form a subclass of Fzd genes that share

strong sequence identity in the intracellular C-terminal

domain and can potentially play redundant roles (Sagara

et al., 1998; Yu et al., 2012). qRT-PCR was performed on

cDNA derived from crypts isolated from irradiated WT

mice,demonstrating thatFzd7, butnotFzd1orFzd2,wasup-

regulated during regeneration (Figure 4A). However, Fzd1

and Fzd2 were upregulated in the regenerating epithelium

of Fzd7NLS/NLSmice (Figure 4B), but presumably, this upregu-

lationwas insufficient to promote intestinal regeneration as

regeneration was impaired in these mice (Figure 3) despite a

2-fold increase in Lgr5 expression (Figure 4C). Consistent

with the observed delayed regeneration and absence of

cycling (PCNA+) cells in the Fzd7NLS/NLS mice at 70 hr post-

irradiation, expression of P21, the potent cyclin-kinase-

dependent inhibitor, was elevated when compared with

WTmice (Figures 4C and 4D).

Collectively, these data demonstrate that Fzd7-medi-

ated Wnt/b-catenin signaling is necessary for optimal
Cell Reports j Vol. 4 j 759–767 j May 12, 2015 j ª2015 The Authors 763



Figure 3. Impaired Intestine Epithelium Regeneration in Fzd7 KO Mice
(A) Immunohistochemical analysis of PCNA expression (cycling cells) in the small intestine epithelium of non-irradiated (not IRR) mice
and at indicated times post-irradiation (post-IRR). Brackets indicate crypt domain. Efficiency of regeneration was quantified by counting
the number of regenerating crypts per intestine cross-section at 70 hr post-IRR (mean ± SEM, *p < 0.05, nR 5 mice). Scale bar represents
50 mm.
(B) Wnt target gene expression (qRT-PCR) in isolated intestinal crypts 70 hr post-IRR (mean ± SEM, *p < 0.05, n = 6 mice).
(C) Immunohistochemical analysis of c-MYC expression (no hematoxylin counterstain) in the intestinal epithelium at 70 hr post-IRR and
the enumeration of nuclear c-MYC+ cells per crypt at 70 hr post-IRR (mean ± SEM, *p < 0.05, n = 4 mice). Scale bar represents 50 mm.
See also Figures S4A and S4B.
regeneration of the intestinal epithelium.Wnt3 (Sato et al.,

2011) or Wnt2b (Farin et al., 2012) are required for intesti-

nal stem cell function. FZD7 has been reported as a receptor

forWNT3 (Kim et al., 2008). Herewe confirmed interaction

between FZD7 and WNT3 by co-immunoprecipitation

of epitope tagged FZD7 and WNT3 proteins in HEK293T

cells and extended this to show FZD7 also binds WNT2b

(Figures 4E and S4C).
DISCUSSION

Taken together, our data show that Fzd7, at least in part,

transmits the critical Wnt signal in intestinal CBC stem
764 Stem Cell Reports j Vol. 4 j 759–767 j May 12, 2015 j ª2015 The Autho
cells. Expression of Fzd7 was enriched in Lgr5+ stem cells,

and Fzd7 signaling was necessary for competent Lgr5+

stem cell function, as in the absence of Fzd7, crypt homeo-

stasis and epithelium regeneration were compromised.

Closely related Fzds could not fully compensate for Fzd7

loss.

We observed a rapid loss of CBC cells 1 day after Fzd7

deletion in induced AhCre;Fzd7fl/fl mice. By counting

PCNA+ cells between the Paneth cells or unstained CBC

cells between cryptidin stained Paneth cells, as surrogate

markers for CBCs, we avoid the documented pitfalls

of stem cell marker specificity (Barker, 2014; Itzkovitz

et al., 2012; Metcalfe et al., 2014). Recombination using

with Lgr5CreERT2 mice confirmed that deletion of Fzd7
rs



Figure 4. Closely Related Fzds Cannot Compensate for Fzd7
Loss
(A) Fzd expression (qRT-PCR) in basal and regenerating (70 hr post-
IRR) intestinal crypts of WT mice (mean ± SEM, *p < 0.05, n = 4
mice).
(B) Fzd expression (qRT-PCR) in WT and Fzd7NLS/NLS (Fzd7KO) re-
generating (70 hr post-IRR) intestinal crypts (mean ± SEM, *p <
0.05, n = 4 mice).
(C) Lgr5 and p21 expression (qRT-PCR) in basal and regenerating
(70 hr post-IRR) intestinal epithelium crypts (mean ± SEM, *p <
0.05, n = 4 mice).
(D) Immunohistochemical analysis of P21 expression in WT and
Fzd7NLS/NLS (Fzd7KO) regenerating (70 hr post-IRR) intestinal
crypts. Brackets indicate crypt domain and the enumeration of P21+

cells per crypt at 70 hr post-IRR (mean ± SEM, *p < 0.05, n = 4
mice). Scale bar represents 50 mm.
(E) Immunoblot (IB) of FLAG immunoprecipitates (IP) from
HEK293T cells transfected with the indicated expression plasmids.
See also Figure S4C.

Stem
specifically in Lgr5+ cells was deleterious to these intestinal

stem cells. Similar rapid loss of stem cells following delete-

rious gene deletions was observed previously with c-Myc

(Muncan et al., 2006) and Ascl2 (van der Flier et al.,

2009), for example. The epithelium recovers rapidly from

these deleterious insults in vivo. Two mechanisms have

been described recently to account for the rapid repopu-

lation with stem cells: dedifferentiation of partially

committed progenitors of the secretory cell lineages (Basak

et al., 2014; Buczacki et al., 2013; van Es et al., 2012) or trig-

gering mature quiescent Paneth cells to reacquire stem cell

properties in situations of damage and repair (Roth et al.,

2012). Either mechanism could account for repopulation

in our experiments.

Notably, FZD7 plays a non-redundant role in maintain-

ing pluripotency of human embryonic stem cells (Fernan-

dez et al., 2014) and might play a similar role in the

intestinal stem cells. Our study demonstrates that intesti-

nal stem cells that do not express Fzd7 have an inherent

defect in Wnt/b-catenin signaling, which compromises

stem cell function under conditions of stress. Fzd7 there-

fore might provide an avenue to specifically manipulate

Wnt-driven processes in intestinal stem cells.
EXPERIMENTAL PROCEDURES

Mice
The Lgr5EGFP-Ires-CreERT2 (Barker et al., 2007), AhCre (Ireland et al.,

2004), Fzd5fl/fl (van Es et al., 2005) and Fzd7NLS (Yu et al., 2012)

were interbred to generate compound mice with appropriate al-

leles. All mice were co-housed, and with the exception of Fzd7NLS,

all mice were on an inbred C57BL/6 genetic background using

appropriate littermates as controls. The Fzd7NLS were on a mixed

C57BL/6 3 Sv129 background. For regeneration studies, adult

mice were irradiated as described previously (Phesse et al., 2014).

Briefly, mice were exposed to a single 14-Gy dose of whole-body

g irradiation and harvested at the time points indicated. All animal

experiments were approved by the Animal Ethics Committee,

Office for Research Ethics and Integrity, University of Melbourne.
Cre Induction and Analyses of Mouse Tissues
Mice aged 6–12weekswere given on the sameday two 200-ml intra-

peritoneal injections of tamoxifen in sunflower oil at 10 mg/ml or

three 200-ml intraperitoneal injections of bNF in corn oil at

10 mg/ml. Tissues were harvested at the indicated times after the

first dose. So that the pattern of Cre-mediated recombination at

the ROSA26R LacZ reporter locus could be determined, intestines

were stained for the presence of b-galactosidase (LacZ) activity

(see the Supplemental Experimental Procedures). Immunohisto-

chemistry and in situ hybridization was performed on formalin-

fixed paraffin-embedded tissue sections. Rabbit primary antibodies

used were anti-GFP (Invitrogen, AG455) and anti-PCNA, anti-c-

Myc, and anti-P21 (Santa Cruz SC7907, SC764, and SC397, respec-

tively). Detection of antibody binding was with the rabbit Impress
Cell Reports j Vol. 4 j 759–767 j May 12, 2015 j ª2015 The Authors 765



kit (Vector, MP7401). Unless otherwise stated, slides were counter-

stainedwith hematoxylin. Originalmagnification of images was3

200 or 3400. FACS sorting and gene expression analyses using

Affymetrix and Agilent arrays have been described in detail previ-

ously (Muñoz et al., 2012; Sato et al., 2011) (also see the Supple-

mental Experimental Procedures).

Crypt Organoid Culture and Analysis
Crypt isolation and organoid culture was performed by modified

previously described protocols (Sato et al., 2009). Crypt isolation,

immunofluorescence staining, 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyl tetrazolium bromide (MTT) cell viability assay, and

qRT-PCR are detailed in the Supplemental Experimental Proce-

dures. The primary antibodies were mouse anti-E cadherin (BD

Transduction labs, 610181) and rabbit anti-lysozyme (Thermo

Scientific, RB372); the secondary antibodies were Alexa anti

mouse568 and Alexa anti rabbit 488.

Co-immunopreciptation and Immunoblot Analysis
HEK293 cells were co-transfected with FZD7 ectodomain-V5 and

FLAG tagged WNT3 or WNT2b. FLAG IP was performed using

the Anti-FLAG M2 Affinity Gel kit (Sigma) (also see the Supple-

mental Experimental Procedures).

Statistical Analysis
Data are expressed asmean ± SEM, wheremean represents number

of mice (three or more per genotype) or number of experiments

(three or more). Unless stated otherwise, organoids were estab-

lished from three or more hosts per group. Statistical tests used

are Student’s t test or Mann-Whitney with Prism5 (GraphPad soft-

ware) where p values of %0.05 were considered significant.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental

Procedures and four figures and can be found with this article on-

line at http://dx.doi.org/10.1016/j.stemcr.2015.03.003.
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Muñoz, J., Stange, D.E., Schepers, A.G., van de Wetering, M., Koo,

B.K., Itzkovitz, S., Volckmann, R., Kung, K.S., Koster, J., Radulescu,

S., et al. (2012). The Lgr5 intestinal stem cell signature: robust

expression of proposed quiescent ‘+4’ cell markers. EMBO J. 31,

3079–3091.

Phesse, T.J., Buchert,M., Stuart, E., Flanagan,D.J., Faux,M., Afshar-

Sterle, S., Walker, F., Zhang, H.H., Nowell, C.J., Jorissen, R., et al.

(2014). Partial inhibition of gp130-Jak-Stat3 signaling prevents

Wnt-b-catenin-mediated intestinal tumor growth and regenera-

tion. Sci. Signal. 7, ra92.
Stem
Roth, S., Franken, P., Sacchetti, A., Kremer, A., Anderson, K.,

Sansom, O., and Fodde, R. (2012). Paneth cells in intestinal

homeostasis and tissue injury. PLoS ONE 7, e38965.

Sagara, N., Toda, G., Hirai, M., Terada, M., and Katoh, M. (1998).

Molecular cloning, differential expression, and chromosomal

localization of human frizzled-1, frizzled-2, and frizzled-7. Bio-

chem. Biophys. Res. Commun. 252, 117–122.

San Roman, A.K., Jayewickreme, C.D.,Murtaugh, L.C., and Shivda-

sani, R.A. (2014). Wnt secretion from epithelial cells and subepi-

thelial myofibroblasts is not required in the mouse intestinal

stem cell niche in vivo. Stem Cell Reports 2, 127–134.

Sansom, O.J., Meniel, V.S., Muncan, V., Phesse, T.J., Wilkins, J.A.,

Reed, K.R., Vass, J.K., Athineos, D., Clevers, H., and Clarke, A.R.

(2007). Myc deletion rescues Apc deficiency in the small intestine.

Nature 446, 676–679.

Sato, T., Vries, R.G., Snippert, H.J., van deWetering, M., Barker, N.,

Stange, D.E., van Es, J.H., Abo, A., Kujala, P., Peters, P.J., and

Clevers, H. (2009). Single Lgr5 stem cells build crypt-villus struc-

tures in vitro without amesenchymal niche. Nature 459, 262–265.

Sato, T., van Es, J.H., Snippert, H.J., Stange, D.E., Vries, R.G., van

den Born, M., Barker, N., Shroyer, N.F., van de Wetering, M., and

Clevers, H. (2011). Paneth cells constitute the niche for Lgr5

stem cells in intestinal crypts. Nature 469, 415–418.

van der Flier, L.G., vanGijn,M.E., Hatzis, P., Kujala, P., Haegebarth,

A., Stange, D.E., Begthel, H., van den Born, M., Guryev, V., Oving,

I., et al. (2009). Transcription factor achaete scute-like 2 controls

intestinal stem cell fate. Cell 136, 903–912.

van Es, J.H., Jay, P., Gregorieff, A., van Gijn, M.E., Jonkheer, S.,

Hatzis, P., Thiele, A., van den Born, M., Begthel, H., Brabletz, T.,

et al. (2005). Wnt signalling induces maturation of Paneth cells

in intestinal crypts. Nat. Cell Biol. 7, 381–386.

van Es, J.H., Sato, T., van de Wetering, M., Lyubimova, A., Nee,

A.N., Gregorieff, A., Sasaki, N., Zeinstra, L., van den Born,M., Korv-

ing, J., et al. (2012). Dll1+ secretory progenitor cells revert to stem

cells upon crypt damage. Nat. Cell Biol. 14, 1099–1104.

Vincan, E., and Barker, N. (2008). The upstream components of

the Wnt signalling pathway in the dynamic EMT and MET associ-

ated with colorectal cancer progression. Clin. Exp. Metastasis 25,

657–663.

Yu, H., Ye, X., Guo, N., and Nathans, J. (2012). Frizzled 2 and friz-

zled 7 function redundantly in convergent extension and closure

of the ventricular septum and palate: evidence for a network of

interacting genes. Development 139, 4383–4394.
Cell Reports j Vol. 4 j 759–767 j May 12, 2015 j ª2015 The Authors 767


	Frizzled7 Functions as a Wnt Receptor in Intestinal Epithelial Lgr5+Stem Cells
	Introduction
	Results
	Fzd7 Expression Is Enriched in the Lgr5+ Stem Cells
	Fzd7 Gene-Deleted CBC Cells Are Lost from the Epithelium
	Fzd7 Deleted Intestinal Organoids Do Not Regenerate
	Intestinal Epithelium Regeneration Is Impaired in Fzd7 Knockout Mice
	Closely Related Fzd Genes Cannot Compensate for Fzd7 Loss

	Discussion
	Experimental Procedures
	Mice
	Cre Induction and Analyses of Mouse Tissues
	Crypt Organoid Culture and Analysis
	Co-immunopreciptation and Immunoblot Analysis
	Statistical Analysis

	Supplemental Information
	Acknowledgments
	References


