
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/91665/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Padungwech, Wasin , Thompson, Jonathan and Lewis, Rhyd 2016. Investigating edge-reordering procedures
in a tabu search algorithm for the capacitated arc routing problem. Presented at: HM 2016: International

Workshop on Hybrid Metaheuristics, Plymouth, UK, 8-10 June 2016. Published in: Blesa, Maria J., Blum,
Christian and Cangelosi, Angelo eds. Hybrid Metaheuristics: 10th International Workshop, HM 2016,
Plymouth, UK, June 8-10, 2016, Proceedings. Lecture Notes in Computer Science. Lecture Notes in

Computer Science , vol.9668 Cham: Springer, pp. 62-74. 10.1007/978-3-319-39636-1_5

Publishers page: http://dx.doi.org/10.1007/978-3-319-39636-1_5

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

Investigating Edge-Reordering Procedures in a
Tabu Search Algorithm for the Capacitated Arc

Routing Problem

Wasin Padungwech, Jonathan Thompson, and Rhyd Lewis

School of Mathematics, Cardiff University, Cardiff, UK
{padungwechw,thompsonjm1,lewisr9}@cardiff.ac.uk

Abstract. This paper presents two ideas to guide a tabu search algo-
rithm for the Capacitated Arc Routing Problem to a promising region
of the solution space. Both ideas involve edge-reordering, although they
work in different ways. One of them aims to directly tackle deadheading
cycles, and the other tries to reorder edges with the aim of extending
a scope of solutions that can be reached from a given solution. Experi-
ments were performed on 134 benchmark instances of various sizes, and
the two ideas were shown to have an ability to guide the search to good
solutions. Possible issues that may arise when implementing these ideas
are also discussed.

1 Introduction

The Capacitated Arc Routing Problem (CARP) is a combinatorial opti-
misation problem that can be defined as follows: Given a graph with one
of its vertices called the depot, a cost and a demand for each edge, and
a vehicle capacity, the objective of the CARP is to find a minimum-cost
set of routes (one route for each vehicle) such that (i) each route contains
the depot, (ii) all edges with non-zero demands (called required edges) are
serviced in precisely one of the routes, and (iii) the total demand in each
route does not exceed the capacity. The CARP can be used to model and
solve various real-life situations such as rubbish collection, street sweep-
ing, and snow ploughing. It was originally introduced and proved to be
NP-hard by Golden and Wong [8].

A wide variety of algorithms have been proposed to solve the CARP,
possibly as a result of its real-world applicability. Metaheuristics have
been popular choices, and include guided local search [1], scatter search
[9], variable neighbourhood search [13], ant colony optimisation [14], memetic
algorithms [6, 15], and tabu search [2, 9, 10].

Despite a wide variety of proposed algorithms in the literature, there
are still some CARP benchmark instances that remain unsolved, espe-
cially those with a relatively large number (347 to 375) of required edges.

This suggests that more efficient algorithms for the CARP are still to be
found. One key idea could be to find a way to explore a space of solu-
tions efficiently. Traditional neighbourhood moves for the CARP such as
removing or inserting edges or swapping edges between routes usually af-
fect only a small number of edges and leave other edges untouched (apart
from perhaps shifting their orders). It could be beneficial to integrate
such moves with a method that can extend the scope of solutions that
can be reached from a given solution, thereby increasing the connectivity
of the solution space. One possible way to achieve that is to allow edges
in a route to be reordered when receiving a new edge from another route.
This could better accommodate the new edge and lead to an improvement
which might have otherwise required several traditional moves.

Note that allowing edges to be reordered can greatly enlarge a neigh-
bourhood of a given solution. In this paper, we therefore present two ideas
that can help a search head towards a promising region of the solution
space. The first idea is based on an investigation into deadheading edges,
i.e. edges that are not serviced by a vehicle but are used to travel from one
serviced edge to another. A route usually contains not only serviced edges
but also deadheading edges. If deadheading edges form a cycle, such cycle
should be removed provided that the route does not get disconnected as
a result. This potentially reorders the edges in the route while definitely
improving a solution (assuming non-zero edge costs). This could be par-
ticularly useful for large instances with a small ratio of capacity to total
demand, where vehicles tend to fill the capacity quickly and have to re-
turn to the depot early, resulting in a significant amount of deadheading
cost.

The second idea is to reconstruct a route with a given set of required
edges. This can be achieved by means of a heuristic algorithm for the
Rural Postman Problem, a special case of the CARP in which a single
vehicle has large enough capacity to service all edges (see, for example,
[4]). This idea was also utilised by Brandão and Eglese in [2]. In their
paper, the heuristic is applied to routes that are changed by the best
neighbourhood move in each iteration. In this paper, by contrast, the
heuristic is integrated with each neighbourhood move, so it is also taken
into account when finding the best neighbourhood move.

This paper is organised as follows: A formal definition of the CARP
is given in Section 2. Section 3 explains how deadheading cycles can oc-
cur in a route and introduces a procedure for removing such cycles. Sec-
tion 4 describes a tabu search algorithm with edge-reordering procedures.

Performances of the algorithm are presented and discussed in Section 5.
Finally, Section 6 gives a conclusion and suggestions for future work.

2 Problem Definition and Notation

Given an undirected graph G = (V,E) with a vertex set V and an edge
set E, a cost c(e) ∈ Z+ and a demand d(e) ∈ Z+∪{0} for each edge e ∈ E,
a vehicle capacity Q ∈ Z+, and one of the vertices v0 ∈ V regarded as the
depot, the objective of the CARP is to find a minimum-cost set of routes
such that

– each route contains the depot,

– each edge with non-zero demand (called a required edge) is serviced
in precisely one of the routes, and

– the total demand of serviced edges in each route does not exceed the
vehicle capacity.

Here, the number of routes is treated as a variable. Note that the
orientation of each edge in a route needs to be specified even if the un-
derlying graph is undirected because this can affect the cost of travelling
from one required edge to another. An edge e = {i, j} can be traversed in
two possible ways: from i to j or from j to i, denoted by directed edges,
or arcs, (i, j) and (j, i), respectively. A route R can then be represented as
a sequence of arcs (a1, a2, . . . , an), where n is the number of arcs that are
serviced by R and a1, a2, . . . , an are the serviced arcs. This is possible as
it is clear that a vehicle should travel between serviced arcs via a shortest
path in order to minimise the overall cost. This representation of a route
is similar to that in [1].

Let t(a) and h(a) denote the tail and the head of an arc a. For example,
if a = (i, j), then t(a) = i and h(a) = j. The total cost of the route
R = (a1, a2, . . . , an) is given by

C(R) = d(v0, t(a1)) +

n−1∑
i=1

d(h(ai), t(ai+1)) +d(h(an), v0) +

n∑
i=1

c(ai) , (1)

where d(u, v) is the cost of a shortest path between vertices u and v. The
total demand of R is given by

D(R) =
n∑

i=1

d(ai) . (2)

Using the above notations, the CARP can be presented more formally.
Let x(e,R) be a binary variable such that x(e,R) = 1 if an edge e is
serviced in a route R, and x(e,R) = 0 otherwise. Let ER be the set of
required edges. The objective of the CARP is to find a set of routes S
that minimises

f(S) =
∑
R∈S
C(R) (3)

while satisfying the following constraints:∑
R∈S

x(e,R) = 1 ∀e ∈ ER , (4)

D(R) ≤ Q ∀R ∈ S . (5)

The equality (4) means that each required edge must be serviced in pre-
cisely one of the routes, and the inequality (5) is the capacity constraint.
Note that the CARP can also be formulated as an integer linear program-
ming problem. Interested readers are referred to [4] or [8].

3 Deadheading Cycles

Even though a route can be represented by a sequence of serviced edges
(with specified orientation), in reality a vehicle must travel in a continu-
ous route, and so it may need to traverse some edges without servicing
them when travelling between two required edges that are not physically
adjacent. Such edges are called deadheading edges. In some cases, several
deadheading edges may form a cycle, called a deadheading cycle. Indeed,
provided it does not disconnect a route, a deadheading cycle can be re-
moved without affecting feasibility of the route for two reasons: (i) the
capacity constraint is still satisfied because serviced edges are unaffected
(apart from potential reordering or reorientation), and (ii) with a route
regarded as an Eulerian (multi)graph, removing a cycle preserves the par-
ity of the degree of each vertex, so the Eulerian graph remains Eulerian
after the removal.

It can be difficult to find a deadheading cycle while viewing a route as a
sequence of serviced arcs because a deadheading cycle may be composed of
deadheading edges which are traversed between different pairs of serviced
arcs. So, for the purpose of detecting deadheading cycles, we view a route
as an Eulerian graph (or multigraph if some edges are traversed more than
once). Given a route R = (a1, a2, . . . , an), first we need to find shortest
paths between v0 and a1, between ai and ai+1 (for i = 1, . . . , n− 1), and

between an and v0. This can be achieved by Dijkstra’s algorithm [3]. Then,
let Gmult be a multigraph such that the multiplicity of each edge in Gmult

is equal to the number of times the edge is traversed (in any direction,
with or without servicing) in R. When an edge is traversed three times or
more, at least two such traversals are deadheading because, by definition,
an edge can be serviced at most once. Every two deadheading traversals
on the same edge correspond to a cycle in Gmult, which can be removed
without disconnecting it as long as the number of traversals does not drop
below 2. For an edge that is traversed just twice, careful consideration is
needed before removing the corresponding cycle. In Fig. 1 for example, we
can see that removing a deadheading cycle may or may not disconnect a
route. Thus, to ensure continuity of a route, here we remove a deadheading
cycle until the multiplicity of the corresponding edge reduces to either 1
or 2, depending on its parity.

Fig. 1. Examples of deadheading cycles that are (a) removable and (b) not removable.

After removing deadheading cycles, an updated sequence of edges tra-
versed in the route R can be determined by finding an Eulerian cycle in
the consequent Gmult. In order to obtain a representation of R as de-
scribed in Section 2, if an edge to be serviced is traversed more than
once, it is assumed that the edge is serviced at its first occurrence in the
Eulerian cycle. Notice that the ordering and orientation of some serviced
edges may change after the removal—see Fig. 1 (a).

4 Description of the Tabu Search Algorithm

In this section, components of our tabu search algorithm are described.
Our algorithm starts with an initial solution generated by the Path-
Scanning algorithm [7]. This algorithm has been shown to produce better
solutions on average than several other constructive algorithms [2].

4.1 Neighbourhood Moves

Recall that a route is viewed as a sequence of required edges with specified
directions that are serviced by the route. Four common neighbourhood
moves are used:

1. Single Insertion: A required edge is removed from one route and then
inserted at any position into another route. Both directions are exam-
ined when inserting it into a route.

2. Double Insertion: Two required edges are removed from one route and
then inserted at any positions into another route. The edges may be
inserted at the same position (i.e. between the same required edges,
or between the depot and the first or last required edge). In the case
where the edges are inserted at the same position, both possible per-
mutations of the edges are considered (“edge 1 before edge 2” and
“edge 2 before edge 1”). Both directions of each edge are examined
when inserting it into a route. Thus, there are 8 possibilities of insert-
ing two edges at a given position.

3. Swap: A required edge from each of two given routes is removed and
inserted at any position into the other route, including the position
of the removed edge. Both directions of each edge are examined when
inserting it into a route.

4. Two-Opt : Each of two given routes is divided into two parts. Note that
each part must have at least one required edge. Then, a part from one
route is joined to a part from the other to create a new route. The
remaining parts are also joined to create another route. Two possible
ways of joining are examined. For clarity, this is illustrated in Fig. 2.

Fig. 2. An example of a Two-Opt move. In (i), after one route is cut between ai and
ai+1 and the other route between bj and bj+1, they can become either (ii) or (iii).

The first three neighbourhood moves were used in, for example, [2, 9,
12, 15], and the Two-Opt move was utilised in, for example, [1, 12, 15].

4.2 Rural Postman Heuristic

When a Single Insertion, Double Insertion, or Swap move is implemented,
an edge is inserted into a route without affecting the order of required
edges already in the route. However, it is possible that reordering some
of those edges might better accommodate the new edge and potentially
lead to a better solution. Consider Single Insertion for example. Assume
the move is feasible. Instead of specifying where to insert an edge into a
route R, we may simply add it to the set of edges serviced by R and then
attempt to construct a “promising” route that services this set of edges
without having to keep the original order of any of the edges. In fact,
we are attempting to solve a special (though still NP-hard) case of the
CARP, namely the Rural Postman Problem (RPP), where the capacity
is no less than the sum of required edges under consideration.

In our case, this reordering is achieved by means of a heuristic for the
RPP proposed by Frederickson [5]. Given a set of required edges ER in
an underlying graph G, let GR be a subgraph of G generated by ER. The
heuristic consists of two main steps:

1. Connecting components: If GR has more than one connected compo-
nent, they will be joined to make one connected component. This is
achieved by solving the minimum spanning tree problem: Let GS be
a complete graph having as many vertices as the components of GR.
Let the cost of an edge {i, j} in GS be equal to the shortest distance
between components Ci and Cj , that is,

the cost of an edge {i, j} in GS = min
u∈Ci,v∈Cj

d(u, v) ,

where d(u, v) is the cost of the shortest path in G between vertices
u and v. Let T be a minimum spanning tree in GS . Add to GR the
shortest path corresponding to each edge in T . Now GR is connected.

2. Matching odd-degree vertices: If GR has odd-degree vertices, paths
will be added to GR to render the graph Eulerian. To achieve this, let
GM be a complete graph whose vertices are precisely the odd-degree
vertices of GR. Let the cost of an edge {i, j} in GM be equal to d(i, j).
Let M be a perfect matching in GM . Add to GR the shortest path
corresponding to each edge in M .

Note that finding a minimum-cost perfect matching in Step 2 does
not guarantee an optimal solution for the RPP. In fact, Brandão and
Eglese [2] have noted that using a minimum-cost perfect matching could
give a worse solution in some cases. Instead of using an exact approach
(such as the blossom algorithm [11]), we therefore opt to use a cheaper
greedy method which operates by selecting the cheapest edge which is
not adjacent to any previously selected edges.

Now GR is an Eulerian (multi)graph. A new route corresponding to
GR can be obtained in the same way as we did for Gmult at the end of
Section 3.

4.3 Tabu Record and Tabu Tenure

In our case, information on tabu moves is stored in arrays (as opposed to
lists). The Single Insertion, Double Insertion and Swap moves share the
same tabu array T1. An entry T1(e,R) denotes the iteration number until
which the insertion of the edge e into the route R is declared tabu (i.e. for-
bidden). Whenever a required edge e is removed from a route R, the entry

T1(e,R) is updated so that T1(e,R) is set to the current iteration number
plus the tabu tenure. Note that Double Insertion and Swap involve two
insertions, so two entries in T1 are updated. A Single Insertion/Double
Insertion/Swap move is tabu if and only if all the insertions involved in
the move are tabu. Note that the above procedure for updating T1 still
applies no matter whether the RPP heuristic is used because T1 does not
concern the position of an edge in a route.

Two-Opt uses a separate tabu array T2. An entry T2(a, b) denotes the
iteration number until which a cut (or, equivalently, a deadheading path)
between required arcs a and b is declared tabu. (Recall that an arc is a
directed edge.) Suppose a Two-Opt move involves a cut between required
arcs a and b. Then, the entry T2(a, b) is updated so that T2(a, b) is set to
the current iteration number plus the tabu tenure. It should be noted that
a pair of arcs here must be treated as an ordered pair because different
orders may correspond to different deadheading paths (see Fig. 3). In
contrast, a pair (a, b) should be treated as identical to a pair (−b,−a),
where a minus sign denotes the opposite direction, because of symmetry
of a route (as an undirected cycle in a graph). This can help save memory
required for this tabu record.

Fig. 3. Routes that contain the same required edges may be the same or different,
depending on the direction and the order in which they are traversed.

For a tabu tenure, we follow a policy used in a previous tabu search
algorithm in the literature [2]: the tenure is set to n/2, where n is the
number of required edges. This remains fixed throughout the algorithm.

4.4 Admissibility of Moves

A common aspiration criterion is used here: In a given iteration, a neigh-
bourhood move is considered if and only if it is feasible (the capacity

constraint is satisfied) and either (1) it is non-tabu or (2) it is tabu but
leads to a better solution than the current best solution.

5 Computational Results

The tabu search algorithm described above was coded using C++ and
all experiments were performed on Intel Core i3-2120 3.30GHz with 8GB
RAM using benchmark datasets EGL, BMCV, and EGL-Large.1 To sim-
ulate a real-life scenario where speed is preferable to optimality, a time
limit of 300 seconds was introduced for the EGL and BMCV sets. Due
to a larger number of required edges, a longer time limit of 1,200 seconds
was introduced for the EGL-Large set.

To investigate how the edge-reordering procedures might help to im-
prove the search, three versions of the algorithms were tested: the first
one does not consider deadheading cycles nor the RPP heuristic (“No Re-
ordering”), and each of the other two implements one of the procedures:

1. attempting to remove deadheading cycles from an initial solution and
from routes that are affected by a neighbourhood move in each itera-
tion (“RDC”),

2. integrating the RPP heuristic within the neighbourhood moves (“RPP”).

For each version, 20 independent runs were conducted on each instance.
Tables 1, 2 and 3 present the features of the instances together with

the mean and the coefficient of variation of the best solution costs from
20 independent runs of each version of our algorithm as described above.
Due to a large number (100) of instances in the BMCV dataset, each row
of Table 2 shows the average results on a subset of 25 instances

Tables 1 and 2 suggest that both procedures improve the quality of so-
lutions produced compared to the “No Reordering” version (here, the **
symbol indicates statistical significance according to a Wilcoxon Signed
Rank test with p < 0.01). However, for the EGL-Large dataset in par-
ticular, their performances are noticeably different. Table 3 shows that
attempting to remove deadheading cycles can improve a solution on all
EGL-Large instances, while the RPP heuristic does not seem to give any
improvement. This is very likely because the RPP heuristic requires a
long computational time for large instances, as can be seen in Table 4.

Table 4 shows the mean and coefficient of variation of the time taken
by each edge-reordering procedure in the respective version of the algo-
rithm. As no optimal solutions are known for this dataset, the algorithm

1 These datasets, as well as best known solutions, are available at
http://logistik.bwl.uni-mainz.de/benchmarks.php.

Table 1. The mean and the coefficient of variation (CV) of solution costs for 20
independent runs on the EGL dataset

Best known No Reordering RDC RPP
Instance |V | |E| |ER| solution Mean CV Mean CV Mean CV

E1-A 77 51 98 3548 3548.0 0.0% 3548.0 0.0% 3548.0 0.0%
E1-B 77 51 98 4498 4531.9 0.3% 4525.4 0.2% 4529.3 0.2%
E1-C 77 51 98 5595 5748.3 1.2% 5736.3 0.9% 5634.1 0.9%
E2-A 77 72 98 5018 5149.4 0.6% 5059.8 0.4% 5028.1 0.2%
E2-B 77 72 98 6317 6347.5 0.1% 6345.8 0.1% 6339.3 0.1%
E2-C 77 72 98 8335 8620.4 1.7% 8683.6 1.8% 8559.9 1.3%
E3-A 77 87 98 5898 5916.1 0.3% 5918.1 0.5% 5937.4 0.7%
E3-B 77 87 98 7775 8015.3 1.3% 7912.9 1.2% 7915.8 1.0%
E3-C 77 87 98 10292 10392.1 0.6% 10398.2 0.4% 10371.4 0.3%
E4-A 77 98 98 6444 6521.9 0.6% 6492.8 0.4% 6480.6 0.3%
E4-B 77 98 98 8961 9135.3 1.1% 9086.0 0.7% 9029.7 0.3%
E4-C 77 98 98 11550 11800.7 0.6% 11795.6 0.6% 11775.6 0.3%

S1-A 140 75 190 5018 5132.7 0.9% 5069.4 1.0% 5077.5 1.1%
S1-B 140 75 190 6388 6503.1 0.6% 6480.1 1.0% 6511.7 0.7%
S1-C 140 75 190 8518 8662.8 0.9% 8646.9 0.7% 8623.6 0.8%
S2-A 140 147 190 9884 10041.5 1.0% 10089.1 1.0% 10152.7 0.9%
S2-B 140 147 190 13100 13531.4 1.1% 13479.0 1.4% 13366.8 0.9%
S2-C 140 147 190 16425 16865.3 0.6% 16888.1 0.7% 16773.9 0.7%
S3-A 140 159 190 10220 10414.8 0.8% 10335.8 0.3% 10460.9 0.9%
S3-B 140 159 190 13682 14126.6 1.5% 13935.6 0.4% 13959.0 0.8%
S3-C 140 159 190 17188 17634.8 0.7% 17490.8 0.5% 17456.6 0.4%
S4-A 140 190 190 12268 12527.3 0.7% 12555.5 0.7% 12775.3 0.5%
S4-B 140 190 190 16283 16613.7 0.7% 16534.9 0.5% 16641.5 0.5%
S4-C 140 190 190 20481 21012.5 0.5% 20980.8 0.7% 21059.6 0.4%

Average 9736.9 9949.7 9916.2** 9917.0

Table 2. The mean and the coefficient of variation (CV) of solution costs for 20
independent runs on the BMCV dataset

Average over 25 instances in the subset
Subset of Best known No Reordering RDC RPP
instances Solution Mean CV Mean CV Mean CV

C (C1 - C25) 3683.4 3781.1 1.5% 3760.9 1.2% 3747.1 1.1%
D (D1 - D25) 2872.4 2936.4 1.0% 2896.8 0.9% 2892.7 0.8%
E (E1 - E25) 3698.0 3795.9 1.5% 3782.0 1.6% 3774.8 1.2%
F (F1 - F25) 3003.0 3058.4 0.9% 3035.8 1.0% 3026.7 0.7%

Average 3314.2 3392.9 3368.9** 3360.3**

Table 3. The mean and the coefficient of variation (CV) of solution costs for 20
independent runs on the EGL-Large dataset

Best known No Reordering RDC RPP
Instance |V | |E| |ER| solution Mean CV Mean CV Mean CV

G1-A 255 347 375 1004864 1025967.0 0.6% 1024128.5 0.6% 1046700.8 0.8%
G1-B 255 347 375 1129937 1135307.6 0.4% 1134844.3 0.4% 1154564.5 0.7%
G1-C 255 347 375 1262888 1282483.9 0.6% 1279901.8 0.7% 1303527.5 0.5%
G1-D 255 347 375 1398958 1410589.4 0.7% 1408335.1 0.6% 1423174.4 0.5%
G1-E 255 347 375 1543804 1551973.2 0.9% 1550111.0 0.8% 1581999.2 0.7%

G2-A 255 375 375 1115339 1120506.3 0.5% 1120201.9 0.6% 1142626.4 0.6%
G2-B 255 375 375 1226645 1237201.4 0.7% 1235783.5 0.7% 1281057.4 0.5%
G2-C 255 375 375 1371004 1381432.9 0.6% 1378903.3 0.7% 1426369.6 0.8%
G2-D 255 375 375 1509990 1515175.8 0.4% 1511281.5 0.4% 1557018.8 0.8%
G2-E 255 375 375 1659217 1667802.9 0.6% 1663952.9 0.6% 1696421.8 0.5%

Average 1322264.6 1332844.0 1330744.3** 1361346.0**

Table 4. The mean and the coefficient of variation (CV) of the time taken (seconds)
by the edge-reordering procedures for 20 independent runs on the EGL-Large dataset

RDC RPP
Instance Mean CV Mean CV

G1-A 12.8 2.6% 1171.9 0.2%
G1-B 17.2 2.5% 1165.7 0.1%
G1-C 19.4 2.4% 1161.0 0.1%
G1-D 20.7 3.2% 1152.6 0.2%
G1-E 22.0 1.5% 1139.2 0.2%

G2-A 14.4 1.9% 1164.9 0.1%
G2-B 15.3 4.2% 1165.9 0.1%
G2-C 17.6 4.3% 1158.2 0.2%
G2-D 18.7 3.6% 1149.4 0.5%
G2-E 19.0 1.9% 1143.1 0.5%

Average 17.7 1157.2

halts once the time limit of 1,200 seconds has elapsed. Table 4 shows that
the RPP heuristic uses the vast majority of computation time (about
96%). This could be because the RPP heuristic is integrated with all Sin-
gle Insertion, Double Insertion and Swap moves, comprising a huge set of
neighbour solutions to consider with the heuristic. Using a large amount
of time to explore a neighbourhood means this version of the algorithm
performed considerably fewer iterations. As a result, the search may have
not moved “far” from the initial solution in the solution space.

It is clear from Tables 1, 2 and 3 that solutions from all versions of
the algorithm in this work are still far from the best known solutions.
Nevertheless, we have seen that re-ordering edges has potential to guide
the search to a promising region of the solution space and obtain better
solutions within the same amount of time.

6 Conclusion and Future Work

This paper brought to attention two ideas to help guide a tabu search
or, in fact, any local search method to a promising region of the solution
space for the Capacitated Arc Routing Problem. The first idea is to inves-
tigate deadheading cycles and attempt to remove them after generating
an initial solution and when they appear as a result of neighbourhood
moves. Removing deadheading cycles guarantees an improvement, pro-
vided all edge costs are non-zero. Nevertheless, it is important to note
that some deadheading cycles might not be removable as doing so may
disconnect a route.

One way to ensure the continuity of a route is to remove a deadheading
cycle only if the multiplicity of the corresponding edge does not drop
below 2. However, we might try removing each possible deadheading cycle
and directly checking if the route still remains connected. This allows us
to detect more removable deadheading cycles, but it is important to find
an efficient algorithm to do so.

Moreover, this work considered only deadheading cycles that result
from a single edge traversed repeatedly. There can also be a cycle com-
posed of several deadheading edges that are traversed precisely once. Still,
an efficient algorithm is required for detecting the removability of such
cycle.

This paper also investigated a combination of a heuristic for the Ru-
ral Postman problem with neighbourhood moves. This allows edges in a
route to be re-ordered and potentially gives a better solution that might
normally require several traditional neighbourhood moves. This can in-

crease connectivity of the solution space and, given excess time, increase
the probability of reaching good solutions.

Experimental results showed that both ideas have potential to improve
a search. However, it can be time-consuming to try the Rural Postman
heuristic with all Single Insertion, Double Insertion, and Swap moves. It
would therefore be interesting to find a balance between increasing con-
nectivity of the solution space and taking time to evaluate all neighbours.
Moreover, these two ideas may not be effective alone as can be seen from
a comparison between solutions from the algorithm in this work and best
known solutions. One may try to combine these two ideas together rather
than use them separately, or even combine them with traditional tabu
search techniques such as intensification and diversification. Such a good
combination is still to be researched.

References

1. Beullens, P., Muyldermans, L., Cattrysse, D., Van Oudheusden, D.: A guided local
search heuristic for the capacitated arc routing problem. European Journal of
Operational Research 147(3), 629–643 (2003)

2. Brandão, J., Eglese, R.: A deterministic tabu search algorithm for the capacitated
arc routing problem. Computers & Operations Research 35(4), 1112–1126 (2008)

3. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

4. Eiselt, H.A., Gendreau, M., Laporte, G.: Arc routing problems, part ii: The rural
postman problem. Operations research 43(3), 399–414 (1995)

5. Frederickson, G.N.: Approximation algorithms for some postman problems. Jour-
nal of the ACM (JACM) 26(3), 538–554 (1979)

6. Fu, H., Mei, Y., Tang, K., Zhu, Y.: Memetic algorithm with heuristic candidate
list strategy for capacitated arc routing problem. In: Evolutionary Computation
(CEC), 2010 IEEE Congress on. pp. 1–8. IEEE (2010)

7. Golden, B.L., DeArmon, J.S., Baker, E.K.: Computational experiments with algo-
rithms for a class of routing problems. Computers & Operations Research 10(1),
47–59 (1983)

8. Golden, B.L., Wong, R.T.: Capacitated arc routing problems. Networks 11(3),
305–315 (1981)

9. Greistorfer, P.: A tabu scatter search metaheuristic for the arc routing problem.
Computers & Industrial Engineering 44(2), 249–266 (2003)

10. Hertz, A., Laporte, G., Mittaz, M.: A tabu search heuristic for the capacitated arc
routing problem. Operations research 48(1), 129–135 (2000)

11. Kolmogorov, V.: Blossom v: a new implementation of a minimum cost perfect
matching algorithm. Mathematical Programming Computation 1(1), 43–67 (2009)

12. Lacomme, P., Prins, C., Ramdane-Cherif, W.: Competitive memetic algorithms
for arc routing problems. Annals of Operations Research 131(1-4), 159–185 (2004)

13. Polacek, M., Doerner, K.F., Hartl, R.F., Maniezzo, V.: A variable neighborhood
search for the capacitated arc routing problem with intermediate facilities. Journal
of Heuristics 14(5), 405–423 (2008)

14. Santos, L., Coutinho-Rodrigues, J., Current, J.R.: An improved ant colony opti-
mization based algorithm for the capacitated arc routing problem. Transportation
Research Part B: Methodological 44(2), 246–266 (2010)

15. Tang, K., Mei, Y., Yao, X.: Memetic algorithm with extended neighborhood search
for capacitated arc routing problems. Evolutionary Computation, IEEE Transac-
tions on 13(5), 1151–1166 (2009)

