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Abstract 

The selective activation of methane by oxidation is a topic that has fascinated scientists and 

engineers for over a century. In this paper some of the recent approaches will be described and 

discussed. In particular, the use of FeZSM5 as a catalyst for methane oxidation with aqueous 

hydrogen peroxide will be described. With this catalyst the primary product is methyl 

hydroperoxide which decomposes to give methanol. This catalyst is highly active at 50 oC but 

yields formic acid which is formed by the sequential oxidation of methanol. Addition of Cu either 

in solution or within the catalyst matrix switches off the sequential oxidation and methanol is 

obtained with very high selectivity. Comments are made concerning the prospects for the use of 

molecular oxygen as the terminal oxidant which is the preferred route. 
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1. Introduction 

This paper is dedicated to the memory of Professor M. Wyn Roberts who was a leading scientist in 

the field of surface science. In 1986 Au and Roberts [1] showed that oxygen transients could be 

important in surface catalysed reactions. This discovery was very relevant to the field of methane 

oxidative coupling as it was considered that O- on the surface of oxides was important in the 

activation of methane to give a methyl radical at elevated temperatures [2], and it was a result of 

this work that we met in 1988 to discuss surface oxygen species and their importance in 

heterogeneously catalysed oxidation reactions. Oxidative coupling of methane was first proposed by 

Lunsford in a landmark publication [3] in which it was shown that methane could react to form 

ethene and ethane over MgO at 600 oC with very high selectivities at low conversion. The work of 

Lunsford opened the floodgates for thousands of subsequent studies on the oxidative coupling of 

methane [4-7]. It was found that virtually all oxides could catalyse this reaction, and that this was 

due the reaction occurring mainly by a complex set of radical reactions in the gas phase [2].  

Subsequent studies have sought to activate methane at much lower temperatures. A number of low 

temperature approaches have been proposed, typically involving the use of strong acids to activate 

methane using bipyrimadyl platinum complexes [8,9] which, cannot readily give an efficient closed 

process cycle as dilute acid is formed. The concept in these approaches is to use a very strong acid 

to form an ester with methane and then to hydrolyse the initial product to give methanol. It is the 

second step that means that a continuous closed catalytic cycle cannot be achieved.  Iron-containing 

zeolites [10-12] can activate methane in the gas phase with nitrous oxide at elevated temperatures 

but again a closed catalytic cycle has not yet been achieved. In his case the methane reacts to form a 

surface methoxide species which again can only be recovered by reaction with water to give 

methanol. Iron phthalocyanine complexes [13,14] although promising, have low activity and 

stability. However, a number of enzymes are capable of activating methane selectively at low 

temperatures and, indeed, methane monoxygenase demonstrates that the target reaction is feasible 

under mild aqueous conditions but at rates not considered commercially viable [15]. Hence there is 

a real challenge for scientists to design a catalytic process by which methane is selectively 

converted to higher value products. In this paper the approaches we have taken to address this 

challenge will be briefly reviewed and a possible way forward identified. 

2. The initial approach with AuPd catalysts 

We focused our initial studies for the low temperature selective oxidation of methane using water as 

solvent and hydrogen peroxide (H2O2) as oxidant as this provided a convenient medium for both the 

reaction and analysis. Water was selected as the carbon containing products can be readily 
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identified using nmr spectroscopy, with carbon containing solvents together with catalysts that give 

only low levels of conversion there is always the possibility of contamination or the concern that the 

observed materials could originate from the oxidation of the solvent. We had previously shown [16] 

that supported gold palladium catalysts are effective for the oxidation of alcohols with molecular 

oxygen as well as the direct synthesis of hydrogen peroxide from hydrogen and oxygen. It is 

considered that these catalysts form hydroperoxy species in these reactions. We therefore reasoned 

that supported AuPd nanoparticles would be a good starting point to investigate the oxidation of 

methane using hydrogen peroxide as oxidants. We set an initial target of matching the initial 

activity of methane monooxygenase which is 5 mol methanol kgcat
-1h-1[15]. The initial reactions 

showed that methane could be converted using AuPd/TiO2 catalysts prepared by incipient wetness 

impregnation, deposition precipitation and sol-immobilisation [17], however, very low activities 

and selectivities were observed. Methanol was observed at ca. 20% selectivity at temperatures 

between 50-90 oC but the major product was CO2. The low activity was due to the high rates of 

decomposition observed with these catalysts at these reaction temperatures. In view of this we 

investigated forming H2O2 in situ by reacting H2 and O2 with methane over the same catalysts [17]. 

This was found to improve the selectivity to for methanol 70%. At this stage we reasoned that the 

high level of H2O2 decomposition was hampering the observation of the underlying catalysis. In an 

attempt to stabilize the H2O2 we decided to investigate acidic supports and selected the zeolite H-

ZSM-5 as a suitable support. We found that the activity of the supported AuPd catalysts increased 

significantly when H-ZSM-5 was used as the support. However, H-ZSM-5 in the absence of the 

AuPd nanoparticles was more effective (Figure 1) and gave over 98% selectivity to methanol with 

over 90% of the H2O2 remained unreacted at the end of the reaction period which was in contrast to 

only traces of H2O2 that remained when AuPd/TiO2 was used as the catalyst. At this stage we 

switched our investigation to the study of zeolites as catalysts. 

3. Methane conversion with zeolite catalysts 

The oxidation of methane with hydrogen peroxide with H-ZSM-5 at 50 oC was found to be very 

selective to oxygenates (Figure 2) [18,19] but the major product was formic acid rather than 

methanol. However, detailed time-on-line studies showed that the primary product for this reaction 

is methyl hydroperoxide and that methanol and formic acid were formed in sequential reactions 

(Figure 3). Detailed EPR studies showed that there were no carbon based radicals formed during the 

reaction and only oxygen-based radicals were observed [18,19]. The reaction proceeds so that 

methane is oxidised giving methyl hydroperoxide as the primary product, which subsequently reacts 

to form methanol which then is sequentially oxidised to formic acid and finally CO2. 
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We investigated a range of zeolites and zeotypes (Figure 2) and found that H-ZSM-5 was the 

preferred catalyst as other materials were ineffective under our mild reaction conditions.  Zeotypes 

that were isostructural with H-ZSM-5, namely silicalite and TS-1, were inactive indicating that 

confinement effects within the pores was not the crucial design feature with these catalysts. Other 

zeolites with wider pores, namely Ferreirite and zeolite β showed some activity but it was negligible 

compared with H-ZSM-5 [19].  We examined the role of impurities and focussed on the potential 

role of iron although there was no correlation observed between catalyst activity and the total iron 

content (Figure 2). The catalyst activity can be promoted by the addition of iron either by 

impregnation, ion exchange, solid state ion exchange or vapour impregnation methods.  

The nature of the Fe-species present in the catalysts was investigated and in this respect we 

concentrated on the commercial ZSM-5 and Fe-silicalite-1 since these displayed the highest 

intrinsic activity of catalysts we investigated. TEM analysis showed that the Fe was dispersed 

throughout the interior structure; no nano-crystalline iron oxide was observed, and this was further 

confirmed by XPS analysis since Fe was not detected. For Fe-silicalite-1, IR spectroscopy revealed 

that Fe was present in tetrahedral framework sites [20] but that it migrates to octahedral extra-

framework sites upon heat pre-treatment, which correlates with the observed activity as the activity 

increases with the heat treatment. EXAFS also demonstrated that ZSM-5 catalysts show an increase 

of octahedral Fe3+ with high temperature treatments, leading to the most active catalysts being 

formed. Hence, we postulated that catalytic activity depends upon the formation of dispersed 

Brønsted acid sites within the nanoporous environment that facilitate the formation of active 

octahedral Fe3+  species.  

EXAFS analysis showed that in samples containing the lowest Fe concentrations, the Fe-Fe co-

ordination number is low, and consistent with diiron species that have been suggested in previous 

studies [21-25] DFT calculations were employed to simulate model diiron species which could be 

compared to the EXAFS data. Of the several possible alternatives a close match was obtained for a 

diiron complex containing two octahedral Fe3+ centres: [Fe2(μ2-OH)2(OH)2(H2O)2]
2+. This structure 

is the resting state of the catalytic sites in both the ZSM-5 with iron impurities and Fe-ZSM-5, 

where the additional iron has been added by a range of methods. This can then be activated by H2O2 

to produce a centre capable of oxidising methane to give the methyl hydroperoxide intermediate and 

water in a closed catalytic cycle. Identifying the active site as an extra-framework cation accounts 

for the observation that the presence of cation exchange sites is crucial in order to obtain the 

specific geometrical aspects of the active diiron species. We considered that the active sites consists 

of a species containing a high valent ferryl ion (Fe4+=O), which provides a strong driving force for 

the reductive cleavage of the C-H bond of methane. Methyl hydroperoxide can subsequently 
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undergo a surface catalysed conversion to methanol via the hydrolysis of surface-bound methoxy 

species. The formation of the methoxy species relies upon the cleavage of the RO-OH bond, and 

results in the release of HO· radicals into solution which can react with methanol to form formic 

acid.  Indeed, the generation of hydroxyl radicals could be a major limitation to the catalyst 

selectivity due to their role in non-selective chemistry. However, we have found that the addition of 

Cu2+ to the catalyst, either as a heterogeneous component of the catalyst or as a heterogeneous or 

homogeneous additive to the reactor, avoids unselective over-oxidation processes. This is shown in 

Figure 4 for the addition of Cu2+ to Fe-ZSM-5 where the copper is added by impregnation. 

However, with these ZSM-5 based catalysts we still observe high H2O2 decomposition which is 

switched off by using silicalite as the framework. If catalysts based on silicalite are used in place of 

ZSM-5 the decomposition of H2O2 is minimized; although Fe-silicalite gives formic acid as the 

major product. However, when Cu-silicalite is added to the reaction mixture, a material that exhibits 

very low activity, the formation of formic acid is switched of and now we can observe 93% 

selectivity to methanol at 9.5% methane conversion. With this catalyst we observe a rate of 35 mol 

methanol kgcat
-1 h-1 which is considerably higher than that of methane monooxygenase under 

comparable conditions [15]. All these studies have been carried out on a small scale in stirred batch 

reactors and as such are not ideal on which to base any assumptions concerning the potential 

feasibility of the catalysts at a larger scale. For this experiments are required in flow reactors and 

this is the topic of our current studies. 

4. Possible future strategy for alkane activation 

In the previous section we have described the design of a methane activation catalyst in which 

methane is oxidised with hydrogen peroxide to give methanol with high selectivity (>90%) at 10% 

conversion at 50 oC in aqueous media. While we consider this is a significant advance in methane 

activation catalysis, there are, however, some problems that preclude this discovery from reaching 

commercialisation. First, hydrogen peroxide is typically more expensive than methanol and so there 

is no cost incentive for this chemistry. Second, the reaction is an exothermic oxidation and for the 

recovery of this energy it would be more efficient if the reaction was carried out at 150 – 200 oC. 

Third, recovery of methanol from a dilute aqueous solution would be problematic. Hence it would 

be better if the reaction used molecular oxygen as the terminal oxidant at 150 – 200 oC in a solvent 

that permitted higher concentrations of dissolved methane. We have yet to achieve this with 

methane oxidation but we have successfully oxidised the methyl group of toluene under solvent-

free conditions with O2 at 160oC using a supported AuPd catalyst [26] (Figure 5). A very high yield 

of benzyl benzoate are obtained (96%) as a consequence of the reaction mechanism (Figure 6). 

Toluene is initially oxidised to benzyl alcohol, which forms benzaldehyde. These two then react to 
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form a hemiacetyl that is oxidised to benzyl benzoate. Interestingly, the oxidation to benzoic acid is 

not observed and this is because the aldehyde is stabilised if the alcohol is present [27]. We consider 

that this approach might be feasible for selective methane oxidation if a sufficiently active catalyst 

can be designed. However, it should be noted that although we have observed this catalysis for 

toluene it is a highly activated molecule and to date our attempts have not been successful but we 

will continue to try. 
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Figure 1 Comparison of the activity and selectivity of AuPd nanoparticles supported on TiO2 and 

H-ZSM-5. Reaction conditions: autoclave reactor, H2O2: 5000 μmol, 50oC, 30 min reaction, p(CH4) 

= 440 psi, mass of catalyst 27 mg. 
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Figure 2 Oxidation of methane using zeolites and zeotypes with hydrogen peroxide. Reaction 

conditions: catalyst 27 mg, 50 oC, water 10 ml, [H2O2] = 0.5 M, P (CH4) = 30.5 bar, 0.5 h, 1500 rpm 
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Figure 3 Effect of time on line for the selective oxidation of methane with hydrogen peroxide using 

Fe-ZSM-5 showing that methyl hyroperoxide is the primary product. Reaction conditions: catalyst 

27 mg, 50 oC, water 10 ml, [H2O2]= 0.5 M, P (CH4) = 30.5 bar, 1500 rpm.  
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Figure 4 Methane oxidation with hydrogen peroxide at 50 oC using Fe-ZSM5, Cu-ZSM-5 and Fe-

Cu-ZSM5. Reaction conditions: autoclave reactor, H2O2: 5000 μmol, 50oC, 30 min reaction, p(CH4) 

= 440 psi, mass of catalyst 27 mg. 

  



13 
 

 

 

Figure 5 Oxidation of toluene with O2 under solvent-free conditions. Reaction conditions: PO2 0.1 

MPa, toluene (20 ml), of catalyst (0.8 g, 1 wt % Au-Pd/C prepared by sol immobilization), 160 oC, 

toluene/metal molar ratio of 3250, and reaction time, 110 h.  conversion, ■ selectivity to benzyl 

alcohol,  selectivity to benzaldehyde,▲selectivity to benzoic acid, and ● selectivity to benzyl 

benzoate 
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Figure 6 Reaction scheme for the oxidation of toluene to benzyl benzoate. 


