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The aim of this paper is to study the dynamic

characteristics of micromechanical rectangular plates

used as sensing elements in a viscous compressible

fluid. A novel modelling procedure for the plate-

fluid interaction problem is developed on the basis

of linearized Navier-Stokes equations and no-slip

condition. Analytical expression for the fluid-loading

impedance is obtained using a double Fourier

transform approach. This modelling work provides

an analytical means to study the effects of inertial

loading, acoustic radiation and viscous dissipation of

the fluid acting on the vibration of microplates. The

numerical simulation is conducted on the microplates

with different boundary conditions and the fluids

with different viscosities. The simulation results

reveal that the acoustic radiation dominates the

damping mechanism of the submerged microplates.

It is also proved that microplates offer better

sensitivities (Q-factors) than the conventional beam

type microcantilevers as being mass sensing platforms

in a viscous fluid environment. The frequency

response features of microplates under highly viscous

fluid loading are studied using the present model. The

dynamics of the microplates with all edges clamped

are less influenced by the highly viscous dissipation

of the fluid than the microplates with other types of

boundary conditions.
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1. Introduction
The dynamics of resonating structures immersed in a viscous and compressible fluid is a

fundamental research problem and underpins wide engineering applications from aerodynamics

to biosensing. Micromachined plates (membranes and diaphragms) gradually become a

promising sensing element of chem/biosensors [1–4] in recent years. In general, microplate-

based biosensors are detecting the biological particles/cells through a measure of the changes in

resonant frequencies of sensing structures. These biosensors, in practice, usually need to interact

with biological particles in a natural fluid environment. The dynamics of a submerged microscale

plate is strongly influenced by the fluid loading, which includes inertial effect, acoustic radiation

and viscous dissipation. Thus, a deep understanding of the dynamics of fluid-loaded plates

is necessary for the design of the microplates based sensing system. This paper proposed an

analytical model to study the frequency response features of fluid-loaded microplates.

When the fluid is assumed to be inviscous and incompressible, the vibration of submerged

plates is only affected by the inertial force of fluid. In this situation, the natural frequencies can be

determined by a Rayleigh-Ritz or Galerkin procedure [5]. At micron or nano scale, it is no longer

valid to assume the fluid to be dissipationless for the dynamic analysis of fluid-loaded structures

[6], especially for the high vibrational modes. The energy losses become significant when the size

of submerged structures reduces to micron levels and the vibrational frequency increases to MHz

or GHz. The dissipation of the vibrational energy of a microplate in a viscous compressible fluid

is caused by acoustic radiation, internal structure damping and viscous losses [7]. The energy loss

in the structure is usually small [8], and the energy dissipation caused by the fluid dominates the

damping of the vibration system. The damping substantially affects the sensitivity of the plate

as a sensing element. This work presents a detailed theoretical analysis for the damping ratios

of the submerged microplates in fluid, in particular, the damping mechanism caused by acoustic

radiation and viscous dissipation.

A number of previous research [9–14] had shown that the damping induced by surrounding

fluid has significant impacts on the vibration characteristics of plates. The radiation of acoustic

energy from the plate gives rise to a cross-modal coupling between the surrounding fluid and

the motion of plate. It results in two different types of loading on the motion of plates: reactance

(inertial forces) and resistance. The reactance decreases the resonant frequencies of plate, and

this effect is indicated by the well-known added mass factor. The resistive loading results in the

damping and reflects the energy dissipation from the plate to the fluid, which eventually forms an

acoustic radiation [11]. In addition, the surrounding rigid walls [23] may have significant effects to

the vibration characteristics of submerged microcantilevers or microplates, in particular for those

are very close to the substrates. The relations between the damping ratios and the cantilever-

substrate gaps had been studied by Basak et al. [22] using a finite-element modelling and Decuzzi

et al. [21] based on a semi-analytical model. The manufacturing method that was proposed by the

present authors [31,32] does not procedure a substrate underneath the microplates, which makes

it appropriate to ignore the rigid-wall effect in the plate vibration analysis.

The hydrodynamic loading of viscous fluid acting on a solid boundary is composed of

inertial force and viscous force. The ratio of inertial force to viscous force is defined as a

dimensionless quantity Reynolds number [15,16]. For most vibration problems of macroscale

structures, Reynolds number is very large, which implies that the viscous force is small enough

and can be ignored. For a microscale structure, its characteristic length is at most few hundreds

of microns and its resonant frequencies are typically in a range from MHz to GHz. Therefore,

the Reynolds number of the fluid over a microscale structure decreases to Re∼O(1) [6]. A small

Reynolds number means that the inertial force and the viscous force acting on a microscale

structure are of the same order of magnitude, thus the viscous damping of the fluid will take

a significant effect on the dynamics of microscale structures. However, the viscosity effect of

fluid in a vibration model of fluid-plate interaction is rarely studied analytically, due to the

complexity of the Navier-Stokes equations. Some models had been developed to approximately
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estimate the frequency response of microcantilevers immersed in a viscous fluid environment.

One of the earliest attempts of viscous damping analysis is utilising an assumption that the

microcantilever is modelled as a moving sphere in fluid [17,18]. Obviously, this approach made

a strong approximation on structural geometry and can not conduct high fidelity simulation.

A more accurate model was proposed by Sader [6] in 1998, in which analytical solutions for

microcantilevers vibrating in a viscous incompressible fluid were obtained by taking advantages

of a series of approximate hydrodynamic functions. Further experimental work approved Sader’s

model, which can accurately predict the resonant frequencies of a microcantilever in a viscous

fluid [19,20]. However, in Sader’s model, only the cases of very large aspect ratio of cantilever

beams are considered and the fluid is assumed to be incompressible. Later, other modellings for

the dynamics of fluid-loaded microscale structures were developed to overcome the limitation

of Sader’s model. Decuzzi et al. [21] studied the dynamic response of a beam immersed in a

viscous liquid in close proximity to a rigid substrate using the Euler-Bernoulli model coupled

with the Reynolds equations. Basak et al. [22] proposed a three-dimensional, finite element

fluid-structure interaction model, which can generate accurate simulation results to predict the

dynamics of submerged microcantilever. Since most assumptions that made in the damping

analysis of microcantilevers are no longer valid for plates, none of these models can well predict

the behaviour of fluid-loaded microplates.

More recently, some researchers analysed the viscous effects of fluid-loaded plate-like

structures [16,24,25]. Dohner [24] and Sorokin [25] proposed a two-dimensional closed-form

analytical model on the vibration of plate in a viscous fluid, respectively. Dohner analysed the

damping mechanism of an air loaded SiN plate, and he found that it is viscous relaxation rather

than sound radiation, which dominates the damping of air-loaded SiN plate. Sorokin proposed a

standard algebra model and analysed the attenuation of the propagating waves induced by the

fluid viscosity in a detail. Later, Atkinson et al. also developed a theoretical model for a wide

rectangular cantilever plate vibrating in a viscous incompressible fluid and derived an analytical

expression for the fluid reaction force. In Dohner’s analysis simplified boundary conditions

were applied, whereas the second viscosity was neglected by Sorokin and sound radiation was

not considered in Atkinson’s work. Moreover, all of these models are two-dimensional, which

means that one dimension of the plate (length) is always assumed to be infinite. Obviously, it is

inappropriate to apply such assumptions to analyse a micro-fabricated plate or membrane.

Guz is one of the researchers who extensively investigated the dynamics of rigid or elastic

solid bodies in a quiescent or moving compressible viscous fluid. He derived a series of

governing equations to this problem [26,27]. A set of general expressions for each component

of fluid potential and stress tensor had been derived. He also proved that the formula are

appropriate for the analysis of small oscillations of solid bodies in fluid at low Reynolds

numbers [28]. However, no explicit solution on the dynamics of fluid-loaded structures had

been presented in Guz’s papers. In the current work, a three-dimensional theoretic model for

the dynamics of plates submerged in a quiescent compressible viscous fluid is proposed, in

which the hydrodynamic loading formula of plates is derived using the linearized Navier-

Stokes equations and no-slip boundary conditions. A double Fourier transform technique is

applied to solve the Helmholtz-type equations of the scalar and the vector velocity potentials

and obtain the analytical solutions to this problem. The damping ratios induced by acoustic

radiation and viscous dissipation of fluid is evaluated through an identified matrix in this fluid-

plate interaction model. Numerical simulation on the plates with different boundary conditions

and fluid with different viscosity is carried out using this proposed model. The effects of acoustic

and viscous damping on the resonant frequencies and the corresponding Q-factors of fluid-

loaded microplates are investigated. The effect of fluid viscosity on the dynamics of microplates

has also been experimentally studied by testing the microplates in various liquid mixtures with

different viscosity from 1 cP to 1500 cP. It is proved that, both theoretically and experimentally,

acoustic radiation contributes the dominant damping of fluid-loaded microplates. The viscous
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damping is negligible when the fluid viscosity is lower than 10 cP. Whereas, for the micro-

cantilevers, it had been shown that the damping is mainly induced by the viscous dissipation of

fluid [6,24]. It demonstrates that microplates are more resistive to the fluid viscosity and exhibit

better sensitivity than the micro-cantilever sensing elements in the application of MEMS-based

mass sensing devices.

2. Theoretical model

(a) Equations for quiescent compressible viscous fluid

When a solid structure is excited in fluid by prescribed external forces, the resultant inertial

and friction forces of the fluid react against the motion of structure and form the dissipation

of energy. Both the solid and the fluid are assumed to be homogeneous herein, and the fluid

medium is at rest initially (v0 = 0). Subsequently, the fluid is perturbed by the vibration of the

microplates into small amplitudes of motion. Since small oscillation or motion of the coupling

system is considered, the non-linear convective inertial term (v · ∇v) is ignored. The Navier-

Stokes equation is linearized to govern the motion of a viscous compressible fluid [25,27]. The

detailed linearization procedure may refer to [27,30]. It therefore results in the following equation

governing the dynamics of a creeping flow.

ρf0
∂v

∂t
− µ∇2

v − (µ+ µv)∇(∇ · v) +∇p= 0 (2.1)

where v and p are perturbations of the velocity vector and pressure, respectively. ρf0 is the fluid

density at rest. µ is the dynamic viscosity coefficient of the fluid, and µv is the second viscosity

coefficient of fluid, which is assumed to be −2/3µ. The motion of fluid also satisfies a linearized

continuity equation [27]
∂ρf
∂t

+ ρf0∇ · v= 0 (2.2)

and a state equation:
∂p

∂ρf
= c2 (2.3)

where ρf is the density perturbation of fluid. The solution of the fluid velocity field can be

expressed as a sum of an irrotational vector field, obtained by means of the gradient of a scalar

potential, and a solenoidal vector field, obtained by a vector potential [24,27,35].

v=∇Φ+∇× Ψ (2.4)

with an additional condition

∇ · Ψ = 0 (2.5)

Substituting this solution back into Eqs.(2.1 - 2.3), the following equations are obtained [26]

p=
4

3
µ∇2Φ− ρf0Φ̇ (2.6)

∇2Φ+
4µ

3ρf0c2
∇2Φ̇−

1

c2
Φ̈= 0 (2.7)

∇2Ψ −
ρf0
µ
Ψ̇ = 0 (2.8)

If the harmonic motion is considered, as Φ(x, y, z, t) = φ(x, y, z)e−iωt and Ψ(x, y, z, t) =

ψ(x, y, z)e−iωt, the above Eqs. (2.7) and (2.8) can be rewritten as the following forms

∇2φ+ k2l φ= 0 (2.9)

∇2ψ + k2sψ= 0 (2.10)
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where

k2l =
ω2/c2

1− 4iµω/3ρf0c2
(2.11)

k2s =
iρf0ω

µ
(2.12)

where kl and ks are the virtual wave numbers of the fluid potential fields.

(b) Vibration of rectangular plates

The fluid-plate coupling system is illustrated in Figure 1, in which a microplate acting as a sensing

element is immersed in a compressible viscous fluid and is stimulated into a small transverse

oscillation (along z axis). The governing equation for the forced vibration of a rectangular

isotropic plate ignoring the effects of rotatory inertia and transverse shear deformation is given

by

D(
∂4w

∂x4
+ 2

∂4w

∂x2y2
+
∂4w

∂y4
) + ρph

∂2w

∂t2
= F (x, y, t) (2.13)

where D=Eh3/12(1− υ2) is the flexural rigidity, E is the Young’s modulus and υ is the

poisson’s ratio. ρp is the density of plate and h is the plate thickness. F (x, y, t) is a function that

represents the external loading applied on the plate, which includes the excitation force and the

hydrodynamic loading of the fluid. However, for the fluid-plate interaction, this classical thin

plate theory is only valid in the frequency range [29]

ωh

πcs
< 0.1 (2.14)

where cs =
√

E/(2ρp(1 + υ)) is the shear wave speed of the material. Taking a 5µm thick

200µm square silicon microplate as an example, the above condition is satisfied within the

frequency band of 20MHz, which is adequately large for the frequency analysis of microplates

that conducted in this paper. The deflection of plate in Eq. (2.13) is expanded as a series form

w(x, y, t) =
∞
∑

m=1

∞
∑

n=1

WmnXm(x)Yn(y)·θ(t) (2.15)

where θ(t) is a time dependent function and Wmn is the coefficient of each term in the series

expansion of plate transverse displacement. In a harmonic vibration, θ(t) = sin(ωF t+ ϑ), ϑ is the

initial phase difference.Xm(x) and Yn(y) are the mode shape functions, which need to satisfy the

boundary conditions in both x and y directions, respectively. In this work, Xm(x) and Yn(y) are

chosen as the beam mode shape functions with the same boundary conditions [34], for example

Xm(x) is given by

Xm(x) =A1 cosh (kmx) +A2 cos (kmx) +A3 sinh (kmx) +A4 sin (kmx) (2.16)

where km = ǫm/La and La is the plate length along the x-axis. Yn(y) has the same form that

replace x to y and La to Lb in Eq. (2.16) respectively. The coefficients ǫm, A1, A2, A3, A4 are given

by the corresponding beam boundary conditions [5,34].

(c) Boundary conditions at the fluid-plate interface

For a small oscillation of the fluid-plate coupling system, at the interface layer, the fluid has no

velocity relative to the plate [36]. This condition is known as the no-slip condition, which is stated

by the following equality constraints

∂up

∂t
= v

f , ~σp = ~σf (2.17)

where u
p is the displacement vector of the plate. The superscripts “f" and “p" are used to indicate

the fluid and the plate, respectively. As shown in Eq. (2.17), at the contact interface, the velocity
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of fluid is equal to the velocity of the plate, and the stresses along fluid boundary (~σf ) are the

same with that on plate surface (~σp). Expanding the above boundary conditions in Cartesian

coordinates (~x, ~y, ~z), the vector potential ψ is defined as

ψ=ψx~x+ ψy~y + ψz~z (2.18)

The velocity field of the fluid in Eq. (2.4) is expanded as

vfx =
∂φ

∂x
+
∂ψz

∂y
−
∂ψy

∂z

vfy =
∂φ

∂y
+
∂ψx

∂z
−
∂ψz

∂x

vfz =
∂φ

∂z
+
∂ψy

∂x
−
∂ψx

∂y

(2.19)

The velocity field of a vibrating plate is expressed in terms of its flexural waves (bending waves)

and given by [37]

vpx =−
h

2

∂2w

∂x∂t

vpy =−
h

2

∂2w

∂y∂t

vpz =
∂w

∂t

(2.20)

Supposing the fluid-plate contact interface is located at z = 0, the no-slip boundary condition of

the velocity field is expressed as

vfx = vpx|z=0, vfy = vpy |z=0, vfz = vpz |z=0 (2.21)

(d) Hydrodynamic force on a rectangular plate

In this section, analytical solutions for the hydrodynamic forces that apply on the fluid-loaded

rectangular plates are derived. When a plate is immersed in fluid and is excited into vibration, the

motion of plate generates a new stress field of fluid on both sides of the plate. The hydrodynamic

loading Fhydro(x, y, 0, t) on the transverse motion of the plate is determined from the difference

of hydrodynamic forces between the top surface and the bottom surface of the plate

Fhydro(x, y, 0, t) = Fhydro(x, y, 0−, t)− Fhydro(x, y, 0+, t) (2.22)

where Fhydro(x, y, 0−, t) and Fhydro(x, y, 0+, t) represent the applied hydrodynamic forces on

the bottom side and the top side of the plate, respectively. As the thickness of the plate is thin, the

hydrodynamic forces of the two sides are equal to each other but are of opposite direction

Fhydro(x, y, 0−, t) =−Fhydro(x, y, 0+, t) (2.23)

According to the no-slip condition, the surface hydrodynamic force is given by the boundary fluid

stresses

Fhydro(x, y, 0+) =−σz +
h

2

(

∂τzx
∂x

+
∂τzy
∂y

)

(2.24)

where σz , τzx, τzy are the normal and shear stresses of fluid at the boundary. In general, the six

components of fluid stresses are defined by Stokes’s hypothesis [36] and are expressed in terms
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of fluid pressure and velocity field

σx =−p+ 2µ
∂vfx
∂x

−
2

3
µ

(

∂vfx
∂x

+
∂vfy
∂y

+
∂vfz
∂z

)

σy =−p+ 2µ
∂vfy
∂y

−
2

3
µ

(

∂vfx
∂x

+
∂vfy
∂y

+
∂vfz
∂z

)

σz =−p+ 2µ
∂vfz
∂z

−
2

3
µ

(

∂vfx
∂x

+
∂vfy
∂y

+
∂vfz
∂z

)

τxy = τyx = µ

(

∂vfy
∂x

+
∂vfx
∂y

)

τyz = τzy = µ

(

∂vfz
∂y

+
∂vfy
∂z

)

τzx = τxz = µ

(

∂vfx
∂z

+
∂vfz
∂x

)

(2.25)

Due to the continuous condition of stresses at the contact interface, the hydrodynamic loading

on the plate is determined by the motion of fluid. Substituting the expanded expressions of

velocity field in Eq. (2.20) into the above formula of fluid stress tensor, the fluid stresses

σz , τzx, τzy are then expressed in terms of the scalar and the vector potentials.

σz =−2µ∇2φ+ ρf0φ̇+ 2µ

(

∂2φ

∂z2
+
∂2ψy

∂x∂z
+
∂2ψx

∂y∂z

)

(2.26)

τzx = µ

(

2
∂2φ

∂x∂z
+
∂2ψz

∂y∂z
−
∂2ψx

∂y∂x
−
∂2ψy

∂z2
+
∂2ψy

∂x2

)

(2.27)

τzy = µ

(

2
∂2φ

∂y∂z
+
∂2ψy

∂x∂y
−
∂2ψz

∂x∂z
−
∂2ψx

∂y2
+
∂2ψx

∂z2

)

(2.28)

The scalar and the vector potentials φ, ψ in the Helmholtz-type equations (2.9) and (2.10) can be

solved using a double Fourier transform method. Applying the Fourier integral transform in the

x, y domain, the solutions of potential fields φ, ψ are given in the following convolution integral

forms

φ(x, y, z) =
1

4π2

∞∫∫

−∞

A · exp

(

ikxx+ ikyy + i
√

k2
l
− k2x − k2y · z

)

dkxdky (2.29)

ψ(x, y, z) =
1

4π2

∞∫∫

−∞

B · exp

(

ikxx+ ikyy + i
√

k2s − k2x − k2y · z

)

dkxdky (2.30)

whereA andB (which contains three componentsBx, By, Bz) are unknown coefficients that need

to be determined from the boundary conditions. kx, ky are transformed longitudinal and lateral

wave numbers in frequency domain.Bx, By, Bz are the coefficients for each component of vector

field ψx, ψy, ψz , respectively. Substituting the Fourier transformed solution of the scalar and the

vector potentials in Eqs. (2.29) and (2.30) into the no-slip condition of Eq. (2.21) and the additional

constraint of Eq. (2.5), four linear algebraic equations with respect to the unknown coefficients (A
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and B) are derived.

i
√

k2
l
− k2x − k2y ·A+ ikyBx − ikxBy = ˜̇w

kxA+
√

k2s − k2x − k2y ·By + kyBz =
h

2
kx ˜̇w

−kyA+
√

k2s − k2x − k2y ·Bx + kxBz =
h

2
ky ˜̇w

−kxBx − kyBy +
√

k2s − k2x − k2y ·Bz = 0

(2.31)

The coefficients A,Bx, By, Bz are then determined in closed-forms from the above linear

equations as

A=

[ −h(k2x + k2y) + 2i(k2x + k2y)/
√

k2
l
− k2x − k2y

2(k2x + k2y +
√

k2
l
− k2x − k2y

√

k2s − k2x − k2y)
−

i
√

k2
l
− k2x − k2y

]

˜̇w (2.32)

Bx =−
hky

√

k2
l
− k2x − k2y − 2iky

2(k2x + k2y +
√

k2
l
− k2x − k2y

√

k2s − k2x − k2y)

˜̇w (2.33)

By =
−hkx

√

k2
l
− k2x − k2y + 2ikx

2(k2x + k2y +
√

k2
l
− k2x − k2y

√

k2s − k2x − k2y)

˜̇w (2.34)

Bz = 0 (2.35)

Subsequently, an analytical expression of the hydrodynamic force that is applied on the plate

immersed in a viscous and compressible fluid is obtained with the closed-form solutions of these

coefficients (A,Bx, By, Bz). Substituting the solutions of potential fields in Eqs. (2.29) and (2.30)

into Eq. (2.24), and the formulas of hydrodynamic force is given by

Fhydro(x, y, 0+) =
1

4π2

∞∫∫

−∞

T (kx, ky) ˜̇w exp(ikxx+ ikyy)dkxdkx (2.36)

where the inner function T (kx, ky) contains two parts as

T (kx, ky) =−T1(kx, ky) +
h

2
T2(kx, ky) (2.37)

T1(kx, ky) and T2(kx, ky) are two coefficient functions corresponding to the normal stress (σz)

and the shear stresses (τzx, τzy) of the fluid, and given by

T1 = [2µ(k2x + k2y)− iρf0ω]A
′

− 2µ(kx

√

k2
l
− k2x − k2yB

′

y − ky

√

k2
l
− k2x − k2yB

′

x) (2.38)

T2 =−iµ[2
√

k2
l
− k2x − k2y(k

2
x + k2x)A

′

+ ky(k
2
l − 2k2x − 2k2y)B

′

x + kx(−k
2
l + 2k2x + 2k2y)B

′

y]

(2.39)

whereA
′

=A/ ˜̇w,B
′

x =Bx/ ˜̇w,B
′

y =By/ ˜̇w. As such, Eqs. (2.32)-(2.39) provide a series of analytical

expressions that can straightforwardly determine the hydrodynamic force applying on the

vibrating plate at the fluid-plate interface. This is the major novelty for the theoretical modelling

of fluid-plate coupling system that was developed in this work.

If the viscosity of the fluid is not considered (µ= 0), the virtual wave numbers in Eqs. (2.9) and

(2.10) become kl = ω/c, ks →∞ and the hydrodynamic force of Eq. (2.36) reduces to an ordinary
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form of acoustic pressure as

p(x, y, 0+) =
1

4π2

∞∫∫

−∞

ρf0ω ˜̇w exp(ikxx+ ikyy)
√

k2
l
− k2x − k2y

dkxdkx (2.40)

Eq. (2.40) had been received wide applications in the study of plate borne acoustic radiation [12–

14,29]. Note, Eq. (2.36) is also applicable to the cases that the viscosity of the fluid is low.

(e) Fluid-plate interaction model

The external excitation force is assumed to be a concentrated force (Fex) applied at a point

(x0, y0). The whole external force F (x, y, t) in Eq. (2.13) then equals to

F (x, y) = Fexδ(x− x0)δ(y − y0) + Fhydro (2.41)

By substitution Eqs. (2.15), (2.36) and (2.41) into Eq. (2.13) and application of the Galerkin method,

the following model for the fluid-loaded rectangular plates is obtained

∞
∑

m

∞
∑

n

(Γmnqr + iωImnqr) {Wmn}= Fqr q, r= 1, 2, · · · ,∞ (2.42)

where Fqr is a generalized form of external force and given by

Fqr =

∫∫

S

Fexδ(x− x0)δ(y − y0)Xq(x)Yr(y) dx dy (2.43)

and Γmnqr is a modal coefficient of plate stiffness and given by

Γmnqr =

{

M
(

ω2
mn − ω2

)

(m= q and n= r)

0 (m 6= q or n 6= r)
(2.44)

where M is the mass of plate and ωmn is the (m,n) mode natural frequency of the plate in vacuo.

Analytical solutions of the natural frequencies of rectangular plates with ordinary boundary

conditions have been well studied [38]. For example, the natural frequencies of an all edges

clamped plate can be evaluated using the following equation

ω2
mn =

D

ρph






k4m + 2

∫∫
S

Xm(x)Xm,xx(x)Yn(y)Yn,yy(y)dxdy

∫∫
S

X2
m(x)Y 2

n (y)dxdy
+ k4n






(2.45)

where Xm and Yn are the mode shape functions given by Eq. (2.16).

Imnqr is a fluid-loading impedance that is induced by acoustic radiation and viscosity. Imnqr

reflects the coupling effect that is linked by two discrete vibrational modes of plate, namely (m,n)

and (q, r). Imnqr is expressed in terms of the hydrodynamic force as

Imnqr =
1

4π2

∫∫∞
−∞

T (kx, ky)χmn(kx, ky)χ
∗
qr(kx, ky)dkxdky (2.46)

where χmn(kx, ky) and χ∗qr(kx, ky) are double Fourier transform of the plate mode shape

functions. The expression of χmn(kx, ky) is

χmn(kx, ky) =

∫∫

S

Xm(x)Yn(y) exp(−i(kxx+ kyy)) (2.47)

and χ∗qr(kx, ky) is a conjugated form of Eq. (2.47) with the indices of q and r. After substituting

the mode shape functions (2.16) into Eqs. (2.46) and (2.47), the fluid-loaded impedance Imnqr

is expanded into a 6 dimensional integration, which is very tedious to evaluate numerically.

Fortunately, the inner functions χmn and χ∗qr can be solved in closed forms for most of

boundary conditions (simply supported, clamped, cantilever and etc). The closed-form solution
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of χmn(kx, ky) for an all clamped rectangular plate is derived and expressed as the follows.

Solutions for the plates with other boundary conditions are similar.

χmn(kx, ky) = [Ixc(m, kx)− iIxs(m, kx)] · [Iyc(n, ky)− iIys(n, ky)] (2.48)

where

Ixc(m, kx) =

[

1

2(k2m + k2x)

(

ekmLa(kx sin(Lakx) + km cos(Lakx))+

e−kmLa(kx sin(Lakx)− km cos(kxLa))
)

−
1

2

(

sin(La(km + kx))

km + kx
+

sin(La(km + kx))

km − kx

)]

− αm

[

1

2(k2m + k2x)

(

ekmLa(kx sin(Lakx) + km cos(kxLa))+

e−kmLa(kx sin(Lakx)− km cos(kxLa))− 2km
)

+

1

2

(

cos(La(km + kx))− 1

km + kx
+

cos(La(km − kx))− 1

km − kx

)]

(2.49)

Ixs(m, kx) =

[

1

2(k2m + k2x)

(

ekmLa(km sin(Lakx)− kx cos(Lakx))−

e−kmLa(km sin(Lakx)− kx cos(kxLa)) + 2kx
)

+
1

2

(

cos(La(km + kx))− 1

km + kx

−
cos(La(km − kx))− 1

km − kx

)]

− αm

[

1

2(k2m + k2x)

(

ekmLa(km sin(Lakx)−

kx cos(kxLa)) + e−kmLa(km sin(Lakx) + kx cos(kxLa))
)

+

1

2

(

sin(La(km + kx))

km + kx
−

sin(La(km − kx))

km − kx

)]

(2.50)

The functions of Iyc(n, ky) and Iys(n, ky) have the same forms with Ixc(m, kx) and Ixs(m, kx) by

replacing km to kn and La to Lb, respectively. As such, Imnqr reduces to a double integral form,

which can be evaluated numerically by an ordinary integration method.

Since the fluid impedance Imnqr is a complex function, we can write it in a form with separated

real and imaginary parts as [29]

Imnqr = rmnqr − iω ×mmnqr (2.51)

where rmnqr represents an energy loss of the plate due to the acoustic radiation and the viscosity

of the fluid, and the term mmnqr causes as an additionally inertial action to the plate motion [12].

In other words, the term rmnqr gives rise to the damping of the vibration, whereas the term

mmnqr contributes an added mass effect to the fluid-loaded plate. The added mass factor and

damping mechanism of a fluid-loaded plate can be analysed through the investigation of fluid-

loading impedance Imnqr .

Eq. (2.42) is obtained using a Galerkin procedure with an assumption that the mode shapes

of the plate are orthogonal. In so doing, the closed-form expressions for the inner functions of

fluid-loading impedance are derived, as shown in Eqs. (2.49) and (2.50). A more general model is

derived from the principle of virtual work for the plates that their mode shapes are not completely

orthogonal, for example the cantilever plates.

δ · Up +

∫∫

S

ρsh
∂2w

∂t2
δwdxdy −

∫∫

S

Fδwdxdy= 0 (2.52)
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where Up is the potential energy of plate,

Up =
D

2

∫∫

S

{(

∂2w

∂x2
+
∂2w

∂y2

)2

− 2(1− ν)

[

∂2w

∂x2
∂2w

∂y2
−

(

∂2w

∂x∂y

)2
]

}

dxdy (2.53)

and δw is the virtual displacement of plate. Substituting the solution or expression of Up, w (Eq.

(2.15)) and external force F (Eq. (2.41)) into Eq. (2.52), an analytical solution based on the principle

of virtual work is derived.
∞
∑

m

∞
∑

n

(

Up,mnqr − ω2T ∗
p,mnqr + iω

Imnqr

2

)

{Wmn}= Fqr q, r= 1, 2, · · · ,∞ (2.54)

where

Up,mnqr =
D

2

∫∫

S

{

Xm,xx(x)Xq,xx(x)Yn(y)Yr(y) +Xm(x)Xq(x)Yn,yy(y)Yr,yy(y)+

2νXm,xx(x)Xq(x)Yn(y)Yr,yy(y) + 2(1− ν)Xm,x(x)Xq,x(x)Yn,y(y)Yr,y(y)

}

dxdy

(2.55)

T ∗
p,mnqr =

1

2
ρph

∫∫

S

Xm(x)Xq(x)Yn(y)Yr(y)dxdy (2.56)

Eq. (2.54) can also be written in the following matrix form

{−ω2[M] + iω[C] + [K]}{W}= 0 (2.57)

where M, C and K are mass, damping and stiffness matrices of the vibration system respectively,

and their elements are given by

Kij = 2Up,mnqr

Mij = 2T ∗
p,mnqr +mmnqr

Cij = rmnqr

i= l(q − 1) + r, j = l(m− 1) + n, l ∈N
+

3. Numerical simulation

(a) Simulation process

The dynamics of the fluid-loaded plate at a prescribed frequency is determined from either Eq.

(2.42) or Eq. (2.54). As the study is mainly on the first few vibrational modes in the current work,

9× 9 terms of mode shape functions are used for the vibration analysis of microplates in each

simulation. The vibrational deflection of the fluid-loaded plate is then computed using Eq. (2.15),

once the solution of Wmn is obtained. The frequency response function of the fluid-loaded plate

over a specified frequency range is produced by performing the simulation at a series of linearly

spaced excitation frequencies within this range.

The material properties of the microplate (silicon 〈100〉) and the fluid (water) used in the

numerical simulation are

• Plate Length: La = 100µm

• Plate Width: Lb = 100µm

• Plate Thickness: h= 5µm

• Plate Young’s Modulus: E = 150GPa

• Plate Poisson’s Ratio: ν = 0.17

• Plate Density: ρp = 2330 kg/m3
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• Water Density: ρf = 1000 kg/m3

• Water Viscosity: µ= 1.003 cP

• Acoustic Speed (in water): c= 1482m/s

Nevertheless, the most difficult part in the numerical simulation is the evaluation of fluid-

loading impedance Imnqr . As the simulation is carried out on microscale plates (10−6), direct

numerical evaluation of the fluid impedance may encounter arithmetic overflow or errors. To

avoid this issue, the virtual wave numbers (kx, ky) in the fluid impedance are normalised with

respect to the acoustic wave number (k= ω/c) [14], namely kx = kKx, ky = kKy . The fluid

impedance is then evaluated by

Ĩmnqr =
k2

4π2

∫∫∞
−∞

T (Kx,Ky)χmn(Kx,Ky)χ
∗
qr(Kx,Ky)dKxdKy (3.1)

The fluid impedance involves a double integration over infinity and a square root singularity. The

fluid-loading impedance is numerically evaluated using a Quasi-Monte Carlo method, which

is an effective means to perform the complicated numerical integration with singularities. The

double infinite integration ([−∞,∞], [−∞,∞]) is truncated into finite ranges ([−l, l], [−l, l]) in

the process of numerical simulation. Convergence is achieved when the truncated ranges are

sufficiently large. The values of the fluid impedance I1111, I1212, I2222 and I3333 for an all edges

clamped plate over a series of different truncated ranges are computed to study the convergence.

As proved by the results shown in Fig. 1, the values of I1111, I1212, I2222 and I3333 start to

converge when l is larger than 10. Note, for different boundary conditions, the truncated integral

ranges are different for achieving convergent results of the fluid impedance.

(b) Damping mechanism

This section presents a study on the damping mechanism of fluid-loaded microplates. The

damping effects caused by the acoustic radiation and the viscous dissipation are examined

separately. If the fluid is assumed to be inviscid and incompressible (µ= 0 and c→∞), there

is no damping and only the inertial force of the fluid (added mass) takes effect to the motion

of fluid-loaded microplates. If the fluid is assumed to be inviscid and compressible (µ= 0), the

damping of the fluid-loaded plate is mainly contributed by the acoustic radiation. In this work,

three different cases of fluid-loading are studied: (i) no damping effect is taken into account,

µ= 0 and c→∞; (ii) the fluid is assumed to be inviscid but the acoustic radiation is considered

(compressible fluid), µ= 0 and c= 1482m/s; (iii) both the acoustic damping and the viscous

damping are considered, µ= 1.003 cP and c= 1482m/s. The numerical simulation is carried out

on three different boundary conditions of microplates: all clamped (CCCC), two opposite edges

clamped and the rest are free (CFCF), cantilever (CFFF). The frequency response functions (FRF)

of each type microplate under these three different fluid-loading cases (i-iii) are illustrated in

Figures 3, 4 and 5, respectively.

The natural frequencies and damping ratios of each microplate can be determined from the

FRF curves by a modal analysis procedure [32]. It was proved by previous work [32] that the

predicted resonant frequencies for the three fluid-loaded microplates are well matched with the

results of a Rayleigh-Ritz model [5] and the experimental testing [32]. In Table 1, the damping

ratios of the three different types (boundary conditions) microplates that are predicted using the

theoretical model are compared and validated with the experimental results. For the case (ii), the

damping ratios of each microplate are 0.117 (CCCC), 0.089 (CFCF) and 0.017 (CFFF). For the case

(iii) that the viscosity is considered, the damping ratios for each microplate are 0.118, 0.095 and

0.019, respectively, which are almost the same with the values of case (ii).

It also can be seen that the fluid damping largely affect the vibration of the microplate with all

edges clamped (CCCC), whereas it has much less effect on the cantilever microplate (CFFF) than

the other two types of microplates. The quality factor (Q-factor) of a microplate at each vibrational
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Table 1. Theoretical and experimental results on damping ratios of the three types 300µm× 300µm× 5µm of

microplates (reproduced from [31])

C-F-F-F C-F-C-F C-C-C-C

Modes Theo. Expe. Theo. Expe. Theo. Expe.

1st 2.83% 2.13% 2.38% 1.47% 3.21% 1.81%

2nd - - 0.21% 0.27% 0.20% 0.32%

3rd(4th) 0.38% 0.26% 0.17% 0.18% 0.02% 0.08%

mode is evaluated from the damping ratio as

Q=
1

2ζ
(3.2)

where ζ denotes the damping ratio. Therefore, the cantilever microplate possesses the highest

Q-factor (26.3) as well as the sensitivity among these three types microplates (Q-factors: 4.24 for

CCCC and 5.26 for CFCF).

As shown in the Figures 3, 4 and 5, the FRF trends around the region of first vibrational modes

for case (ii) and case (iii) of each type microplate are very close to each other. It therefore results

in nearly the same natural frequencies and damping ratios for the case (ii) and case (iii) of each

microplate. From the simulation results at the fundamental vibrational mode, we found that the

acoustic radiation (rather than the viscous relaxation) mainly contributes the damping of fluid-

loaded microplates.

In other words, if only the first vibrational mode is considered and the fluid viscosity is low

(like water), the viscous damping effect can be ignored for the fluid-loaded microplates. It was

also observed that the effect of fluid viscosity does affect the higher vibrational modes (2nd and

3rd in Figures 4 and 5) on the microplates, in particular for CFFF type microplates. This conclusion

is very different with the work that studied the fluid-loaded micro-cantilevers [6,22], in which the

viscous dissipation is found to be the dominant damping mechanism. This can be explained using

a modified Reynolds number given by [6] 1, which is expressed as

Re=
ρfωwet,0b

2

4µ
(3.3)

where ρf is the fluid density, µ is the fluid viscosity, ωwet,0 is the damped resonant frequency of a

micro-structure and b is the characteristic width. A 100µm× 100µm× 5µmmicro-cantilever plate

and a 100µm× 5µm× 5µm micro-cantilever beam with the same material properties are taken

as examples. The Reynolds number of this cantilever microplate is 5118, whereas the Reynolds

number of the micro-cantilever beam is only 12.29, which is over 400 times less than the value of

the microplate. It was found that the fluid-loaded microplates with other boundary conditions

(CCCC or CFCF) have much high Reynolds numbers, due to their high natural frequencies.

For those cases with large Reynolds number, it is applicable to assume the fluid to be inviscid.

Therefore, it is accurate enough to consider the acoustic radiation solely for the damping analysis

of fluid-loaded microplates when the viscosity is low. Without considering the viscosity, the fluid

impedance Imnqr in Eq. (2.46) reduces into the following form of acoustic impedance Iamnqr .

Iamnqr =
ρfω

4π2

∫∫∞
−∞

χmn(kx, ky)χ
∗
qr(kx, ky)

√

k2 − k2x − k2y

dkxdky (3.4)

Pierce et al. [33] proposed a method that transforms the integration of Eq. (3.4) from Cartesian

coordinates to polar coordinates, by which the closed-form solution of the acoustic impedance

Iamnqr can be obtained [5].

1This modified Reynolds number is proposed by Sader et al. [6]. The conventional Reynolds number [30] that is associated

with the nonlinear convective term in the Navier-Stokes equations is not being used herein.
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(c) High viscosity effects

In this section, the highly viscous fluid-loading effect on the dynamics of microplates is studied.

Numerical simulation is conducted on the fluid with 7 different viscosities from 1 cP to 1500 cP

(or 1 cP to 200 cP) 2. The frequency response functions (FRF) for the three types of microplates

that are immersed in different fluids with high viscosities are plotted in Figures 6, 7 and 8,

respectively. Figure 6 demonstrates that the dynamics of a submerged microplate (CCCC) is only

slightly influenced by the highly viscous fluid, even when the viscosity is up to 1500 cP. However,

as shown in Figures 7 and 8, the fluid with high viscosity substantially affects the vibrational

behaviour of the other two types of microplates (CFCF and CFFF ). When the viscosity of the

fluid is higher than 200 cP, the second vibrational modes of the CFCF and CFFF microplates are

completely attenuated due to the high viscous energy dissipation. Thus, the CCCC microplates

are much more resistive to the viscous damping than the CFCF and CFFF microplates. In other

words, it is more suitable to apply a CCCC type of microplate in a high viscous fluid media as

the sensing element. A CFCF or CFFF type microplate, which has high Q-factor (sensitivity), may

lose its sensing function when it is being used in a media with high viscosity (i.e. over 200 cP).

It is also observed that the resonant frequencies of microplates are decreased when the

viscosity values of the fluid are increased. Thus, the fluid viscosity contributes an additional added

mass effect to the vibration of microplates. Further quantitative study [40] shows that the resonant

frequency shift is approximately linear with respect to the increase rate of the viscosity value. For a

CCCC 100µm× 100µm× 5µmmicroplate, Figure 9 illustrates an approximate linear relationship

between the changes of fundamental resonant frequency and the fluid viscosity values. Cedric

Ayela and Liviu Nicu [2] experimentally studied the effect of fluid viscosity to the dynamics of

fluid-loaded circular microplates. A similar conclusion (Figures. 7 and 12 in [2]) was reached from

their experimental results.

4. Conclusion
In this paper, the dynamics of microscale plates immersed in a viscous and compressible fluid is

studied. To investigate the damping mechanism of the fluid-loading effect on the microplates, a

theoretical modelling considering both acoustic damping and viscous damping is developed. In

this model, the analytical solution for the fluid-loading impedance is obtained using a Fourier

transform technique. To study the damping mechanism of fluid-loaded microplates, a number

of cases for the microplates under different fluid-loading conditions are simulated using the

proposed theoretical modelling.

The numerical simulation results reveal that the acoustic radiation contributes the dominant

damping of fluid-loaded microplates, and the viscous fluid-loading effect can be ignored when

the viscosity of the fluid is lower than 10 cP. Compared with the micro-cantilevers, the microplates

show higher Q-factors (sensitivity) and are more resistive to the viscous effect of fluid-loading. It

is also concluded that the cantilever type of microplates possesses the highest sensitivity among

the three types of boundary conditions (CCCC, CFCF and CFFF). However, the dynamics of the

microplate with all edges clamped (CCCC) is much less influenced by viscous dissipation of the

fluid.

2(1 cP, 100 cP, 300 cP, 600 cP, 900 cP, 1200 cP, 1500 cP), or (1 cP, 20 cP, 40 cP, 60 cP, 80 cP, 100 cP, 200 cP). The viscosity of water

is approximately 1 cP, whereas 1500 cP is the viscosity of 100% glycerol at 25◦C. The other viscosity of the fluid can be

obtained through a liquid mixture solution of water/glycerol.
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5. Figures & Tables

z

x

y

Fluid Domain

Fluid Domain

microplate (sensing element)

(w – transverse vibration)

Figure 1. Schematic diagram of microplate vibration model in a fluid
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Figure 2. Convergence study of truncated double integral ranges ([−l, l] and [−l, l]) in the evaluation of fluid-loading

impedance Imnqr . Here, I1111, I1212, I2222 and I3333 are examined.
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Figure 5. FRF at point (La/2, 0) of forced vibration of a fluid-loaded 100µm× 100µm× 5µm CFFF microplate

(frequency range is from 1kHz to 3MHz)
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