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Abstract

The J1–J2 Heisenberg model is a “canonical” model in the field of quantum magnetism in order

to study the interplay between frustration and quantum fluctuations as well as quantum phase

transitions driven by frustration. Here we apply the Coupled Cluster Method (CCM) to study

the spin-half J1–J2 model with antiferromagnetic nearest-neighbor bonds J1 > 0 and next-nearest-

neighbor bonds J2 > 0 for the simple cubic (SC) and body-centered cubic (BCC) lattices. In

particular, we wish to study the ground-state ordering of these systems as a function of the frus-

tration parameter p = z2J2/z1J1, where z1 (z2) is the number of nearest (next-nearest) neighbors.

We wish to determine the positions of the phase transitions using the CCM and we aim to resolve

the nature of the phase transition points. We consider the ground-state energy, order parameters,

spin-spin correlation functions as well as the spin stiffness in order to determine the ground-state

phase diagrams of these models. We find a direct first-order phase transition at a value of p = 0.528

from a state of nearest-neighbor Néel order to next-nearest-neighbor Néel order for the BCC lattice.

For the SC lattice the situation is more subtle. CCM results for the energy, the order parameter,

the spin-spin correlation functions and the spin stiffness indicate that there is no direct first-order

transition between ground-state phases with magnetic long-range order, rather it is more likely that

two phases with antiferromagnetic long-range are separated by a narrow region of a spin-liquid like

quantum phase around p = 0.55. Thus the strong frustration present in the J1–J2 Heisenberg

model on the SC lattice may open a window for an unconventional quantum ground state in this

three-dimensional spin model.
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FIG. 1: CCM model states: (a) Néel model state for the simple cubic lattice (denoted by SC-AF1);

(b) striped model state for the simple cubic lattice (denoted by SC-AF2); (c) nearest-neighbor Néel

model state for the body-centered cubic lattice (denoted by BCC-AF1); (d) next-nearest-neighbor

Néel striped model state for the body-centered cubic lattice (denoted by BCC-AF2).

I. INTRODUCTION

Frustrated quantum magnetism continues to attract enormous attention both in theory

and experiment[1–3]. A canonical model to study the interplay of frustration and quan-

tum fluctuations is the spin-half J1–J2 Heisenberg model. On the square lattice this model

has been extensively utilized to study frustration-driven quantum phase transitions between

semiclassical ground-state phases with magnetic long-range order and magnetically disor-

dered quantum phases, see, e.g., Refs. [4–30]. Despite of the numerous investigations of

the two-dimensional (2D) model the nature of the non-magnetic quantum phase around

J2/J1 = 0.5 is still under debate. Interest in the spin-half J1–J2 model on square lattice is

motivated also by its relation to experimental studies of various magnetic materials, such as

VOMoO4 (Ref. [31]), Li2VOSiO4, and Li2VOGeO4 (Ref. [32]) or Sr2CuTeO6 (Ref. [33]).

The dimension of the underlying lattice is crucial to the existence of magnetic long-range

order in quantum magnetic systems. Naturally there is a stronger tendency to order in
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three-dimensional (3D) systems. Thus, already a quite small coupling between the J1 − J2

square-lattice layers leads to a disappearance of the magnetically disordered phase [34–37].

However, a magnetically disordered quantum phase is not per se excluded in frustrated 3D

systems, as it has been demonstrated for the spin-half Heisenberg antiferromagnet (HAFM)

on the pyrochlore lattice [38].

The natural 3D counterpart of the square-lattice J1-J2 model is the J1-J2 model on the

body-centered cubic (BCC) lattice. The limiting case of J1 = 0 and J2 > 0 belongs to the

case of two interpenetrating unfrustrated, i.e. bipartite, antiferromagnets for both models.

The few investigations of the 3D BCC spin-half J1-J2 model include exact diagonalization

(ED) [39], series expansions around the Ising limit [40], spin-wave theory [39, 41], and the

random phase approximation [42]. Thus, all methods (except ED) start from the symmetry-

broken classical antiferromagnetic states and then quantum corrections are subsequently

taken into account. Consistently, all of these methods indicate that a single phase transition

occurs in this system. In contrast to the 2D model, a magnetically disordered quantum phase

is not observed. However, the frustration has a strong influence on the thermodynamics, in

particular the critical temperature is substantially suppressed by frustration [40, 43–45].

Less clear is the situation for the spin-half J1-J2 model on the simple cubic (SC) lattice

[43, 46–52]. In this case different approaches, such as, spin-wave theories [46–48, 51], varia-

tional cluster approach [52], differential operator technique [50] or a spherically symmetric

Green function method [49], come to different conclusions with respect to the existence of

a disordered ground-state phase. The underlying semi-classical physics of these approaches

is different. Spin-wave theories [46–48, 51], differential operator technique [50], and the

variational cluster approach [52] include explicit symmetry breaking. Spin-wave theory uses

the z-axis aligned classical states as a starting point for the calculation, whereas differential

operator technique and the variational cluster approach use Weiss fields to test the pres-

ence of the antiferromagnetic order. By contrast, the Green function method [49] preserves

full spin rotational invariance. A direct first-order transition between two antiferromagneti-

cally long-range ordered phases was obtained in Refs. [46, 48, 50, 51], whereas within Green

function technique [49] and linear spin-wave theory [51] a magnetically disordered quantum

phase was found that separates the two antiferromagnetic phases. Very recently the role of a

third-neighbor coupling, J3, was studied by Laubach et al. [52]. Although, these authors did

not discuss a disordered quantum phase for J3 = 0, their results indicate that a very small
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additional frustrating J3 > 0 leads to such a spin-liquid like quantum phase. It is in order to

emphasize the basic difference between the BCC and SC J1-J2 models, that becomes evident

in the limit of large J2 (or J1 → 0). Contrary to the BCC model, the J1-J2 HAFM on the

SC model is still strongly frustrated, because the antiferromagnetic J2 bonds connect sites

of two interpenetrating face-centered cubic (FCC) lattices.

In the present paper we use the coupled cluster method (CCM) to perform a comparative

study of the spin-half J1-J2 HAFM on the BCC and SC lattices. We mention here, that the

CCM previously has been applied to the 2D square-lattice J1-J2 HAFM [10, 14, 16, 17, 26, 53]

and the method provides accurate results for the ground-state energy, the magnetic order

parameter as well as for the critical points, where the quantum phase transitions take place.

The relevant Hamiltonian of the J1-J2 model is given by

H = J1

∑

〈i,j〉

si · sj + J2

∑

〈〈i,j〉〉

si · sj . (1)

The symbol 〈i, j〉 indicates those bonds that connect nearest-neighbor sites (counting each

bond once only) and the symbol 〈〈i, j〉〉 indicates those bonds that connect next-nearest-

neighbor sites (again counting each bond once only). Here we consider the SC and BCC

lattices in the regime J1 ≥ 0 and J2 ≥ 0, and these lattices (and CCM “model states”, see

Sec. II) are shown in Fig. 1. We note that these systems are frustrated by positive values of

J2. The competition between the bonds J1 and J2 and therefore the phase transition points

in these systems depend on coordination numbers z1 (i.e., the number of nearest-neighbors)

and z2 (i.e., the number of next-nearest-neighbors). In order to enable our calculations to

be consistent with each other, we introduce the following quantity,

p =
J2z2
J1z1

. (2)

The (underlying) BCC and SC lattices are both bipartite, and so the nearest-neighbor

Néel state forms the classical ground state for both of these systems for smaller values of

p < pcl, i.e., up to the phase transition point at p = pcl, where pcl = 1

2
for the SC as

well as for the BCC lattice. These states are shown in Fig. 1 for both the SC and BCC

lattices. They are denoted by SC-AF1 and BCC-AF1, respectively. The situation is more

complicated in the large p limit. The BCC lattice decouples into two SC lattices when

nearest-neighbor bonds are set to J1 = 0 and J2 remains non-zero. Thus, collinear striped

order (the corresponding state is denoted by BCC-AF2) occurs for p > pcl for the BCC
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lattice, also shown in Fig. 1 for the BCC lattice. We shall use this state as another model

state for the BCC lattice. By contrast, the SC lattice decouples into two FCC lattices when

nearest-neighbor bonds are set to J1 = 0 and J2 remains non-zero. This system (with only

next-nearest-neighbor antiferromagnetic bonds) is therefore frustrated and there is a highly

degenerate classical ground-state manifold including non-collinear ground states. However,

according to the order by disorder mechanism [54, 55] collinear striped ordering is favored by

quantum fluctuations [46–52] also for p > pcl. The “striped” model state for the SC lattice

(denoted by SC-AF2) used here is also shown in Fig. 1.

Here we wish to investigate the ground-state properties of the spin-half J1–J2 model on

the SC and BCC lattices by using the CCM. We wish to determine the positions of the

phase transitions using the CCM and we aim to discuss the nature of the phase transitions.

As there is arguably less evidence available in the literature for the SC lattice rather than

the BCC lattice, this investigation should be most useful for the SC lattice. However, we

shall see that insight into both systems can be obtained by comparing and contrasting the

results for each system.

In what follows, the formalism of the CCM is presented briefly, and then the results for

the BCC lattice and the SC lattice are given. We present our conclusions in the final section

of this paper.

II. METHOD

For general information relating to the methodology of the CCM, see, e.g., Refs. [56–60].

The CCM has recently been applied computationally at high orders of approximation to

quantum magnetic systems with much success, see, e.g., Refs. [61–72]. In the field of quan-

tum magnetism, advantages of this approach are that it can be applied to strongly frustrated

quantum spin systems in any dimension and with arbitrary spin quantum numbers. The

exact ket and bra ground-state energy eigenvectors, |Ψ〉 and 〈Ψ̃|, of a many-body system

described by a Hamiltonian H ,

H|Ψ〉 = Eg|Ψ〉 ; 〈Ψ̃|H = Eg〈Ψ̃| , (3)

are parametrized within the CCM as follows:

|Ψ〉 = eS|Φ〉 ; S =
∑

I 6=0

SIC
+

I ,
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〈Ψ̃| = 〈Φ|S̃e−S ; S̃ = 1 +
∑

I 6=0

S̃IC
−
I . (4)

Again, we remark that the model or reference states |Φ〉 for the SC and BCC lattices are

shown in Fig. 1. The ground-state energy is now given by

Eg = Eg({SI}) = 〈Φ|e−SHeS|Φ〉 . (5)

The ket-state and bra-state correlation coefficients are obtained by solving the CCM ket-

and bra-state equations given by

〈Φ|C−
I e

−SHeS|Φ〉 = 0, ∀I 6= 0, (6)

〈Φ|S̃e−S[H,C+

I ]e
S|Φ〉 = 0, ∀I 6= 0. (7)

Each ket- or bra-state equation belongs to a certain creation operator C+
I =

s+i , s+i s
+
j , s+i s

+
j s

+

k , · · ·, i.e. it corresponds to a certain set (configuration or cluster) of lattice

sites i, j, k, . . . . The ket- and bra-state correlation coefficients SI and S̃I , respectively, relate

to the “fundamental” cluster with index I (of Nf such fundamental clusters in total) and so

also to the appropriate ground-state equation above.

The manner in which is the CCM equations are determined and solved is discussed

elsewhere (again, see, e.g., Refs. [61–72] for more details). However, it is important to note

here that the CCM formalism is only ever exact in the limit of inclusion of all possible multi-

spin cluster correlations within S and S̃, although in any real application this is usually

impossible to achieve. It is therefore necessary to utilize various approximation schemes

within S and S̃. The most commonly employed scheme has been the localized LSUBm

scheme, in which all multi-spin correlations over distinct locales on the lattice defined by m

or fewer contiguous sites are retained. We will use this scheme in this article.

Note that we also make the specific and explicit restriction that the creation operators

{C+

I } in S preserve the relationship that, in the original (unrotated) spin coordinates, szT =
∑

i s
z
i = 0 in order to keep the approximate CCM ground-state wave function in the correct

(szT = 0) subspace. Note that each fundamental cluster is independent of all others clusters

with respect to the symmetries of the lattice (and Hamiltonian).

The order parameter (sublattice magnetization) M for the systems considered here is

defined as

M = −
1

N

N
∑

i

〈Ψ̃|ŝzi |Ψ〉 , (8)
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where we note that ŝzi is with respect to the local spin axes at site i after rotation of the

local spin axes with respect to the model state so that (notationally only) the spins appear

to align in the negative z-direction. This ensures that the mathematics of treating these

problems is slightly simpler [60, 61]. Hence, the order parameters are taken with respect to

the model states shown in Fig. 1.

As mentioned above, the LSUBm approximation becomes exact only in the limit m →

∞, and so it is useful to extrapolate the LSUBm results in this limit. A well-established

extrapolation scheme [60–72] for the ground-state energy, Eg/N , is given by

eg(m) = Eg(m)/N = eg(m = ∞) + a1m
−2 + a2m

−4 . (9)

For the magnetic order parameter M we use the scheme

M(m) = M(m = ∞) + b1/m
1/2 + b2/m

3/2. (10)

This extrapolation ansatz is most suitable to detect ground-state order-disorder transitions

[16, 17, 26, 64–67]. We were able to carry out CCM calculations to the LSUB8 level of

approximation for the BCC lattice and to LSUB10 for the SC lattice. The maximum num-

ber of fundamental configurations entering the CCM calculations at the LSUB10 level of

approximation is 1, 728, 469.

We know from Refs. [16, 17, 26, 64–67] that the lowest level of approximation, LSUB2,

conforms poorly to the extrapolation schemes, especially as the parameter p increases.

Hence, as in previous calculations, we exclude LSUB2 data from the extrapolations.

Specifically for the SC lattice we will also calculate the spin stiffness ρ up to the LSUB8

level of approximation. More explanation is needed relating to how to define the stiffness

and how to perform the necessary CCM calculations, and so we transfer this discussion to

the Appendix A.

III. RESULTS

A. Body-Centered Cubic Lattice

The BCC lattice is considered firstly. We were able to carry out CCM calculations to the

LSUB8 level of approximation for this system. Results for the ground-state energy are shown

7



-1.3

-1.2

-1.1

-1

-0.9

-0.8

-0.7

-0.6

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

E
g/

N

p

J1=1
ED, N=36

LSUB4
LSUB6
LSUB8

extra 4-8

FIG. 2: CCM results for the ground-state energy of the spin-half J1–J2 model on the BCC lattice

are compared to results of exact diagonalizations (ED) with N = 36. Note that the curves for

the LSUBm data coincide almost completely. Extrapolated results (label ‘extra 4-8’) are obtained

by using the extrapolation scheme of Eq. (9) using data from the LSUB4, LSUB6, and LSUB8

approximations. The ground-state energies of the two model states are found to intersect at

pc = 0.528.

in Fig. 2. LSUBm results converge very rapidly with increasing level of approximation m,

and differences in energies between LSUB6 and LSUB8 levels of approximation are broadly

of order 10−4 for the BCC-AF1 model state and of order 10−3 for the BCC-AF2 model

state and for all values of p. LSUB4, LSUB6, and LSUB8 results for the unfrustrated case

where p = 0 (setting also J1 = 1) are given by eg = −1.14950, −1.15072, and −1.15101,

respectively. The extrapolation to m = ∞ yields eg = −1.1513, which compares well to

results of series expansions of eg = −1.1510 [74] and of third-order spin-wave theory of

eg = −1.1512 [74]. Good correspondence with ED results of Ref. [39] are also seen by visual

inspection of Fig. 2. We observe that CCM and ED results follow a very similar pattern

as we increase p, although ED results are clearly much lower in energy than those of the

CCM. The difference between ED and CCM results is due to the finite size of the lattice

(N = 36) in the ED calculations. The overall behavior of the ground-state energy provides
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FIG. 3: CCM results for the order parameter (sublattice magnetization) M of the spin-half J1–

J2 model on the BCC lattice. Extrapolated results (label ‘extra 4-8’) are obtained by using the

extrapolation scheme of Eq. (10) using data from the LSUB4, LSUB6, and LSUB8 approximations.

The vertical (dotted) line indicates the intersection point of the ground-state energies for the two

model states at pc = 0.528.

clear evidence for a first-order transition. The intersection point at p = pc = 0.528 of the

ground-state energies of the BCC-AF1 and BCC-AF2 energies determines the transition

point. The corresponding kink in the eg(p)-curve for N = 36 (ED) is at p ≈ 0.525.

Results for the order parameter are shown in Fig. 3. We see again that CCM results are

converging with increasing level of LSUBm approximation level, albeit more slowly than for

the ground-state energy. LSUB4, LSUB6, and LSUB8 results for the unfrustrated HAFM

(i.e., when p = 0) are given by M = 0.44899, 0.44515, and 0.44350 respectively, and the

extrapolated value isM = 0.4398. Again, this result compares quite well to those predictions

of series expansions of M = 0.442 [74] and of third-order spin-wave theory of M = 0.4412

[74]. The data shown in Fig. 3 clearly support that there is a direct first-order transition

between the phases with semi-classical magnetic long-range orders of type AF1 and AF2 (see

Fig. 1). The values of the extrapolated order parameter at the transition point pc = 0.528

are M = 0.3585 (AF1) and M = 0.4104 (AF2).

The results for the spin-spin correlation functions at the LSUB8 level of approximation
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FIG. 4: Spin-spin correlation 〈S0SR〉 functions for nearest neighbors (red), next-nearest neighbors

(blue) and for third-nearest neighbors (black) for the spin-half J1–J2 model on the BCC lattice in

dependence of the frustration parameter p = 3J2/4J1 (solid lines - CCM-LSUB8 results, symbols

- ED results for N = 36, cf. Ref. [39]). All results are averaged data over all neighbors with the

same separation |R|.

shown in Fig. 4 agree well with the ED data for N = 36. The change in the spin-spin

correlation functions is very abrupt and the large magnitude of correlation functions at p = pc

is a further evidence of a first-order phase transition at this point. The small magnitude

of the nearest-neighbor spin-spin correlation function at p > pc signals the splitting of the

system in two weakly coupled interpenetrating antiferromagnets with leading coupling J2.

We may compare the transition point pc = 0.528 obtained by the CCM with previous

results, namely pc = 0.525 (ED [39]), pc ≈ 0.53 (series expansions [40] and non-linear spin-

wave theory [41]), pc ≈ 0.54 (random phase approximation[42]). Note that the critical point

for the quantum model is slightly above the classical value pcl = 0.5.

Finally, we emphasize the basic difference to the 2D square-lattice model (see also the

discussion in the next section). Although, both models are of similar character concerning

the competition between the J1 and J2 bonds, the increase in dimension leads to a significant

stabilization of semi-classical magnetic long-range order and to the disappearance of the

intermediate quantum phase that is present in the 2D model. Thus, the amount of frustration
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FIG. 5: CCM results for the ground-state energy Eg/N for the spin-half J1–J2 model on the SC

lattice are compared to results of exact diagonalizations (ED) with N = 32. Note that the curves

for the LSUBm data obtained for the Néel model state coincide almost completely. Extrapolated

results (label ‘extra 4-10’) are obtained by using the extrapolation scheme of Eq. (9) using data from

the LSUB4, LSUB6, LSUB8, and LSUB10 approximations. The vertical (dotted) line indicates

the value in the middle of the two points, pAF1
c = 0.549 and pAF2

c = 0.557, where the extrapolated

order parameters of the SC-AF1 and SC-AF2 phases vanish. (Inset: CCM results for the spin-half

square-lattice J1–J2 model corresponding to Ref. [17].)

must be larger in 3D for such a magnetically disordered quantum phase to exist at all. The

J1-J2 model on the SC lattice discussed in the next section might have a sufficient degree

of frustration because the next-nearest-neighbor bonds J2 in this model compete not only

with the nearest-neighbor bonds J2 but also with each other.

B. Simple Cubic Lattice

Next we consider the SC lattice. We were able to carry out CCM calculations to the

LSUB10 level of approximation for this system. Results for the ground-state energy on the
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FIG. 6: CCM results for the order parameter (sublattice magnetization) M of the spin-half J1–J2

model on the SC lattice. Extrapolated results are obtained by using the scheme of Eq. (10). To get

an impression of the accuracy of the extrapolated order parameter we take into account (i) data

from the LSUB4, LSUB6, LSUB8, and LSUB10 approximations (thick solid red line, label ‘extra

4-10’) and (ii) data from the LSUB4, LSUB6, and LSUB8 approximations (thin dotted red line,

label ‘extra 4-8’). Obviously, both red lines are very close to each other. The vertical (dotted) line

indicates the value in the middle of the two phase transition points pAF1
c = 0.549 and pAF2

c = 0.557.

(Inset: CCM results for the spin-half square-lattice J1–J2 model corresponding to Ref. [17].)

SC lattice are shown in Fig. 5. LSUBm results are essentially converged at the LSUB10

level of approximation for the Néel model state SC-AF1 (differences in energy between the

LSUB8 and LSUB10 levels of approximation are generally much less than 10−3 for all values

of p.) Results for the striped model state SC-AF2 (only) do not demonstrate quite the

same level of convergence as those results for the SC-AF1 Néel model state, although they

are still close to each other. For the unfrustrated SC HAFM (i.e., when p = 0 and setting

also J1 = 1) LSUB4, LSUB6, LSUB8, and LSUB10 results are eg = −0.90043, −0.90180,

−0.90214, and −0.90225, respectively. We find an extrapolated CCM result of eg = −0.9024
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FIG. 7: Spin-spin correlation 〈S0SR〉 functions for nearest neighbors (red), next-nearest neighbors

(blue) and for third-nearest neighbors (black) for the spin-half J1–J2 model on the SC lattice in

dependence of the frustration parameter p = 3J2/4J1 (solid lines - CCM-LSUB8 results, symbols -

ED results for N = 32). All results are averaged data over all neighbors with the same separation

|R|.

which compares well to results of series expansions of eg = −0.9021 [74] and of third-order

spin-wave theory of eg = −0.9025 [74]. Good correspondence with ED results is again seen

by visual inspection of Fig. 5, although the difference between ED and CCM results is again

due to the finite size of the lattice (N = 32) in the ED calculations.

The curvature of the eg(p) curve around p = 0.55 is noticeably different to the results

for the ground-state energy for the BCC lattice near to its transition point. Moreover, we

find that the solution to the LSUB10 equations on the SC lattice terminates at p ∼ 0.58

for the SC-AF1 model state tracing and at p ∼ 0.52 for the SC-AF2 model state (i.e., we

cannot trace the CCM solution beyond these termination points). One may expect that any

intersection should occur within the region 0.52 <
∼ p <

∼ 0.58, see Fig.5. However, a (tentative)

extension of the ground-state energy for SC-AF1 model state beyond p ∼ 0.58 with respect

to p until it crosses those results for the SC-AF1 model state leads to a speculative crossing

point at p ≈ 0.65, which is therefore clearly too large. We mention again that the energies

for the Néel and striped model states demonstrate a very clearly defined intersection at pc

13



for the BCC case, see Fig.2. On the other hand, the behavior of the ground-state energy of

the spin-half square-lattice J1–J2 model, as is shown by the inset to Fig. 5, is quite similar

to that of the SC lattice.

Results for the order parameter M are shown in Fig. 6. We see again that CCM results

converge with increasing level of LSUBm approximation level. In order to provide an idea

of the precision of the extrapolation of the order parameter according to Eq. (10) two ex-

trapolation schemes are presented in Fig. 6 : (i) data from the LSUB4, LSUB6, LSUB8, and

LSUB10 approximations are used for the extrapolation and (ii) only data from the LSUB4,

LSUB6, and LSUB8 approximations are used. The results obtained by scheme (i) should

be regarded as more accurate than scheme (ii) because it contains more data to extrapolate

with and higher orders of approximation. However, the differences in extrapolated results

between both schemes remain small in the entire parameter region. LSUB2, LSUB4, LSUB6,

LSUB8, and LSUB10 results for the unfrustrated HAFM (i.e. when p = 0) are M = 0.45024,

0.43392, 0.42860, 0.42626, and 0.42504, respectively. We find an extrapolated CCM result of

M = 0.4210 (M = 0.4164) for scheme (i) [scheme (ii)], and this result compares reasonably

well to results of series expansions of M = 0.424 [74] and of third-order spin-wave theory of

M = 0.4227 [74].

A striking difference to the BCC case is shown by the critical points that are estimated by

finding the values at which the extrapolated order parameter becomes zero. We find pAF1
c =

0.549 and pAF2
c = 0.557 for scheme (i), whereas we have pAF1

c = 0.551 and pAF2
c = 0.548 for

scheme (ii). Again, results of scheme (i) ought to be more accurate than those of scheme

(ii), although the agreement between both schemes is a good check of the consistency of

our results. We conclude that the spin-half J1–J2 HAFM on the SC lattice possesses an

intermediate quantum phase between two semi-classical magnetic phases with continuous

transitions between the phases. Again, this behaviour is highly reminiscent of the behaviour

for the order parameter of the spin-half square-lattice J1–J2 model, as is shown by the inset

to Fig. 6. However, the intermediate quantum paramagnetic regime is much clearer for this

2D model. Thus, our data obtained by a high-order CCM approximation provide serious

indications, but not definite evidence, for the presence of the intermediate quantum phase

for the SC lattice.

Results for the spin-spin correlation functions are shown in Fig. 7, where CCM results are

again in good agreement with results of ED (N = 32). The overall shape of the correlation
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functions around p = 0.55 is in a accordance with a continuous transition. Their behavior

is quite different to the results for the BCC model. For example, results for the nearest-

neighbor and next-nearest-neighbor correlation functions demonstrate a large discontinuity

in values in the region of transition (centered on pc ≈ 0.53) for the BCC lattice, as shown

in Fig. 4. By contrast, the changes in the spin-spin correlation functions for the SC lattice

near the phase transition points are clearly of smaller magnitude and are much smoother

than for the BCC lattice, as shown in Fig. 7 for both the ED and CCM results.

In addition to the sublattice magnetization M we can also use the spin stiffness ρs (see

App. A) to get an independent analysis of order-disorder quantum phase transitions. A

positive value of ρs means that there is magnetic long-range order in the system, whereas a

value of zero reveals that there is no magnetic long-range order. Results for ρs of the spin-

half J1–J2 model on the SC lattice are given in Fig. 8. For the unfrustrated SC Heisenberg

antiferromagnet, i.e. at the point p = 0, we found ρAF1
s = 0.24158, 0.23803, 0.23654 at the

LSUB4, LSUB6, and LSUB8 levels of approximation. (Note that the LSUB4 and LSUB6

data coincide with those of Ref. [75], whereas the LSUB8 result is new). The extrapolated

result is ρAF1
s (p = 0) = 0.2332, that is close to the result of Ref. [75] obtained without

LSUB8. We also mention that the CCM value ρAF1
s (p = 0) = 0.2332 is in very good

agreement with ρAF1
s (p = 0) = 0.2343 obtained by second-order spin-wave theory [76].

At small values of p the stiffness ρAF1
s decreases linearly with increasing p. That is similar

to the classical result ρAF1
s,cl (p) = ρAF1

s,cl (p = 0)− bp, however with a reduced slope of b = 0.43

instead of b = 0.5. Approaching the transition point pc we find a slight upturn in ρAF1
s , and,

as a result, we cannot determine a transition point by ρAF1
s . We argue, that likely higher

orders of LSUBm approximations are required to overcome this problem. However, we may

speculate that the linear relation ρAF1
s (p) (valid at small p) remains approximately valid

until pc. A corresponding extrapolation (see the dashed magenta line in Fig. 8) crosses the

x-axis at p = 0.540, i.e. close the the pc value found from the order parameter M , see Fig. 6.

In the AF2 phase at larger values of the frustration parameter p the stiffness ρAF2
s (p)

behaves quite differently. Asymptotically it saturates as p → ∞ (note that ρAF2
s,cl (p) =

const.). As approaching pc from the right, ρAF2
s (p) drops down and the stiffness extrapolated

according to Eq. (A2) vanishes at p = 0.540, i.e. at that value, where the linear fit of ρAF1
s (p)

becomes zero. We remark that ρAF2
s and the linear fit of ρAF1

s (p) both tend to zero at a

value of p that is consistent with results for the vanishing points of the order parameter M
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FIG. 8: CCM results for the spin stiffness for the spin-half J1–J2 model on the SC lattice. Ex-

trapolated results (label ‘extra 4-8’) are obtained by using the extrapolation scheme of Eq. (A2)

using data from the LSUB4, LSUB6, and LSUB8 approximations. For the classical model we have

ρAF1
s,cl = s2 (J1 − 4J2) and ρAF2

s,cl = s2J1.

using model states AF1 and AF2. All of these results demonstrate that the transition is

different to that for the BCC lattice. Furthermore, the behavior of the ground-state energy,

the order parameter, and the stiffness are quite similar to that found for the square-lattice

J1-J2 HAFM [17], albeit with an intermediate quantum phase that is much smaller for the

3D SC lattice.

IV. CONCLUSIONS

The ground-state phases of the spin-half J1–J2 HAFM on the BCC and SC lattices were

investigated by using the CCM in this article. Two antiferromagnetic regimes of collinear

order were observed for the BCC lattice, namely, of nearest-neighbor Néel and next-nearest-

neighbor Néel striped long-range order. An intersection point between the ground-state

energies for these two model states was observed at p = 0.528 [where p = (z2J2)/(z1J1)], and

no intermediate magnetically disordered phase was detected. The gradient of the ground-

state energy with respect to p (and also for the spin-spin correlation functions using ED)
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behaved discontinuously at the intersection point. The values for the corresponding order

parameters at this point are M ∼ 0.36 ∼ 0.41. These results are all clear indications of a

single first-order phase transition occurring at p ∼ 0.53, which is in agreement with results

of all other approximate methods [39–42] applied to this model.

The spin-half J1–J2 HAFM on the SC lattice is more strongly frustrated due to the self-

frustrating character of the J2 bonds. Although the data for the SC lattice were harder to

resolve, our results demonstrate that the ground-state phase diagram is very different to

that of the BCC lattice. In particular, the investigation of the magnetic order parameter

indicates that there is an intermediate quantum phase in between the two semi-classical

magnetic phases. Thus, the phase diagram of the spin-half J1–J2 HAFM on the SC lattice

resembles that of the corresponding 2D model. Trivially, any investigation of a highly non-

trivial quantum many-body system relies on approximations. Bearing in mind that we find

a very small parameter region where this quantum phase may exist, we cannot exclude

that the actual phase diagram does not exhibit such a quantum phase. However, our data

provide evidence that the quantum J1–J2 model on the SC lattice is a candidate for a 3D

spin system, where strong frustration may lead to a non-magnetic quantum ground state.

Moreover, any additional competing term in the Hamiltonian would further open the window

for an unconventional quantum phase.

Evidence in the literature relating to the existence of the intermediate quantum phase for

the SC lattice is mixed, and certainly there is no consensus as to its nature, if indeed it does

exist. However, there are some similarities between the behavior of the J1-J2 model on the

SC lattice and that of the square-lattice J1-J2 model. It is worth noting that calculations

for the square-lattice model using density matrix renormalization group with explicit im-

plementation of SU(2) spin rotation symmetry in Ref. [24] have found a gapless spin liquid

for 0.44 < J2/J1 < 0.5 and a gapped plaquette valence-bond phase for 0.5 < J2/J1 < 0.61.

However, any inference relating to the ground-state ordering of the SC-lattice model in the

intermediate regime based on the behavior of the square-lattice model would be highly spec-

ulative. Bearing in mind that the region of a possible intermediate phase is very small, it

seems that the emergence of a sizable gap in this phase is unlikely, i.e., we may expect that

the intermediate phase is either a gapless spin liquid or a phase with a very small gap, cf.

also the discussion in Ref. [52].
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Appendix A: The spin stiffness of the SC J1-J2 antiferromagnet

The spin stiffness ρs measures the increase in the amount of energy as we twist the mag-

netic order parameter of a magnetically long-range ordered system along a given direction

by a small angle θ per unit length, see, e.g., Refs. [72, 77–80]. We use here the notations

given in Ref. [79] and define the stiffness tensor as

ραβ =
∂2eg(Q)

∂θα∂θβ

∣

∣

∣

∣

∣

Q=0

, (A1)

where eg = Eg/N is the ground-state energy per spin, θα = Q · eα (α= 1, 2, 3) are the twist

angles along the basis vectors eα, and Q is the magnetic wave vector of the magnetically

long-range ordered phase.

For the SC lattice we have trivially eα = ex,y,z. The coresponding magnetic wave-vectors

are Q = (π, π, π) for the AF1 (Néel) state (see Fig. 1a) and Q = (π, 0, π) for the AF2

(striped) state (see Fig. 1b). For the classical model in the AF1 phase we easily obtain

ραβcl = ρAF1
s,cl δαβ with ρAF1

s,cl = s2 (J1 − 4J2), i.e. the stiffness tensor is diagonal and naturally

the x, y and z-components are identical.

For the magnetic wave vector Q = (π, 0, π) (AF2 state) we have to consider the twists

θα = Q · eα, i.e. θx = θ1, θy = 0, , θz = θ2, and we obtain for the classical model again a

diagonal tensor ραβcl = ρAF2
s,cl δαβ with ρAF2

s,cl = s2J1. The CCM calculation for the quantum

s = 1/2 model is straightforward, see Refs. [17, 72, 75, 80]. We introduce the twist as

described above and use the twisted state as the model state for the CCM calculation. As a

result we obtain the quantum ground-state energy as a function of the imposed twist angle

that can be used to find ρAF1
s and ρAF2

s according to Eq. (A1). However, note that the

solution of the corresponding CCM-LSUBm equations is more challenging because fewer

point-group symmetries can be used for the non-collinear twisted state and so we have more

fundamental clusters at equivalent level of LSUBm approximation. Therefore we can only

calculate the stiffness only up to LSUB8. We follow Refs. [17, 72, 75, 80] and extrapolate

the stiffness CCM-LSUBm data to m → ∞ using LSUB4, LSUB6 and LSUB8 data by using

the extrapolation scheme given by

ρs(m) = ρs(m = ∞) + c1m
−1 + c2m

−2 . (A2)
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[20] J. Reuther and P. Wölfle, Phys. Rev. B 81, 144410 (2010).

[21] H.-C. Jiang, H. Yao, and L. Balents, Phys. Rev. B 86, 024424 (2012).

19



[22] L. Wang, D. Poilblanc, Z.-C. Gu, X.-G. Wen, F. Verstraete Phys. Rev. Lett. 111, 037202

(2013).

[23] W.-J. Hu, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B 88, 060402 (2013).

[24] Shou-Shu Gong, Wei Zhu, D. N. Sheng, O. I. Motrunich, M. P. A. Fisher, Phys. Rev. Lett.

113, 027201 (2014).

[25] A. Metavitsiadis, D. Sellmann, and S. Eggert, Phys. Rev. B 89, 241104(R) (2014).

[26] J. Richter, R. Zinke, D.J.J. Farnell, Eur. Phys. J. B 88, 2 (2015).

[27] A.F. Barabanov A.V. Mikheyenkov, N.A. Koslov, Pisma JETP 102, 333 (2015).

[28] S. Morita, R. Kaneko, and M. Imada J. Phys. Soc. Japan 84, 024720 (2015)

[29] T.P. Cysne and M.B. Silva Neto, Europhys. Lett. 112, 47002 (2015)

[30] C.A. Lamas, D.C. Cabra, P. Pujol, and G.L. Rossini, Eur. Phys. J. B 88, 176 (2015).

[31] P. Carretta, N. Papinutto, C. B. Azzoni, M. C. Mozzati, E. Pavarini, S. Gonthier, and P.

Millet, Phys. Rev. B 66, 094420 (2002).

[32] R. Melzi, P. Carretta, A. Lascialfari, M. Mambrini, M. Troyer, P. Millet, and F. Mila, Phys.

Rev. Lett. 85, 1318 (2000); R. Melzi, S. Aldrovandi, F. Tedoldi, P. Carretta, P. Millet, and F.

Mila, P hys. Rev. B 64, 024409 (2001); H. Rosner, R. R. P. Singh, W. H. Zheng, J. Oitmaa,

and W. Pickett, Phys. Rev. B 67, 014416 (2003).

[33] T. Koga, N. Kurita, H. Tanaka, J. Phys. Soc. Jpn. 83, 115001 (2014).

[34] D. Schmalfuß, R. Darradi, J. Richter, J. Schulenburg, and D. Ihle, Phys. Rev. Lett. 97, 157201

(2006).

[35] O. Rojas, C. J. Hamer and J. Oitmaa, J. Phys.: Cond. Matter 23, 4160010 (2011).

[36] M. Holt, O. P. Sushkov, D. Stanek, and G. S. Uhrig, Phys. Rev. B 83, 144528 (2011).

[37] Z. Fan and Q.-L. Jie, Phys. Rev. B 89, 054418 (2014).

[38] B. Canals and C. Lacroix, Phys. Rev. Lett. 80, 2933 (1998).

[39] R. Schmidt, J. Schulenburg, J. Richter, D.D. and Betts, Phys. Rev. B 66(22), 224406 (2002)

[40] J. Oitmaa and Weihong Zheng, Phys. Rev. B 69, 064416 (2004).

[41] K. Majumdar and T. Datta, J. Phys.: Condens. Matter 21, 406004 (2009).
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