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Abstract 

Renal cell carcinoma (RCC) represents a group of aggressive tumours of the 

kidney. These tumours have a high propensity for metastasis and are extremely 

treatment refractive after disease relapse. Therefore, the identification of new 

therapeutic targets is of great importance. One such potential target for therapy are 

cancer stem cells (CSCs). CSCs are populations of cells imbued with a stem cell-

like phenotype capable of driving tumour formation, metastasis and 

chemoresistance. As such, reliable methods for the identification of CSC 

populations and defining targets important to their functionality, in hopes of 

developing more potent therapeutics is of great importance. Previous work has 

found CAV1 to play a significant role in the malignant progression of RCC and also 

in the maintenance of adult stem cell populations.  

As such, this work aimed to understand if common markers of CSC phenotype in 

combination with CAV1 can act indicators of poor prognostic outcome in clinically 

confined RCC. Furthermore, this work sought to identify CSC populations from RCC 

cell lines using a panel of surface markers common to embryonic, mesenchymal 

and cancer stem cells. Then, understand if CAV1 is responsible for driving the CSC 

phenotype in these CSC populations by regulating one of the major characteristics 

of CSC biology, self-renewal.  

Co-expression of CD44 and CAV1 in RCC tumours indicated greatly reduced 

disease free survival in clinically confined RCC. Additionally, CD44/CAV1 was found 

to be the most significant covariate in predicting disease recurrence. In vitro 

analysis, using a panel of CSC related markers, was unable of identifying a putative 

CSC population. However, CAV1 expression in the VHL positive CAKI-1 cell line 

was important for the maintenance of clonogenicity. Incubation of CAV1 deficient 

CAKI-1 cells under hypoxic conditions was able to restore lost clonogenicity. Further 
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work revealed that CAV1 maintains clonogenicity in CAKI-1 through activation of 

STAT3 and -catenin. This suggests an important role for CAV1 in the maintenance 

of clonogenicity through STAT3 activation in VHL competent RCC. 
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Chapter 1 – General Introduction  
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1 General Introduction 

1.1 Renal cell carcinoma 

Tumours originating in the kidney can be placed into two generalised groupings. 

Those which are derived from and develop in the cortex and medulla of the kidney, 

termed renal cell carcinomas (RCCs) and those which are derived from the 

urothlium of the renal pelvis termed transitional cell carcinoma (TCC). RCCs 

account for the vast majority of kidney cancers at around 80%, the remainder being 

comprised of TCCs. As such RCC has been the malignancy investigated in this 

work. 

1.1.1 Epidemiology, etiology and pathology of renal cell carcinoma 

RCC represents the ninth most common cancer worldwide with 337,860 cases 

diagnosed in 2012[1]. In 2013, of the 65,150 patients diagnosed with RCC in the 

United Sates 13,680 succumbed to the disease[1]. Cases of RCC are more 

common in men than women, being the seventh most common cancer in men and 

the ninth most in women[2]. Over the last few decades the incidence of RCC 

increased year by year with a concomitant increase in mortality rate[3]. The reason 

for the increase is not fully understood however this increased incidence is thought 

to be partially due to the increased efficacy of diagnostic methodologies and the 

more routine use of abdominal imaging techniques resulting in an improvement In 

early diagnosis [4].  

RCC is characterised as a highly metastatic disease with 20-30% of patients 

diagnosed with RCC presenting with metastatic tumours and 20% of patients 

diagnosed with localised disease will progress to metastatic disease[5]. Indeed 

many of the symptoms associated with RCC that are present at diagnosis are 

indicative of late stage tumours. Despite major advances in treatment options, such 

as the molecular inhibition of cell signalling pathways important for oncogenesis, 
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metastatic RCC has remained remarkably treatment refractive. Median overall 

survival times for RCC treated with molecular targeted therapy are around 11-26 

months depending on the treatment modalities used[6]–[8]. This represents a 

drastic improvement from the classical non-specific interleukin-2 (IL-2) and 

interferon- (IFN-) based treatment of RCC in which only 30% of patients were 

responsive with a durable response only observable in 7% lasting to around 4 to 6 

months[9], [10]. Thus, there is a requirement to further develop and discover novel 

strategies for the treatment of metastatic RCC. 

Numerous factors have been implicated in the etiology and increased risk of RCC 

such as: active and passive cigarette smoking[11], obesity[12] and 

hypertension[13], [14]. Patients with end-stage renal failure, tuberous sclerosis and 

renal cystic disease appear to be more vulnerable to the development of RCC[15], 

[16]. However with most patients, risk factors are extremely difficult to identify, as 

the mechanisms of pathogenesis for each risk factor remains unclear.  

Inheritance of autosomal dominant syndromes accounts for 2-3% of all RCC cases, 

the most notable of these being von Hippel-Lindau syndrome (1 birth in 36,000)[17]. 

The disease is characterised by the formation of highly vascularised tumours such 

as: ccRCC, pheochromocytoma and haemangioblastomas of the central nervous 

system[18]. The syndrome arises from loss of function mutations in the VHL gene 

(chromosome 3p25.3), which encodes the von Hippel-Lindau tumour suppressor 

(VHL), a critical modulator of the cellular response to hypoxia. Loss of functional 

VHL results in tumourigenesis in the affected organ. Loss of functional VHL activity 

by heterozygous deletion of chromosome 3p[19] is identified in around 80% of 

RCCs[20]. 

Renal cell carcinoma does not present as a single disease but a grouping of 

histologically distinct tumours, the classification guidelines for which are generated 
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by the world health organisation (WHO) (with the latest being generated in 

2016)[21]. Each of these subtypes are formed from a different portion of the 

nephron, meaning each type displays different histological features, gene 

expression and observable phenotypes[1], [22]. Of these sub-types, clear cell renal 

cell carcinoma (ccRCC), arising from the epithelium of the proximal convoluted 

tubule, is the most commonly observed constituting 70-80% of RCC patients. 

ccRCCs are characterised by a tendency for inactivation of functional VHL by either 

genetic mutation, promoter hypermethylation or chromosome 3p deletions as well 

as high concentrations of cytoplasmic lipid and a clear cytoplasm upon histological 

preparation[1], [23]. The second most common sub-type, papillary renal carcinoma, 

accounts for 10-15% of cases and is divided into two sub-types. Type 1 

characterised by tumour cells with low grade nuclei. Type 2 papillary carcinomas 

are the more aggressive form and are characterised by intense eosinophilic 

cytoplasmic staining[23]. Other subtypes include collecting duct, chromophobe and 

medullary. Some tumours display sarcomatoid differentiation; a spindle-like 

morphology with pronounced mesenchymal differentiation. While this does not 

define a distinct physiological sub-type of RCC, as it is a phenotype that has been 

identified in all histological sub-types, such observations indicate a more aggressive 

tumour and poor prognosis[24].  

The established way of assessing prognosis of RCC patients is by accessing the 

stage and grade of tumours. Staging is determined by scoring patient tumours 

according to the size and extent of the tumour (T), the presence of invasion to 

lymph nodes (N) and presence of distant metastasis. Depending on the scores of 

each of these criteria a composite value of stage from I to IV is given[21]. While 

stage is a good indicator of disease outcome, its effectiveness relies on the 

accurate detection of invasive and metastatic events. Fuhrman grade, on the other 

hand, is a powerful instrument in identifying ccRCC patients with a poor prognostic 
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outcome[25] and requires only the assessment of tumour cell nuclei. The larger and 

more irregular in shape the nuclei are, the higher the grade score will be on a scale 

of I to IV. 

For most of the disease course RCC remains virtually asymptomatic. When patients 

eventually present with symptoms such as haematuria, flank pain or a palpable 

abdominal mass (symptoms which are not universal to all patients) it is usually an 

indication of advanced disease[26]. Diagnosis can be further confused by the 

myriad of systemic and paraneoplastic symptoms produced by the tumour and its 

subsequent metastasis such as: secretion of renin causing hypertension and 

erthyropoietin causing erythrocytosis and fever[27].  

1.1.2 Treatment of RCC 

First line treatment for RCC remains excision of the tumour mass and a portion of 

surrounding tissue or complete nephrectomy of the afflicted kidney. As such a 

radical surgery can have a large impact on a patient’s future quality of life, clinicians 

must make informed decision, based on the size stage and anatomical location of 

the tumour, as to which surgical approach is the most appropriate for therapy while 

keeping the highest possible kidney function.[28]. Despite such considerations 

surgery only proves to be successful in 40 to 60% of patients[29],[30]. For patients 

whose RCC has formed metastatic lesions treatment traditionally involved the use 

of IL-2 and IFN-. Such therapies have now largely been replaced with the more 

efficacious molecularly targeted therapies (though IL-2 treatment does still remain 

viable for patients with favourable response to surgery and no pre-existing 

conditions that would exacerbate toxicity). These are treatments which target 

specific pathways identified as important for the pathogenesis and maintenance of 

malignant activity. Two major pathways so far have been identified in ccRCC as 

being the aberrantly activated, the VEGF/HIF and mTOR/Akt signalling pathways.  
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VHL is often downregulated in RCC. In solid tumours, areas of low oxygen 

concentration can develop very rapidly, as uncontrolled proliferation results in 

consumption of oxygen faster than it can be supplied[31]. VHL is the molecular 

gatekeeper in response to these conditions. Under normal oxygen conditions VHL 

forms an E3 ubiquitin ligase complex with Cullins and elongins B and C[32], this 

complex polyubiquitinates hypoxia inducible factors (HIFs), targeting them for 

degradation by the proteasome[33]. HIFs are a group of transcription factors 

capable of mediating the expression of a wide variety of genes involved in 

processes such as angiogenesis, mitogenesis and invasion[33]. These include a 

number of growth factors and their receptors: platelet derived growth factor (PDGF), 

epithelial growth factor receptor (EGFR) and vascular endothelial growth factor 

(VEGF), as well as adhesion molecules important for invasion such as Mucin 1 

(MUC1)[34]. Due to the lack of functional VHL in most ccRCC tumours there is 

constitutive expression of HIF induced genes. Sunitinib (Pfizer) is the first in a series 

of small molecule inhibitors developed to disrupt the constituitive activation of HIF 

signalling by targeting receptor tyrosine kinases (RTK) of VEGF and PDGF[35]. 

Clinical studies comparing the efficacy of Sunitinib treatment compared to 

interferon- found a median overall survival rate of 26.4 months in the sunitinib 

patient group and 21.8 months in the interferon- group[36]. This has led to the 

development of a series of various RTK inhibitors for use in RCC such as 

sorafenib[37] and the anti-VEGF antibody bevacizumab (avastin)[38]. 

Mammalian target of rapamycin (mTOR) and protein kinase B (Akt) form a signalling 

nexus that can regulate a wide variety of processes essential for tumourigenesis 

and disease progression. Together the Akt/mTOR signalling network can regulate 

proliferation, protein synthesis, inhibition of apoptosis and also angiogenesis. It has 

been demonstrated that expression of Akt, mTOR and the downstream activator of 

S6 p70S6K is higher in malignant RCC tissue than normal adjacent tissue[39]. 
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Furthermore increased staining of p-Akt in RRC tissue samples was indicative of 

lower patient survival[40]. The release and autocrine activity of soluble growth 

factors such as VEGF and PDGF through their cognate receptor tyrosine kinase 

induces the activity of phosphoinositide-3-kinase (PI3K) leading to increased 

proliferation and resistance to apoptotic signalling. Intervention of the activity of the 

Akt/mTOR pathway has also proven somewhat successful in the treatment of RCC. 

Drugs such as temsirolimus (an analogue of rapamycin) prevent the activation of 

the S6/4E binding protein-1 (4E-BP1)/eukaryotic initiating factor 4 subunit E (EIF4E) 

pathways, activation of which facilitates the transcription of a number of proliferative 

regulators, transcription factors and HIFs[41]. Temsirolimus prevents the activation 

of mTORC1 by forming a complex with FK-506 binding protein[42]. Patients treated 

with temsirolimus had a 3.6 month increase in survival compared to treatment with 

interferon[43]. 

Though these therapeutic approaches and improved diagnostic techniques have 

greatly improved the prognostic outlook for RCC patients, achieving durable and 

consistent treatment remains elusive. Over the last decade a great deal of research 

has been invested into cancer cells found within tumours endowed with properties 

similar to that of normal stem cells. The cancer stem cell (CSC) theory of cancer 

progression may offer potential explanations for carcinogenesis, resistance to 

chemo and radiotherapy and drive recurrence of disease after apparent remission. 

As such the search for CSC populations, understanding the molecular mechanisms 

behind their activity and targeting of them by specific therapeutic agents is well 

underway. 
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1.2 The ‘Cancer Stem Cell’ hypothesis 

1.2.1 Tumour heterogeneity 

Tumours are not a homogenous population of cancer cells but composed of 

heterogeneous subpopulations of cells[44]. This has led to two distinct, but most 

likely overlapping, schools of thought in how tumours are initiated, maintained and 

progress to advanced metastatic disease.  

The classical view of tumour progression[45], states that tumours arise from a single 

or small number of cells that gain an advantageous mutation, most likely in 

proliferative capacity. This mutation offers the cell, or group of cells, a substantial 

growth advantage over other cells. This process repeats as subclones of cells gain 

genetic advantages which allow them to out compete other subclones (Figure 1.1). 

Thus the process of malignant transformation is thought to be driven in a 

microevolutionary manner. This theory has offered explanations as to how cancers 

are able to acquire the hallmarks of cancer[46], display intratumoural heterogeneity 

and develop resistance to therapy. However, clonal evolution alone fails to explain 

some more recent observations namely the ability for groups of cells to generate 

and maintain tumour heterogeneity[47], [48]. Such findings have been demonstrated 

as evidence for the presence of CSC populations. 
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Figure 1.1 Graphical representation of the clonal evolution of carcinogenesis and 
tumour maintenance. Successive advantageous mutations give rise to more 
aggressive subclones of cancer cells (represented by the different coloured groups 
of cells) which can out-compete others. This is thought to be a continuous process 
as genetic mutations accumulate within the tumour. 

 

1.2.2 Characteristics of cancer stem cells 

Cancer stem cells were first identified in acute myeloid leukemia (AML) as a 

population of cancer cells identified by expression of surface marker combination 

CD34+/CD38-. These cells were found to be capable of recapitulating AML in severe 

combined immunodeficient (SCID) mice[49], [50]. This approach was then applied 

to breast cancer tumours by Al-Hajj et al.[51]. Using the surface marker combination 

CD44+/CD24- they were able to isolate a subpopulation of cells capable of 

generating a solid tumour in SCID mice. Following these early studies CSCs have 

now been identified in a multitude of cancers such as: brain[52], [53], colon[54], [55], 

lung[56], [57], prostate[58] and pancreatic[59], [60]. Such populations of CSCs have 

been identified by a number of different surface marker expression profiles. 

Generally, the markers selected are similar to those of normal embryonic or 

mesenchymal stem cells. CSCs can also be distinguished by the functional 
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characteristics of stem cells (a more detailed discussion found in chapter 2). CSC 

populations have also been identified in RCC by surface marker expression of 

CD105[61] and much more recently by CXCR4[62]. Putative RCC CSC populations 

have also been isolated by Hoechst dye exclusion[63] and non-adherent tumour 

spheroid formation[64].  

Similar to their name sake, CSCs are thought to be a distinct population of cancer 

cells within tumours endowed with functions similar to that of normal stem cells. 

Namely, the unlimited capacity for differentiation to drive tumour formation and self-

renewal to preserve the pool of CSCs (Figure 1.2) but also the ability to drive 

tumour formation after therapeutic intervention by an increased resistance to chemo 

and radiotherapeutics (Figure 1.4).  

 

Figure 1.2 Graphical representation of CSC driven tumourigenicity. Red circles 
represent CSCs which are endowed with tumourigenic ability with green and blue 
circles representing more differentiated daughter cells which are incapable of 
tumourigenicity. 

The CSC model suggests that a single CSC has the ability to drive primary tumour 

growth, but also enable metastatic tumour growth by their ability to self-renew and 

differentiate. Through asymmetric division a single CSC can divide into a more 
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differentiated cell and retain CSC functionality. This more differentiated cell may go 

on to further proliferate and generate more differentiated cells or undergo terminal 

differentiation. The CSC is then able to undergo another round of self-renewal and 

differentiation and thereby produce the tumour bulk (Figure 1.2). Thus the self-

renewal and differentiation capacity of CSCs is vital for the generation and 

maintenance of tumours. 

The CSC model also helps address the issue of heterogeneity of metastatic 

tumours similar to that of primary tumour, an issue which cannot be easily explained 

by the clonal evolutionary model. Genetic hybridisation analysis of primary and 

metastatic tumours found them to be extremely similar[65] as is also the case with 

gene expression profiles[66], [67]. When viewed solely from a clonal evolutionary 

perspective, metastasis should generate tumours that are much more genetically 

divergent to the primary tumours by virtue of the mutation events required for a 

circulating tumour cell to generate a successful metastatic lesion. When taking into 

account the CSC model of tumourigenesis, a single CSC should have the capacity 

to generate a metastatic lesion which mirrors the heterogeneity of the primary 

tumour (Figure 1.3). 

 

Figure 1.3 Graphical representation of CSC driven metastasis. Only CSC 
populations (in red) are capable of producing a metastatic tumour resembling the 
heterogeneity of the primary tumour. 
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Relapse of disease after what appears to be complete treatment response remains 

one of the most challenging issues in treating cancer. This phenomenon has been 

termed minimum residual disease (MRD). It has been speculated that if CSCs truly 

do exhibit a stem cell-like phenotype then they may offer an explanation to MRD. 

Normal stem cells are well known to have more robust mechanisms of DNA 

damage repair[68], [69] and higher expression of multidrug efflux pumps[70]. Such 

protective mechanisms are thought to be also present in CSC populations. By this 

increased inherent resistance, CSCs are thought to evade destruction by non-

specific treatments such as radio and chemotherapy while the rest of the tumour is 

driven back or ‘de-bulked’, these MRD CSCs then go on to drive tumour formation 

and relapse (Figure 1.4). This characteristic has been directly observed in glioma 

CSCs. Glioma cells treated with radiation caused an enrichment of cells expressing 

the glioma CSC marker CD133+, these cells survived treatment in a greater 

proportion than CD133- cells by virtue of an upregulated DNA damage 

response[71]. In order to overcome MRD specific targeting of CSC populations it 

appears necessary to target either the self-renewal capacity or specific resistance 

mechanisms of CSC (Figure 1.4). Indeed targeting of the self-renewal and 

differentiation CSCs is already starting to show promise. Inhibiting the activation of 

interleukin-4 (IL-4) signalling in colon CSCs by using an anti-IL-4 antibody induced 

greater sensitivity to chemotherapy both in vitro and in vivo[72]. Such an approach 

has also been employed in RCC where treatment of CD105+ RCC CSCs with 

interleukin-15 induced differentiation to an epithelial phenotype, resulting in reduced 

tumourigenic capacity and increased sensitivity to cytotoxic compounds[73].  
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Figure 1.4 Graphical representation of CSC driven disease relapse. The inherent 
resistance of CSC populations allows them to drive disease relapse after apparent 
curative therapy. Treatment of CSC populations would disrupt the ability of CSCs to 
reform tumours by removing the drivers of growth. Red circles represent CSCs, blue 
and green circles represent differentiated cancer cells. 
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1.3 Caveolin-1 

Caveolin-1 is a 22 kDa scaffolding protein essential for the formation of cholesterol 

rich plasma membrane invaginations termed caveolae[74]. Caveolae perform 

clathrin-independent endocytosis, cholesterol efflux and lipid and protein sorting in 

the plasma membrane (the membrane trafficking functions of caveolin and caveolae 

reviewed here[75]). The caveolin family consists of caveolin-1, -2 and -3. Caveolin-1 

(CAV1) and Caveolin-2 (CAV2) are expressed in a wide variety of cell types, with 

particularly strong expression in adipocytes, fibroblasts and endothelial cells[76], 

with Cav-3 being expressed in smooth muscle[77]. CAV1 is the most widely studied 

of the Caveolins, due to the requirement for CAV1 expression in order for CAV2 to 

be trafficked from the Golgi complex to the plasma membrane[78]. 

Caveolins mainly reside in the inner leaflet of the plasma membrane with a hairpin 

conformation which allows both the N and C termini to be exposed to the cytosol[79] 

(Figure 1.5). Additionally, depending on cell type, CAV1 can also be found as a 

soluble cytoplasmic protein associated with cholesterol[80], or can be secreted as a 

result of serine 80 phosphorylation[81]. CAV1 forms either homo or hetero (with 

other Caveolin molecules) dimers within caveolae domains. This is thought to be 

facilitated through interaction of palmitoylations at C terminal cysteines of 

Caveolins[82]. 

Interactions of CAV1 with cell surface receptors and soluble proteins takes place at 

a short aromatic amino acid dense sequence (residues 82-101) known as the 

caveolin scaffolding domain (CSD)[83]. Through this region CAV1 is able to bind 

and cause either positive or negative regulation of the bound signalling molecule. 

Such regulatory activity has been found with various types of signalling molecules 

such as: receptor tyrosine kinases (RTKs)[84], integrins[85] and G-protein coupled 

receptors[86]. Such a diverse array of binding partners is reflected in a diverse array 

of signalling activity for CAV1. Binding of Src tyrosine kinases to CAV1 inhibits their 
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activity reducing auto-activation of Src[87]. Whereas binding of PTEN to CAV1 

increases the localisation of PTEN to the membrane and inhibits Akt activation[88]. 

Conversely, overexpression of CAV1 has been found to maintain increased 

activation of Akt signalling by interaction and inhibition of the serine/threonine 

phosphatases PP1 and PP2A[89]. CAV1 can also regulate cell surface receptor 

activity through endocytosis. For example, CAV1 specific siRNA treatment was 

sufficient to reduce the activation of IGF1R signalling in Ewing sarcoma[90]. 

Interaction of CAV1 with epithelial growth factor receptor (EGFR) has been shown 

to maintain activation of EGFR in the absence of epithelial growth factor (EGF) by 

facilitating homodimeric activation of EGFR[84]. Such a wide array of molecular 

interactions may underpin why CAV1 is found to be tumour suppressing in some 

tumours while oncogenic in others.  
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Figure 1.5 Schematic of CAV1 localisation and structure.Caveolin-1 is localised to 
caveolae in the plasma membrane. Caveolin-1 contains a hairpin structure, allowing 
both the C and N terminal to protrude into the cytoplasm from the plasma 
membrane, as well as a scaffolding domain (CSD shown in red) capable of binding 
and modulating cell surface receptor activity. 

 

1.3.1 Caveolin-1 in cancer 

CAV1 has been identified as both oncogenic and tumour suppressing depending on 

tumour type. In cancers of the lung[91], breast[92], colon[93], ovaries[94] as well as 

stromal cells in breast tumours[95] loss of CAV1 expression was associated with 

progression to malignant disease. In the case of breast[92], colon[93] and 

ovarian[94] cancer overexpression of CAV1 partially reversed the malignant 

phenotype. Downregulation of CAV1 has been demonstrated as sufficient for 

malignant transformation. In the non-cancerous NIH 3T3 cell line knockdown of 

CAV1 induced  tumourigenicity by increased activity of the mitogen activated protein 

kinase cascade, which upregulation of CAV1 ablated[96]. In vivo reduction of CAV1 
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expression has been found to sensitise tissues to carcinogenesis. CAV1 (-/-) 

knockout mice had a drastically increased incidence of epidermal hyperplasia and 

tumour formation when treated with the carcinogen 7,12-dimethylbenzanthracene 

(DMBA)[97]. 

In contrast to these studies, CAV1 expression has been identified as oncogenic in a 

number of malignancies. Upregulation of CAV1 expression has been associated 

with carcinogenesis of both prostate and breast cancer[98]. In the normal kidney, 

cells of the proximal convoluted tubule are negative for the expression of CAV1; 

however upregulation of CAV1 is detected in RCC and indicates poor disease 

outcome[99]. Other clinicopathological studies of CAV1 overexpression have also 

found it to be indicative of poor prognosis. Such cancers include: oesophageal[100], 

pancreatic[101] and prostate cancers[102] (a more detailed discussion of the 

prognostic significance of CAV1 expression is found in chapter 2). This paradox of a 

protein having both tumour suppressing and oncogenic effects can be rationalised 

viewing CAV1 not as the direct activator of these signalling events but as a scaffold 

or signalling platform for these pathways[103] (Figure 1.6). 
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Figure 1.6 Model for the interaction of CAV1 with signalling mechanisms in both 
normal and cancerous tissue. CAV1 is capable of modulating signalling activity 
through the interaction of the CSD with either oncogenic or tumour suppressing 
binding partners. 

 

CAV1 has been demonstrated to regulate a number of characteristics key to the 

progression of malignant disease such as invasive/migratory potential, resistance to 

apoptotic cell death and increased growth capacity. In multidrug-resistant colon 

cancer cells inherent overexpression of CAV1 dramatically supressed proliferative 

capacity but such cells displayed higher resistance to chemotherapeutics[104]. 

CAV1 mediated chemoresistance is also observed in gastric cancer cells. In this 

study, CAV1 expression was required for -catenin dependent transcription of 

WNT6, this resulted in increased resistance to epirubicin induced apoptosis[105]. In 

colon cancer, CAV1 has been demonstrated to upregulate survival by binding to 
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Ku70 and inhibiting the chemotherapeutic induced release of pro-apoptotic 

Bax[106].  

CAV1 has also been shown to upregulate survival under irradiation. Intestinal crypt 

stem cells of CAV1 knockout mice exhibited a higher degree of proliferation with 

increased activity of the Wnt/-catenin signalling pathway. When irradiated these 

CAV1 negative crypt stem cells were more prone to apoptosis[107]. Similarly, 

siRNA mediated knockdown of CAV1 in pancreatic cancer cell lines induced 

pronounced apoptosis in response to radiation[108]. However, in this study 

downregulation of CAV1 attenuated proliferation, thought to be mediated by 

CAV1/focal adhesion kinase (FAK) potentiation of Akt signalling. In breast and colon 

cancer, upregulation of CAV1 has been associated with increase multidrug 

resistance, thought to be due to the association of drug efflux pumps such as P-

glycoprotein (P-gp) with CAV1 and caveolae domains[109]. Further to this, siRNA 

knockdown of CAV1 in MDCK cells resulted in the reduced activity of the drug efflux 

pump BCRP increasing sensitivity to cytotoxic compounds. The activity of BCRP 

being important to the maintenance of the stem cell populations by resisting 

cytotoxic death[110]. In RCC, CAV1 knockdown in metastasis derived SN12CPM6 

cells caused sensitisation to doxorubicin induced apoptosis. Injection of CAV1 

knockdown SN12CPM6 cells in combination with doxorubicin into SCID mice 

resulted in significantly lower incidences of lung metastasis[111]. The ability for 

CAV1 to upregulate resistance to potential chemotherapeutics hints at the possibility 

for a role in regulating such resistant mechanisms in CSC populations. 

Metastatic spread and increased vascular density by angiogenesis are 

characteristics key to the progression of all solid tumours. Effective cellular motility 

is a property integral for the occurrence of both these events, of which CAV1 and 

caveolae may pay an important role. Polarization of CAV1 and Caveolae has been 

observed in normal endothelial cells during two and three dimensional migration. 
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CAV1 was found to dissociate from caveolae and relocalise to the migratory cell 

front dependant on phosphorylation of CAV1[112]. Furthermore, induction of cell 

migration in normal endothelial cells caused the relocation of caveolae to the trailing 

edge of the cell with a concomitant localisation of Ca2+ wave initiation[113]. These 

caveolae contained signalling machinery required for ATP-stimulated Ca2+ release 

from the endoplasmic reticulum[113]. Rho signalling induced by Rho kinase (ROCK) 

is important to the polarisation and motility of both stem cells[114] and cancer 

cells[115]. Previously, tyrosine phosphorylation of CAV1 has been shown to 

maintain Rho/ROCK signalling which regulates the turnover of FAK complexes and 

increasing migratory potential[116]. In RCC, siRNA mediated downregulation of 

CAV1 resulted in decreased invasive ability of RCC cell lines[117].  

CAV1 has been shown to regulate cell signalling pathways important to the 

maintenance of self-renewal and differentiation of stem cells. Stem cell related 

pathways that CAV1 has been found to regulate are: Wnt/-catenin[107], 

Notch[118], hedgehog[119] and STAT3[120]. Furthermore, CAV1 and caveolae 

have been implicated in directing self-renewal and differentiation capacity of 

mesenchymal and embryonic stem cells (discussed in detail in chapter 4).  

It is clear to see that CAV1 has a wide remit of functional activity in terms of cancer 

progression. It is clear that many of these characteristics such as stimulation of 

proliferation, chemotherapeutic resistance and cell motility are also important for 

acquisition and maintenance of the CSC phenotype. When taken together with 

CAV1’s pro-oncogenic role in RCC, it seems that CAV1 may act as a regulator of 

CSC activity in RCC. 
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1.4 General thesis aims 

The main aims of this thesis are as follows: 

 To understand if a selection of common markers for embryonic, 

mesenchymal and cancer stem cell phenotype in various organs, tumour 

types and tissues can act as prognostic indicators of disease outcome in 

RCC alone and in combination with CAV1. 

 Identify CSC populations from RCC cell lines using a panel of markers 

previously used to identify and purify CSC populations in both RCC and 

other tumour types. 

 Examine the effect of CAV1 downregulation on self-renewal and 

clonogenicity in these populations. 

 Investigate the mechanistic basis for any observable effect of CAV1 activity 

on the self-renewal and clonogenicity by probing cell signalling pathways 

relevant to these activities. 
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Chapter 2 - Cancer Stem Cell markers in 

combination with Caveolin-1 in predicting 

disease outcome in clinically confined renal 

cell carcinoma  
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2 Cancer Stem Cell markers in combination with Caveolin-1 

in predicting disease outcome in clinically confined renal 

cell carcinoma 

2.1 Introduction 

The prevalence of relapse in patients with seemingly localised RCCs following 

nephrectomy indicates the existence of undetected micrometastasis occurring 

before or at the time of surgery, challenging the assessment of disease 

outcome[121]. The inability to successfully identify patient outcome in primary 

tumours sharing similar grade and histological stage[122] indicates that the potential 

mechanisms for relapse and micrometastasis are due to significant molecular 

heterogeneity of these tumours. This has necessitated the need for robust clinically 

prognostic biomarkers to use in combination with post-operative surveillance 

strategies and early intervention with molecularly targeted therapies. 

 

2.1.1 CAV1 as a prognostic marker 

CAV1 has been identified as both oncogenic and tumour suppressing in a number 

of different malignancies, in an apparent context dependant manner. Deregulation 

of CAV1 has been implicated in numerous cell physiological processes from 

invasion to chemoresistance (discussed in detail in Chapter 1). The context 

dependant functionality of CAV1 is further reflected in clinicopathological studies of 

the prognostic importance of CAV1. Upregulation of CAV1 has been found to be 

strongly associated to poor prognosis and presence of metastasis in cancers of the 

bladder[123] and prostate[124]. CAV1 upregulation in colon carcinomas has been 

linked with disease progression[125], [126], but also demonstrated to inhibit 

tumourgenicity, in mouse models using colon carcinoma cell lines[93]. In non-small 



  

24 
 

cell lung carcinomas, CAV1 expression correlated strongly with stage and presence 

of lymph node metastases[127] and indicated poor prognosis in patients with 

squamous cell carcinoma of the lung[128].  

Although not present in the normal epithelial cells of the proximal convoluted 

tubules, clinicopathological studies found upregulation of CAV1 in RCC[99], , 

predicting poor disease outcome. These findings have been further strengthened in 

other RCC cohorts. Horiguchi et al.[129] found no difference in disease free survival 

based only on CAV1 positivity, however in patients without metastasis to distant 

sites or lymph nodes, CAV1 positivity in the primary tumour was associated with a 

significantly shorter disease free survival than primary tumour negative for CAV1. 

Joo et al.[130] found CAV1 in RCC to correlate with increased microvessel density, 

metastasis and indicative of a poor disease free survival.  

Further clinicopathological studies carried out by our group sought to understand 

the prognostic impact of activated Erk and Akt; common targets of molecule specific 

therapies. Such studies[131] found activation of these pathways to be prognostically 

poor for RCC patients and found significant synergy with CAV1. Patients whose 

tumours were identified as co-expressing CAV1 and pErk were at much higher risk 

of relapse irrespective of tumour grade, i.e. either high or low grade. The same was 

true for tumours with both increased CAV1 and activated Akt/mTOR signalling. 

Specifically, CAV1 co-expression with pAkt  improved the prognostic ability, with 

pAkt on its own lacking prognostic significance[132]. Altogether, these studies 

indicate CAV1 to be a key driving factor in the progression and metastasis of RCC.  

 

2.1.2 Markers of CSC phenotype and metabolic activity as prognostic tools 

With the discovery of stem cell-like populations harboured by tumours of various 

types has come a wealth of cell surface and functional markers with which to 
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identify them and access their activity[133] (a more detailed discussion on this topic 

is found in Chapter 3). Identification of such markers has naturally led to the 

possibility of unearthing new powerfully prognostic markers, which are capable of 

identifying more aggressive tumours by virtue of an enhanced stem-like phenotype. 

Growing consensus has linked the CSC phenotype with deregulation of normal 

energy metabolism in the form of the Warburg effect (the metabolic switch from 

aerobic respiration to anaerobic respiration which tumours have been widely 

observed to undergo, this has been considered important to generation of malignant 

disease [134]. As such, this chapter will investigate the prognostic importance of the 

expression of a series of CSC and metabolic activity markers, alone and in co-

expression with CAV1 (summaries of the markers selected for study are included in 

Table 2.1 and Table 2.2). 
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Table 2.1 Table of markers selected for clinical studies. 

Markers selected 

Protein name Gene name General 

biological/stemness 

features 

Reasons for 

inclusion 

CD105/Endoglin ENG TGF-β binding protein. 
Involved in regulation of 
angiogenesis. MSC 
marker 

Identified as a CSC 
marker in RCC 
primary 
samples[61]. 

CD44 CD44 Receptor for hyaluronic 
acid. Mediator of cell-cell 
and cell-matrix 
interactions. 
Maintenance of 
embryonic stem cell 
phenotype. 

Used to identify 
CSC populations in 
multiple tumour 
types[135]–[138]. 

CD146/MCAM MCAM Plays a role in cell 
adhesion and cohesion. 
Interacts with endothelial 
environment. Marker of 
MSCs 

Implicated in the 
poor prognosis of 
multiple tumour 
types[139]. 

EpCAM EpCAM Homotypic calcium-
independent cell junction 
molecule. Important for 
cell adhesion in epitheial 
cells. Role in ESC 
proliferation and 
differentiation. 

Used to identify 
CSCs in multiple 
tumour types[140].  

Vimentin Vim Intermediate filament 
protein, expressed in 
cells with a 
mesenchymal lineage. 
Organiser for critical 
molecular elements of 
cell attachment and 
migration 

Association with 
stem cell 
phenotype[141]. 
May have strong 
prognostic 
relationship with 
CAV1. 

MCT4 SLC16A4 Proton-linked 
monocarboxyate 
transporter. Rapid 
transmembrane 
transport of lactate. 

To account for the 
importance of 
metabolic shift in 
cancer and CSC 
activity[142], [143]. 

Cavin-1 PTRF Important role in the 
formation and 
organisation of 
caveolae. Regulation of 
rRNA transcription. 

Investigate 
synergistic effects 
with CAV1 and 
possible CSC 
markers[144]. 
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Table 2.2 Table of markers not selected for clinical studies. 

Markers not selected 

Protein name Gene name General 

biological/stemness 

features 

Reasons for 

exclusion 

CD133/Prominin 
1 

PROM1 Transmembrane 
glycoprotein. Expressed in 
adult stem cell populations, 
thought to suppress 
differentiation 

High variability of 
glycosylation[145], 
[146]. Previous 
studies found no 
clinical relevance of 
CD133[147]. 

CD24 CD24 Glycosyl 
phosphatidylinositol linked 
membrane 
sialoglycoprotein. Modulator 
of B-cell activation 
response. 

Used to identify 
CSC populations, 
but in most cases 
CD24 negative 
populations which 
have a CSC 
phenotype[148], 
[149]. 

CD117/c-kit KIT Cell surface receptor 
tyrosine kinase. Regulates 
proliferation, 
haematopoiesis, stem cell 
and gametogenesis. 

Little evidence to 
suggest CD117 
has a strong 
potential for 
prognostic 
significance in solid 
malignancies. 

CD166 ALCAM Immunoglobulin receptor. 
Binds to CD6 to regulate T-
cell activation. Some 
involvement in 
chemoresistance and 
metastasis. 

Only shows CSC 
related presence in 
colorectal 
cancer[136]. 

CD47 CD47 Interaction with various 
integrins. Has roles in 
innate immunity.  

Little direct 
involvement in CSC 
phenotype[150]. 

ALDH1 ALDH1A1 Belongs to the aldhehyde 
dehydrogenase family. 
Important for 
chemoresistance. 

No real direct 
involvement in 
clonogenicity[150]. 
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2.1.3 CD44 

CD44 defines a large family of transmembrane glycoprotein isoforms encoded by a 

single gene found on human chromosome 11 [151]. CD44 acts as a receptor for a 

wide array of extracellular matrix (ECM) ligands and microenvironmental 

components such as osteopontin, fibronectin, laminin heparin-binding epidermal 

growth factor (HB-EGF), collagens and matrix metalloproteinases (MMPs)[152]. 

However, the main physiological ligand for CD44 is hyaluronic acid (HA), a linear 

polysaccharide glycosaminoglycan, found universally in the ECM of vertebrate 

tissues where it helps to regulate cell migration, proliferation and adhesion[153]. 

CD44 is capable of transducing signals intracellularly by virtue of modification of 

growth factor receptors and hence their downstream functionality. Moreover, this 

marker has a more direct role through interaction of its C-terminal domain, which is 

able to form complexes with a variety of intracellular signalling molecules such as 

Src kinases and Rho-GTPases, as well as having a direct impact on the mechanical 

physiology of the cell through complexes formed with cytoskeletal proteins[154]. 

CD44 also undergoes a number of post-translational N- and O-glycosylations as 

well as homo-dimerisation, further expanding its role as a multifunctional signalling 

platform[155]. 

Such a wide array of interactions has led to significant investigation into CD44 

expression in malignant pathologies[156]. Studies have shown CD44 to have a 

substantial role in invasion and migration[157], epithelial mesenchymal transition 

(EMT)[158], up-regulation of anti-apoptotic signalling[159], as well as upregulation 

of resistance to both oxidative stress[160] and chemotherapeutics[161]. These 

activities are orchestrated through interactions with HA and numerous other cell 

surface binding partners to regulate many cell signalling pathways such as G-

protein coupled receptor (GPCR) signalling, MAPK/PI3K and β-catenin (reviewed 

here[162], [163]). 
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In colon cancer different CD44 isoforms, such as CD44 variant 6 (CD44-v6) are 

expressed during different stages of disease progression, with expression of the 

CD44-v6 isoform appearing to be an early event in malignant transformation[164]. 

CD44 in breast tumours is correlated to tumour invasion, metastasis and 

pathological grade[165]. Positive expression of CD44 in pancreatic cancer is 

correlated with occurrence of distant metastasis and also acts as an independent 

prognosticator for poor disease outcome[166].  

Clinicopathological studies in the expression of CD44 in RCC have been previously 

conducted with CD44 expression correlating with a number of histopathological 

variables indicative of poor disease free survival to the extent that CD44 has been 

reported to act as an independent prognostic indicator in relatively small patient 

cohorts[167], [168]. Similar results were obtained in a larger (110 patient cohort) 

study by Byung et al.[169]. Given the apparent prognostic significance of CD44 in 

RCC progression and its tendency to be regulated in lipid rafts[170], [171], the 

combinatorial study of CD44 in relation to CAV1 expression in a large RCC patient 

cohorts appears to be warranted. 

2.1.4 CD105 

CD105, also known as endoglin, is a 180kDa homodimeric disulphide-linked 

transmembrane glycoprotein identified as an accessory receptor to transforming 

growth factor beta (TGF-) and localised to the TGF- receptor complex[172]. 

Primarily expressed in low levels in resting endothelial cells, CD105 undergoes a 

marked up-regulation in actively proliferating endothelia of tumour and tumour 

associated endothelial cells[173]. As such, this has made CD105 an attractive target 

for the development of anti-angiogenic therapeutics, imaging of tumour 

microvasculature and as a prognostic indicator[174], [175]. Such CD105 imaging 

has been used to identify the tumour microvasculature in ex vivo analysis of RCCs. 

CD105 was found to be expressed at the site of tumour endothelia where it was 
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able to reveal localised, undiagnosed kidney masses [176]. Elevated serum CD105 

levels have been associated with metastatic disease in both breast and colorectal 

carcinomas[177], [178]. 

Expression of CD105 in a number of tumours has been associated with poor 

prognosis. In colorectal cancer CD105 expression has been significantly correlated 

with liver metastasis and angiolymphatic invasion[179]. A large scale study of 

CD105 expression in breast carcinomas involving 929 patients found CD105 

positive expression to be indicative of poor disease outcome and to correlate with 

invasive characteristics and act as an independent marker of poor prognosis[180]. 

Similar studies have been carried out in endometrial carcinoma[181], non-small cell 

lung cancer[182], oesophageal adenocarcinoma[183] and high grade paediatric 

glioma[184], all of which found consistent positive correlations between CD105 

expression and poor prognosis and the degree of both angiogenic and metastatic 

invasion. 

Other studies have looked into the effects of tumour expression of CD105 in the 

disease progression of RCC with results being contradictory. An initial study by 

Sandlund et al.[185] found CD105 to be expressed in 75% of a 210 patient cohort 

study and with expression inversely correlated with Tumour-Node-Metastasis (TNM) 

stage and nuclear grade and associated with an overall better prognosis. This is 

contrary to the findings of Dubinski et al.[186]; who demonstrated positive 

correlations of CD105 with tumour stage and grade, poor disease outcome and the 

ability to act as an independent factor of poor prognosis. These findings were further 

confirmed by Saroufim et al[187], who found that CD105 positivity to correlate with 

grade and stage and acted as an independent predictor of poor disease outcome. 

CSC populations in RCC have previously  been identified by a small population of 

CD105High cells[61], it thus appears appropriate that this molecule is further 

characterised with respect to its prognostic ability in primary RCC tissue. Further to 
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this, CAV1 has been found to co-localise to and support the activation of TGF- 

complexes[188], therefore the combinatorial investigation of CD105 and CAV1 may 

be of prognostic significance. 

 

2.1.5 EpCAM 

Epithelial cell adhesion molecule (EpCAM) is a 30 to 40 kDa type I transmembrane 

glycoprotein whose expression is restricted to epithelial cells in normal tissue, where 

it takes part in homotypic cell-cell adhesion[189]. EpCAM expression is also 

observed in nearly all adenocarcinomas and seems to indicate both positive and 

negative prognosis depending on tumour type[190]. The first study to uncover a 

potential oncogenic role for EpCAM in cancer cells was conducted in breast cancer. 

Osta et al.[191] found EpCAM to be overexpressed in both primary and metastatic 

tissue by 100-1000 fold. In siRNA knockdown in-vitro studies of EpCAM a decrease 

in breast cancer proliferation and significant down-regulation of both cell migration 

and invasion was seen.  Subsequently, EpCAM has seen widespread use as a stem 

cell marker[192] and particularly in colorectal carcinomas[136], [193] (discussed in 

further detail in Chapter 3).  

The overexpression of EpCAM in carcinomas seems to provide a context 

dependant prognosis depending on the tissue of origin and, in some cases, 

providing diverging prognosis in the same tumour type. In breast cancer EpCAM is 

associated with poor prognosis and node-positive breast cancer that was predictive 

of sensitivity to cytotoxic or hormonal adjuvant therapy[194]. Positivity of EpCAM in 

ovarian carcinomas is associated with a decrease in overall patient survival, 

particularly in patients classified as stage III or IV; the marker was also capable of 

acting as an independent prognostic variable[195]. A study of EpCAM expression in 

human oesophageal cancer found EpCAM positivity to associate with improved 
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patient survival, with high serum EpCAM levels appearing to indicate better overall 

prognosis[196].  

Similarly, EpCAM expression in RCC is associated with improved patient outcome. 

A study by Went et al[197]. found EpCAM expression in 18% of clear cell RCC 

samples analysed and being to discriminate oncocytoma and chromophobe 

subtypes with Cox regression analysis showing a trend towards better patient 

outcome. Similar positive prognostic outcomes of EpCAM in RCC were also found 

by Eichelberg et al.[198] and Spizzo et al[199].  

Study of the expression of EpCAM in RCC would therefore clarify the positive 

prognostic significance and examine how co-expression with CAV1 may further 

stratify patients into groups with intermediary outcomes.  

 

2.1.6 CD146 

CD146 is an 113kDa integral transmembrane glycoprotein and member of the 

immunoglobulin superfamily (IgSF). Another common alias for CD146 is melanoma 

cell adhesion molecule (MCAM), a name resulting from its preferential expression in 

melanoma tissue and absence in healthy surrounding tissue[200]. Interestingly, 

CD146 expression is present in the endothelia of blood vessels, infiltrating both 

primary and metastatic melanoma and indicating a possible role for CD146 in 

supporting both angiogenesis and metastasis of melanomas[201]. These findings 

have sparked interesting implications of CD146 expression in tumours from the 

stomach[202], breast[203], prostate[204] and lung[205]. Such experiments found 

CD146 expression to generally indicate poor prognosis, increased risk of metastasis 

and association with increased EMT related markers and morphology.  

Investigation of CD146 expression in RCC and its relationship to patient outcome is 

so far very limited, with only one study carried out to date. Feng et al.[206] found 
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that upregulation of CD146 mRNA in clear cell RCC patients significantly correlated 

with metastatic disease, with patients displaying high expression of CD146 having a 

significantly higher probability of disease recurrence. As such this marker merits 

further study as to its prognostic significance at the protein level. 

2.1.7 Vimentin 

Vimentin is a type III component of the intermediate filament family of proteins, 

which together with varying amounts of tubulin and actin microfilaments, contributes 

to the cytoskeleton[207]. As such, vimentin plays a role in the anchoring, support 

and positioning of organelles within the cytoplasm[208] and also in cellular 

mechanical stability[209]. High levels of vimentin expression have been detected in 

cells of a mesenchymal origin, leading to the widespread use of vimentin as a 

marker for EMT, a key feature in the metastatic progression of tumours[210].  

Analysis of vimentin expression in various tumours is correlated with features of 

poor disease outcome. Vimentin overexpression in prostate cancer identifies poorly 

differentiated tumours and correlates with tumour metastases to bone[211], [212]. In 

gastric cancer vimentin expression is linked to advanced disease stage, lymph node 

metastasis, lymphatic invasion and serving as a negative characteristic for patient 

prognosis[213]. Similar increases in vimentin expression is associated with lymph 

node metastasis found in oesophageal squamous cell carcinoma[214]. Expression 

of vimentin in breast cancers has been extensively documented [215] and 

implicated as crucial to EMT[216].  Vimentin expression in clinical breast cancer 

tissue is reported to have a strong correlation with a subset of oestrogen receptor 

low ductal carcinomas of high grade[217] with potential prognostic use in an ER-

independent manner. 

In RCC, the absence of vimentin expression in the chromophobe and oncocytoma 

histological types has been observed as useful in delineating these tumour types 
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from other more aggressive subtypes[218]–[221]. Vimentin-positive tumours were 

found to be associated with unfavourable prognosis and positively correlate with 

tumour grade and stage. However, in RCC vimentin may not act as an independent 

prognostic indicator[222]. Similarly vimentin does associate with patients at a 

greater risk of metastasis[223], and cannot independently identify poor disease 

outcome[224]. As such exploration is warranted on how the combination of 

vimentin/CAV1 may impact upon prognostication and metastatic progression.  

2.1.8 MCT4 

Monocarboxylate transporter 4 (MCT4) is a member of the proton-linked family of 

plasma membrane transporters capable of carrying monocarboxylates such as 

pyruvate and lactate[225]. MCT4 is strongly expressed in tissues with a tendency 

for increased glycolytic activity such as skeletal muscle white fibres, astrocytes, 

leucocytes and chondrocytes[226]–[229]. The efflux of lactate is suggested to be 

important in the maintenance of pH and progression through cellular respiratory 

metabolism, in tissues more reliant on glycolysis. It has long been understood that 

tumours exhibit a fundamental switch in glucose metabolism from the oxidative 

breakdown of pyruvate to non-oxidative glycolysis[230]. As such the MCT family is 

an attractive target for new therapeutic agents and for prognostication markers. 

Indeed, knockdown of MCTs in gliobastoma cells with either siRNA or the small 

molecule inhibitor α-cyano-4-hydroxy-cinnamate (CHC) has been shown to disrupt 

the migration, proliferation and survival of these cells[231], [232]. Moreover, a phase 

I clinical trial targeting MCT1 with AZD3965 is underway in diffuse large B cell 

lymphoma, prostate and gastric cancer patients [233]. 

Upregulation of MCT4 in relation to disease outcome has been investigated in 

several malignancies. MCT4 expression in cervical carcinoma is significantly 

associated with progression to an invasive disease phenotype[234]. Similarly, MCT4 
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expression in prostate cancer appears to increase with disease course and 

correlate with indicators of poor prognosis[235].  

Genome-wide RNA interference analysis of RCC samples found MCT4 to be 

upregulated in eight RCC cell lines and was the seventh most overexpressed 

marker, the downregulation of which caused cell cycle arrest and apoptosis[236]. 

Epigenetic studies into the regulation of MCT4 expression in clinical RCC samples 

found increased methylation of CpG sites to be associated with prolonged 

survival[237]. A more recent study has focussed on further understanding the 

prognostic role of MCT4 in combination with family member MCT1 and the 

chaperone molecule CD147, all of which were linked to poor progression free 

survival. The study also found only MCT1 and CD147 to correlate with the poor 

prognostic factors of high grade and tumour necrosis. Moreover, MCT1 was seen to 

act alone as a prognostic indicator of poor disease outcome but not MCT4[238]. 

However, another study has demonstrated expression of MCT4 and methylation of 

the MCT4 gene to be a more informative marker of poor disease outcome than 

CD147[239]. As such, we have sought to further clarify the role of MCT4 in the 

prognosis of RCC and, when taking into account the ability of CAV1 to support 

glycolysis[240], [241], investigate whether markers of elevated metabolic activity, 

MCT4/CAV1 combination, can identify patients at greater risk of disease recurrence.  

2.1.9 Cavin-1 (PTRF) 

Until recently, CAV1 was thought to be the major structural component required for 

the formation and maintenance of caveolae[242]. Recently, this paradigm has been 

shifted with the discovery of an additional family of proteins named cavins. 

Knockdown of Cavin-1 expression in cells with abundant caveolae resulted in 

reduction in the number of caveolae formed and delocalisation of CAV1 into the 

plasma membrane, where it is internalised and degraded via the lysosome[243]. It 

appears that the major role for Cavin-1 in the formation of caveolae takes place in 
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the final steps, with Cavin-1/CAV1 interactions only taking place in the nascent 

caveolae but not in other sites in the cell where CAV1 is found such as the Golgi 

apparatus[244]. 

Such findings, especially the Cavin-1/CAV1 interaction, have led to studies into of 

the role of cavins in the pathology and progression of cancer. This relationship may 

further aid in the understanding of CAV1 regulation. For example, expression 

analysis of Cavin-1 and 2 in breast cancer cells found them to be generally 

downregulated through promoter methylation and proposed this as a possible 

reason for the loss of CAV1’s downstream tumour suppressing functionality by loss 

of functional caveolae[245]. In the PC3 prostate cancer cell line, which highly 

expresses CAV1 but not Cavin-1, overexpression of Cavin-1 led to a reduction in 

migration of cells by reduced production of MMP9[246]. Analysis of the expression 

of Cavin-1 in pancreatic cancer has helped to explain the fluctuating patterns of 

oncogenic CAV1 expression in the disease, by stabilisation and prevention of 

lysosomal degradation, with the combination of both markers associated with an 

improved disease outcome[144].  

To date, no studies have been conducted examining the expression of Cavin-1 in 

RCC, therefore we sought here to understand the prognostic implications of Cavin-1 

expression in RCC and whether the combination with CAV1 is capable of providing 

a powerful marker combination in identifying patients at high risk of metastatic 

disease and relapse. 

2.1.10 Aims 

This chapter aims to understand the prognostic capability of the aforementioned 

stemness related markers using immunhistochemical analysis and subsequent 

statistical analysis of 174 RCC patient cohort. This analysis was carried out for each 
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of the markers alone and in combination with CAV1 to identify patients at higher risk 

of disease recurrence. 

2.2 Materials and Methods 

2.2.1 Patient cohort and RCC tissue microarrays 

The patient cohort consisted of 174 RCC tumour cores taken from either radical 

nephrectomy or biopsy samples. The cohort consisted of 119 male patients and 55 

females, the median age was 64 with an age range of 34 to 86 years old, and 

contained 144 clear cell, 23 papillary, 5 chromophobe and 2 collecting duct 

carcinomas. Ethical approval for this clinical study was obtained from the Research 

Ethics Committee for Wales, reference number 11/MRE09/3 Complete 

histopathological assessment was performed by pathologist Dr. David Griffiths who 

also extracted information regarding sex, date of birth, date of surgery, date of 

which first metastasis or recurrent disease was observed and date and cause of 

death from patient notes. Samples were gathered from two different hospitals: 

University Hospital Wales (cores split among two slides termed UHW 1 and 2) and 

the Royal Glamorgan Hospital (RGH). 

Construction of tissue microarrays (TMAs) were performed by technical staff in the 

histopathology department of the University Hospital Wales and performed as 

follows: single 0.6mm diameter cores were punched from viable tumour tissue near 

the periphery of formalin fixed renal tumours; as controls normal renal parenchyma 

and liver were then embedded into predetermined array positions on a recipient 

paraffin block. This array block was then cut into 4m thick sections and mounted 

into adhesive glass slides (Superforst Plus) (Figure 2.1).  
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Figure 2.1: Example of a wide field image of full TMA section stained with isotypic 
rabbit serum. 

 

2.2.2 Immunohistochemistry of tissue microarrays and scoring 

Tissue microarray slides were first deparaffinised by submersion in two changes of 

100% xylene (Fisher Scientific) for three minutes each. Slides were then gradually 

rehydrated by use of an ethanol gradient starting with incubation in a 1:1 solution of 

100% ethanol and xylene, then two changes of 100% ethanol (Reagent grade 

obtained from Fisher Scientific), one change of 95% ethanol, one change of 70% 

ethanol, one change of 50% ethanol and finally 100% water (each incubation lasting 

three minutes). Following rehydration endogenous peroxidase activity was 

quenched by incubation in 3% hydrogen peroxide (Fisher Scientific) v/v with 100% 

methanol for 15 minutes and washed for another 5 minutes in running water. 

Antigen retrieval was carried out by boiling TMA slides in 10mM sodium citrate 

buffered to pH 6 after 20 minutes of incubation slides were allowed to gradually cool 
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using running water. Slides were washed once in 1x Optimax washing buffer 

(Biogenix) and then allowed to equilibrate for 15 minutes. Serum (isotype) control 

(Figure 2.1), primary and secondary antibodies were all diluted in Optimax buffer 

containing 0.6% bovine serum albumin (BSA) with concentrations for each antibody 

found in (Table 2.3). In addition to slides probed with primary antibody, each 

experiment also contained an isotypic control containing either rabbit or mouse 

serum (Dako), diluted to the concentration of the highest respective antibody used 

in that experiment as well as an omission control containing only 0.6% BSA in 

optimax solution. Following equilibration, slides were incubated with either primary 

antibody solutions, isotypic or omission control for 15 hours at 4OC in a humidified 

chamber. After incubation, access antibody or control solution was aspirated and 

slides washed for 1 minute in 4 changes of Optimax wash buffer. Slides were then 

incubated with a 1:100 solution of horseradish peroxidase conjugated (HRP) anti-

rabbit IgG (Dako) for 1 hour at room temperature. Slides were then washed for 1 

minute in 4 changes of Optimax wash buffer. Immunoreactive staining was then 

carried out by submerging slides in a 5mg/mL solution of diaminobenzidine 

dihydrochloride (DAB) (Fisher Scientific) with 500L of hydrogen peroxide for 10 

minutes. Slides were then counter stained with the nuclear counterstain 

haematoxylin and washed with running water. Slides were then mounted by first 

dehydration by going through the ethanol gradient in reverse, followed by two 

changes of xylene and finally a coverslip was applied with a coating of DPX 

mounting medium and allowed to set for 24 hours.  

To ensure immunhistochemical staining at an intensity that would be specific, with 

low background, but still provide sufficient signal so that staining intensities of cores 

could be distinguished, TMAs were first stained with each antibody in a dilution 

range to determine the optimal dilution for staining (Table 2.3). In order to further 

verify the specificity of a given antibody, it is possible to assay the antibody for its 
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ability to identify its target protein by western blot; such information is provided in 

some form by the manufacturer of the antibody. However, while this method does 

show that the antibody does bind to the target it was raised against, it does not 

demonstrate the ability to do so against either the fully folded protein or in whole 

protein expressed in tissue sections[247]. Additionally, it is entirely possible that an 

antibody that performs well in western blot validation assays may perform poorly in 

tissue sections. This is due to the fixation step required for processing of tissue 

sections, which may possibly distort the epitope that the antibody recognises[248]. 

To help prove the specificity of an antibody in the tissue of study some investigators 

provide absorption controls. This control involves the incubation of the antibody with 

either the peptide or whole protein the antibody was raised against. This complex is 

then added to TMA sections in the primary antibody incubation step of the staining 

procedure, this should ablate the presence of tissue staining patterns. 

Unfortunately, this control suffers from the same issues as providing a western blot 

as a positive control, in that it only demonstrates that the antibody is specific for the 

target it has been raised against[249]. As such, the gold standard for 

controlling/validating antibody specificity in immunhistochemical studies is the 

demonstration of positive or negative staining in a tissue or sub-type of cells were 

expression of the target in question has already been assessed[247], this was the 

approach adopted in these studies. Such controls gain further validity when they are 

demonstrated internally, either present in normal tissue or in normal tissue 

structures in tumour samples. Further to this antibody selection and verification of 

specific antibody staining was aided by the use of the Human Protein Atlas[250], a 

tissue based map of the human proteasome.  
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Table 2.3 Antibodies used in the immunohistochemical staining of RCC TMAs. All 
antibodies used for these markers were of rabbit origin and of isotype IgG. The 
CD44 antibody selected targeted the standard form of CD44. 

 

 

Semi-quantitative scoring of stained TMAs was carried out by pathologist David F. 

Griffiths with the assistance of Robert Gutteridge and Dr. Mark Gumbleton using a 

multiheaded microscope without knowledge of either clinical outcome or 

histopathological parameters. Scoring criteria was determined in a customised 

manner for each of the markers used in this study. Each criterion is described in the 

respective results section for each marker within the results section. 

2.2.3 Statistical analysis 

Disease free survival (DFS) of patients dependant on scoring of selected CSC 

related markers was calculated by Kaplan-Meier survival analysis with the log-rank 

test. Using this method, time to event was considered first appearance of 

metastasis with data censored when the patient was last seen alive without 

metastasis or had died due to other causes. Original data were converted to a 

binary simple covariate dependant according to the most informative grouping after 

disease free survival, survival plots and the log-rank test were examined. To 

investigate synergy between CAV1 and CSC biomarker expression, composite 

covariates of the scoring were achieved by combining the two variables and 

reclassifying as appropriate.  
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Crosstabulation analysis was carried out in order to understand the association of 

each CSC marker with CAV1 and each CSC marker with histopathological 

characteristics of RCC, which was then repeated for the CSC marker/CAV1 

composite covariate. In all cases of statistical analysis grade was pooled at grades 

1 and 2 and grades 3 and 4. Significance of crosstabulation correlations was 

performed using either a chi-squared test or Fisher’s exact test as relevant (groups 

containing less than five events were assessed by fisher’s exact).  

Multivariate Cox regression analysis was used to assess the prognostic value of 

each marker alone and in combination with CAV1 using both the enter and forward 

stepwise (likelihood ratio) functions with all covariates considered categorical. Time 

to event was defined as first appearance of metastasis. Compound covariates of 

CSC markers/CAV1 where regrouped to give the simple covariate CSC marker 

positive/CAV1 positive. Covariates of CSC marker and CSC marker/CAV1, grade, 

size, vascular invasion, capsular invasion and micronecrosis were all entered into 

the model. The forward stepwise function hazard ratios are provided at first step and 

entry into the analysis was set at a probability of 0.10 and rejected at 0.15. An 

independent multivariate analysis was carried out by Dr. Robert Hill to determine 

which of all the single marker, composite marker/CAV1 and histopathological 

covariate was the most influential contributor to disease outcome. This analysis was 

conducted using a Cox proportional hazards model with forward selection with 

calculation of a partial Wilk’s statistic which reflects the each variables contribution 

to the model and determines entry into the model. 

A P value of <0.050 was considered significant in all cases of statistical analysis. All 

data were analysed using the statistical package SPSS statistics 20 (IBM) 

multivariate analysis of all covariates was carried out using the statistical package 

SAS.  
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2.3 Results  

2.3.1 CAV1 expression in RCC tumour samples predicts poor disease free 

survival which increases with increased CAV1 expression 

To verify the specificity of the CAV1 antibody used, immune-staining localised to the 

endothelial structures was considered a positive control in both tumour and normal 

kidney[74]. Expression of CAV1 was found in the endothelia of both tumour (Figure 

2.3 A) and normal kidney samples (Figure 2.3). Positive staining for a tumour core 

was defined as cell membrane associated staining of any visible tumour cells 

(Figure 2.3 B-D). Under this scoring criterion CAV1 was detectable in 109 of 174 

tumour cores with the remaining 65 being CAV1 negative. Analysis of CAV1 scoring 

by Kaplan-Meier survival curves showed that CAV1 positivity resulted in a decrease 

in mean disease free survival (DFS) to 8.2 years from the overall survival time of 11, 

whereas CAV1 negative tumours were associated with a mean DFS of 15.5 years 

(P=<0.001) (Figure 2.4 A). Among CAV1 positive tumours it was clear that scoring 

of CAV1 positivity could be stratified into three different distinct scoring criteria: 

weak membrane staining (CAV1 score 1) (Figure 2.3 B), medium membrane 

staining (CAV1 score 2) (Figure 2.3 C) and strong membrane staining (CAV1 score 

3) (Figure 2.3 D). Kaplan-Meier analysis of scoring stratified this way showed a 

decrease in mean DFS as CAV1 staining intensity increased resulting in a mean 

disease free survival for CAV1 score 1 of 8.7, CAV1 score 2 of 6.3 and CAV1 score 

3 of 5.2 years, respectively (Figure 2.4 B).  

Crosstabulation of CAV1 scoring (scoring criteria of Figure 2.4 A is used) with 

histopathological characteristics of RCC found statistically significant correlation of 

CAV1 expression with presence of vascular invasion (P=<0.001), microcapsular 

invasion (P=0.007) and micronecrosis (P=0.016). Correlations were also found 

between CAV1 and tumour grade (P=0.028). CAV1 expression also correlated with 

clear cell histotype (P=0.001) and with non-papillary carcinomas (P=0.003) but not 
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with the papillary histotype (Table 2.4). No correlation was found between increased 

tumour size and CAV1 expression (P=0.175) (Table 2.4). 

The multivariate Cox regression model (using the enter function), containing the 

histopatholgical variables together with variable of CAV1 expression, found a 

hazard ratio for CAV1 positive expression of 2.2 (P=0.054) (Table 2.5 A). When 

using forward step-wise (likelihood ratio function), with vascular invasion being 

rejected by the model as not influential in the analysis the hazard ratio of CAV1 

positive tumours was reported as 2.3 and proved to be statistically significant 

(P=0.036) (Table 2.5 B). 

 

Figure 2.2 Positive staining of endothelial structures in normal kidney serves as a 
positive control for specificity of the CAV1 antibody used. Red arrows indicate areas 
wer endothelial staining is observed images captured at x25 magnification. 
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Figure 2.3 Immunohistochemical staining of RCC TMAs for CAV1 expression. 
Tumour cores shown are examples of each score shown at x10 magnification. The 
red arrow (A) indicating the presence of endothelial staining in a tumour sample 
considered CAV1 negative. Representative tumours of CAV1 scoring criteria (A) 
CAV1 score 0, (B) CAV1 score 1, (C) CAV1 score 2 and (D) CAV1 score 3. 

  

A B 

C D 
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Figure 2.4 Kaplan-Meier survival curves for CAV1 expression. (A) Kaplan-Meier 
DFS survival curves for CAV1 negative tumours (tumours scored as 0 n=65) and 
CAV1 positive tumours (tumours scored between 1 to 3 n=109) P=<0.001 as 
determined by Log-rank comparison. (B) Kaplan-Meier DFS curves showing how 
increased intensity of CAV1 staining can indicate patients are high risk of disease 
relapse (CAV1 score 0 n=65, CAV1 score 1 n=45, CAV1 score 2 n=42 and CAV1 
score 3 n=22) P=<0.001. 

  

 
Mean DFS 

Cav-1 negative 15.5 
Cav-1 positive 8.2 

Overall 11.0 
 

  Mean DFS 

Cav-1 0  15.5 
Cav-1 1 8.7 
Cav-1 2 6.3 
Cav-1 3 5.2 

Overall 11.0 
 

A B 

Score 
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Table 2.4 Crosstabulation of CAV1 with histopathological characteristics of RCC. 
Significance calculated by Chi-squared or Fisher’s exact test as relevant 

 

  

  Cav-1 negative Cav-1 positive 

Grade 1 and 2  52 70 
Grade 3 and 4 13 39 

  
P=0.028 

Tumour size <7cm 42 59 
Tumour size >7cm 23 50 

  
P=0.175 

Vascular invasion -ve 51 55 
Vascular invasion +ve 14 54 

  
P=<0.001 

Microcapsular invasion -ve  60 83 
Microcapsular invasion +ve 5 26 

  
P=0.007 

Micronecrosis -ve  40 47 
Micronecrosis +ve  24 61 

  

P=0.016 

Non-clear cell carcinoma 19 11 
Clear cell carcinoma 46 98 

  
P=0.001 

Non-Papillary 50 101 
Papillary 15 8 

  
P=0.003 
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Table 2.5 Cox regression analysis of CAV1 with histopathological characteristics of 
RCC. (A) Analysis performed using the ‘Enter’ function. (B) Analysis performed 
using the ‘Forward Stepwise’ (Likelihood ratio) function. Vascular invasion rejected 
by the model as not influential. 95% CI=95% Confidence interval 

 

  

Prognostic indicator  Hazard ratios 95% CI P value  

Cav-1 negative 1     
Cav-1 positive 2.2 0.986-4.772 0.054 
Grade 1 and 2 1 

  Grade 3 and 4 2.1 1.167-3.690 0.013 
Size <7cm 1 

  Size >7cm 2.3 1.287-4.025 0.005 
Vascular invasion -ve 1 

  Vascular invasion +ve 1.6 0.874-2.978 0.127 
Capsular invasion -ve 1 

  Capsular invasion +ve 1.7 0.953-3.177 0.071 
Micronecrosis -ve 1 

  Micronecrosis +ve 2.8 1.464-5.430 0.002 
 

A 

Prognostic indicator Hazard ratios 95% CI P value 

Cav-1 negative 1 
  Cav-1 positive 2.3 1.054-5.085 0.036 

Grade 1 and 2 1 
  Grade 3 and 4 2.3 1.330-4.104 0.003 

Size <7cm 1 
  Size >7cm 2.5 1.425-4.374 0.001 

Capsular invasion -ve 1 
  Capsular invasion +ve 1.9 1.031-3.396 0.039 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.8 1.455-5.426 0.002 

 

B 
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2.3.2 CD44 expression in RCC tumours indicates poor disease free survival 

and identifies high risk patient groups, which is more pronounced in 

combination with CAV1 

The antibody selected for CD44 immunohistochemical analysis was raised against 

an immunogen present in all CD44 isoforms excluding isoform 2 and 19. Specific 

staining for CD44 was controlled by negative staining in normal kidney tissue as 

previously reported[251] and positive staining in the infiltrating lymphocytes of RCC 

tumour cores[252]–[254] (Figure 2.5).  

CD44 positivity was defined as any detectible staining in the cell membrane of 

tumour cells. The scoring of CD44 expression was as follows: negative CD44 

staining CD44 score 0 (Figure 2.6 A), weak positive membrane staining CD44 score 

1 (Figure 2.6 B), medium positive membrane staining CD44 score 2 (Figure 2.6 C) 

and strong membrane staining CD44 score 3 (Figure 2.6 D). With the use of this 

scoring criteria, 13 tumours were scored CD44 score 1, 24 were scored CD44 score 

2 and 25 were scored CD44 score 3. The remaining 112 showed no presence of 

CD44 associated staining. Kaplan-Meier DFS analysis of CD44 scoring revealed a 

mean DFS of 3.1 years in the most strongly expressing CD44 score 3 group 

(P=<0.001) (Figure 2.7 A). Tumours that were CD44 0, CD44 1, or CD44 2 showed 

very little distinction in terms of mean disease free survival with means of 11.8, 9.8 

and 8.7 respectively with nearly complete overlap in DFS survival plots (Figure 2.7 

A). As such, in subsequent analyses, CD44 expression was converted into the 

simple binary covariate, the groups CD44 score 0, CD44 score 1 and CD44 score 2 

reclassified as CD44 negative and CD44 score 3 reclassified as CD44 positive 

(Figure 2.7 B).  

Crosstabulation of CD44 with histopathological features of RCC correlated CD44 

expression with grade (P=0.002), vascular invasion (P=0.021) and micronecrosis 

(P=0.015) but not microcapsular invasion (P=0.555). CD44 expression did not 
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appear to correlate strongly with either a clear cell (P=0.334) or papillary subtype 

(P=0.279) (Table 2.6). 

Multivariate Cox regression analysis of CD44 expression using the enter function 

found CD44 positive tumours to have an associated hazard ratio of 2.8 (P=0.001) 

(Table 2.7 A). Using the forward stepwise (likelihood ratio) function vascular 

invasion was rejected as not influential in the analysis and resulted in a hazard ratio 

for CD44 positivity of 2.9 (P=0.001) (Table 2.7 B). Indicating CD44 to be a powerful 

independent variable of disease recurrence. 

To understand if CAV1 and CD44 are simultaneously expressed in RCCs, and 

could thereby be used as a reliable covariate for further analysis, scoring data of 

CD44 and CAV1 were crosstabulated. Cross tabulation showed a significant 

correlation between CAV1 positivity and CD44 positivity (P=<0.001 by Fisher’s 

exact test), identifying 20 tumours co-expressing CAV1 and CD44, whereas and 

only five CD44 positive tumours were not expressing CAV1 (Figure 2.8 A). Kaplan-

Meier DFS analysis of this covariate found that tumours both CD44 positive and 

CAV1 positive demonstrated significantly diminished mean disease free survival of 

2.5 years compared to patients with tumours only positive for CAV1 expression with 

a mean disease free survival of 9.2 years (P=<0.001) (Figure 2.8 B).  

In order to perform subsequent crosstabulation and cox regression analysis, the 

CD44/CAV1 covariate was reduced to a binary form with CD44-ve/CAV1-ve, 

CD44+ve/CAV1-ve and CD44-ve/CAV1+ve pooled and reclassified “as all other 

tumours” and CD44+ve/CAV1+ve remaining the same. Crosstabulation of this 

covariate with histopathological characteristics of RCC found a significant 

correlation with high grade (P=<0.001), vascular invasion (P=<0.001) and 

micronecrosis (P=<0.001) but not microcapsular invasion (P=0.269) or size 

(P=0.769). In histological subtypes, 55% of CD44+ve/CAV1+ve tumours were of 
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non-clear cell origin but no correlation was apparent in the papillary subtype with 

85% non-papillary (P=0.803) (Table 2.8).  

In the Cox regression, multivariate analysis of the CD44/CAV1 covariate (when 

using the enter method), CD44+ve/CAV1+ve carried an associated hazard ratio of 

3.0 (P=<0.001), (Table 2.9 A). When using the forward stepwise (likelihood ratio) 

function, CD44/CAV1 positivity resulted in a hazard ratio of 3.3 (P=0.013), higher 

than all other variables, though not distinguishable as greater due to the overlapping 

of confidence intervals (Table 2.9 B). 

 

Figure 2.5 Negative staining in normal kidney tubules (A) and positive staining of 
infiltrating lymphocytes in RCC tumour samples (B-D) serve as specificity controls 
for the CD44 antibody used. (A) Normal kidney samples were negative for CD44 
staining as previously demonstrated. In (B) and (C) red arrows indicate presence of 
infiltrating lymphocytes positive for CD44 staining. (D) Shows large scale infiltration 
of CD44 positive lymphocytes into RCC tumour tissue. (A) Image taken at x10 
magnification. (B-D) Images taken at x25 magnification. 

  

A B 

C D 
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Figure 2.6 Immunohistochemical staining of RCC TMAs for CD44 expression 
captured at x10 magnification. Representative tumours of CD44 scoring criteria (A) 
CD44 score 0, (B) CD44 score 1, (C) CD44 score 2 and (D) CD44 score 3. 

  

A 

D 

B 

C 
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Figure 2.7 Kaplan-Meier survival curves for CD44 expression. (A) Kaplan-Meier 
DFS survival curves for scoring criteria of CD44 staining without recoding (CD44 
score 0=112, CD44 score 1=13, CD44 score 2=24, CD44 score 3=25) with 
corresponding mean disease free survival shown below. P=<0.001 as determined 
by Log-rank comparison. (B) Kaplan-Meier DFS survival curves for CD44 staining 
re-plotted with scores from 0 to 2 pooled and recoded as CD44 negative (n=149) 
and scores of 3 recoded as CD44 positive (n=25). P=<0.001 as determined by Log-
rank comparison. 

  

A B 

  Mean DFS 

CD44 0 11.8 
CD44 1 9.8 
CD44 2 8.7 

CD44 3 3.1 

Overall 11.0 

 

  Mean DFS 

CD44 -ve 11.9 
CD44 +ve 3.1 

Overall 11.0 

 

Score 
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Table 2.6 Crosstabulation of CD44 with histopathological characteristics of RCC. 
Significance calculated by Chi-squared or Fisher’s exact test as relevant 

 

  

  CD44 negative CD44 positive 

Grade 1 and 2  111 11 
Grade 3 and 4 38 14 

  
P=0.002 

Tumour size <7cm 88 13 
Tumour size >7cm 61 12 

  
P=0.508 

Vascular invasion -ve 96 10 
Vascular invasion +ve 53 15 

  
P=0.021 

Microcapsular invasion -ve  68 13 
Microcapsular invasion +ve 81 12 

  
P=0.555 

Micronecrosis -ve  80 7 
Micronecrosis +ve  67 18 

  
P=0.015 

Non-clear cell carcinoma 24 6 
Clear cell carcinoma 125 19 

  
P=0.334 

Non-Papillary 131 20 
Papillary 18 5 

  

P=0.279 
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Table 2.7 Cox regression analysis of CD44 with histopathological characteristics of 
RCC cohort. (A) Analysis performed using the ‘Enter’ method. (B) Analysis 
performed using the ‘Forward Stepwise’ (Likelihood ratio) Vascular invasion rejected 
by the model as not influential. 95% CI=95% Confidence Interval. 

 

  

Prognostic indicator  Hazard ratios 95% CI P value  

CD44 negative 1     
CD44 positive 2.8 1.516-5.257 0.001 
Grade 1 and 2 1 

  Grade 3 and 4 1.9 1.092-3.465 0.024 
Size <7cm 1 

  Size >7cm 2.2 1.225-3.798 0.008 
Vascular invasion -ve 1 

  Vascular invasion +ve 1.7 0.909-3.067 0.098 
Capsular invasion -ve 1 

  Capsular invasion +ve 2.4 1.281-4.416 0.006 
Micronecrosis -ve 1 

  Micronecrosis +ve 2.6 1.362-5.136 0.004 
 

Prognostic indicator  Hazard ratios 95% CI P value  

CD44 negative 1     
CD44 positive 2.9 1.557-5.471 0.001 
Grade 1 and 2 1 

  Grade 3 and 4 2.1 1.204-3.801 0.010 
Size <7cm 1 

  Size >7cm 2.3 1.332-4.100 0.003 
Capsular invasion -ve 1 

  Capsular invasion +ve 2.7 1.463-4.914 0.001 
Micronecrosis -ve 1 

  Micronecrosis +ve 2.7 1.402-5.272 0.003 
 

A 

B 
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Figure 2.8 Correlation of CD44 with CAV1 expression and impact on disease free 
survival. (A) Cross tabulation of CD44 and CAV1 expression in RCC tumour cores. 
Statistically significant correlation P=<0.001 as determined by chi-squared. (B) 
Kaplan-Meier DFS curves plotted for CD44 and CAV1 expressed as a composite 
variable (CD44-ve/CAV1-ve n=61, CD44+ve/CAV1-ve n=4, CD44-ve/CAV1+ve 
n=89, CD44+ve/CAV1+ve n=20) with corresponding mean disease free survival 
shown below. P=<0.001 as determined by Log-rank comparison. 

  

A 

  Mean DFS 

CD44 -ve/Cav-1 -ve 15.7 
CD44 +ve/Cav-1 -ve 5.2 
CD44 -ve/Cav-1 +ve 9.2 

CD44 +ve/Cav-1 +ve 2.5 

Overall 11.0 

 

B 

  Cav-1 negative Cav-1 positive 

CD44 negative 60 89 
CD44 positive 5 20 

  

P=0.040 
 

Score 
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Table 2.8 Crosstabulation of All other tumours and CD44 +ve/CAV1 +ve with 
histopathological characteristics of RCC. Significance calculated by Chi-squared or 
Fisher’s exact test as relevant 

 

  

  All other tumours  CD44 +ve/Cav-1 +ve 

Grade 1 and 2  115 7 
Grade 3 and 4 39 13 

  
P=<0.001 

Tumour size <7cm 90 11 
Tumour size >7cm 64 9 

  
P=0.769 

Vascular invasion -ve 101 5 
Vascular invasion +ve 53 15 

  
P=<0.001 

Microcapsular invasion -ve  128 15 
Microcapsular invasion +ve 26 5 

  
P=0.269 

Micronecrosis -ve  84 3 
Micronecrosis +ve  68 17 

  
P=<0.001 

Non-clear cell carcinoma 26 4 
Clear cell carcinoma 128 16 

  
P=0.728 

Non-Papillary 134 17 
Papillary 20 3 

P=0.512 
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Table 2.9 Cox regression analysis of combined CD44 and CAV1 expression with 
histopathological characteristics of RCC. (A) Analysis performed using the ‘Enter’ 
method. (B) Analysis performed using the ‘Forward Stepwise’ (Likelihood ratio) 
vascular invasion rejected by the model as not influential. 95% CI=95% Confidence 
Interval. 

 

  

Prognostic indicator  Hazard ratios 95% CI P value  

CD44/Cav-1 negative 1     
CD44/Cav-1 positive 3.0 1.590-5.848 <0.001 

Grade 1 and 2 1 
  Grade 3 and 4 1.9 1.086-3.466 0.025 

Size <7cm 1 
  Size >7cm 2.2 1.274-3.952 0.005 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.5 0.832-2.852 0.169 

Capsular invasion -ve 1 
  Capsular invasion +ve 2.4 1.282-4.402 0.006 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.5 1.281-4.918 0.007 

 

A 

Prognostic indicator  Hazard ratios 95% CI P value  

CD44/Cav-1 negative 1     
CD44/Cav-1 positive 3.3 1.720-6.344 0.013 

Grade 1 and 2 1 
  Grade 3 and 4 2.1 1.164-3.722 0.013 

Size <7cm 1 
  Size >7cm 2.4 1.382-4.227 0.002 

Capsular invasion -ve 1 
  Capsular invasion +ve 2.6 1.442-4.801 0.002 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.5 1.277-4.927 0.008 

 

B 
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2.3.3 CD105 in RCC tumours does not identify high risk patients alone or as 

a covariate with CAV1 

To ensure specificity of the CD105 antibody selected, positive staining in the 

endothelium of normal kidney control tissue was observed[187] (Figure 2.9). 

Immunohistochemical staining of RCC tumour cores with anti-CD105 revealed a 

scorable pattern of membrane staining (Figure 2.10). Tumours were given scores 

corresponding to the intensity of cell membrane staining of tumour cells with CD105 

score 0, indicating no visible membrane staining (Figure 2.10 A), CD105 score 1, 

indicating light membrane staining (Figure 2.10 B), CD105 score 2, indicating 

medium membrane staining (Figure 2.10 C) and CD105 score 3, indicating strong 

membrane staining (Figure 2.10 D). This resulted in: 14 CD105 score 0 tumours, 29 

CD105 score 1 tumours, 8 CD105 score 2 tumours and 63 CD105 score 3 tumours 

(Figure 2.11 A).  

Kaplan-Meier DFS analysis of CD105 revealed no significant difference between 

any of the scoring intensity groups (P=0.739) (Figure 2.11 A). Recoding of CD105 

score 0 with CD105 score 1 and CD105 score 2 as negative and CD105 score 3 as 

positive and repeating the Kaplan-Meier analysis provided a similar statistical 

outcome. Mean disease free survival for CD105 positive tumours was 9.6 years 

(P=0.400) (Figure 2.11 B).  

Crosstabulation of CD105 (using the covariate in Figure 2.11 B) found CD105 

positivity not to correlate with any of the histopathological characteristics of RCC 

(Table 2.10). Similarly, CD105 positivity did not prove significant in the multivariate 

Cox regression analysis (Table 2.11) and indicated a hazard ratio of 1.7 (P=0.089) 

(using the enter function) which lower than that of vascular invasion. Moreover, it 

was rejected, together with vascular invasion, by the forward stepwise (likelihood 

ratio) function. 
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Crosstabulation of CD105 and CAV1 identified substantial concordant expression in 

these tumours, despite no significant correlation between the two (P=0.075) (Table 

2.11 A). Kaplan-Meier DFS analysis of the CD105/CAV1 covariate found that 

CD105+ve/CAV1+ve tumours had a decreased mean DFS of 5.7 years compared 

to that of only CD105-ve/CAV1+ve tumours, with a mean DFS of 9.7 years 

(P=<0.001) (Figure 2.12 B). Both CD105+ve/CAV1-ve and CD105-ve/CAV1-ve 

tumours displayed a mean DFS of 14.9 and 14.7 years respectively higher than that 

of the overall average (Figure 2.12B).  

Crosstabulation of the CD105/CAV1 covariate with histopathological characteristics 

of RCC found only a single correlation the presence of micronecrosis (P=0.047) 

(Table 2.12). Multivariate Cox regression analysis (using the enter function) of 

CD105+ve/CAV1+ve tumours indicated a statistically significant hazard ratio of 2.3 

(P=0.005) when (Table 2.13 A). Using the forward stepwise function 

CD105+ve/CAV1 was also capable of entering generating a hazard ratio similar to 

that of size, vascular invasion and microcapsular invasion (P=0.005) (Table 2.13 B).  

 

 

Figure 2.9 Immunohistochemical staining of CD105 in endothelial structures of 
normal kidney tissue serves as a positive control for the CD105 antibody. The red 
arrows indicate presence of endothelial CD105 staining. 
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Figure 2.10 Immunohistochemical staining of RCC TMAs for CD105 expression 
captured at x10 magnification. Representative tumours of CD105 scoring criteria (A) 
CD105 score 0, (B) CD105 score 1, (C) CD105 score 2 and (D) CD105 score 3. 

  

A B 

C D 
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Figure 2.11 Kaplan-Meier survival curves for CD105 expression. (A) Kaplan-Meier 
DFS curves for CD105 plotted using the scoring criteria without recoding (CD105 0 
n=14, CD105 1 n=29, CD105 2 n=68 and CD105 3 n=63) with corresponding mean 
disease free survival shown below. P=0.739 as determined by Log-rank 
comparison. (B) Kaplan-Meier DFS curves for CD105 staining re-plotted with scores 
from 0 to 2 pooled and recoded as CD105 negative (n=111) and scores of 3 
classified as CD105 positive (n=63). P=0.400 as determined by Log-rank 
comparison.  

  

A B 

  Mean DFS 

CD105 0  9.1 
CD105 1  12.8 
CD105 2  10.7 

CD105 3 9.6 

Overall 11.0 

 

  Mean DFS 

CD105 -ve 11.3 
CD105 +ve 9.6 

Overall 11.0 

 

Score 
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Table 2.10 Crosstabulation of CD105 with histopathological characteristics of RCC. 
Significance calculated by Chi-squared or Fisher’s exact test as relevant 

 

Table 2.11 Cox regression analysis of CD105 expression with histopathological 
characteristics of RCC. Analysis performed using the ‘Enter’ function. Both CD105 
expression and vascular invasion rejected by the ‘Forward Stepwise’ (Likelihood 
ratio) model as not influential. 95% CI=95% Confidence Interval. 

 

  CD105 negative CD105 positive 

Grade 1 and 2  77 45 
Grade 3 and 4 34 18 

  
P=0.776 

Tumour size <7cm 66 35 
Tumour size >7cm 45 28 

  
P=0.616 

Vascular invasion -ve 63 43 
Vascular invasion +ve 48 20 

  
P=0.135 

Microcapsular invasion -ve  87 56 
Microcapsular invasion +ve 24 7 

  
P=0.082 

Micronecrosis -ve  59 28 
Micronecrosis +ve  51 34 

  

P=0.286 

Non-clear cell carcinoma 18 12 
Clear cell carcinoma 93 51 

  
P=0.635 

Non-Papillary 99 52 
Papillary 12 11 

  
P=0.213 

 

Prognostic indicator  Hazard ratios 95% CI P value  

CD105 negative 1     
CD105 positive 1.7 0.926-2.945 0.089 
Grade 1 and 2 1 

  Grade 3 and 4 2.3 1.263-4.083 0.006 
Size <7cm 1 

  Size >7cm 2.1 1.210-3.794 0.009 
Vascular invasion -ve 1 

  Vascular invasion +ve 1.9 1.001-3.557 0.050 
Capsular invasion -ve 1 

  Capsular invasion +ve 2.2 1.215-4.027 0.009 
Micronecrosis -ve 1 

  Micronecrosis +ve 2.9 1.500-5.518 0.001 
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Figure 2.12 Correlation of CD105 with CAV1 expression and Kaplan-Meier survival 
analysis. (A) Cross tabulation of CD105 and CAV1 expression in RCC tumour 
cores. No significant correlation P=0.075 as determined by chi-squared. (B) Kaplan-
Meier DFS curves plotted for CD105 and CAV1 expressed as a composite variable 
(CD105-ve/CAV1–ve n=36, CD105+ve/CAV1–ve n=29, CD105–ve/CAV1+ve n=75, 
CD105 +ve/CAV1 +ve n=34) with corresponding mean disease free survival shown 
below. P=<0.001 as determined by Log-rank comparison. 

  

  Cav-1 negative Cav-1 positive 

CD105 negative 36 75 

CD105 positive 29 34 

P=0.075 

A 

  Mean DFS 

CD105 -ve/Cav-1 -ve 14.9 
CD105 +ve/Cav-1 -ve 14.7 
CD105 -ve/Cav-1 +ve 9.7 

CD105 +ve/Cav-1 +ve 5.7 

Overall 11.0 

 

B 
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Table 2.12 Crosstabulation of All other tumours and CD105 +ve/CAV1 +ve with 
histopathological characteristics of RCC. Significance calculated by Chi-squared or 
Fisher’s exact test as relevant 

 

  

  All other tumours CD105 +ve/Cav-1 +ve 

Grade 1 and 2  99 23 
Grade 3 and 4 41 11 

  
P=0.726 

Tumour size <7cm 83 18 
Tumour size >7cm 57 16 

  
P=0.501 

Vascular invasion -ve 85 21 
Vascular invasion +ve 55 13 

  
P=0.910 

Microcapsular invasion -ve  114 29 
Microcapsular invasion +ve 26 5 

  
P=0.597 

Micronecrosis -ve  75 12 
Micronecrosis +ve  63 22 

  

P=0.047 

Non-clear cell carcinoma 27 3 
Clear cell carcinoma 113 31 

  
P=0.147 

Non-Papillary 120 31 
Papillary 20 3 

  
P=0.299 
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Table 2.13 Cox regression analysis of combined CD105 and CAV1 expression with 
histopathological characteristics of RCC. (A) Analysis performed using the ‘Enter’ 
method. (B) Analysis performed using the ‘Forward Stepwise’ (Likelihood ratio) all 
variables selected entered the model at the first step. 95% CI=95% Confidence 
Interval 

 

  

Prognostic indicator  Hazard ratios 95% CI P value  

CD105/Cav-1 negative 1     
CD105/Cav-1 positive 2.3 1.292-4.217 0.005 

Grade 1 and 2 1 
  Grade 3 and 4 2.4 1.324-4.248 0.004 

Size <7cm 1 
  Size >7cm 2.0 1.119-3.512 0.019 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.9 1.033-3.603 0.039 

Capsular invasion -ve 1 
  Capsular invasion +ve 2.2 1.216-3.924 0.009 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.7 1.408-5.187 0.003 

 

A 

Prognostic indicator  Hazard ratios 95% CI P value  

CD105/Cav-1 negative 1     
CD105/Cav-1 positive 2.3 1.292-4.217 0.005 

Grade 1 and 2 1 
  Grade 3 and 4 2.4 1.324-4.248 0.004 

Size <7cm 1 
  Size >7cm 2.0 1.119-3.512 0.019 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.9 1.003-3.603 0.039 

Capsular invasion -ve 1 
  Capsular invasion +ve 2.2 1.216-3.924 0.009 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.7 1.408-5.187 0.003 

 

B 
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2.3.4 EpCAM in RCC tumours does not identify high risk patients alone or as 

a covariate with CAV1 

To control for specificity of immunohistochemical staining with the EpCAM antibody 

selected. Positive staining localised to renal epithelial cells in normal kidney tissue 

was used as a positive control[199] (Figure 2.13). EpCAM staining was identifiable 

by positive staining was localised to the cell membrane in both normal kidney 

epithelia and in RCC tumours (Figure 2.14). Scoring criteria for EpCAM was defined 

as: EpCAM score 0 for absent membrane staining (Figure 2.14 A), EpCAM score 1 

for weak membrane staining (Figure 2.14 B), EpCAM score 2 for medium 

membrane staining (Figure 2.14 C) and EpCAM score 3 for strong membrane 

staining (Figure 2.14 D). This resulted in 9 EpCAM score 0 tumours, 34 EpCAM 

score 1 tumours, 63 EpCAM score 2 tumours and 68 EpCAM score 3 tumours.  

Kaplan-Meier DFS curves of EpCAM scoring found no significant difference in mean 

disease free survival between any of the scoring intensity groups (P=0.236). 

Though, surprisingly, it did appear that the weakest EpCAM expressing group 

showed the lowest mean disease free survival of 7.6 years and tumours in the small 

EpCAM negative group showed a mean DFS of 15.2 years (Figure 2.15 A). To 

analyse the potential difference between EpCAM negative and EpCAM positive 

tumours, the EpCAM positive scores EpCAM score 1, EpCAM score 2 and EpCAM 

score 3 were pooled and recoded as EpCAM positive. Repeating the Kaplan-Meier 

analysis however proved no significant difference between these two groups 

(P=0.144) (Figure 2.15 B).  

Crosstabulation of EpCAM with histopathological characteristics of RCC found no 

significant correlation among any of these features (Table 2.14). In multivariate Cox 

regression analysis using the enter function, EpCAM proved non-significant 

(P=0.223) and was rejected when using the forward stepwise (likelihood ratio) 

function (Table 2.15).  
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Crosstabulation of EpCAM and CAV1 showed no significant correlation between the 

two markers (P=0.549) (Figure 2.16 A). In order to carry out a Kaplan-Meier 

analysis with this covariate that would be in agreement to the requirements of the 

analysis data was pool such that tumours falling in the groups of EpCAM-ve/CAV1-

ve, EpCAM+ve/CAV1-ve and EpCAM-ve/CAV1+ve were grouped as “all other 

tumours” with EpCAM+ve/CAV1+ve remaining the same. Kaplan-Meier analysis of 

this covariate found a mean disease free survival for EpCAM+ve/CAV1+ve tumours 

of 7.6 years with all other tumours showing a mean DFS of 15.8 years (P=<0.001) 

(Figure 2.16 B).  

Crosstabulation of the EpCAM/CAV1 covariate found correlations with high grade 

(P=0.015), vascular invasion (P=0.006), microcapsular invasion (P=0.002) and 

micronecrosis (P=0.003). In histological subtyping EpCAM/CAV1 correlated with 

clear cell carcinoma (P=0.002) and negatively correlate with papillary (P=0.003) 

(Table 2.16). In multivariate Cox regression analysis using the enter function 

EpCAM+ve/CAV1+ve indicated a statistically significant hazard ratio of 2.9 

(P=0.009) (Table 2.17 A) and was included in the forward stepwise (likelihood ratio) 

function as significant (P=0.008) with the highest associated hazard (HR=2.9) 

(Table 2.17 B). 
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Figure 2.13 Immunohistochemical staining of EpCAM in epithelial tubule structures 
in normal kidney tissue is a positive control for specificity of the EpCAM antibody 
used. (A) Shows EpCAM staining in transverse sections of epithelial tubules 
(indicated by the red arrows). (B) Shows a longitudinal section through a EpCAM 
positive renal tubule. 

  

A B 
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Figure 2.14 Immunohistochemical staining of RCC TMAs for EpCAM expression 
captured at x10 magnification. Representative tumours of EpCAM scoring criteria 
(A) EpCAM score 0, (B) EpCAM score 1, (C) EpCAM score 2 and (D) EpCAM score 
3. 

 

  

A B 

C D 
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Figure 2.15 Kaplan-Meier survival curves for EpCAM expression. (A) Kaplan-Meier 
DFS curves for EpCAM plotted using the scoring criteria without recoding (EpCAM 0 
n=9, EpCAM 1 n=34, EpCAM 2 n=63 and EpCAM 3 n=34) with corresponding mean 
disease free survival shown below. P=0.236 as determined by Log-rank 
comparison. (B) Kaplan-Meier DFS curves for EpCAM staining re-plotted with a 
score of 0 recoded as EpCAM negative n=9 and scores 1 to 3 pooled and recoded 
as EpCAM positive n=165. P=0.144 as determined by Log-rank comparison. 

  

A B 

  Mean DFS 

EpCAM 0  15.2 
EpCAM 1 7.6 
EpCAM 2 10.2 

EpCAM 3 11.6 

Overall 11.0 

 

  Mean DFS 

EpCAM -ve 15.2 
EpCAM +ve 10.6 

Overall 11.0 

 

Score 
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Table 2.14 Crosstabulation of EpCAM with histopathological characteristics of RCC. 
Significance calculated by Chi-squared or Fisher’s exact test as relevant 

 

Table 2.15 Cox regression analysis of EpCAM expression with histopathological 
characteristics of RCC. Analysis performed using the ‘Enter’ method. Both EpCAM 
expression and vascular invasion rejected by ‘Forward Stepwise’ (Likelihood ratio) 
model as not influential. 95% CI=95% Confidence Interval. 

 

  EpCAM negative EpCAM positive 

Grade 1 and 2  8 114 
Grade 3 and 4 1 51 

  
P=0.191 

Tumour size <7cm 6 95 
Tumour size >7cm 3 70 

  
P=0.431 

Vascular invasion -ve 3 103 
Vascular invasion +ve 6 62 

  
P=0.084 

Microcapsular invasion -ve  8 135 
Microcapsular invasion +ve 1 30 

  
P=0.501 

Micronecrosis -ve  5 82 
Micronecrosis +ve  4 81 

  

P=0.515 

Non-clear cell carcinoma 1 29 
Clear cell carcinoma 8 136 

  
P=0.520 

Non-Papillary 8 143 
Papillary 1 22 

  
P=0.661 

 

Prognostic indicator  Hazard ratios 95% CI P value  

EpCAM negative 1     
EpCAM positive 3.5 0.470-25.434 0.223 
Grade 1 and 2 1 

  Grade 3 and 4 2.1 1.154-3.645 0.014 
Size <7cm 1 

  Size >7cm 2.3 1.302-4.076 0.004 
Vascular invasion -ve 1 

  Vascular invasion +ve 1.9 0.993-3.472 0.053 
Capsular invasion -ve 1 

  Capsular invasion +ve 1.9 1.023-3.379 0.042 
Micronecrosis -ve 1 

  Micronecrosis +ve 3.1 1.618-5.928 <0.001 
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Figure 2.16 Correlation of EpCAM with CAV1 expression and Kaplan-Meier survival 
analysis. (A) Cross tabulation of EpCAM and CAV1 expression in RCC tumour 
cores. No significant correlation P=0.549 as determined by Fisher’s exact test. (B) 
Kaplan-Meier DFS curves plotted for EpCAM and CAV1 expressed as a composite 
variable with double positive EpCAM+ve/CAV1+ve n=71 and all other combinations 
pooled and recoded as ‘All other tumours’ n=103 with corresponding mean DFS in 
years shown below. P=<0.001 as determined by Log-rank comparison. 

  

  Cav-1 negative Cav-1 positive 

EpCAM negative 3 6 

EpCAM positive 62 103 

  

P=0.549 
 

A 

  Mean DFS 

All other tumours 15.8 
EpCAM +ve/Cav-1 +ve 7.6 

Overall 11.0 

 

B 
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Table 2.16 Crosstabulation of EpCAM and CAV1 with histopathological 
characteristics of RCC. Significance calculated by Chi-squared or Fisher’s exact test 
as relevant. 

 

  

  All other tumours EpCAM +ve/Cav-1 +ve 

Grade 1 and 2  57 65 
Grade 3 and 4 14 38 

  
P=0.015 

Tumour size <7cm 45 56 
Tumour size >7cm 26 47 

  
P=0.236 

Vascular invasion -ve 52 54 
Vascular invasion +ve 19 49 

  
P=0.006 

Microcapsular invasion -ve  66 77 
Microcapsular invasion +ve 5 26 

  
P=0.002 

Micronecrosis -ve  45 42 
Micronecrosis +ve  25 60 

  

P=0.003 

Non-clear cell carcinoma 20 10 
Clear cell carcinoma 51 93 

  
P=0.002 

Non-Papillary 55 96 
Papillary 16 7 

  
P=0.003 
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Table 2.17 Cox regression analysis of combined EpCAM and CAV1 expression with 
histopathological characteristics of RCC. (A) Analysis performed using the ‘Enter’ 
method. (B) Analysis performed using the ‘Forward Stepwise’ (Likelihood ratio) 
vascular invasion rejected by the model as not influential. 95% CI=95% Confidence 
Interval. 

 

 

 

 

Prognostic indicator  Hazard ratios 95% CI P value  

EpCAM/Cav-1 negative 1     
EpCAM/Cav-1 positive 2.9 1.294-6.281 0.009 

Grade 1 and 2 1 
  Grade 3 and 4 2.1 1.190-3.769 0.011 

Size <7cm 1 
  Size >7cm 2.4 1.341-4.214 0.003 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.7 0.919-3.093 0.092 

Capsular invasion -ve 1 
  Capsular invasion +ve 1.5 0.838-2.858 0.163 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.7 1.396-5.168 0.003 

 

A 

Prognostic indicator  Hazard ratios 95% CI P value  

EpCAM/Cav-1 negative 1     
EpCAM/Cav-1 positive 2.9 1.319-6.404 0.008 

Grade 1 and 2 1 
  Grade 3 and 4 2.4 1.367-4.234 0.002 

Size <7cm 1 
  Size >7cm 2.6 1.487-4.601 0.001 

Capsular invasion -ve 1 
  Capsular invasion +ve 1.7 0.927-3.107 0.086 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.7 1.404-5.226 0.003 

 

B 
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2.3.5 CD146 in RCC tumours does not identify high risk patients alone or 

covariate with CAV1 

To control for positive staining of CD146 in the antibody selected, staining of the 

endothelium, CD146 a widely expressed marker of endothelial cells[255] of normal 

kidney was identified as a positive control (Figure 2.17). Assessment of CD146 was 

complicated due to the strong amount of cytoplasmic staining present. However, it 

was possible to make a distinction between negative (Figure 2.18 C) and positive 

(Figure 2.18 D) membrane staining. As such the scoring criteria were determined 

as: no visible membrane coded as CD146-ve presence of membrane staining coded 

as CD146 +ve. This resulted in 72 tumours identified as CD146-ve and 102 tumours 

identified as CD146+ve. In Kaplan-Meier DFS analysis, CD146 positivity did not 

identify patients at higher risk of disease relapse, with mean DFS of CD146-ve 

tumours being 11.2 years and CD146+ve tumours being 10.3 years (P=0.535) 

(Figure 2.19).  

Crosstabulation of CD146 with histopathological characteristics of RCC found 

CD146 to correlate with low grade (P=0.029) and absence of micronecrosis 

(P=0.032) but not size, vascular invasion or microcapsular invasion. Positive CD146 

staining correlated strongly with a clear cell histology (P=<0.001) and decreased in 

papillary carcinomas (P=<0.001) (Table 2.18). Multivariate Cox regression analysis 

using the enter function found CD146 to have no ability to predict poor patient 

outcome with a hazard ratio of 1.3 (P=0.357), carrying less risk than vascular 

invasion (Table 2.19). Using the forward stepwise (likelihood ratio) function CD146 

together with vascular invasion was rejected as uninfluential on the analysis. 

Crosstabulation of CD146 with CAV1 expression showed a positive correlation 

between CD146 and CAV1 (P=0.01) (Figure 2.20 A). Kaplan-Meier DFS analysis of 

this covariate found a mean DFS of 15.2 years for CD146-ve/CAV1-ve and a mean 

DFS of 14.6 years for CD146+ve/CAV1-ve, while CD146-ve/CAV1+ve tumours had 
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a mean DFS of 6.7 years and CD146+ve/CAV1+ve tumours had a mean DFS of 7.4 

years (P=<0.001) (Figure 2.20 B). 

Crosstabulation of the CD146/CAV1 covariate with the histopathological 

characteristics of RCC found only a correlation with vascular invasion (P=0.048) but 

not grade, size, microcapsular invasion or micronecrosis. A correlation with the clear 

cell subtype (P=<0.001) appeared in the histological subtypes and absence in the 

papillary subtype (P=0.002) (Table 2.20). Multivariate Cox regression analysis of 

CD146+ve/CAV1+ve using the enter function did not indicate patients at greater risk 

of disease relapse with a hazard ratio of 1.4 (P=0.210). Using the forward stepwise 

(likelihood ratio) CD146/CAV1 was rejected together with vascular invasion as 

uninfluential on the analysis. 

 

 

Figure 2.17 Immunohistochemical staining of CD146 in endothelial structures in 
normal kidney tissue acts as a positive control for the specificity of the CD146 
antibody used. White arrows indicate the presence of CD146 endothelial staining. 

  



  

78 
 

 

Figure 2.18 Immunohistochemical staining of RCC TMAs for CD146 expression. (A) 
Representative tumour core scored as CD146 negative. (B) Representative tumour 
core scored as CD146 positive. (C) x40 magnification of the core shown in A 
demonstrating negative membrane staining. (D) x40 magnification of the core 
shown in B demonstrating positive membrane staining. 

A B 

C D 
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Figure 2.19 Kaplan-Meier DFS curves for CD146 staining CD146-ve n=72 and 
CD146+ve n=102 with mean disease free survival shown below. P=0.535 as 
determined by Log-rank comparison. 

  

  Mean DFS 

CD146 -ve 11.2 
CD146 +ve 10.3 

Overall 11.0 
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Table 2.18 Crosstabulation of CD146 with histopathological characteristics of RCC. 
Significance calculated by Chi-squared or Fisher’s exact test as relevant. 

 

Table 2.19 Cox regression analysis of CD146 expression with histopathological 
characteristics of RCC. Analysis performed using the ‘Enter’ method. Both CD146 
expression and vascular invasion rejected by the ‘Forward Stepwise’ (Likelihood 
ratio) model as not influential. 95% CI=95% Confidence Interval. 

 

  CD146 negative CD146 positive 

Grade 1 and 2  44 78 
Grade 3 and 4 28 24 

  
P=0.029 

Tumour size <7cm 37 64 
Tumour size >7cm 35 38 

  
P=0.135 

Vascular invasion -ve 42 64 
Vascular invasion +ve 30 38 

  
P=0.557 

Microcapsular invasion -ve  57 86 
Microcapsular invasion +ve 15 16 

  
P=0.382 

Micronecrosis -ve  29 58 
Micronecrosis +ve  42 43 

  

P=0.032 

Non-clear cell carcinoma 24 6 
Clear cell carcinoma 48 96 

  
P=<0.001 

Non-Papillary 52 99 
Papillary 20 3 

  
P=<0.001 

 

Prognostic indicator  Hazard ratios 95% CI P value  

CD146 negative 1     
CD146 positive 1.3 0.750-2.221 0.357 
Grade 1 and 2 1 

  Grade 3 and 4 2.1 1.195-3.865 0.011 
Size <7cm 1 

  Size >7cm 2.3 1.312-4.134 0.004 
Vascular invasion -ve 1 

  Vascular invasion +ve 1.7 0.928-3.249 0.084 
Capsular invasion -ve 1 

  Capsular invasion +ve 2.0 1.112-3.622 0.021 
Micronecrosis -ve 1 

  Micronecrosis +ve 3.2 1.661-6.102 <0.001 
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Figure 2.20 Correlation of CD146 with CAV1 expression and Kaplan-Meier survival 
analysis. (A) Cross tabulation of CD146 and CAV1 expression in RCC tumour 
cores. Significant correlation P=<0.010 as determined by Chi-squared. (B) Kaplan-
Meier DFS curves plotted for CD146 and CAV1 expressed as a composite variable 
CD146–ve/CAV1–ve n=35, CD146+ve/CAV1–ve n=30, CD146–ve/CAV1+ve n=37, 
CD146+ve/CAV1+ve n=72 mean disease free survival shown below. P=<0.001 as 
determined by Log-rank comparison. 

  

  Cav-1 negative Cav-1 positive 

CD146 negative 35 37 

CD146 positive 30 72 

  

P=0.010 
 

A 

  Mean DFS 

CD146 -ve/Cav-1 -ve 15.2 
CD146 +ve/Cav-1 -ve 14.6 
CD146 -ve/Cav-1 +ve 6.7 

CD146 +ve/Cav-1 +ve 7.4 

Overall 11.0 

 

B 
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Table 2.20 Crosstabulation of CD146 and CAV1 with histopathological 
characteristics of RCC. Significance calculated by Chi-squared or Fisher’s exact test 
as relevant. 

 

Table 2.21 Cox regression analysis of CD146 and CAV1 expression with 
histopathological characteristics of RCC. Analysis performed using the ‘Enter’ 
method. Both CD146 and CAV1 expression and vascular invasion rejected by the 
‘Forward Stepwise’ (Likelihood ratio) model as not influential. 95% CI=95% 
Confidence Interval. 

 

  All other tumours CD146 +ve/Cav-1 +ve 

Grade 1 and 2  71 51 
Grade 3 and 4 32 20 

  
P=0.681 

Tumour size <7cm 59 42 
Tumour size >7cm 44 29 

  
P=0.806 

Vascular invasion -ve 69 37 
Vascular invasion +ve 34 34 

  
P=0.048 

Microcapsular invasion -ve  86 57 
Microcapsular invasion +ve 17 14 

  
P=0.586 

Micronecrosis -ve  53 34 
Micronecrosis +ve  49 36 

  

P=0.662 

Non-clear cell carcinoma 27 3 
Clear cell carcinoma 76 68 

  
P=<0.001 

Non-Papillary 83 68 
Papillary 20 3 

  
P=0.002 

 

Prognostic indicator  Hazard ratios 95% CI P value  

CD146/Cav-1 negative 1     
CD146/Cav-1 positive 1.4 0.825-2.409 0.210 

Grade 1 and 2 1 
  Grade 3 and 4 2.1 1.186-3.815 0.011 

Size <7cm 1 
  Size >7cm 2.3 1.289-4.036 0.005 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.7 0.896-3.141 0.106 

Capsular invasion -ve 1 
  Capsular invasion +ve 2.0 1.120-3.632 0.019 

Micronecrosis -ve 1 
  Micronecrosis +ve 3.1 1.601 <0.001 
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2.3.6 Vimentin expression in RCC tumours does not identify high risk 

patients alone or covariate with CAV1 

To control for positive immunohistochemical staining of vimentin expression, 

positive staining localised to the endothelia of normal kidney tissue was used[218] 

(Figure 2.21). Scorable positive staining for vimentin was found in the cytoplasm of 

RCC tumour cores (Figure 2.22 B). Vimentin staining was of a uniform intensity, as 

such, the scoring criteria was defined as positive where staining was observable 

(vimentin +ve) (Figure 2.22 B) and negative were no staining could be detected 

(vimentin –ve) (Figure 2.22 A). Scoring in this way resulted in 128 tumours identified 

as vimentin -ve and 46 tumours identified as vimentin +ve. Kaplan-Meier DFS 

analysis of this scoring data revealed vimentin +ve tumours have a mean DFS of 

8.9 years compared to a mean DFS of 11.5 years in vimentin –ve tumours 

(P=0.033) (Figure 2.22 C). 

Crosstabulation of vimentin with the histopathological characteristics of RCC found 

vimentin to correlate only with increased grade (P=0.006), with no correlation 

between any other of the pathological characteristics or histological subtypes (Table 

2.22). Multivariate Cox regression analysis using the enter function showed vimentin 

positivity to be uninfluential in terms of risk to patients, with a hazard ratio of 1.3 

(P=0.405), which was weaker than any of the other variables in the model (Table 

2.23). 

Analysis of the association of vimentin and CAV1 in patient tumours identified a 

trend toward the co-localisation of the two approaching significance (P=0.065) 

(Figure 2.23 A). Kaplan-Meier DFS analysis of the vimentin/CAV1 covariate showed 

vimentin +ve/CAV1 +ve tumours to have an associated mean DFS of 7.6 years; 

however tumours vimentin -ve/CAV1 +ve had a mean DFS of 7.5 years, showing 

vimentin to have negligible impact on DFS in combination with CAV1 (P=<0.001) 

(Figure 2.23 B).  
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Crosstabulation of the vimentin/CAV1 covariate with histopathological 

characteristics of RCC found only a correlation with grade (P=<0.001) and 

microcapsular invasion (P=0.014) and did not select for a specific histological 

subtype (Table 2.24). Multivariate Cox regression analysis using the enter function 

of the vimentin/CAV1 covariate found a non-significant hazard ratio to 1.6 

(P=0.159), and was not influential in the forward stepwise (likelihood ratio) function 

(Table 2.25). 

 

 

Figure 2.21 Immunohistochemical staining of vimentin in endothelial structures in 
normal kidney tissue acts as a positive control for specificity of the vimentin antibody 
used. Images captured at x25 magnification. 
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Figure 2.22 Immunohistochemical staining of RCC TMAs for vimentin expression 
and Kaplan-Meier DFS analysis. (A) Representative tumour core scored as vimentin 
negative. (B) Representative tumour core scored as vimentin positive. (C) Kaplan-
Meier survival curves for vimentin staining vimentin negative n=128 and vimentin 
positive n=46 with mean disease free survival shown below. P=0.033 as determined 
by Log-rank comparison. 

 

A B 

  Mean DFS 

Vimentin -ve 11.5 
Vimentin +ve 8.9 

Overall 11.0 

 

C 

Score 
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Table 2.22 Crosstabulation of vimentin with histopathological characteristics of 
RCC. Significance calculated by Chi-squared or Fisher’s exact test as relevant. 

 

  

  Vimentin negative Vimentin positive 

Grade 1 and 2  97 25 
Grade 3 and 4 31 21 

  
P=0.006 

Tumour size <7cm 75 26 
Tumour size >7cm 53 20 

  
P=0.807 

Vascular invasion -ve 80 26 
Vascular invasion +ve 48 20 

  
P=0.476 

Microcapsular invasion -ve  109 34 
Microcapsular invasion +ve 19 12 

  
P=0.087 

Micronecrosis -ve  68 19 
Micronecrosis +ve  58 27 

  

P=0.141 

Non-clear cell carcinoma 20 10 
Clear cell carcinoma 108 36 

  
P=0.346 

Non-Papillary 113 38 
Papillary 15 8 

  
P=0.330 
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Table 2.23 Cox regression analysis of vimentin expression with histopathological 
characteristics of RCC. Analysis performed using the ‘Enter’ method. Both vimentin 
expression and vascular invasion rejected by the ‘Forward Stepwise’ (Likelihood 
ratio) model as not influential. 95% CI=95% Confidence Interval. 

 

  

Prognostic indicator  Hazard ratios 95% CI P value  

Vimentin negative 1     
Vimentin positive 1.3 0.716-2.292 0.405 

Grade 1 and 2 1 
  Grade 3 and 4 2.0 1.094-3.551 0.024 

Size <7cm 1 
  Size >7cm 2.4 1.329-4.218 0.003 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.8 0.967-3.377 0.032 

Capsular invasion -ve 1 
  Capsular invasion +ve 1.9 1.057-3.477 0.032 

Micronecrosis -ve 1 
  Micronecrosis +ve 3.0 1.574-5.804 <0.001 
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Figure 2.23 Correlation of vimentin with CAV1 expression and Kaplan-Meier DFS 
analysis. (A) Cross tabulation of vimentin and CAV1 expression in RCC tumour 
cores. No significant correlation P=0.065 as determined by Chi-squared. (B) 
Kaplan-Meier survival curves plotted for vimentin and CAV1 expressed as a 
composite variable (vimentin –ve/CAV1 –ve n=55, vimentin +ve/CAV1 –ve n=10, 
vimentin –ve/CAV1 +ve n=75, vimentin +ve/CAV1 +ve n=34) mean disease free 
survival shown below. P=<0.001 as determined by Log-rank comparison. 

  

  Cav-1 negative Cav-1 positive 

Vimentin negative 53 75 

Vimentin positive 12 34 

  

P=0.065 
 

A 

B 

  Mean DFS 

Vimentin -ve/Cav-1 -ve 15.6 
Vimentin +ve/Cav-1 -ve 13.2 
Vimentin -ve/Cav-1  +ve 7.5 

Vimentin +ve/Cav-1 +ve 7.6 

Overall 11.0 

 

Score 
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Table 2.24 Crosstabulation of vimentin and CAV1 with histopathological 
characteristics of RCC. Significance calculated by Chi-squared or Fisher’s exact test 
as relevant. 

 

Table 2.25 Cox regression analysis of vimentin and CAV1 expression with 
histopathological characteristics of RCC. Analysis performed using the ‘Enter’ 
method. Both vimentin and CAV1 expression and vascular invasion rejected by the 
‘Forward Stepwise’ (Likelihood ratio) model as not influential. 95% CI=95% 
Confidence Interval. 

 

  All other tumours Vimentin +ve/Cav-1 +ve 

Grade 1 and 2  106 16 
Grade 3 and 4 34 18 

  
P=<0.001 

Tumour size <7cm 81 20 
Tumour size >7cm 59 14 

  
P=0.918 

Vascular invasion -ve 89 17 
Vascular invasion +ve 51 17 

  
P=0.146 

Microcapsular invasion -ve  120 23 
Microcapsular invasion +ve 20 11 

  
P=0.014 

Micronecrosis -ve  73 14 
Micronecrosis +ve  65 20 

  

P=0.221 

Non-clear cell carcinoma 25 5 
Clear cell carcinoma 115 29 

  
P=0.663 

Non-Papillary 120 31 
Papillary 20 3 

  
P=0.299 

 

Prognostic indicator  Hazard ratios 95% CI P value  

Vimentin/Cav-1 negative 1     
Vimentin/Cav-1 positive 1.6 0.840-2.909 0.159 

Grade 1 and 2 1 
  Grade 3 and 4 1.9 1.063-3.432 0.030 

Size <7cm 1 
  Size >7cm 2.5 1.394-4.484 0.002 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.8 0.978-3.357 0.059 

Capsular invasion -ve 1 
  Capsular invasion +ve 1.8 0.951-3.257 0.072 

Micronecrosis -ve 1 
  Micronecrosis +ve 3.1 1.603-5.901 <0.001 
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2.3.7 MCT4 expression in RCC tumours does not identify high risk patients 

alone or as a covariate with CAV1 

To control for the specificity of the MCT4 antibody selected, light 

immunohistochemical staining of tubules in normal kidney tissue samples was used 

as a positive control for MCT4 staining[238] (Figure 2.24). Immunohistochemical 

staining of RCC tumour cores with anti-MCT4 found scorable positive membrane 

staining (Figure 2.25). Positive staining varied in intensity between tumour cores 

and as such could be scored accordingly. Absence of membrane staining was 

termed MCT4 score 0 (Figure 2.26 A), light membrane staining was termed MCT4 

score 1 (Figure 2.26 B), medium membrane staining was termed MCT4 score 2 

(Figure 2.26 C) and strong membrane staining was termed MCT4 score 3 (Figure 

2.26 D). Such scoring resulted in 50 tumours identified as MCT4 score 0, 49 

tumours identified as MCT4 score 1, 49 tumours identified as MCT4 score 2 and 26 

tumours identified as MCT4 score 3. Kaplan-Meier DFS analysis found MCT4 score 

3 tumours to have the lowest mean DFS of 4.9 years (P=<0.001) (Figure 2.26 A). 

MCT4 score 1 and MCT4 score 2 produced overlapping survival curves (while 

MCT2 provides a mean disease free survival of 5.4 years this mean is skewed by 

rapid censoring after 5 years and the relapse of the last patient in the group). As 

such, scoring was recoded as: MCT4 0 recoded MCT4 negative, MCT4 score 1 and 

MCT4 score 2 recoded as MCT4 weak positive and MCT4 3 recoded as MCT4 

strong positive. Repeating the Kaplan-Meier DFS analysis with this recoding found 

MCT4 week positive to give a mean DFS of 9.9 years, slightly lower than that of 

overall mean disease free survival (P=<0.001) (Figure 2.26 B).  

Crostabulation of MCT4 with histological characteristics of RCC found MCT4 to 

correlate with increased tumour grade (P=<0.001), increased vascular invasion 

(P=<0.001) and with micronecrosis (P=0.044) but not with tumour size or 

microcapsular invasion. MCT4 expression was not specific to either clear cell or 



  

91 
 

papillary histotypes (Table 2.26). Multivariate Cox regression analysis using the 

enter function showed MCT4 to have an associated hazard ratio of 1.9 (P=0.049), 

higher than both vascular and microcapsular invasion (Table 2.27 A). MCT4 also 

entered into the forward stepwise (likelihood ratio) function with a hazard ratio (2.1 

P=0.020) equal to microcapsular invasion and just less than grade (HR=2.2 

P=0.008) (Table 2.27 B). 

Crosstabulation analysis of MCT4 with CAV1, aimed at examining the association of 

the two markers in RCC tumours, found no significant correlation between the two 

(P=0.103) (Figure 2.27 A). Kaplan-Meier DFS analysis of the MCT4/CAV1 covariate 

found MCT4 +ve/CAV1 +ve tumours to have a mean DFS of 5.1 years, similar to 

that of MCT4 alone, indicating no real synergistic effect of the marker combination 

(P=<0.001) (Figure 2.27 B).  

Crosstabulation of the MCT4/CAV1 covariate with histopathological characteristics 

of RCC found the same correlations as with MCT4 univariate, these being between 

grade (P=<0.001), vascular invasion (P=<0.001) and micronecrosis (P=0.025) 

(Table 2.28). Again, as with MCT4 alone, no distinction in terms of histological 

subtype was observed. However, one additional correlation was detected between 

the covariate and presence of microcapsular invasion (P=0.033) (Table 2.28).  

Multivariate Cox regression analysis of the MCT4/CAV1 covariate using the enter 

function actually found the combination of MCT4 and CAV1 to have a lower hazard 

ratio non-significant hazard ratio compared to MCT4 or CAV1 alone (HR=1.5 

P=0.289). MCT4/CAV1 was rejected by the forward stepwise (likelihood ratio) 

function as not influential to the analysis (Table 2.29). 
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Figure 2.24 Immunohistochemical staining of MCT4 in the epithelial tubule cells in 
normal kidney acts as a specificity control for the MCT4 antibody selected. Red 
arrows indicate the presence of specific apical staining for MCT4 in normal kidney 
epithelial tubule cells. 
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Figure 2.25 Immunohistochemical staining of RCC TMAs for MCT4 expression 
captured at x10 magnification. Representative tumours of MCT4 scoring criteria (A) 
MCT4 score 0, (B) MCT4 score 1, (C) MCT4 score 2 and (D) MCT4 score 3. 

 

  

A B 

C D 



  

94 
 

 

Figure 2.26 Kaplan-Meier DFS curves for MCT4 expression (A) Kaplan-Meier DFS 
curves for MCT4 plotted using the scoring criteria without recoding (MCT4 0 n=50, 
MCT4 1 n=49, MCT4 2 n=49 and MCT4 3 n=26) with corresponding mean DFS in 
years shown below. P=<0.001 as determined by Log-rank comparison. (B) Kaplan-
Meier DFS curves for MCT4 staining re-plotted with a score of 0 recoded as MCT4 
negative n=50, scores 1 to 2 pooled and recoded as MCT4 weak positive n=98 and 
a score of 3 recoded as MCT4 strong positive n=26. P=<0.001 as determined by 
Log-rank comparison. 

  

A B 

  Mean DFS 

MCT4 0 13.9 
MCT4 1 10.5 
MCT4 2 5.4 

MCT4 3 4.9 

Overall 11.0 

 

  Mean DFS 

MCT4 0 13.9 
MCT4 1 9.9 

MCT4 2 4.9 

Overall 11.0 

 

Score Score 
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Table 2.26 Crosstabulation of MCT4 with histopathological characteristics of RCC. 
Significance calculated by Chi-squared or Fisher’s exact test as relevant. 

 

  

  MCT4 negative MCT4 positive 

Grade 1 and 2  112 10 
Grade 3 and 4 36 16 

  
P=<0.001 

Tumour size <7cm 89 12 
Tumour size >7cm 59 14 

  
P=0.183 

Vascular invasion -ve 98 8 
Vascular invasion +ve 50 18 

  
P=<0.001 

Microcapsular invasion -ve  124 19 
Microcapsular invasion +ve 24 7 

  
P=0.188 

Micronecrosis -ve  79 8 
Micronecrosis +ve  68 17 

  

P=0.044 

Non-clear cell carcinoma 29 1 
Clear cell carcinoma 119 25 

  
P=0.036 

Non-Papillary 126 25 
Papillary 22 1 

  
P=0.105 
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Table 2.27 Cox regression analysis of combined MCT4 expression with 
histopathological characteristics of RCC. (A) Analysis performed using the ‘Enter’ 
method. (B) Analysis performed using the ‘Forward Stepwise’ (Likelihood ratio) 
vascular invasion rejected by the model as not influential. 95% CI=95% Confidence 
Interval 

 

 

Prognostic indicator  Hazard ratios 95% CI P value  

MCT4 negative 1     
MCT4 positive 1.9 1.002-3.580 0.049 
Grade 1 and 2 1 

  Grade 3 and 4 2.0 1.086-3.502 0.025 
Size <7cm 1 

  Size >7cm 2.5 1.338-4.383 0.002 
Vascular invasion -ve 1 

  Vascular invasion +ve 1.6 0.822-2.969 0.173 
Capsular invasion -ve 1 

  Capsular invasion +ve 1.9 1.035-3.427 0.038 
Micronecrosis -ve 1 

  Micronecrosis +ve 3.2 1.701-6.178 <0.001 
 

A 

Prognostic indicator  Hazard ratios 95% CI P value  

MCT4 negative 1     
MCT4 positive 2.1 1.125-3.913 0.020 
Grade 1 and 2 1 

  Grade 3 and 4 2.2 1.219-3.845 0.008 
Size <7cm 1 

  Size >7cm 2.7 1.556-4.761 <0.001 
Capsular invasion -ve 1 

  Capsular invasion +ve 2.1 1.143-3.694 0.016 
Micronecrosis -ve 1 

  Micronecrosis +ve 3.3 1.720-6.241 <0.001 
 

B 
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Figure 2.27 Correlation of MCT4 with CAV1 expression and Kaplan-Meier DFS 
analysis. (A) Cross tabulation of MCT4 and CAV1 expression in RCC tumour cores. 
No significant correlation P=0.103 as determined by Chi-squared. (B) Kaplan-Meier 
DFS curves plotted for MCT4 and CAV1 expressed as a composite variable (MCT4 
–ve/CAV1 –ve n=59, MCT +ve/CAV1 –ve n=6, MCT4 -ve/CAV1 +ve n= 89, MCT4 
+ve/CAV1 n=20) mean disease free survival shown below. P=<0.001 as determined 
by Log-rank comparison. 

  

  Cav-1 negative Cav-1 positive 

MCT4 negative 59 89 

MCT4 positive 6 20 

  

P=0.103 
 

A 

B 

  Mean DFS 

MCT4 -ve/Cav-1 -ve 16.2 
MCT4 +ve/Cav-1 -ve 2.3 
MCT4 -ve/Cav-1 +ve 8.6 

MCT4 +ve/Cav-1 +ve 5.1 

Overall 11.0 

 

Score 
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Table 2.28 Crosstabulation of MCT4 and CAV1 expression with histopathological 
characteristics of RCC. Significance calculated by Chi-squared or Fisher’s exact test 
as relevant. 

 

  

  All other tumours MCT4 +ve/Cav-1 +ve 

Grade 1 and 2  116 6 
Grade 3 and 4 38 14 

  
P=<0.001 

Tumour size <7cm 91 10 
Tumour size >7cm 63 10 

  
P=0.438 

Vascular invasion -ve 101 5 
Vascular invasion +ve 53 15 

  
P=<0.001 

Microcapsular invasion -ve  130 13 
Microcapsular invasion +ve 24 7 

  
P=0.033 

Micronecrosis -ve  82 5 
Micronecrosis +ve  71 14 

  

P=0.025 

Non-clear cell carcinoma 29 1 
Clear cell carcinoma 125 19 

  
P=0.103 

Non-Papillary 132 19 
Papillary 22 1 

  
P=0.220 
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Table 2.29 Cox regression analysis of MCT4 and CAV1 expression with 
histopathological characteristics of RCC. Analysis performed using the ‘Enter’ 
method. Both MCT4 and CAV1 expression and vascular invasion rejected by the 
‘Forward Stepwise’ (Likelihood ratio) model as not influential. 95% CI=95% 
Confidence Interval. 

 

  

Prognostic indicator  Hazard ratios 95% CI P value  

MCT4/Cav-1 negative 1     
MCT4/Cav-1 positive 1.5 0.730-2.886 0.289 

Grade 1 and 2 1 
  Grade 3 and 4 2.0 1.107-3.567 0.021 

Size <7cm 1 
  Size >7cm 2.4 1.337-4.232 0.003 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.7 0.876-3.136 0.120 

Capsular invasion -ve 1 
  Capsular invasion +ve 1.9 1.058-3.496 0.032 

Micronecrosis -ve 1 
  Micronecrosis +ve 3.2 1.655-6.032 <0.001 
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2.3.8 Cavin-1 expression in RCC tumours does not identify high risk patients 

as a univariate or covariate with CAV1 

To control for the specificity of the Cavin-1 antibody selected, immunohistochemical 

staining of the endothelium of kidney tissue samples was used as a positive control, 

as expression of Cavin-1 in the endothelium has been well characterised[74] (Figure 

2.28). Immunohistochemical staining of RCC tumour cores with Cavin-1 found 

scorable positive membrane staining with positive staining to be relatively uniform 

between tumours (Figure 2.29 A and B). Hence, negative tumours were classified 

as Cavin-1 negative and positive tumours as Cavin-1 positive. Such scoring 

identified the majority of tumours (n=133) to be Cavin-1 positive and the remaining 

tumours (n=41) to be Cavin-1 negative. Kaplan-Meier DFS analysis of scoring found 

no distinction in terms of disease free survival between the two groups (P=0.598), 

with a mean DFS for Cavin-1 positive patients of 10.4 years and 11.3 for Cavin-1 

negative (Figure 2.29 C). 

Crosstabulation of Cavin-1 with histopathological characteristics of RCC found no 

correlation with any characteristic other than prevalence in clear cell carcinoma 

(P=0.016) (Table 2.30). Multivariate Cox regression analysis using the enter 

function indicated Cavin-1 positivity as not influential in predicting patient risk of 

relapse, resulting in a non-significant hazard ratio of 1.2 (P=0.664) and was rejected 

from the forward stepwise (likelihood ratio) function (Table 2.29). 

Cavin-1 correlated strongly with CAV1 in crosstabulation (P=<0.001) (Figure 2.30 

A). Kaplan-Meier DFS analysis found a mean DFS of 8.6 years for Cavin-1 

+ve/CAV1 +ve tumours, no greater than that of Cavin –ve/CAV1 +ve tumours which 

had a mean DFS of 6.3 years (P=<0.001) (Figure 2.30 B). Crosstabulation of the 

Cavin-1/CAV1 covariate with histopathological characteristics of RCC found 

correlations with increased grade (P=0.039), vascular invasion (P=<0.001), 

microcapsular invasion (P=0.011) and micronecrosis (P=0.006) and a prevalence in 
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clear cell carcinoma (P=0.010) (Table 2.32). Multivariate Cox regression analysis of 

the Cavin-1/CAV1 covariate using the enter function did not increase the associated 

hazard of Cavin-1 which remained at 1.3 (P=0.382). Using the forward stepwise 

(likelihood ratio) function Cavin-1/CAV1 was rejected as not influential to the 

analysis (Table 2.33). 

 

 

Figure 2.28 Immunohistochemical staining of cavin-1 in endothelial structures in the 
normal kidney acts as a positive control for the specificity of the cavin-1 antibody 
used. Red arrows indicate the presence of cavin-1 staining in these endothelial 
structures. Images captured at x25 magnification. 
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Figure 2.29 Immunohistochemical staining of RCC TMAs for Cavin-1 expression 
and Kaplan-Meier DFS analysis. (A) Representative Cavin-1 negative tumour core. 
(B) Representative Cavin-1 positive tumour core. (C) Kaplan-Meier DFS curves for 
Cavin-1 plotted Cavin-1 negative n=41 and Cavin-1 positive n=133 with 
corresponding mean disease free survival shown below. P=0.598 as determined by 
Log-rank comparison. 

A B 

 
Mean DFS 

Cavin -ve 11.3 
Cavin +ve 10.4 

Overall 11.0 

 

C 

Score 
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Table 2.30 Crosstabulation of Cavin-1 expression with histopathological 
characteristics of RCC. Significance calculated by Chi-squared or Fisher’s exact test 
as relevant. 

 

Table 2.31 Cox regression analysis of Cavin-1 expression with histopathological 
characteristics of RCC. Analysis performed using the ‘Enter’ method. Both Cavin-1 
expression and vascular invasion rejected by the forward likelihood ratio method as 
not influential. 95% CI=95% Confidence Interval. 

 

  Cavin negative Cavin positive 

Grade 1 and 2  29 93 
Grade 3 and 4 12 40 

  
P=0.921 

Tumour size <7cm 26 75 
Tumour size >7cm 15 58 

  
P=0.426 

Vascular invasion -ve 27 79 
Vascular invasion +ve 14 54 

  
P=0.459 

Microcapsular invasion -ve  36 107 
Microcapsular invasion +ve 5 26 

  
P=0.355 

Micronecrosis -ve  21 66 
Micronecrosis +ve  19 66 

  

P=0.782 

Non-clear cell carcinoma 13 17 
Clear cell carcinoma 28 116 

  
P=0.005 

Non-Papillary 29 122 
Papillary 12 11 

  
P=0.001 

 

Prognostic indicator  Hazard ratios 95% CI P value  

Cavin negative 1     
Cavin positive 1.2 0.603-2.213 0.664 
Grade 1 and 2 1 

  Grade 3 and 4 2.1 1.175-3.730 0.012 
Size <7cm 1 

  Size >7cm 2.3 1.292-4.047 0.005 
Vascular invasion -ve 1 

  Vascular invasion +ve 1.8 0.949-3.284 0.073 
Capsular invasion -ve 1 

  Capsular invasion +ve 2.0 1.086-3.573 0.026 
Micronecrosis -ve 1 

  Micronecrosis +ve 3.1 1.601-5.892 0.001 
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Figure 2.30 Correlation of Cavin-1 with CAV1 expression and impact on disease 
free survival. (A) Cross tabulation of Cavin-1 and CAV1 expression in RCC tumour 
cores. Significant correlation P=<0.001 as determined by Chi-squared. (B) Kaplan-
Meier DFS curves plotted for Cavin-1 and CAV1 expressed as a composite variable 
(Cavin-1 –ve/CAV1 –ve n=24, Cavin-1 +ve/CAV1 –ve n=41, Cavin-1 -ve/CAV1 +ve 
n= 16, Cavin-1 +ve/CAV1 n=93) mean disease free survival shown below. 
P=<0.001 as determined by Log-rank comparison. 

  

  Cav-1 negative Cav-1 positive 

Cavin negative 25 16 

Cavin positive 40 93 

  

P=<0.001 
 

A 

  Mean DFS 

Cavin -ve/Cav-1 -ve 14.8 
Cavin +ve/Cav-1 -ve 14.6 
Cavin -ve/Cav-1 +ve 6.3 

Cavin +ve/Cav-1 +ve 8.6 

Overall 11.0 

 

B 

Score 
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Table 2.32 Crosstabulation of Cavin-1 and CAV1 expression with histopathological 
characteristics of RCC. Significance calculated by Chi-squared or Fisher’s exact test 
as relevant. 

 

Table 2.33 Cox regression analysis of Cavin-1 and CAV1 expression with 
histopathological characteristics of RCC. Analysis performed using the ‘Enter’ 
method. Both Cavin-1 and CAV1 expression and vascular invasion rejected by the 
forward likelihood ratio method as not influential. 95% CI=95% Confidence Interval. 

 

  All other tumours Cavin +ve/Cav-1 +ve 

Grade 1 and 2  63 59 
Grade 3 and 4 18 34 

  
P=0.039 

Tumour size <7cm 49 52 
Tumour size >7cm 32 41 

  
P=0.541 

Vascular invasion -ve 61 45 
Vascular invasion +ve 20 48 

  
P=<0.001 

Microcapsular invasion -ve  73 70 
Microcapsular invasion +ve 8 23 

  
P=0.011 

Micronecrosis -ve  49 38 
Micronecrosis +ve  30 55 

  

P=0.006 

Non-clear cell carcinoma 21 9 
Clear cell carcinoma 60 84 

  
P=0.005 

Non-Papillary 64 87 
Papillary 17 6 

 
P=0.005 

Prognostic indicator  Hazard ratios 95% CI P value  

Cavin/Cav-1 negative 1     
Cavin/Cav-1 positive 1.3 0.712-2.430 0.382 

Grade 1 and 2 1 
  Grade 3 and 4 2.1 1.173-3.688 0.012 

Size <7cm 1 
  Size >7cm 2.3 1.306-4.077 0.004 

Vascular invasion -ve 1 
  Vascular invasion +ve 1.7 0.910-3.148 0.096 

Capsular invasion -ve 1 
  Capsular invasion +ve 1.9 1.062-3.493 0.031 

Micronecrosis -ve 1 
  Micronecrosis +ve 2.9 1.512-5.680 <0.001 
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2.3.9 Regression modeling of all markers conducted as both simple 

covariate and composite covariates with CAV1 finds 

CD44+ve/CAV1+ve to be the strongest indicator of poor disease 

outcome 

To understand which marker both alone and in combination with CAV1 is the most 

informative in terms of prognostic application, a Cox proportional hazard model was 

used with all covariates used entered as well as all histopathological covariates. 

This analysis found the CD44/CAV1 covariate to be the most informative marker of 

disease recurrence (P=<0.001), followed by microcapsular invasion (P=<0.001), 

grade (P=0.002), CD105/CAV1 (P=0.001), vascular invasion (P=0.010) and size 

(P=0.031) (Table 2.34). All other covariates were rejected by the model. 

 

Table 2.34 Cox proportional hazard model of time to disease recurrence using the 
forward selection function. All histopathological variables and markers alone and in 
combination with CAV1 expression entered into the model. 

 

  

Prognostic indicator  Step Chi-Square score P value  

CD44/Cav-1 1 42.35 <0.001 
Microcapsular Invasion 2 42.32 <0.001 

Grade 3 9.75 0.002 
CD105/Cav-1 4 10.79 0.001 

Vascular Invasion 5 6.71 0.010 
Size 6 4.63 0.031 
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2.4 Discussion 

The work presented in this chapter has focused on the investigation of common 

markers of CSC phenotype as indicators to identify patients at high risk of disease 

relapse and recurrence. These markers were examined alone and in combination 

with CAV1. 

 

2.4.1 CAV1 covariate 

Expression of CAV1 was found in 109 of the 174 patient tumours analysed with 

Kaplan-Meier analysis indicating a mean DFS of 8.2 years for patients with CAV1 

+ve tumours; expression of CAV1 was revealed as a poor prognostic marker. 

Furthermore, CAV1 +ve tumours could be stratified during the scoring process into 

three distinct groups, with the increased intensity of CAV1 staining reflecting a 

worse outcome (mean DFS of 5.2 years in the most intense CAV1 3 group). In 

terms of histopathology, expression of CAV1 correlated positively with the presence 

of both vascular and capsular invasion, tumour grade and micronecrosis. In terms of 

histological subtyping, CAV1 expression is predominant in clear cell carcinomas, 

constituting 68% of these tumours. It was also found in the less aggressive papillary 

carcinomas, a subtype accounting for 34% of all RCC malignancies. The 

multivariate Cox regression analysis of CAV1 (which used both enter and forward 

stepwise (likelihood ratio) functions), found CAV1 positive tumours to serve as a 

significant independent prognostic marker, similar in power to grade. These findings 

are in agreement with previous studies in which CAV1 expression in RCC is 

concluded to have a negative effect on patient outcome, with such studies using 

both overlapping[99], [117], [256] and independent[257], [258] patient cohorts to that 

described in this current work. 



  

108 
 

2.4.2 CSC marker covariates 

When analysed as simple covariates, only the markers CD44, vimentin and MCT4 

had a significant impact upon patient outcome. The markers CD146, EpCAM and 

Cavin-1 were non-significant as predictors of poor disease outcome, as both simple 

covariates and in combination with CAV1.  

 

2.4.3 CD44 covariate 

Of all the markers examined, CD44 proved to be the most significant in terms of 

prognostic outcome. Similar to other studies performed on CD44 expression in RCC 

cohorts, CD44 +ve tumours were associated with a DFS drastically reduced DFS to 

3.1 years. CD44 expression also showed a strong correlation with grade and 

presence of vascular invasion, but not microcapsular invasion, as well as 

micronecrosis. In the multivariate Cox regression model, CD44 +ve proved to be a 

potent prognostic marker with a substantial HR (2.9), which presents equivalent, but 

no greater, indication to that of other histological indices. Nevertheless, the results 

show CD44 to have potential as an independent variable of disease progression. 

These findings corroborate similar studies of CD44 expression in smaller RCC 

patient cohorts[167], [259]–[261].  

The crosstabulation of CD44 with CAV1 indicates a strong correlation between the 

two markers, with 80% of all CD44 positive tumours also positive for CAV1. The 

composite covariate of CD44 +ve/CAV1 +ve showed such tumours to be associated 

with a very poor mean DFS of 2.5 years as well as providing a stronger prognostic 

indication of disease outcome in the Cox regression analysis (HR=3.3 P=0.013 

forward stepwise). This composite covariate also proved to be the most significant 

of all covariates analysed in terms of the prediction of disease recurrence, indicating 
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its potential use as an independent prognostic marker combination for poor disease 

outcome in RCC. 

As discussed previously, CD44 plays an influential role in the invasion and 

metastasis of cancer cells[163]. For example, an in vitro study investigating the 

effect of TNF- on the invasive capacity of RCC cell lines found CD44 upregulation, 

together with the matrix metaloprotease (MMP-9), in the more invasive TNF- 

treated cells[262]. Furthermore, siRNA targeting of CD44 expression in ACHN, 786-

O and SN12PM6 cells resulted in a reduction of invasive and migratory capacity in 

these cells. The CD44 molecule has been reported to co-localise to CAV1 rich lipid 

rafts in a number of studies[171], [263], [264]. In a non-cancer study, Long et 

al.[263] investigated the uptake of the microorganism Cryptococcus neoformans by 

human brain microvascular cells. They identified co-localisation of CAV1 and CD44 

within lipid rafts, membrane domains found to facilitate the cellular uptake and 

transport of the organism; siRNA silencing of CAV1 caused a reduction in the in 

vitro transport independent of CD44 spatial expression. The reported mechanism 

involved the microorganism stimulating the phosphorylation of CAV1 in a CD44-

dependant manner. As such, a two-armed mechanism may be proposed by which 

CAV1 and CD44 interact to facilitate tumour cell vascular invasion and eventual 

metastatic disease (Figure 2.31). This could consist of stabilisation of CD44 by 

CAV1 within lipid rafts, enabling the invasive and migratory capacity of CD44 

through its regulation of MMP complexes[265] and CD44 direct binding to 

hyaluronic acid both in the ECM and in the endothelial microenvironment[266]. The 

interaction of CD44 and CAV1 may lead to subsequent phosphorylation of CAV1 

which would transduce pro-invasive cellular signalling to either support anchorage-

independent survival through a c-Src/CAV1/Grb7 signalling complex[267] or aid in 

the rapid turnover of focal adhesion sites[116]. 
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Figure 2.31 Putative model for CD44/CAV1 driven invasion. Co-localisation of 
CD44 to CAV1 in lipid rafts enables both the activation of CD44 and CD44 
phosphorylation of CAV1. Activation of CD44 results in modulation of MMP 
regulation and interactions with ECM, while CAV1 phosphorylation results in the 
upregulation of anchorage independent survival through the CAV1/Src/GrB7 
complex and increased migration through upregulated focal adhesion turnover. 

 

2.4.4 MCT4 covariate 

Immunoprobing of RCC tumour cores for MCT4 expression found distinct patient 

groups to be negative, weakly positive and strongly positive. MCT4 –ve tumours 

were associated with an improved prognostic outcome. Patients displaying strong 

membrane associated staining had the poorest outcome, with mean DFS of 4.2 

years. These tumours also correlated strongly with the histopathological parameters 
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of increased grade, vascular invasion and micronecrosis. Such a correlation with 

micronecrosis may help to indicate tumours of higher metabolic activity, due to more 

efficient removal of lactate by MCT4[238]. No correlation was observed between 

MCT4 expression and the histological subtypes. Cox regression analysis found 

MCT4 to be an independent prognostic marker capable of identifying poor patient 

outcome (HR=2.1). No significant correlation was detected between CAV1 and 

MCT4. The composite covariate MCT4/CAV1 found no synergistic effect on DFS, 

which remained similar to that of the MCT4 +ve/CAV1 -ve tumours. Cox regression 

analysis of the MCT4/CAV1 covariate was not significant and failed to identify a 

poorer prognostic outcome, than that of either of the two markers alone. These 

findings were in agreement with previous epigenetic[237] and immunohistochemical 

studies[239], identifying poor disease outcome associated with MCT4 expression in 

RCC patients. These outcomes further help strengthen the use of MCT4 as a 

prognostic marker of poor disease outcome and MCT4 as a target for a molecular 

inhibitor approach for treatment of RCC. 

Much of the research regarding MCT4 and CAV1 has been conducted into the 

relationship of CAV1 and MCT4 in stromal cells of tumours, particularly in 

malignancies of the breast, in which loss of CAV1 expression and gain in MCT4 

expression seems to be important in the progression from an in situ to an invasive 

breast carcinoma[268]. In this work it appears that MCT4 and CAV1 constitute 

independent non-synergistic risk factors. 

2.4.5 Vimentin covariate 

The immunoreactivity of the intermediate filament protein vimentin found RCC 

patient tumours to be either positive or negative for the marker. Patient tumours 

positive for vimentin displayed a slightly decreased mean DFS of 8.9 years. 

Expression of vimentin only correlated with grade, and no other histopathological 

characteristic. Further vimentin was not significant as a prognostic indicator in the 
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Cox regression analysis. Crosstabulation of vimentin with CAV1 found a trend 

between the two markers approaching significance (P=0.065). Use of the two 

markers as a compound covariate to explore the effect upon DFS found the 

vimentin/CAV1 composite covariate not to be indicative of a poorer mean DFS 

compared to CAV1 expression alone. The covariate did correlate with microcapsular 

invasion, although this is also evident for CAV1 expression alone, which identified a 

larger proportion of positive patients (84% of patients showing CAV1 positivity also 

had evidence of microcapsular invasion). As a covariate in the Cox regression 

analysis, vimentin/CAV1 was unable to identify patients at greater risk of poor 

disease outcome (HR=1.6). It appeared that while vimentin does indicate a reduced 

DFS by itself, it did not strongly correlate with any of the pathological characteristics 

of RCC, such as invasion, the mechanism through which vimentin is thought to have 

a major structural role[269]. In order to strengthen the prognostic significance of 

vimentin, it may be of benefit to examine the co-expression of vimentin with other 

molecules involved in intermediate filament facilitated invasion, such as plectin. 

Plectin has been found to be upregulated in highly invasive bladder cancer cells, 

where it interacts with vimentin to generate and anchor to invadopodia[270]. 

 

2.4.6 CD105 covariate 

CD105 has previously been identified as a putative marker for CSC cells in 

RCC[61]. In this work CD105 had no impact on DFS, nor did it correlate with any of 

the histopathological features of the disease or be indicative of a poor disease 

outcome. However, the majority of CD105 positive tumours were also positive for 

CAV1 (54% P=0.075). Kaplan-Meier analysis of the CD105/CAV1 composite 

covariate found CD105 +ve/CAV1 -ve tumours to identify a significantly decreased 

DFS of 5.7 years, and correlating only with the presence of micronecrosis as well as 

being the fourth most predictive marker of poor disease outcome in the multivariate 
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analysis. While CD105/CAV1 indicated poor disease outcome, it did not correlate 

with any of the major pathological features that would indicate a metastatic event 

has taken place, suggesting that analysis of CD105 and CAV1 composite 

expression in RCC tumours may have some prognostic value in cases where there 

is a no observable localised invasion, either vascular or more significantly 

microcapsular. Tumours carrying the CD105/CAV1 marker combination might 

indicate progression of the tumour toward increased vascularisation, as both CAV1 

and CD105 have been implicated as important to angiogenesis and increased 

microvessel density[130], [183]. 

 

2.4.7 Other markers 

The markers EpCAM, CD146 and Cavin-1 failed to demonstrate significance in 

identifying patients with poor clinical outcome, either alone or in combination with 

CAV1. Positive staining for EpCAM was found in the majority of patients analysed 

and was not indicative of patient DFS. Though the expression of Cavin-1 not 

surprisingly correlated with CAV1, by itself Cavin-1 was not capable of identifying a 

worse disease outcome either alone or in combination with CAV1, suggesting that 

the prognostic ability of CAV1 is independent of Cavin-1 expression. 

 

In conclusion, the CSC markers CD44 and CD105 worked in combination with 

CAV1 expression, to better identify patients at high risk of a poor disease outcome, 

and could provide additional prognostic indications in the case where common 

pathological features might not be readily accessible or apparent. In particular 

CD44, proved to be a potent marker alone in the identification of patient groups at 

high risk of metastatic disease, a feature only strengthened by combinatorial 

analysis with CAV1, making it an obvious target for therapeutic intervention. The 
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presence of MCT4 expression was observed and found to be indicative of poor 

disease free survival, correlated with features of poor disease outcome and could 

act as an independent marker of poor prognosis. Such findings supported those of 

other groups and strengthened the case for therapeutic intervention of lactate efflux 

by pharmacological targeting of MCT4.  
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Chapter 3 - Identification and clonogenic 

evaluation of sub-populations of renal cell 

carcinoma cells dependant on the expression 

of cancer stem cell related markers   
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3 Identification and clonogenic evaluation of sub-

populations of renal cell carcinoma cells dependant on 

the expression of cancer stem cell related markers  

 

3.1 Introduction 

3.1.1 Identification and isolation of cancer stem cell populations  

Identification and separation of cancer stem cell (CSC) populations from the bulk of 

a tumour or cell line population can be performed in a number of ways[271]. Many 

of the methods used to test for the functional ability of CSCs are based on the main 

hallmarks of CSC activity, such as clonogenicity and resistance to cytotoxic agents. 

Clonogenicity relates to the ability of CSCs to self-renew giving rise to a CSC and a 

more differentiated daughter cell. These assays can use a variety of methodologies: 

generation of colonies when whole cell populations are seeded at low density in 

adherent culture conditions, formation of tumour spheroids in non-adherent 

conditions again when seeded at low density or tumour generation when serially 

transplanted into immunodeficient mouse models (such methodologies are reviewed 

here[271]). 

 

Identification of CSC populations by resistance to cytotoxic compounds is 

accomplished through the use of DNA binding dyes which are also the substrates of 

drug efflux pumps. Such efflux pumps tend to be upregulated in stem cell and CSC 

populations, therefore cells that have an increased capacity to efflux these drugs 

can be detected by flow cytometry and sorted from the bulk population[272]. A 

similar technique can also be used that exploits increased aldehyde dehydrogenase 

(ALDH) activity, a characteristic of increased resistance to cytotoxicity, in CSC and 
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stem cell populations[273]. The reliance of these approaches on the functional 

characteristics of CSCs helps to generate a large population of cells all with 

generally the same trait, be it upregulated self-renewal or relative chemoresistance. 

However, cell populations isolated this way may still exhibit a higher degree of 

heterogeneity. As such CSC identification and isolation often involves the use of 

specific cell surface markers common to many types of stem cell populations of 

embryonic, mesenchymal and adult types. This method, generally carried out using 

multi-colour flow cytometry, allows for the accurate identification of subpopulations 

within cell lines and tumours based on a panel of surface markers of the 

experimenter’s choosing, typically using around one to three different markers. 

Once subpopulations have been identified, these cells then can be sorted from the 

bulk of the population through fluorescence activated cell sorting (FACS) to 

generate highly pure cell populations with respect to the panel of markers originally 

selected. 

 

Both of these methods are advantageous when trying to identify CSC populations 

and as such the decision was made to incorporate both the FACS method of sorting 

based on cell surface marker expression to identify potential CSC or stem-like 

subpopulations and the use of colony formation assays to measure the clonogenic 

capacity of these subpopulations. Subsequently, further investigations were carried 

out to determine what function CAV1 may fulfil in the clonogenicity of these 

populations. 
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3.1.2 Putative CSC surface marker panel 

In an effort to isolate the most potent CSC or stem-like cells, it was decided that it 

would be most advantageous to incorporate as many markers into the antibody 

panel as possible. Using the FACSAria III it was possible to assay for eight different 

surface markers simultaneously. Markers included in the panel were selected based 

on their ability to identify embryonic, mesenchymal and cancer stem cell 

populations. Many of the markers explored for their prognostic capabilities were 

again selected for their physiological in vitro activity: CD44, CD105, EpCAM and 

CD146. Additional markers were selected based on their previous ability to identify 

and functionally influence MSC activity. The markers selected for analysis are 

described below. 

3.1.3 CD44 

As discussed in chapter 2, CD44 defines a large family of transmembrane 

glycoproteins, which function as a receptor for hyaluronic acid as well as other 

constituents of the extracellular matrix (ECM). Expression of CD44 has been 

identified as important in the disease progression of many tumour types. The 

abundance of hyaluronic present in stem cell niches[274] has led to the  use of 

CD44 as a common marker for CSC populations.  

CD44 positive CSC populations have been discovered in tumours from the 

breast[275], stomach[276], pancreas[277], lung[278] and head and neck[279]. It is 

important to note that CD44 may not only act as a signpost for a stem-like 

phenotype but may also play a functional role in the pathology of these tumours. In 

head and neck squamous cell carcinoma Shigeishi et al.[280] discovered that in 

CD44+ populations CD44 was required for glycogen synthase kinase 3 (GSK3 

activation by inhibiting its phosphorylation. Down-regulation of CD44 in these cells 

resulted in decreased tumourigenicity in severe combined immunodeficienct (SCID) 

mice as well as an up-regulation of an epithelial phenotype and a down-regulation of 
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self-renewal markers Oct4, Sox2 and nanog. Bourguignon et al.[281] demonstrated 

an important role for the interaction of CD44 with HA in both breast and ovarian 

cancer cell lines. Their studies found that binding of HA to CD44 induced the 

localisation and activation of the stem cell transcription factor Nanog and triggering 

the expression of Rex1 and Sox2; regulators of stem cell pluripotency. Further to 

this, they found Nanog capable of binding Stat-3 in the nucleus thereby facilitating 

the up-regulation of the multidrug transporter MDR1. This demonstrated the ability 

of CD44 to regulate multiple processes implicit to the CSC phenotype. The ability for 

CD44 to not only identify CSC populations in a number of tumours but also to act as 

a crucial factor in the maintenance of such a phenotype made it a clear candidate 

for inclusion in the putative CSC marker panel. 

 

3.1.4 CD105 

In addition to the functions of CD105 in tumour angiogenesis and cellular migration 

(as discussed in chapter two), CD105 is now frequently used as a marker for the 

isolation of mesenchymal stem cells (MSCs)[282]. Using CD105, MSCs have been 

isolated from human bone marrow[283] as well as adipose, liver and cardiac 

tissues[284].  

Such MSCs have also been found to be present in the adult human kidney[285]. 

This discovery led Bussolati et al.[61] to hypothesise the existence of a CD105+ 

MSC-like population of CSCs within renal carcinomas and indeed tumourigenic 

CD105+ populations were subsequently identified within clinical tumour samples. 

These CD105+ cells demonstrated clonogenic ability, expression of the common 

stem cell markers nestin, nanog and Oct4 together with a down-regulation in both 

epithelial markers and the ability to differentiate into epithelial and endothelial 

lineages. Using this same CD105+ CSC population, Azzi et al.[286] were able to 
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induce epithelial differentiation in these cells which showed a significantly reduced 

capacity for drug resistance compared to untreated cells. CD105’s ability to 

specifically identify potent CSC populations within RCC led to its inclusion in the 

putative CSC panel. 

 

3.1.5 CD90 

The classical use of CD90 as a marker for HSCs and MSCs[287] has naturally led 

to its use in the identification of CSCs. Wang et al.[278] identified a potent sub-

population of CD90+ cells within a population of CD44+ cells from small cell lung 

cancer (SCLC) and large cell carcinoma cell lines. The cells displayed a 

mesenchymal morphology with increased expression of mesenchymal markers and 

increased expression of the self-renewal factors Nanog and Oct-4. Similarly, the 

combinatorial use of CD44 together with CD90 identified in hepatocellular 

carcinoma a potent CSC population that was capable of forming metastatic lesions 

in the lung[288]. Similar studies by Yang et al.[289] found CD90+ cells within all 

hepatocellular carcinoma primary samples and 91.6% of paired blood samples all of 

which were capable of generating tumour nodules in an immunodeficient mouse 

model. CD90+ CSC populations have also been isolated from esophageal cancers 

in both the primary tumours and derived cell lines[290]. Interestingly, as well as 

displaying enhanced tumourigenicity and chemoresistance these CD90+ cells also 

displayed increased invasion and migratory ability. The strong evidence for CD90’s 

use as a CSC marker especially when used in combination with CD44 merited its 

inclusion in the putative CSC panel. 
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3.1.6 CD146 

In addition to the substantial role CD146 appears to play in the aetiology of 

melanoma (discussed in Chapter 2), CD146 has been used as a potent marker of 

MSC populations. A study by Baksh et al.[291] identified CD146 as a robust marker 

for human umbilical cord perivascular cells (HUCPVCs). These cells were much 

more proliferative with increased pluripotency compared to bone marrow 

mesenchymal stromal cells (BMSCs). Another study found the CD146+ perivascular 

cells shared a similar gene expression profile and functional biological activity to 

that of MSCs, further strengthening the case for CD146 as a putative MSC 

marker[292]. Additional studies went on to establish CD146 as a marker for MSCs 

capable of tri-lineage differentiation[293] and increased expression of CD146 

correlated with a greater capacity for differentiation[294]. 

In addition to the significance of CD146 in MSC identification, a role for CD146 in 

embryonic organ development has been suggested. Overall comparison of CD146 

expression between embryonic and mature tissues demonstrated much higher 

expression of CD146 in the embryonic nervous system[295], trachea[296], and 

kidney[297] which was then lost in the adult tissue[298]. Observations made in chick 

embryos relating to the involvement of CD146 in kidney development found high 

levels of CD146 expression and conversely, most cell types of the mature kidney 

showed active suppression of CD146 expression[297]. These CD146 positive 

embryonic kidney cells showed a far higher propensity for aggregation in cell-

aggregation assays, suggesting a possible role in the structural modelling of the 

newly forming kidney[299]. 

Despite the properties mentioned above, CD146 has not been widely adopted as a 

marker of CSCs in any tumour. It was however found to be expressed on the 

CD105+ population of renal CSCs identified by Bussolati et al.[61] Furthermore, 

Zeng et al. demonstrated that the up-regulation of CD146 in epithelial breast cancer 
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cells resulted in the induction of EMT and in pronounced mamosphere 

formation[300]. The ability for CD146 to identify subpopulations of MSCs with 

increased proliferative and pluripotent capacity points towards the possibility that 

CD146 may be a potent and as of yet untapped resource for CSC identification and 

purification. 

 

3.1.7 EpCAM 

While in adult tissues EpCAM expression is restricted to the epithelia, in the embryo 

expression of EpCAM can be found in embryonic stem cells (ESCs) not yet 

committed to epithelial differentiation[301]. Indeed, compelling evidence seems to 

suggest an important role for EpCAM in the maintenance of the ESC phenotype by 

maintaining the expression of key self-renewal related transcription factors such as 

Oct-4 and c-Myc[302]. 

These findings have led to the use of EpCAM in identification of CSC populations. 

So far EpCAM has been used in combination with CD44+ or CD44+/CD24- to identify 

CSCs from breast[275], colorectal[136] and pancreatic carcinomas[60]. 

Investigations into the mechanism of EpCAM as a potential signalling molecule 

have revealed interaction with -catenin and Lef-1. Regulated intra-membrane 

proteolysis (RIP) of the cytosolic domain of EpCAM generates a peptide termed 

EpICD, this is then trafficked into the nucleus as a complex with -catenin and lef-1 

which up-regulates proliferative genes[303].  

Strong evidence for the role EpCAM plays in embryonic self-renewal, its 

overexpression in numerous cancers (further discussion in chapter 2) and its 

successful use as a surface marker able to identify CSCs from multiple tumour 

types made it a strong candidate for inclusion into the putative CSC marker panel. 
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3.1.8 CD117 

CD117, or c-kit, is a 120 kDa cytokine receptor and member of the type III receptor 

tyrosine kinase family[304]. CD117 has found use as a marker for haematopoietic 

progenitor cell lineages in bone marrow, where it has been found to play a critical 

role in the proliferation, survival and differentiation of these cells[305]. CD117 

expression is evident in human primordial germ cells and foetal ovaries[306] and as 

a potent marker for mouse prostate stem cells[307]. 

As with many markers selected for this panel, aberrations in CD117 expression 

have implications in cancer progression. Gain of function mutations have been 

observed to form tumours in gastrointestinal stromal cells, mast cells and germ 

cells[308], [309]. Due to the prevalent expression of CD117 in embryonic germ cells 

the protein has attracted attention in ovarian carcinoma. In this context when used 

as a single marker, CD117 has previously enriched for a population of tumour cells 

capable of generating tumours in a third of immunodeficient mouse models[310].  

Immunohistochemical analysis of CD117 expression in a range of histological 

subtypes of RCC revealed that expression is confined almost exclusively to those 

tumours of a chromophobe or oncocytoma subtype[311]. While no great degree of 

expression was observed in the clear cell subtype (cell lines of which the following 

experiments were performed on), it does not preclude the possibility that a small 

subpopulation of CD117 may exist within RCC cell lines. As such CD117 was 

included in the marker panel. 
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3.1.9 CD29 and CD73 

CD29 and CD73 comprise the final additions to the panel. CD29, or integrin 1 is an 

integrin subunit capable of binding to a variety of  subunit to generate several 

different heterogeneous integrin complexes. Together with CD44 the positive 

expression of CD29 has been used in squamous cell carcinoma to identify CSC 

populations with increased drug resistance and displaying up-regulation of EMT 

markers[138]. In the Braca1-associated mouse model of breast cancer, CD29 when 

used in combination with CD24 and CD49f identified a population of CSCs with 

enhanced metastatic capacity[312]. CD73, also known as ecto-5’-nucleotidase, is a 

cell surface nucleotidase which facilitates the conversion of AMP to adenosine. 

Together they are commonly used for the isolation and purification of MSCs from a 

variety of different tissue types[313]. CD73 has not been directly used to identify 

CSC populations but it is widely used to distinguish multiple types of MSCs[313]. 

Not only this but it appears to play a role in aiding the escape of cancer cells from 

immune surveillance through the generation of adenosine[314]. This leads to the 

interesting possibility that CD73 may be able to identify CSC populations not only 

capable of supporting the growth and resistance of the tumour but also enable 

escape from the clearance of malignant cells by the immune system. 

 

3.1.10 Aims 

This chapter aims to identify putative CSC subpopulations from the RCC cell lines 

786-O, A498 and CAKI-1 and evaluate their clonogenic potential by a colony 

formation assay. To achieve this, a panel of cell surface proteins commonly 

expressed on mesenchymal, embryonic and cancer stem cells were used. These 

surface markers were identified and quantified using flow cytometry and a gating 

hierarchy was generated with the intention of identifying common subpopulations 

between all three cell lines. Subsequently, cells were sorted and placed into colony 
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formation assays to establish the clonogenicity of common subpopulations in each 

cell line. 
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3.2 Materials and methods 

3.2.1 Cell lines 

Clear cell renal cell carcinoma cell lines included: 786-O (obtained from the ATCC) 

cultured in DMEM (Life Technologies) supplemented with 10% FBS and 1% 

penicillin/streptomycin (Life Technologies); A498 and CAKI-1 cells ATCC cultured in 

RMPI similarly supplemented. All cell lines were cultured at 37oC with 5% CO2.  

 

3.2.2 Flow cytometry and sorting 

786-O, A498 and CAKI-1 cells grown to ~80% confluence were washed twice in 

PBS and disaggregated by incubation with Accutase (Life Technologies) for 10 

minutes at 37OC. Cells were then resuspended in their respective growth media, 

counted and resuspended to 1,000,000 cells in 60L of PBS containing 5% FBS 

and treated with an antibody cocktail containing 5L of each of the antibodies 

corresponding to the marker in the putative CSC panel (Table 3.1) and left to 

incubate with the cells at 4OC for 30 minutes in the dark to prevent photobleaching. 

The cell suspension was then washed twice in 1mL of PBS with 5% FBS and 

adjusted to a final volume of 500L. Flow cytometry analysis and cell sorting was 

carried out using a FACSAria III (BD Biosciences). When conducting flow cytometric 

studies containing multiple different fluorophores it is important to select 

fluorophores which would demonstrate the least amount of spectral overlap. This 

was done through both selecting fluorophores with minimal overlap in their emission 

wavelength range (as illustrated in Figure 3.1 and Figure 3.2) and using the 

automatic compensation system in the FACSDiva acquisition software to apply a 

real-time compensation matrix. When selecting fluorophores, where ever possible 

the brightness of a fluorophore was matched to the predicted expression levels of 
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the markers selected. Therefore, a marker predicted to have weak expression would 

be targeted by an antibody conjugated to a bright fluorophore. 

 

Figure 3.1 Spectral overview of fluorophores selected for flow cytometry analysis. 
(A) Shows fluorophores excited by the 408nm laser and their subsequent emission 
range (B) shows the same for the 488nm laser.  

A 

B 
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Figure 3.2 Spectral overview for fluorophores excited by the 635nm laser selected 
for flow cytometry analysis. 

 

To account for spectral overlap of the selected fluorophores each antibody in the 

panel was incubated with Anti-mouse Ig  CompBeads (BD Biosciences) for 30 

minutes at 4OC. Then each antibody/bead conjugate was analysed individually on 

the FACSAria and through the FACSDiva acquisition software a compensation 

matrix was constructed allowing for real-time compensation to be applied to the 

stained cell lines during sample preview and acquisition. Flow cytometry data 

provided represents 500,000 registered events per sample, percentages of 

subpopulations frequencies are calculated as calculated as number of cells 

identified by the given marker combination divided by total number of cells after 

gating for single cells.  
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Table 3.1 Fluorophore conjugated antibody panel corresponding to markers 
selected for flow cytometry analysis. All antibodies selected were isotype IgG1- 
and of mouse origin. 

 

3.2.3 Colony formation assay 

All cell populations were sorted into 6-well plates already containing 2mL of their 

respective growth media at a density of 400 cells per well. After two weeks of 

incubation growth media was removed and the wells were washed twice with 1mL 

of PBS. Colonies were then stained for five minutes in a 0.5% solution of crystal 

violet containing 25% methanol to fix and stain the colonies. The crystal violet 

solution was then aspirated by pipette and the remaining crystal violet solution 

washed away by submersion of the plate into multiple changes of water. Colonies 

were counted macroscopically with a colony being judged to contain more than 30 

cells.  

 

3.2.4 Statistical analysis 

Analysis of two groups was performed by Student’s t-test (unpaired) and analysis of 

multiple groups carried out by one-way ANOVA with a Tukey post-hoc analysis 

(comparison across all pairs of groups). Statistical differences were deemed 

significant at the P0.05 level.  

 

Marker Fluorophore Supplier Product code 

CD90 PE BD Biosciences 555596 
CD146 PE-Cy7 BD Biosciences 562135 
CD44 Alexa Flour 700 BD Biosciences 561289 
CD105 APC Invitrogen MHCD10505 
EpCAM PerCP-Cy5.5 BD Biosciences 347199 
CD117 PE-CF594 (derivative of PE-Texas red) BD Biosciences 562407 
CD29 APC-Cy7 Biolegend 303014 
CD73 Pacific Blue Biolegend 344012 
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3.3 Results 

3.3.1 Identification of sub-populations within RCC cell lines 

In order to generate a gating hierarchy based on the expression of CSC related 

surface markers, first single marker histograms were obtained to look for any 

observable subpopulations. Single marker histograms showed heterogeneity of 

certain CSC-related cell surface markers in 786-O, A498 and CAKI-1 cell lines. In all 

three cell lines there appeared to be a relatively small CD90high population in all 

three RCC cell lines CAKI-1 (Figure 3.3). CD146 followed a similar pattern in having 

both CD146low and CD146high expression. However, while A498 and CAKI-1 

revealed a minority CD146high population, the majority of 786-O cells were CD146high 

(Figure 3.3). Expression of CD44 and CD105 in both 786-O cells and A498 cells 

appeared to be uniformly high, while CAKI-1 cells appeared to display more of a 

bimodal distribution with CD44high and CD105high cells representing the bulk of the 

population. Interestingly, overall expression of CD105 appeared much lower in 786-

O and A498 compared to CAKI-1. EpCAM and CD117 showed a uniformly low 

expression in 786-O and A498 cells (Figure 3.4). In CAKI-1 there was an EpCAMhigh 

and CD117high population, though in the case of CD117 this was caused by spectral 

overlap of EpCAM PerCP-Cy5.5 into the PE-Texas Red channel which could not be 

completely compensated for. In all three cell lines CD29 was highly expressed 

(Figure 3.4). CD73 expression was low in 786-O, A498 and CAKI-1. However, 

CAKI-1 cells had a small proportion of cells with higher CD73 expression. Due to 

these observations the gating hierarchy for subsequent work was constructed. As 

both CD90 and CD146 showed substantial subpopulations in all three cell lines, 

they formed the first tier of the gating hierarchy as CD90/CD146. CD105/CD44 then 

formed the second tier owing to the subpopulations apparent in the CAKI-1 cells. 

Following this was the EpCAM/CD117 tier, due to the presence of an EpCAMHigh 
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population in CAKI-1 cells. The final tier was CD73/CD29, the most homogeneous 

markers. 

 

Figure 3.3 Single marker histograms of cell surface CSC markers (red histograms) 
CD90, CD146, CD44 and CD105 against unstained cells (blue histograms) in 786-O 
(left), A498 (middle) and CAKI-1 (right). Data acquired from 500,000 events of cells 
gated in FSC-A/SSC-A for live cells and FSC-A/FSC-H for single cells. Data shown 
for one of three experiments. 
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Figure 3.4 Single marker histograms of cell surface CSC markers (red histograms) 
EpCAM, CD117, CD29 and CD73 against unstained cells (blue histogram) in 786-O 
(left), A498 (middle) and CAKI-1 (right). Data acquired from 500,000 events of cells 
gated in FSC-A/SSC-A for live cells and FSC-A/FSC-H for single cells. Data shown 
for one of three experiments. 
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3.3.2 Subpopulation heterogeneity in RCC cell lines 

Using the data gathered by single marker histogram analysis a gating hierarchy was 

constructed (Figure 3.5). Cell populations were gated by use of box gates; this 

allowed for a greater degree of spatial separation between high and low marker 

expression (as opposed to quadrant gating) and more precise sorting as it enabled 

the gating of events that were spatially separated by at least 0.25 logs of 

fluorescence. Such an approach should serve to identify any distinct biological 

function that may be dependent upon a larger degree of upregulation or 

downregulation of the marker in question and also facilitates the collection of more 

pure high and low populations. To ensure only live single cells were analysed and 

sorted, cells were first gated on forward scatter area (FSC-A) and side scatter area 

(SSC-A) then forward scatter height (FSC-H) and forward scatter area (FSC-A) to 

identify single cells (Figure 3.6) and finally forward gated into the surface marker 

hierarchy (Figure 3.5). 
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Figure 3.5 Gating hierarchy used for sorting of subpopulations from all three RCC 
cell lines. Each tier in the hierarchy indicates a forward gating step in the FACsdiva 
software package.  
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3.3.2.1 786-O and A498 subpopulation heterogeneity 

In all three cell lines the marker combination of CD146/CD90 identified three distinct 

subpopulations. In the 786-O cells these subpopulations were CD146Low/CD90Low 

(10.05% ±2.60%), CD146High/CD90Low (69.84% ±5.42%) and CD146High/CD90High 

(0.98% ±0.22%) (Figure 3.6) (Table 3.2). A498 cells contained the same three 

subpopulations though the distribution of these subpopulations was altered in terms 

of CD146; there was a more abundant CD146Low/CD90Low population (65.84% 

±7.56%) with a consequential decrease in the proportion of cells in the 

CD146High/CD90Low population (6.23%) (Figure 3.7). It was also possible to detect a 

subpopulation of cells CD90High/CD146Low (0.87% ±0.21%). Forward gating of both 

786-O and A498 CD146Low/CD90Low, CD146High/CD90Low and CD146High/CD90High 

revealed no further subpopulations in the remaining marker combinations of the 

gating hierarchy. 

 

Table 3.2 The frequency of detectable subpopulations in 786-O based on the 
expression of CSC marker panel. Data represent mean ± standard deviation of 
three experiments. 

786-O 

Subpopulation Percentage of single cell gate 

CD90High/CD146High 10.05% ±2.60% 
CD90Low/CD146High 69.84% ±5.42% 
CD90Low/CD90Low 0.98% ±0.22% 

 

Table 3.3 The frequency of detectable subpopulations in A498 based on the 
expression of CSC marker panel. Data represent mean ± standard deviation of 
three experiments. 

 A498 

Subpopulations Percentage of single cell gate 

CD90High/CD146Low 0.87% ±0.21% 
CD90Low/CD146High 6.23% ±0.68% 
CD90Low/CD146Low 65.84% ±7.56% 
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Figure 3.6 Identification of CD90/CD146 subpopulations in 786-O WT cells by flow 
cytometry. Data represented as bivariate dot-plots of two markers each. Cells were 
forward gated from CD90/CD146 into CD44/CD105, then CD117/EpCAM, and 
finally CD73/CD29. Data was acquired from 500,000 events. Data shown for one of 
three experiments. 



  

137 
 

 

Figure 3.7 Identification of CD90/CD146 subpopulations in A498 WT cells by flow 
cytometry. Data represented as bivariate dot-plots of two markers each. Cells were 
forward gated from CD90/CD146 into CD44/CD105, then CD117/EpCAM, and 
finally CD73/CD29. Data was acquired from 500,000 events. Data shown for one of 
three experiments. 
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3.3.2.2 CAKI-1 subpopulation heterogeneity 

CAKI-1 also showed the same three distinct CD90/CD146 subpopulations with the 

majority being CD146Low/CD90Low (71.62% ±4.07%), as found in A498, with the 

other two populations being a CD146High/CD90Low population (19.73% ±3.83%) and 

a CD146Low/CD90High (1.43% ±0.62%) subpopulation (Figure 3.8 & Table 3.4 A).  

CAKI-1, unlike 786-O and A498, displayed further subpopulation heterogeneity 

when CD90/CD146 subpopulations were forward gated. Forward gating into a 

bivariate plot of CD44 and CD105 markers revealed additional CD44Low/CD105Low 

and CD44High/CD105High populations each of which had different frequencies 

depending on the CD90/CD146 status of the parent subpopulation (Figure 3.8). 

Forward gating of the CD146Low/CD90High population resulted in a population of 

CD44Low/CD105Low (0.13% ±0.09%) and a population of CD44High/CD105High (1.23% 

±0.34%). The forward gating of CD146Low/CD90Low population into CD44/CD105 

revealed the same CD44Low/CD105Low (61.93 ±5.12%) and CD44High/CD105High 

(0.16% ±0.42%) subpopulations. In these subpopulations the distributions were 

skewed more towards the CD44High/CD105High population (84.68% of the cells from 

the previous gate) with the CD44Low/CD105Low population remaining stable (6.52% 

of cells from the previous gate). Forward gated CD146High/CD90Low populations 

showed a near complete loss of the CD44Low/CD105Low population that was present 

in the other CD146/CD90 subpopulations, resulting in only CD44High/CD105High cells 

(0.16% ±0.42%) (Figure 3.8 Table 3.4 B). 

Further forward gating from the CD44/CD105 tier into the next level of the gating 

hierarchy, CD117 and EpCAM, revealed no further heterogeneity in the 

CD146Low/CD90HighCD44Low/CD105Low and CD146Low/CD90HighCD44High/CD105High as 

well as the CD146Low/CD90Low/CD44Low/CD105Low population. However the 

CD146Low/CD90Low/CD44High/CD105High and CD146High/CD90Low/CD44High/CD105High 

populations contained an EpCAMLow and EpCAMHigh population, 46.90% ±6.89% 
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and 6.42% ±3.43% respectively. This population was also present in the 

CD146High/CD90Low/CD44High/CD105High population (0.76% ±0.45%) (Figure 3.8 

Table 3.4 C). 

In the final CD73/CD29 tier the CD90High/CD146Low lineages all resulted in 

CD73Low/CD29High populations. However, in the CD44Low/CD105Low population of the 

CD146Low/CD90Low lineage the majority of cells were CD29Low. These three 

subpopulations displayed relatively little expression of CD73. In contrast, the 

subpopulations generated from the CD146Low/CD90Low and CD146High/CD90Low all 

expressed high levels of CD29 and expressed moderate to high amounts of CD73 

(Figure 3.8 Table 3.5). 
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Table 3.4 The frequency of detectable subpopulations in CAKI-1 based on the 
expression of CSC marker panel. (A) CD90/CD146 tier (B) CD44/CD105 tier (C) 
EpCAM/CD117 tier. Data represent mean ± standard deviation of three 
experiments. 

A – Tier 1  CAKI-1 
Marker 
combination 

Subpopulation Percentage of 
single cell gate 

 CD146Low/CD90High 1.43% ±0.62% 
CD90/CD146 CD146Low/CD90Low 71.62% ±4.07% 

 CD146High/CD90Low 19.73% ±3.83% 

B – Tier 2   

Marker 
combination 

Subpopulation Percentage of 
single cell gate 

 CD146Low/CD90High/CD44Low/CD105Low 0.13% ±0.09% 
 CD146Low/CD90High/CD44High/CD105High 1.23% ±0.34% 

CD44/CD105 CD146Low/CD90Low/CD44Low/CD105Low 61.93 ±5.12% 
 CD146Low/CD90Low/CD44High/CD105High 0.16% ±0.42% 
 CD146High/CD90Low/CD44High/CD105High 19.73% ±3.83% 

C – Tier 3   

Marker 
combination 

Subpopulation Percentage of 
single cell gate 

 CD146Low/CD90High/CD44Low/CD105Low/ 
EpCAMLow/CD117Low 

No further 
heterogeneity 

 CD146Low/CD90High/CD44High/CD105High/ 
EpCAMLow/CD117Low 

No further 
heterogeneity 

 CD146Low/CD90Low/CD44Low/CD105Low/ 
EpCAMLow/CD117Low 

No further 
heterogeneity 

EpCAM/CD117 CD146Low/CD90Low/CD44High/CD105High/ 
EpCAMLow/CD117Low 

46.90% ±6.89% 

 CD146Low/CD90Low/CD44High/CD105High/ 
EpCAMHigh/CD117Low 

6.42% ±3.43% 

 CD146High/CD90Low/CD44High/CD105High/ 
EpCAMLow/CD117Low 

15.51% ±2.74% 

 CD146High/CD90Low/CD44High/CD105High/ 
EpCAMHigh/CD117Low 

0.76% ±0.45% 
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Table 3.5 The frequency of detectable subpopulations in CAKI-1 based on the 
expression of CSC marker panel. (D) CD73/CD29 tier Data represent mean ± 
standard deviation of three experiments. 

D –Tier 4   

Marker 

combination 

Subpopulation Percentage of single 

cell gate 

 CD146Low/CD90High/CD44Low/CD105Low/ 
EpCAMLow/CD117Low/CD73Low/CD29High 

No further heterogeneity 
0.13% ±0.09% 

 CD146Low/CD90High/CD44High/CD105High/ 
EpCAMLow/CD117Low/CD73Low/CD29High 

No further heterogeneity 
1.23% ±0.34% 

 CD146Low/CD90Low/CD44Low/CD105Low/ 
EpCAMLow/CD117Low/CD71Low/CD29Low 

No further heterogeneity 
61.93 ±5.12% 

CD73/CD29 CD146Low/CD90Low/CD44High/CD105High/ 
EpCAMLow/CD117Low/ CD73Low/CD29High 

No further heterogeneity 
46.90% ±6.89% 

 CD146Low/CD90Low/CD44High/CD105High/ 
EpCAMHigh/CD117Low/ CD73Low/CD29High 

No further heterogeneity 
6.42% ±3.43% 

 CD146High/CD90Low/CD44High/CD105High/ 
EpCAMLow/CD117Low/ CD73Low/CD29High 

No further heterogeneity 
15.51% ±2.74% 

 CD146High/CD90Low/CD44High/CD105High/ 
EpCAMHigh/CD117Low/ CD73Low/CD29High 

No further heterogeneity 
0.76% ±0.45% 
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Figure 3.8 Identification of CD90/CD146 subpopulations in CAKI-1 WT cells by flow cytometry, data represented as  dot-plots with two 
channels per plot. Data represented as bivariate dot-plots of two markers each. Cells were forward gated from CD90/CD146 into CD44/CD105, 
then CD117/EpCAM, and finally CD73/CD29. Data was acquired from 500,000 events. Data shown for one of three experiments. 
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3.3.3 Colony forming capacity of CD90/CD146 subpopulations from RCC cell 

lines 

In order to identify which, if any, of the subpopulations found within the RCC cell 

lines were the most clonogenic, and therefore more stem cell-like, colony forming 

assays were performed on CD90/CD146 subpopulations. CD90/CD146 populations 

were chosen due to their presence in all three of the cell lines. 

786-O appeared to be the most clonogenic of the three cell lines with unsorted cells 

achieving an average of 40 colonies (Figure 3.9). None of the CD90/CD146 

subpopulations isolated from these cells exhibited a colony forming capacity that 

was significantly different to that of the unsorted (bulk) population. This was also 

observed when colony formation by CD90/CD146 subpopulations was normalised 

to the respective unsorted control for each individual experiment (Figure 3.9). 

Unlike the 786-O cells, the CD146High/CD90High subpopulation in A498 cells showed 

a trend towards lower colony formation but this did not reach statistical significance 

(Figure 3.10). However, when accounting for inter-experimental variation, by 

normalising each of the CD146/CD90 subpopulations to their respective unsorted 

population, a 50% reduction in colony formation in the CD146High/CD90High cells 

when compared with the CD146Low/CD90Low cells was apparent (P=<0.001) (Figure 

3.10). 

Similarly to the A498 cell line, the CD146Low/CD90High population of CAKI-1 also 

displayed a much lower capacity for colony formation, with an average of 4 colonies 

formed. This lower colony formation proved to be significantly different from both 

unsorted cells (P=<0.01) and CD146Low/CD90Low (P=<0.001). Interestingly cells 

CD146High/CD90Low also displayed a modest decrease in colony forming capacity, 

generating an average of 13 colonies. This proved to be significantly lower colony 

forming capacity than CD146Low/CD90Low cells (P=<0.05), which represent the bulk 
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of the CAKI-1 cell line (Figure 3.11). However, no significant difference was 

observed when comparing these subpopulations with unsorted cells. When 

analysed as a percentage of unsorted control, the CD146Low/CD90High population 

showed a colony forming capacity of 20%, significantly lower than that of the 

CD146Low/CD90Low population (P<0.01). Percentage colony formation of the 

CD146High/CD90Low population was decreased compared to the CD146Low/CD90Low 

cells but this was not statistically significant. (Figure 3.11) 
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Figure 3.9  Colony formation assays for CD146/CD90 subpopulations in 786-O 
cells A Total colony formation and percentage colony formation normalised to 
unsorted control in 786-O WT cells and CD146/CD90 subpopulations. Data 
represents mean  standard deviation n=6 wells in 3 separate experiments, each 
population seeded in duplicate. Significant difference was tested by one-way 
ANOVA with Tukey post-hoc. B Shows representative images of 786-O WT colony 
formation assays derived from the initial seeding of 400 cells of each of the sorted 
populations: unsorted (top left), CD146High/CD90High (top right), CD146Low/CD90Low 
(bottom left) and CD146High/CD90Low (bottom right). 
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Figure 3.10 Colony formation assays for CD146/CD90 subpopulations in A498 cells 
(A) Total colony formation and percentage colony formation normalised to unsorted 
control in A498 WT cells and CD146/CD90 subpopulations. Data represents mean  
standard deviation n=8 wells in 4 separate experiments, each population seeded in 
duplicate. Statistical difference was tested by one-way ANOVA with Tukey post-hoc 
*** = P<0.001. (B) Shows representative images of colony formation assays of 400 
cells seeded for each of the sorted populations: unsorted (top left), 
CD146High/CD90High (top right), CD146Low/CD90Low (bottom left) and 
CD146High/CD90Low (bottom right). 
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Figure 3.11 Colony formation assays for CD146/CD90 subpopulations in CAKI-1 
cells (A) Total colony formation and percentage colony formation normalised to 
unsorted control in CAKI-1 WT cells and CD146/CD90 subpopulations. Data 
represents mean  standard deviation n=8 wells in 4 separate experiments, each 
population seeded in duplicate. Statistical difference was tested by one-way ANOVA 
with Tukey post-hoc * = P<0.05 ** = P<0.01. (B) Shows representative images of 
colony formation assays of 400 cells seeded for each of the sorted populations: 
unsorted (top left), CD146Low/CD90High (top right), CD146Low/CD90Low (bottom left) 
and CD146High/CD90Low (bottom right). 
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3.4 Discussion 

The aim of this chapter has been to identify and evaluate the clonogenicity of 

putative CSC populations within the RCC cell lines 786-O, A498 and CAKI-1 using 

the surface markers CD90, CD146, CD44, CD105, EpCAM, CD117, CD29 and 

CD73.  

Of the three cell lines examined, 786-O was the most clonogenic cell line in terms of 

the total heterogeneous cell line population, with A498 and CAKI-1 having a slightly 

lower capacity for colony formation. Flow cytometric analysis of the marker panel 

revealed heterogeneity of expression between all three cell lines with regards to the 

two markers CD146 and CD90. As such these markers provided the starting tier for 

the gating hierarchy. Forward gating CD146/CD90 populations in 786-O and A498 

cells demonstrated little further sub-population heterogeneity but in CAKI-1 it was 

possible to identify eight different sub-populations of varying proportions based on 

the eight markers used.  

The bimodal expression of CD146 was detected in all three cell lines with the 

proportions of cells in the CD146Low and CD146High populations differing between 

them. The highest proportion of CD146High cells was found in 786-O while A498 and 

CAKI-1 contained the lowest. Sorting of CD146Low and CD146High populations and 

evaluation of their clonogenic potential did not yield cells with differing clonogenic 

potentials in 786-O or A498 but the CD146High population in CAKI-1 had a 

significantly lower clonogenic potential than the CD146Low/CD90Low population. This 

data would seem to suggest that while the highest CD146 expression is detected in 

the more clonogenic 786-O cell line its expression does not necessarily indicate a 

more clonogenic subpopulation within that cell line, as also evidenced by the 

decreased clonogenicity of the CAKI-1 CD146High/CD90Low subpopulation. This 

seems to suggest that if CD146 does play a role in identifying clonogenicity it may 

be dependent on other, possibly synergistic, markers or biological functionality not 
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included in this study. Indeed studies by Espagnolle et al[315]. found that in bone 

marrow MSCs CD146 expression did not significantly influence colony forming 

capacity but did identify cells committed to vascular smooth muscle differentiation. 

While CD146 populations did not differ in terms of their colony formation in 786-O it 

does appear that the CD146Low population formed smaller colonies (Figure 3.6 A) 

suggesting a possible role for CD146 in identifying the rapidly proliferating bulk of 

the cell line that are still capable of clonogenicity. 

A subpopulation of CD90High cells was found in all three cell lines. This population 

represented a small percentage of the total cell population in each cell line. In 786-O 

and A498 CD90High cells were also found to be CD146High, while in CAKI-1 cells the 

CD90High was associated with CD146Low. In the case of A498 and CAKI-1 the 

CD90High population formed significantly fewer colonies than the respective unsorted 

cells and compared to the CD146Low/CD90Low populations, indicating CD90 as a 

marker for significantly reduced colony formation in these cell lines. Interestingly, in 

A498 and CAKI-1 cells the CD90High phenotype appeared unaffected by CD146 

status, either CD146High or Low. The CD90High population in A498 and CAKI-1 cells 

that was associated with decreased colony forming capacity may be the more 

differentiated daughter lineage of a stem-like population present in either the 

CD146Low/CD90Low or CD146High/CD90Low population. The inability of CD90 positive 

cells to enrich for stem like cells has been also found in the identification of CSCs 

from glioma samples. CD90High populations identified by Woo et al. found did not 

have a significant advantage in terms of colony formation compared to their 

CD90Low counterparts[316]. Further to this, rat bone and adipose derived MSCs 

identified by CD90 and CD29 positivity displayed a decrease in colony forming 

capacity and decrease in osteogenic and adipogenic capacity compared to the bulk 

cell population[317]. 
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Surprisingly, CD105 a marker which has been used previously to isolate CSC or 

tumour initiating populations from primary RCC samples[61], was only highly 

expressed in the CAKI-1 cell line with relatively little expression detectable in 786-O 

and A498 cells. Further to this, while unsorted 786-O cells displayed the highest 

mean total colonies formed it also showed a large degree of variation between 

experiments. However in CD105 expressing CAKI-1 cells, variation between 

experiments was greatly reduced. This suggests the possibility that CD105 

expression maybe required for stability of clonogenicity or provides protection from 

the relatively harsh conditions required for flow cytometry and cell sorting. In 

addition to CD105 expression CAKI-1is also derived from a lung metastatic kidney 

tumour[318] ,and therefore may have inherently greater resistance to such 

conditions.  

However, an absence or low levels of CD105 in Caki-1 cells may still affect colony 

formation. Forward gating of CAKI-1 CD146High/CD90Low and CD146Low/CD90Low 

populations into a bivariate plots of CD44/CD105 revealed that over 80% of both 

these populations highly expressed CD44 and CD105. However, in the less 

clonogenic CD146Low/CD90High population the population displaying 

CD44High/CD105High expression was reduced to below 60% with an increase in the 

CD44Low/CD105Low gate. This may indicate that while an increased proportion of 

CD105High cells does not identify a substantial increase in clonogenic potential, it is 

still important in maintaining a high degree of clonogenicity. 

CD44 has seen widespread use as a marker of CSCs and has been used for 

multiple tumour types. It is capable of identifying relatively small (CD44High) CSC 

populations through to CSC populations (CD44High) that represent the bulk of the 

tumour[162]. In the case of 786-O, A498 and CAKI-1 a universally high expression 

of CD44 was observed. CAKI-1 contained a relatively small proportion of CD44Low 

cells predominantly found associated with the less clonogenic CD90High lineage. The 
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same uniformly high expression was also true for the marker CD29 which, like 

CD44, has been used extensively to identify MSCs[287]. While this does rule out 

the use of a CD29 and CD44 marker combination to identify a more potent CSC 

population it suggests a strong mesenchymal phenotype for these cell lines. 

 

Table 3.6 Characterisation summary of CSC surface markers used in RCC cell lines  

Marker Ability to identify 

subpopulations 

Notes 

CD90 Informative All cell lines contain a 
CD90 high population 

CD146 Informative All cell lines contain a 
CD146 high population. 

C44 Not informative All cell lines appear to 
highly express CD44 

CD105 Not informative 786-O and A498 low 
expression of CD105 with 
no CD105 high 
population. 

EPCAM Not informative Only CAKI-1 has a 
EpCAM high population. 

CD117 Not informative All cell lines appear 
CD117 low. 

CD73 Not informative  786-O and A498 generally 
low. CAKI-1 cells either 
High or low depending on 
subpopulation 

CD29 Not informative 786-O and A498 generally 
high. CAKI-1 cells either 
high or low depending on 
subpopulation. 

 

In summary, CSC related cell surface marker analysis of the RCC cell lines 786-O, 

A498 and CAKI-1 revealed subpopulations identified by varying expression levels of 

the markers CD90, CD146, and in the CAKI-1 cell line CD44 and CD105 (Table 

3.6). In particular, expression of CD90 and CD146 was found to be bimodal in all 

three cell lines and as such this combination was used as the first tier of the gating 
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hierarchy for cell sorting. Sorting of CD90/CD146 subpopulations into colony 

formation assays did not enrich for a more clonogenic sub-population in these cells 

but did identify a population of CD90High cells in the A498 and CAKI-1 lines with 

decreased clonogenic capacity. Further forward gating of CD90/CD146 

subpopulations in 786-O and A498 found homogeneity in the markers EpCAM, 

CD117, CD29 and CD73. In CAKI-1 forward gating of CD90/CD146 populations 

found further heterogeneity, especially in regards to CD44/CD105 expression. While 

the identification of such subpopulations was possible, they were found at extremely 

low frequencies such that sorting in sufficient numbers would be impractical. 

Therefore further experimentation focused on the effect of CAV1 upon the 

clonogenicity of CD90/CD146 subpopulations in these RCC cell lines. 
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Chapter 4 - Effect of CAV1 knockdown on the 

subpopulation distribution and clonogenicity of 

RCC cell lines  
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4 Effect of CAV1 knockdown on the subpopulation 

distribution and clonogenicity of RCC cell lines 

4.1 Introduction 

The balance for stem cells to both drive the formation of healthy tissue through 

differentiation and maintain themselves as a pool of undifferentiated cells is one of 

the defining features of stem cells. It governs the ability for embryonic tissue 

generation and organogenesis as well as homeostasis of healthy adult tissue. The 

acquisition of such ‘stem-like’ functional characteristics is now thought to be integral 

to the progression, metastatic spread and disease recurrence of multiple cancers, 

though the mechanisms by which this ‘stem-like’ phenotype is regulated remain 

elusive and will vary depending on the tissue off origin[319]. CAV1, has been 

implicated in both normal tissue function and disease progression for a number of 

cancers through a multitude of cellular physiological process[103], [320]. Naturally, 

this has led to the study of CAV1, and caveolae, in relationship to the maintenance 

and regulation of the stem cell phenotype. 

4.1.1 CAV1 as a regulator of stem cell phenotype 

The context dependent role of CAV1 in biological processes is also apparent in the 

functional biology of stem cell populations of embryonic and mesenchymal origin. 

Several studies using CAV1 knockout mice have found hyperproliferation of 

intestinal crypt stem cells[107], neural stem cells of the subventricular zone of the 

brain[321] and mammary stem cells[322]. The same upregulation of proliferation 

was also observed in mesenchymal stem cell (MSC) populations isolated from the 

bone marrow of CAV1 knockout mice[323]. In neural progenitor cells of CAV1 

knockout mice, CAV1 has been shown to downregulate proliferation through 

activation of glucocorticoid receptor signalling[324]. In human MSC populations 

downregulation of CAV1 enhanced proliferation and osteogenic differentiation[325]. 
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Contrasting to this in another study[326] the capacity for adipogenic differentiation of 

MSCs was found to decrease with overexpression of CAV1. This increase in CAV1 

expression became more pronounced as cells approached senescence, suggesting 

overexpression of CAV1 in MSCs important in stablisting the adipocyte phenotype. 

Unlike other adult stem cell populations hematopoietic stem cells (HSCs) isolated 

from CAV1 knockout mice showed a decrease in differentiation of B cell 

populations. In addition, HSCs displayed reduced self-renewal capacity in vitro and 

an inability to reconstitute haematopoiesis in immune-deficient mouse models[327]. 

Contrary to the inhibitory role of CAV1 upon proliferation in adult MSCs, CAV1 and 

caveolae play an important part in the self-renewal of embryonic stem cells (ESCs). 

For example, ESCs treated with either methyl--cyclodextrin (MC) (a classical 

method of depleting caveolae through removal of cholesterol from the plasma 

membrane) or by CAV1 siRNA decreased cell proliferation as well as the 

expression of cell cycle markers cyclin D1 and E, and several self-renewal 

transcription factors[328]. Supplementary to this, CAV1 phosphorylation and the 

presence of caveolae were required for promoting proliferation of mouse ESCs 

grown upon a fibronectin matrix a major component of the ESC extracellular 

niche[329]. The signalling regulation involved the FAK/Src/integrin 1 network 

inducing the Akt/ERK1/2 pathway. This role was further investigated by Park et 

al.[330] who found that the pro-proliferative effect of CAV1 in mouse ESCs could be 

induced by estradiol-17 mediated phosphorylation of CAV1. They further confirmed 

CAV1 was required for potentiation of EGF signalling through EGFR driving 

proliferation and migration[331]. This role for CAV1 as a mediator for intracellular 

signalling has also been investigated in mouse ESCs. For example reduction of 

both CAV1 by siRNA and of caveolae by MC treatment prevented the downstream 

phosphorylation of Akt and mTOR leading to reduced DNA synthesis and the 

reduced expression of cyclins[332]. Furthermore localisation of leukemia inhibitory 
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factor (LIF) to caveolae through glycan LacdiNAc allows the potentiation of STAT3 

signalling by LIF. However, CAV1 was not critical to this STAT3 activation; 

suggesting a CAV1 redundant system of caveolae-based signalling is in place in 

cells where such signalling is critical for cellular processes such as self-

renewal[333].  

Regulation of the proliferation of stem cell populations is not the only means by 

which the propensity for self-renewal can be governed. Alterations to the 

differentiation potential of stem cells can result in an increase or decrease in self-

renewing stem cell populations. CAV1 has been variously implicated in the 

regulation of these processes. For example, in vitro the osteogenic differentiation of 

human MSCs is associated with upregulation of CAV1[325]. While the neurogenesis 

of rat bone marrow MSCs is promoted by downregulation of CAV1 inducing 

downregulation of the Notch signalling pathway, suggesting CAV1 acts to preserve 

the undifferentiated phenotype[334]. This ability to preserve stem cell populations is 

also apparent in the bone marrow MSCs of CAV1 knockout mice. These bone 

marrow MSCs have an increase capacity for osteogenic differentiation compared to 

their CAV1 expressing counterparts[335]. Such findings have also been established 

in human MSC where CAV1 knockdown increased adipogenic[326] and 

osteogenic[325] differentiation. This implies the possibility that CAV1 expression 

acts to hold these stem cell populations in an undifferentiated multipotent state.  

The ability for CAV1 to hold cells in an undifferentiated stem cell phenotype would 

be likely to occur within caveolae domains through the interaction of CAV1 with cell 

surface receptors responsible for activation of differentiation, the presence here of 

CAV1 would hold pro-differentiation molecules in an inactive state. Some studies 

have provided data in support of this theory. Mouse bone marrow stromal cells 

(BMSCs) exposed to the cholesterol biosynthesis inhibitor simvastin, cholesterol 

being a key component of caveolae, acquired increased potential for osteogenic 
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differentiation and a diminished response to adipogenic differentiation, indicative of 

reduced multipotency[336]. Similarly MSCs exposed to oxysterols were reported to 

display increased osteogenic but reduced adipogenic differentiation[337]. The 

underlying mechanism relating to oxysterol induced downregulation and decoupling 

of CAV1 from caveolae to the plasma membrane. Considering CAV1’s direct 

involvement in the regulation of a number of signalling pathways thought to be key 

for potentiation of differentiation such as Wnt/-catenin[338], [339], transforming 

growth factor beta (TGF-)[340], [341] and bone morphogenetic protein (BMP)[342], 

[343], it appears caveolae/CAV1 may provide a nexus point of differentiation of stem 

cell populations.  

It appears therefore that CAV1 maybe a key molecule for driving CSC populations 

from both a perspective of maintaining a balance of self-renewal to that of increased 

bulk cell differentiation. Indeed, exploiting the differentiation of CSCs has already 

been investigated in RCC samples. By treating CD105+ CSCs with recombinant 

human interleukin-15 (rhIL-15) the CD105+ cells were induced towards epithelial 

differentiation, and a reduced self-renewal capacity with an increased sensitivity to 

common cytotoxic agents[73]. However, to a larger extent the role of CAV1 in the 

biology of CSCs remains largely unexplored, though the handful of discoveries that 

have been made thus far have once again revealed context-dependent roles for 

CAV1. In non-small cell lung carcinoma the CSC phenotype can be induced by 

exposure to nitric oxide (NO). Such treatment mediated CAV1 upregulation which 

induced resistance to anoikis and spheroid formation as well as increasing the 

migration and invasion of these cells[344]. Conversely, investigations into the nature 

of CAV1 expression in the progression of pancreatic cancer Salem et al. found 

CAV1 expression to actually indicate transition to an epithelial phenotype and 

decreased tumourgenicity in immunodeficient mice[345]. 
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CAV1 appears to play an important role in many aspects of clonogenicity in stem 

cell biology, from regulating the proliferative capacity of stem cell populations to 

acting as a gatekeeper to differentiation. Furthermore, these functions are not only 

observed in one specific stem cell population but in MSCs from various tissues and 

those of embryonic origin, in which CAV1 and caveolae expression appears to be of 

great importance. As such this has led us to suggest a potential role for CAV1 either 

in directing the proliferation of CSC subpopulations in RCC or in the regulation of 

differentiation to less clonogenic subtypes. 

4.1.2 Aims 

This chapter aimed to understand the relationship of CAV1 in the clonogenicity of 

the RCC cell lines 786-O, A498 and CAKI-1. More specifically, it sought to explore 

how:  

 CAV1 can affect the clonogenic capacity of both the total heterogeneous cell 

line population and also the subpopulations identified by CD90/CD146 

expression in the previous chapter.  

 Understand how CAV1 expression affects subpopulation distribution and if 

such changes in distribution maybe causative in any change in clonogenic 

capacity observed. For example, would a large increase in CD90High cells 

result in reduced clonogenicity capacity of the total cell line.  

 Effects on clonogenicity were then further confirmed using spheroid 

formation assays.  

 To understand if any effect on clonogenicity is linked to proliferative capacity 

a series of proliferation assays were conducted together with assessment of 

cell cycle regulation under clonogenic conditions. 
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4.2  Materials and Methods 

4.2.1 Generation of CAV1 shRNA knockdown cell lines 

In order to probe the effect of CAV1 knockdown on assays requiring extended 

periods of incubation CAV1 stable shRNA knockdowns were generated. Five 

separate SureSilencing shRNA plasmids (Qiagen), containing four sequences 

specific to CAV1 and one containing a scrambled negative control shRNA, were 

transfected by heatshock into competent JM109 E. coli (Promega). Subsequently, 

100L of the transfected cultures were spread onto LB agar (Fisher Scientific) 

plates containing 50g/mL ampicillin (Sigma Aldrich) and incubated for 16 hours at 

37OC to allow the growth of viable colonies. Single colonies for each plasmid were 

picked and streaked onto new LB agar/ampicillin plates and incubated for a further 

16 hours to allow the formation of single colonies. Single colony were then picked 

from each plate and inoculated into separate 15mL centrifuge tubes containing 1mL 

of LB broth (Fisher Scientific) containing 50g/mL ampicillin and incubated for 12 

hours on an orbital shaker at 37OC. Following this each 1mL culture was inoculated 

into 250mL of fresh LB broth/ampicillin and incubated at 37OC for a further 4 hours. 

After this cultures were collected and plasmids purified using the QIAfilter Plasmid 

Midi Kit (Qiagen). Plasmid DNA was then quantified by a GeneQuant 

spectrophotometer at 260nm. Confirmation of successful transfection was carried 

out by Pst-1 (New England Biolabs) digestion of 10g of plasmid DNA which was 

then separated by aragrose gel electrophoresis producing two bands one of 3209 

bp and one of 1402 bp (Appendix 1). 

For transfection into RCC cell lines, Cells were seeded into 24-well plates at a 

higher density of 40,000 cells per cm2 (as required for transfection with FuGENE 

HD) and incubated for 24 hours at 37OC. To help ensure a stable knockdown, prior 

to transfection plasmid DNA was linearized by Sca-1(New England Biolabs) 
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digestion and prepared for transfection by using the Wizard SV Gel and PCR 

Clean-Up system (Promega). Plasmid DNA was then mixed with FuGENE HD 

(Promega) at a ratio of 1g of plasmid DNA to 1.5L of FuGENE HD and allowed 

to complex at room temperature for 15 minutes. During this incubation cells were 

washed twice in sterile PBS. After the final change of PBS 500mL of respective full 

media was added to which 200L of the plasmid complex was added and incubated 

for 24 hours. To select for successful transfection of the plasmid, cells were first 

trypsinised then reseeded into 6-well plates at a density of 1,000 cells per cm2 in 

media containing 1g/mL puromycin (Appendix 1). Cells remained in this selection 

media which was changed every 3 days until large colonies were visible. Colonies 

were then trypsinised and reseeded until enough cells were harvestable for frozen 

stocks and western blot analysis of CAV1 knockdown.  

4.2.2 Western Blot 

Cells were lysed on ice directly from 6-well tissue culture plates using 200 L of ice 

cold lysis buffer (50 mM Tris (pH 7.5), 5 mM EDTA, 1% Triton-X, 150 mM NaCL all 

obtained from Fisher Scientifc) containing a cocktail of protease inhibitors 

(leupeptin, aprotinin, leupeptin, sodium fluoride, sodium molybdate, phenyarsine 

and sodium pervandate all obtained from Fisher Scientific), the surface was then 

scraped and incubated for 15 minutes. Lysates were then collected and cellular 

debris centrifuged at 20,000g for 15 minutes at 4OC. Preparation of hypoxic lysates 

was carried out in the same way after 72 hours of incubation under 1% O2. 

Protein concentration was determined by use of the Pierce BCA protein assay kit 

(Thermo Fisher). 25L of lysate and a calibration curve of bovine serium album 

(BSA) (Sigma Aldrich) (25g/mL to 2000g/mL) was incubated for 40 minutes with 

200L with BCA solution and read at 560nm using a LT-5000MS plate reader 

(Labtech). Proteins were prepared for separation by electrophoresis by heating 
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20g of lysate to 95OC for 10 minutes in 4x Lamelli sample buffer (Fisher Scientific). 

Lysates were then loaded into pre-cast mini-PROTEAN TGX 12% polyacrylamide 

gels (Bio-Rad) with a well for a molecular weight marker Precision Plus Protein™ 

WesternC™ Protein Standards (Bio-Rad) and separated by electrophoresis at 100V 

for 90 minutes. Separated proteins were then transferred on to nitrocellulose 

membranes by semi-dry blotting using the Trans-Blot Turbo Transfer system 

(Bio-Rad). Gels and the recipient nitrocellulose membranes were allowed to 

equilibrate in blotting buffer containing 20% methanol for 15 minutes. A ‘transfer-

sandwich’ was then constructed; this consisted of a layer of filter paper, the 

nitrocellulose membrane, gel and a final layer of filter paper. This was all placed in a 

transfer cassette and electrophoresed at 25V for 30 minutes. Following transfer 

membranes were washed twice in distilled water and blocked for 60 minutes in 

blocking buffer (5% non-fat powdered milk in tris buffered saline containing 0.1% v/v 

Tween 20 (TBS-T)). For immunoprobing, primary antibodies were diluted in blocking 

buffer CAV1 1:1000 (Cell Signalling, New-England Biolabs), -actin 1:1,000 (Sigma 

Aldrich), Cyclin D1 1:1000 (Cell Signalling, New-England Biolabs) and HIF-2 1:500 

(Novus-biologicals) and incubated overnight (~16 hours) at 4OC on a rolling mixer. 

Membranes were then washed in TBS-T three times for 15 minutes each at room 

temperature on a rolling rocker. After washing membranes were then incubated with 

either HRP conjugated anti-mouse or anti-rabbit IgG 1:10,000 (Cell Signalling, New-

England Biolabs) for 60 minutes at room temperature and were then washed in 

another 3 changes of TBS-T for 15 minutes. Specific protein bands were then 

revealed by using the chemiluminescence SuperSignal West Dura Extended 

Duration Substrate kit with images captured using a ChemiDoc imaging system. 

4.2.3 Spheroid formation assays 

Cells were first washed twice in sterile PBS rinsed with 2mL of trypsin, which was 

then removed, and incubated at 37OC. Cells were then resuspended in serum free 
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stem cell media containing 20ng/mL epidermal growth factor (EGF), 20ng/mL basic 

fibrobast growth factor (bFGF), 1mL 50x B27 serum replacement supplement and 

1% penicillin/streptomycin (all from Life Technologies). To ensure reproducibility in 

cell seeding, cells were seeded at 400 cells per well in 96-well, using the cell sorting 

capability of the FACsaria III, into ultralow adherence plates (Corning) containing 

150L of serum free stem cell media per well. Cells were then incubated at 37OC for 

2 weeks with 20L of fresh stem cell media added to each well every 3 days. The 

number of spheroids formed per well was manually counted after two weeks by 

phase contrast microscopy. Tumour spheroid formation was accepted as 3D 

structures generally larger than around 40m in diameter and showing a relatively 

smooth but slightly cobbled surface. 

For both hypoxic spheroid and colony formation cells were incubated in 1% O2 with 

5% CO2 at 37OC (using a Leec Touch 50S incubator) all other elements of the 

methodology for each assay remained the same. 

4.2.4 Proliferation assays 

CAKI-1 scrambled shRNA control and CAV1 shRNA knockdown cells were seeded 

at 10,000 cells per cm2 in 24-well plates for 72 hours. After which cell growth was 

accessed by either MTT or total cell counts. For MTT assays 200L of 2mg/mL MTT 

(Sigma Aldrich) was spiked into each well of the 24-well plate and incubated for 2 

hours at 37OC to allow the formazan reaction product to develop. After this, cells 

were gently washed once with room temperature PBS and then solubilised in 

DMSO. 200L of each well was transferred to a new well in a 96-well plate and 

absorbance was read at 560nm (using a Labtech ELISA plate reader) with DMSO 

used as a background control. For total cell counts, cells were washed twice with 

PBS then 200L of trypsin was added and quickly aspirated then incubated at 37OC 

for 5 minutes. Each well was then resuspended with 100L of PBS and then diluted 
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into 10mL of isotone buffer and analysed using a Coulter-counter (Beckman-

Coulter). 

4.2.5 Cell cycle analysis 

Analysis of cell cycle distribution of CAKI-1 scrambled shRNA control and CAV1 

shRNA knockdown cells was determined using propidium iodide (PI) staining. Cells 

were first trypsinised as previously described and resuspended in 1mL of 5% FBS in 

PBS then centrifuged at 200g. The cell pellet was then resuspended in another 1mL 

of 5% FBS in PBS. Cells were then fixed by drop-wise addition to -20OC 70% 

ethanol and incubated at -20OC overnight. For cell staining, a solution containing 

0.1% Triton X-100, 1 mg of RNAse (Sigma Aldrich), and 100 mg/mL PI (Sigma 

Aldrich) in 4.5mL of 5% FBS in PBS was made fresh for each experiment. Ethanol 

fixed cells were pelleted at 200g at 4OC for 10 minutes the ethanol supernatant was 

discarded. The pellet was then resuspended in 1mL of 5% FBS in PBS and washed 

twice by the same centrifugation steps. The final pellet was then resuspended in 

500 L of the staining solution and incubated at room temperature for 30 minutes. 

Analysis of IP staining was carried out using the FACSVerse were PI was excited 

by the 488 nm laser and emission detected using a 586/42 nm filter. Cell cycle 

analysis was carried out using FlowJo Version 10 flow cytometry analysis software. 

4.2.6 Statistical analysis 

All statistical analysis was carried out using GraphPad Prism 5. All data are 

presented as mean with  standard deviation unless otherwise stated. Statistical 

difference between single paired groups was carried out by unpaired Student’s t-test 

with statistical significance achieved at P0.05.   
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4.3 Results 

4.3.1 CAV1 differentially affects the distribution of CD146/CD90 

subpopulations between RCC cell lines and drives colony formation in 

CAKI-1 cells 

To understand how CAV1 affects the frequency and clonogenicity of subpopulations 

identified within the 786-O, A498 and CAKI-1 cell lines, CAV1 stable shRNA 

knockdown approach was employed. Transfection of SureSilencing shRNA plasmid 

against CAV1 substantially reduced CAV1 expression (Figure 4.1). 

Subpopulation flow cytometry analysis of the impact of CAV1 knockdown in 786-O 

cells by flow cytometry showed a significant increase in the percentage of cells 

within the CD146Low/CD90Low population with a concomitant decrease in the 

percentage of cells found in the CD146High/CD90Low population. The knockout of 

CAV1 also led to a reduction in the CD146High/CD90High population; however this did 

not reach the level of statistical significant. Forward-gating each of the CD146/CD90 

subpopulations revealed no changes in surface marker expression following CAV1 

downregulation (Figure 4.2, Figure 4.5 A and Table 4.1). While CAV1 seems to 

have significant involvement in influencing the proportion of CD146High/CD90Low and 

CD146High/CD90High populations it did not however reduce colony formation in the 

total unsorted 786-O cell line or in any of the CD146/CD90 subpopulations (Figure 

4.6). The morphology of colonies formed by 786-O seems to be unaffected by CAV1 

status with both scrambled shRNA and CAV1 shRNA cells forming colonies of 

roughly the same size and frequency. 

The shift in distribution of CD146 populations induced by CAV1 knockdown found in 

the 786-O cells was also found in A498 cells. A498 CAV1 shRNA cells showed a 

significant decrease in the CD146High/CD90Low population from 4% to 0.5%. 

However, unlike in 786-O, the percentage of A498 cells in the CD146Low/CD90High 
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population of remained unaffected by reduced CAV1 expression (Figure 4.3, Figure 

4.5 B and Table 4.1). Similarly to the 786-O cells, down-regulation of CAV1 in the 

A498 cells had no effect on the colony forming capacity of the total unsorted 

population or between the distinct CD146/CD90 subpopulations. In terms of colony 

morphology reduction of CAV1 expression did not significantly reduce the size or 

morphology of colonies formed (Figure 4.7). 

Interestingly knockdown of CAV1 in CAKI-1 cells did not cause a change in either 

the CD146High/CD90Low or the CD146Low/CD90High populations (Figure 4.4, Figure 4.5 

C Table 4.1). In contrast to 786-O and A498, down-regulation of CAV1 in CAKI-1 

caused a significant reduction in colony formation. This reduction in clonogenicity 

was seen in the total unsorted population and in each of the distinct CD146/CD90 

populations. In addition to this, CAV1 shRNA cells that were capable of colony 

formation formed colonies of reduced size compared to scrambled shRNA control 

(Figure 4.8).  

 

 

Figure 4.1 Downregulation of CAV1 in 786-O, A498 and CAKI-1 cells by 
SureSilencing shRNA plasmid. Evaluation of CAV1 knockdown performed by 
western blot with β-actin used as a loading control. 
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Figure 4.2 Gating hierarchies for both scrambled shRNA control cells and CAV1 shRNA transfected 786-O cells using the 8 marker putative 
CSC panel. Prior to sorting cells were first gated for live cells by FSC-A/SSC-A then single cells by FSC-H/FSC-A. Cells were then forward 
gated into each tier of the hierarchy. Data represents 500,000 events analysed for both 786-O scrambled shRNA and 786-O CAV1 shRNA. 
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Figure 4.3 Gating hierarchies for both scrambled shRNA control cells and CAV1 shRNA transfected A498 cells using the 8 marker putative 
CSC panel. Prior to sorting cells were first gated for live cells by FSC-A/SSC-A then single cells by FSC-H/FSC-A. Cells were then forward 
gated into each tier of the hierarchy. Data represents 500,000 events analysed for both A498 scrambled shRNA and A498 CAV1 shRNA. 
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Figure 4.4 Gating hierarchies for both scrambled shRNA control cells and CAV1 shRNA transfected CAKI-1 cells using the 8 marker putative 
CSC panel. Prior to sorting cells were first gated for live cells by FSC-A/SSC-A then single cells by FSC-H/FSC-A. Cells were then forward 
gated into each tier of the hierarchy. Data represents 500,000 events analysed for both CAKI-1 scrambled shRNA and CAKi-1 CAV1 shRNA. 
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Figure 4.5 Effect of CAV1 knockdown on the mean percentage distribution of 
CD146/CD90 subpopulations in 786-O (A), A498 (B) and CAKI-1 (C). Data 

represents mean  standard deviation. Significance determined by Student’s t test * 
= P<0.05 ** = P<0.01 n=3-4 separate experiments.  
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Table 4.1 Proportions of CD90/CD146 subpopulations in the cell lines 786-O, A498 
and CAKI-1 in scrambled shRNA control and CAV1 shRNA knockdown cells. Data 
represents mean ± standard deviation of 3 to for experiments per cell line, statistical 
difference was measured by Students T-test. 

 
786-O 

 
Scrambled shRNA CAV1 shRNA P value 

CD90High/CD146High 1.29% ±0.30% 0.61% ±0.25% 0.164 

CD90Low/CD146High 78.33% ±6.33% 34.63% ±8.73% 0.015 

CD90Low/CD90Low 9.38% ±2.31% 32.57% ±10.02% 0.040 

 
A498 

 
Scrambled shRNA CAV1 shRNA P value 

CD90High/CD146Low 0.62% ±0.22% 0.75% ±0.12% 0.626 

CD90Low/CD146High 4.25% ±0.40% 0.47% ±0.32% 0.002 

CD90Low/CD146Low 77.47% ±8.13% 91.03% ±4.32 0.215 

 
CAKI-1 

 
Scrambled shRNA CAV1 shRNA P value 

CD90High/CD146Low 1.55% ±0.73% 3.15% ±1.46% 0.380 

CD90Low/CD146High 23.17% ±4.50% 19.77% ±2.84% 0.558 

CD90Low/CD146Low 73.97% ±3.47% 78.50% ±2.05% 0.324 
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Figure 4.6 Effect of CAV1 downregulation on colony formation of 786-O 
CD146/CD90 populations (A) Graphs showing total colonies formed in 
CD146/CD90 subpopulations of scrambled shRNA control and CAV1 shRNA 

knockdown 786-O cells. Data represents mean  standard deviation. Analysis by 
Student’s t test found no significant difference when comparing scrambled shRNA to 
CAV1 shRNA for each subpopulation n=3 separate experiments (B) Images of 
colony formation for 786-O scrambled shRNA cells unsorted (top left), 
CD146High/CD90High (top right), CD146Low/CD90Low (bottom left) and 
CD146High/CD90Low (bottom right). (C) Representative images of colony formation 
for 786-O CAV1 shRNA (layout the same as B) 
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Figure 4.7 Effect of CAV1 downregulation on colony formation of A498 
CD146/CD90 populations (A) Graphs showing total colonies formed in 
CD146/CD90 subpopulations of scrambled shRNA control and CAV1 shRNA 

knockdown A498 cells. Data represents mean  standard deviation. Analysis by 
Student’s t test found no significant difference when comparing scrambled shRNA to 
CAV1 shRNA for each subpopulation n=3 separate experiments (B) Images of 
colony formation for A498 scrambled shRNA cells unsorted (top left), 
CD146High/CD90High (top right), CD146Low/CD90Low (bottom left) and 
CD146High/CD90Low (bottom right). (C) Representative images of colony formation 
for A498 CAV1 shRNA (layout the same as B) 
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Figure 4.8 Effect of CAV1 downregulation on colony formation of CAKI-1 
CD146/CD90 populations (A) Graphs showing total colonies formed in 
CD146/CD90 subpopulations of scrambled shRNA control and CAV1 shRNA 

knockdown CAKI-1 cells. Data represents mean  standard deviation. Significant 
difference by student’s t test was found when comparing scrambled shRNA to CAV1 
shRNA for each population * = P<0.05 ** = P<0.01 *** = P<0.001 n=4 separate 
experiments (B) Images of colony formation for CAKI-1 scrambled shRNA cells 
unsorted (top left), CD146Low/CD90High (top right), CD146Low/CD90Low (bottom left) 
and CD146High/CD90Low (bottom right). (C) Representative images of colony 
formation for CAKI-1 CAV1 shRNA (positioning the same as B) 
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4.3.2 CAV1 expression drives spheroid formation of CAKI-1 cells but not 

786-O or A498 

To establish whether CAV1 is capable of driving clonogenicity in more than one 

form of clonogenic assay spheroid formation assays were carried out to observe the 

clonogenic capacity of the 786-O, A498 and CAKI-1 cell lines under non-adherent 

serum deprived conditions. In all experiments 400 cells were seeded per well. 

Of the three cell lines 786-O proved to be the most prolific in terms of spheroid 

formation. Scrambled shRNA control cells produced an average of 34 spheres in 

786-O cells, followed by an average of 16 in CAKI-1 and 13 in A498 (Figure 4.9). 

CAV1 downregulation did not decrease or increase the spheroid forming capacity of 

786-O or A498 cells (Figure 4.9 A and B), however, downregulation of CAV1 in 

CAKI-1 cells caused a significant 75% decrease in spheroid formation, from an 

average of 16 spheroids to 4 spheroids (Figure 4.9 C). 
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Figure 4.9 Spheroid formation assays of 786-O (A), A498 (B) and CAKI-1 (C) cells 
bearing scrambled shRNA control or CAV1 shRNA knockdown. Spheroid assays 
were performed at 400 cells per well. Spheroid formation data presented as mean ± 
standard deviation n=24 wells from 4 independent experiments. Statistical 
differences measured by Student’s T-test where *** = P<0.001.To the right of each 
graph are images of spheroids formed for each cell line and treatment. Images 
captured at x10 magnification the white scale bar equivalent to 50µm.  
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4.3.3 CAV1 expression suppresses proliferation in adherent CAKI-1 cultures 

and appears to maintain CAKI-1 G2/M phase under non-adherent 

culture conditions 

To understand if CAV1 maintains clonogenicity through upregulating the 

proliferation and cell cycle progression of CAKI-1 cells, both proliferation and cell 

cycle analysis of scrambled shRNA control and CAV1 shRNA knockdown cells was 

carried out. 

Under adherent growth conditions downregulation of CAV1 resulted in an increase 

of CAKI-1 cell proliferation by 55% (measured by direct cell counts Figure 4.10 A) 

and 43% (by MTT assay Figure 4.10 B). Western blot analysis of the pro-

proliferative G1 to S phase cell cycle regulator cyclin D1 found that down-regulation 

of CAV1 increased the expression of cyclin D1 (Figure 4.10 C). Indicating CAV1 

acts as a suppressor of proliferation in CAKI-1 cells under adherent conditions.  

Cell cycle analysis of adherent CAKI-1 cells shows that in the scrambled shRNA 

(CAV1 +ve) cells the majority were found in the G0/G1 phase at 68% with all other 

cells (32%) committed to cell cycle progression. However, with CAV1 down-

regulation these distributions shift with G0/G1 cells accounting for 55% and all other 

cells committed to cell cycle progression representing 45% (Figure 4.11). This 

further indicates that CAV1 suppresses proliferation and its down-regulation leads to 

more cells entering into cell cycle. 

The cell cycle of CAKI-1 cells (scrambled shRNA control and CAV1 shRNA 

knockdown) was then examined under non-adherent spheroid forming conditions. 

Under these spheroid forming conditions the proportions both Scrambled shRNA 

control and CAV1 shRNA cells entering into cell cycle was reduced, with in both 

cases over 80% of cells falling within the G0/G1 phase. Furthermore, under 

spheroid forming conditions the amount of cells committed to cell cycle progression 
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was similar for both the scrambled shRNA control cells (12.5%) and the CAV1 

shRNA knockdown cells (14%) (Figure 4.11). However, analysis of the spheroid 

cells commited to cell cycle progression (S and G2/M phases) shows that CAV1 

knockdown resulted in an increase in the proportion of cells in S-phase (11% vs 3% 

for scrambled control) and a decrease in the proportion of G2/M (3.5% vs 9% for 

scrambled control Figure 4.12). 
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Figure 4.10 Down regulation of CAV1 induces proliferation in CAKI-1 cells (A) Cell 
growth after 72 hours of CAKI-1 scrambled shRNA and CAV1 shRNA determined 
by coulter counter n= 16 from 4 separate experiments (B) Cell growth analysed after 
72 hours by MTT assay n=12 from 3 separate experiments (C) Western blots 
showing up-regulation of cyclin D1 in CAV1 shRNA transfected CAKI-1 cells with -
actin used as loading control. Data presented as mean  standard deviation. 
Statistical difference calculated by Student’s T-test where ** = P>0.01. 
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Figure 4.11 Cell cycle analysis of CAKI-1 cells under monolayer adherent 
conditions and non-adherent spheroid forming conditions in the CAKI-1 Scrambled 
shRNA control and CAV1 shRNA knockdown cell lines. (A) Histogram data of IP 
staining, grey shading represents G0/G1, blue shading represents S phase and red 
shading represents G2/M phase. Data represents a single experiment. (B) Graphed 
data of three cell cycle experiments where S phase and G2/M have been pooled to 
show the total proportion of cells in cycle. Data presented as mean  standard 
deviation n=3 experiments Statistical difference analysed by Student’s t-test *** = 
P=<0.001. 
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Figure 4.12 Cell cycle analysis of CAKI-1 scrambled shRNA control and CAV1 
shRNA cells grown in adherent monolayer and non-adherent spheroid forming 
conditions now showing both S phase and G2/M phase. Data presented as mean ± 
standard deviation n=3 experiments. Statistical difference analysed by student’s t-
test *** signifies P=<0.001. 

 

4.3.4 Activation of hypoxic signalling in CAKI-1 cells helps restore 

clonogenicity in the absence of CAV1  

Of the three cell lines examined CAKI-1 is the only one to express functional wild 

type VHL. As such we sought to examine how hypoxia would influence the 

clonogenic capacity of CAKI-1 cells.  

Under normoxic (21% O2) the impact of CAV1 knockdout to reduce CAKI-1 

clonogenicity was evident in both the adherent colony forming assay and the non-

adherent spheroid forming (P=<0.001 in both cases) (Figure 4.13 A and Figure 4.13 

B). Under hypoxic conditions (1% O2 the impact of the CAV1 knockout phentyope to 

drive a reduction in clonogenicity was neutralised in both the colony forming and 

spheroid forming assays. Specifically in the colony forming assay, while hypoxic 

increased the control (CAV1 +ve) by 58% it also increased colony formation by 88% 

in the CAV1 shRNA knockdown (CAV1 –ve) cells (Figure 4.13 A). In spheroid 
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formation assays under hypoxic conditions no statistical difference between CAKI-1 

scrambled shRNA control cells and CAV1 shRNA knockdown was observed (Figure 

4.13 B). Here spheroid formation of CAV1 shRNA knockdown cells under hypoxic 

conditions showed a 62% increase in clonogenicity compared to normoxic 

conditions 

Western blot analysis showed upregulation of HIF-2 under hypoxic conditions in 

both CAKI-1 scrambled shRNA control and CAV1 shRNA knockdown cells, 

indicative of activated hypoxic signalling. HIF-2 expression was not observable 

under normoxic conditions indicating functional VHL activity in CAKI-1 cells (Figure 

4.14). Analysis of CAV1 expression under hypoxic conditions found CAV1 to be 

downregulated in scrambled shRNA control cells and further downregulated in 

CAV1 shRNA knockdown cells (Figure 4.14).  
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Figure 4.13 Hypoxia drives clonogenicity in the absence of CAV1 in VHL positive 
CAKI-1. A Total colony formation of scrambled shCAKI-1 cells under hypoxia to the 
right representative images of colonies stained for counting. B Total spheroid 
formation of CAKI-1 cells under hypoxia to the right representative images of 
spheres formed viewed by phase contrast microscopy. Graphs represent mean  
SD n=9 from 3 separate experiments for colony formation and n=18 from 3 separate 
experiments for spheroid formation assays statistical significance calculated by 
Student’s t-test *** signifies P=<0.001 
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Figure 4.14 Western blots showing activation of hypoxic signalling by expression of 
HIF-2 and the effect of hypoxia on CAV1 expresssion. -actin used as a loading 
control.  
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4.4 Discussion 

This chapter has focused on the effect of CAV1 downregulation upon the 

proportions and clonogenicity of cell subpopulations in the 786-O, A498 and CAKI-1 

RCC cell lines. The work went on to analyse how CAV1 may drive clonogenicity and 

how this may change given the genotypic background of the cell line.  

Downregulation of CAV1 in the 786-O and A498 cell lines caused substantial 

changes in the proportion of CD90/CD146 subpopulations. In 786-O a significant 

reduction was observed in the CD90Low/CD146High subpopulation and a strong trend 

was observed toward a decreased proportion of CD90Low/CD146High cells matched 

by an increased proportion of CD90Low/CD146Low cells. Similar results were 

observed in the A498 cell line, where CAV1 downregulation caused a decrease in 

the CD90Low/CD146High population, although appeared not to have any effect on the 

CD90High/CD146Low population. In both these cell lines there was no difference in 

their total clonogenicity (colony forming and spheroid forming capacity) or in the 

colony forming capacity of the sorted CD90/CD146 subpopulations. In both 

clonogenicity assays the downregulation of CAV1 appeared to have no significant 

effect on the size or general morphology of colonies or spheroids formed. Taken 

together while CAV1 may cause changes in the distribution of CD90/CD146 

subpopulations this effect has no impact on the clonogenicity of these populations. 

CD146 has been identified as a marker present on primary RCC CSCs isolated by 

CD105+ populations[61] and RCC CSCs generated through growth of patient-

derived xenographs using adult progenitor cell medium[346]. Its upregulation has 

been demonstrated to drive the invasive capacity of melanoma[347], breast[348] 

and ovarian cancers[349]. Indeed, in RCC upregulation of CD146 by insulin-like 

growth factor-binding protein 4(IGFBP-4) induction of Wnt/-catenin signalling 

demonstrated increased migratory and invasive capacity of RCC cells[350]. Further 

to this CAV1 has been identified as important to the invasive capacity of 786-O, 
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A498 and CAKI-1 cell lines[131]. Taken together this suggests a possible interaction 

pro-invasive interaction between CAV1 and CD146 expression in the 786-O and 

A498 cell lines. 

In contrary to the findings in 786-O and A498, downregulation of CAV1 in CAKI-1 

cells did not affect the distribution of CD90/CD146 subpopulations or have a 

profound impact on the expression of surface markers further down the gating 

hierarchy. However, CAV1 downregulation did have a substantial impact on both 

the colony forming and spheroid forming capacity of CAKI-1 cells. This 

downregulation of clonogenicity was found in the whole unsorted cell line as well as 

the varying CD90/CD146 subpopulations. The ability of CAV1 to drive clonogenicity 

of CAKI-1 cells is likely to indicate a population of CSC cells not identified by the 

current marker panel resides within the CAKI-1 cell line that require CAV1 for 

clonogenicity. Many other potential markers may exist, for example, recently CXCR-

4[62] has been used to successfully identify CSC populations from RCC cell lines 

RCC-26 and RCC-53[62]. Further, subpopulations of CSC like cells have been 

identified in RCC through the use of less specific methods such as spheroid 

formation in non-adherent conditions[64], side population assays[63] and aldehyde 

dehydrogenase (ALDH) activity[351]. Evidence is beginning to accumulate that 

shows the CSC phenotype in tumours maybe dynamically regulated depending on a 

host of microenvironmental signals and cellular interactions[352]. For example, NO 

released from endothelial cells related to the glioblastoma tumour microenvironment 

can induce CSC phenotype[353]. Indeed, such NO induced CSC phenotypes have 

been identified in non-small cell lung carcinoma. Moreover such populations were 

found to upregulate CAV1 which was found to be critical to many key CSC 

functions[344]. It may be possible that CAV1 plays a role in regulating the response 

to the conditions used in the clonogenicity assays here to support conversion to a 

stem-like phenotype. 
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To understand if CAV1 is driving clonogenicity through upregulation of proliferation 

and increased progression through the cell cycle proliferative and cell cycle assays 

were undertaken. Downregulation of CAV1 in CAKI-1 cells caused increased 

proliferation and resulted in upregulation of cyclin D1. This finding was further 

confirmed by cell cycle analysis where CAV1 knockdown led to a larger proportion 

of cells to enter into the cell cycle. Under spheroid forming conditions the proportion 

of cells in the G2/M phase was greatly reduced by CAV1 knockdow. This data 

seems to suggest the possibility for a multifunctional or context-dependent role for 

CAV1 in the biology of CAKI-1. Under adherent growth conditions CAV1 may be 

suppressing the proliferative capacity of the bulk non-CSC cells and maintaining the 

self-renewal capacity of more stem cell-like populations. Upregulation of CAV1 may 

supress the capacity for differentiation in the CSC cells in the CAKI-1 cell line, 

favouring a balance of differentiation and self-renewal. Once this inhibitory action of 

CAV1 is removed this balance may be forced more towards differentiation than 

preserving self-renewal in much the same way as the previously discussed 

regulation of CAV1 differentiation in certain MSC populations[334]. As more of the 

total cell population would be differentiated bulk cells with decreased self-renewal 

capacity this would be reflected in the clonogenicity assays. 

CAKI-1 is the only one of the three cell lines studied to display a decreased capacity 

for clonogenicity in response to CAV1 knockdown. It is also the only one to have a 

regulated hypoxia-induced signalling via functional VHL. The work next explored if 

induction of hypoxic signalling in CAKI-1 cells could restore clonogenic capacity 

even in the absence of CAV1 expression. Hypoxic incubation of CAKI-1 (CAV1 

knockout) cells resulted in an upregulation of HIF-2 and restoration of 

clonogenicity measured by both spheroid forming and colony formation (Figure 

4.15). Our results appear to indicate that under hypoxic conditions the reduced 

clonogenicity caused by a lack of CAV1 is compensated for by hypoxia and 
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activation of hypoxia-inducible pathways. Indeed in a recent study investigating 

CXCR4 positive RCC CSCs, Micucci et al [354] found HIF-2 expression important 

in these cells for upregulation of CXCR4 signalling necessary to stabilise CXCR4 

induced self-renewal. Taken together our results seem to suggest CAV1 may be an 

important driver of self-renewal capacity in RCC tumours which expression 

functional VHL.  
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Figure 4.15 The hypoxic response is able to restore clonogenicity in CAKI-1 cells in 
the absence of CAV1 expression. In CAKI-1 cells knockdown of CAV1 under 
normoxic conditions significantly reduced colony formation. However, hypoxia was 
able to restore clonogenicity despite the downregulation of CAV1. 
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Further, in the control CAKI-1 cells (CAV1 +ve) hypoxia was found to downregulate 

CAV1 expression. CAV1 is highly expressed in VHL+/+ cell lines as ACHN and 

CAKI-2 as well as CAKI-1[131]. Aligned to this is an opposite finding. Specifically, a 

previous study has found that reconstituting functional VHL in the VHL-/- 786-O cell 

line resulted suppression of CAV1 and exposing these cells to hypoxic conditions 

then led to an upregulation in CAV1 expression[84]. Further to this other studies 

have found that under hypoxic conditions CAV1 is upregulated to a maximal 

expression after around 24 hours then either falls back down to original normoxic 

levels[355] or actually becomes downregulated after a period of around 72 

hours[356], it is noted that in this work cells were incubated under hypoxic 

conditions for 72 hours.  

In conclusion, CAV1 expression modulates the proportion of CD146/CD90 

subpopulations in 786-O and A498. However, in these cell lines the level of CAV1 

does not affect clonogenicity. In contrast, the VHL+/+ CAKI-1 cell line CAV1 

expression failed to change the proportion of CD146/CD90 subpopulations. Here 

however, the level of CAV1 expression had a significant effect on clonogenicity. 

Specifically, CAV1 expression was required to drive clonogenicity in both colony 

formation and spheroid formation assays. Under hypoxic conditions CAV1 

knockdown CAKI-1 cells were capable of spheroid and colony formation similar to 

that of CAV1 expressing CAKI-1 cells. These resulted indicate an important role for 

CAV1 in the self-renewal and clonogenicity of VHL competent RCCs. 
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Chapter 5 - Down-regulation of CAV1 alters 

various oncogenic signalling pathways in 

CAKI-1 under clonogenic and hypoxic 

conditions.  
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5 Down-regulation of CAV1 alters various oncogenic 

signalling pathways in CAKI-1 under clonogenic and 

hypoxic conditions. 

5.1 Introduction 

Effective targeting of CSC populations in patient tumours will require an in depth 

understanding of which cell signalling pathways, and associated downstream 

functional transcription factors, control the stem cell-like phenotype. As such, much 

research has been invested in identifying which pathways are dysregulated and 

which aspects of the stem like phenotype they control. Several cell signalling 

pathways that have been identified thus far, the majority of which are known to be 

important for normal tissue development/repair, organogenesis and general 

maintenance of the stem cell phenotype[357]. Of the many molecules involved in 

these pathways the most widely studied, and promising in terms of therapeutic 

targeting, are -catenin and STAT3. 

5.1.1 Wnt-catenin signalling in the CSC phenotype and RCC 

The Wnt/β-catenin signalling cascade is driven by a family of secreted 

glycolipoproteins, termed Wnt’s. Wnt’s are capable of regulating cell fate 

determination, cell polarity and proliferation in normal stem cell tissue homeostasis 

and embryonic development[358]. As such, dysregulation of the Wnt pathway has 

been implicated as the causative agent of birth defects but also identified as 

important contributor to the tumourigenesis of a wide range of cancers and other 

disease[359]. Wnt signalling exherts its physiological effects through the regulation 

of the transcriptional co-activator -catenin, this pathway is known as the canonical 

Wnt signalling pathway. Canonical signalling is the most well-known and reported 

type of -catenin regulation, the other being the non-canonical planar-cell polarity 

pathway which is capable of regulating the cytoskeleton[360]. Activation of -catenin 
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through the canonical Wnt signalling pathway requires the interaction of a Wnt 

protein with the G-protein coupled receptor Frizzled (Fz) and its co-receptor low-

density lipoprotein receptor-related protein 5/6 (LRP)[361]. Inhibition of Wnt 

signalling is achieved through two different ways, either by direct inhibition of Wnt 

proteins by the secreted antagonists Frizzled-related-proteins (sFRPs) and Wnt 

inhibitory factor-1 (WIF-1)[358], or inhibition of LRP5/6 signalling through the 

expression of the secreted Dickkopf-related proteins (DKKs)[362]. Ligand binding 

and activation of Fz and LRP5/6 complex results in activation of the cytoplasmic 

polarity protein dishevelled homologue (Dv1)[363]. Activation of DV1 inhibits the 

Axin-mediated phosphorylation of -catenin, this results in the cytoplasmic 

accumulation of -catenin[364]. An increase in the concentration of cytoplasmic -

catenin results in the translocation of -catenin to the nucleus. Once within the 

nucleus -catenin facilitates the transactivation of target genes together with TCF-

LEF transcription factors[365]. In the absence of Wnt signalling, a multiprotein 

destruction complex consisting of the scaffolding protein axin, adenomatous 

polyposis coli (APC) and glycogen synthase kinase-3 (GSK-3) facilitates the 

phosphorylation of -catenin which targets it for ubiquitination and degradation via 

the proteasome[366].  

Several studies have implicated dysregulation of Wnt signalling as an important 

contribution to the generation and maintenance of a CSC, or stem cell-like 

populations, in a number of different malignancies. A population of CSCs identified 

in non-melanoma cutaneous skin tumours were found to have a profound reliance 

on the stabilisation of -catenin for maintenance of their CSC phenotype. Ablation of 

-catenin expression in these CSCs resulted in tumour regression in vivo[367]. In 

triple negative breast cancer, shRNA downregulation of -catenin resulted in 

reduced tumourigenicity both in vivo and in vitro. Additionally, significant inhibition of 

in vitro chemoresistance was observed together with the down regulation of self-
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renewal related transcription factors Bmi-1 and c-Myc[368]. Similar observations 

were made by Jang et al.[369], who also found reduction of Wnt signalling and -

catenin activation caused a substantial decrease in the metastatic capability of 

breast CSCs in vivo. In metastatic lung cancer cell lines, downregulation GSK-3 by 

miR-544 a was found upregulate -catenin and maintain the self-renewal capacity of 

CSCs in vitro[370]. Similarly in non-small cell lung cancer CSCs, -catenin 

signalling driven by CD44 was capable of driving epithelial to mesenchymal 

transition (EMT) and was critical to driving metastasis[371]. Furthermore, -catenin 

has been identified as a key component of a transcriptional complex including 

Twist1 and TCF4 which is upregulated in response to EMT. Once activated by 

Twist1 cleavage this complex was capable of binding to a number of CSC related 

gene promoter regions[372]. Treatment of hepatocellular carcinoma CSCs with all-

trans retinoic acid (ATRA) caused an increase in self-renewal related transcription 

factors and increased sensitivity to docetaxel[373].  

While activating point mutations of -catenin are rare in RCC[374], several studies 

have demonstrated that -catenin may play a significant role in tumourigenesis. It is 

well reported that induced overexpression of -catenin by inducible dysregulation of 

Apc expression in mice is sufficient to cause renal tumours[375], [376]. Indeed, non-

clear cell RCCs have been found to display deactivation of the promoter region of 

the APC gene by hypermethylation[377]. Further to this Kojima et al.[378] found 

homozygous deletion of the gene CXXC4, which encodes for the Wnt pathway 

inhibitor Idax, in aggressive RCCs. In addition to this, promoter hypermethylation 

has also been detected for an number of other inhibitors of the Wnt signalling 

pathway such as: sFRP1[379], DKK2[380] and Wnt inhibitory factor 1 (WIF-1)[381]. 

The tumour suppressor histone deacetylase 10 (HDAC10), often downregulated in 

primary RCC samples[382], appears to exert regulatory control over -catenin 

stabilisation. Downregulation of HDAC10 resulting in decreased phosphorylation of 



 

194 
 

-catenin and increase proliferation and invasion[382]. A pro-survival role for -

catenin signalling in RCC has also been detected as small molecule inhibition of -

catenin has been found to induce apoptosis in RCC cell lines[383]. As such the 

canonical Wnt/-catenin signalling pathway seems a likely means by which the CSC 

phenotype in RCC cells may be propagated.  

5.1.2 STAT3 signalling in the CSC phenotype and RCC 

The aberrant activation of members of the signal transducer and activator of 

transcription (STAT) pathway have been identified as important to the regulation of 

the malignant phenotype[384]. Of all the STAT family members STAT3 has been 

viewed as one of the most potent in terms of the variety of pro-oncogenic cellular 

responses it can induce. Additionally, STAT3 has been found to carry out a wider 

role in the components of the tumour microenvironment such as tumour associated 

immune and stromal cells[385], [386]. Further to this, STAT3 has been identified as 

an important factor in the regulation of self-renewal in stem cell populations. In ESC 

self-renewal, STAT3 is able to preserve stem cell populations in an undifferentiated 

state by leukemia inhibitory factor (LIF). LIF binding to leukemia inhibitory factor 

receptor (LIFR) and glycoprotein 130 (gp130) triggers the activation of STAT3 

which, through interactions with B-cell lymphoma 3-encoded protein (Bcl3) and 

octamer-binding transcription factor 4 (Oct-4), is able to maintain pluripotency 

through upregulation of addition self-renewal related genes such as Nanog and sex 

determining region y-box 2 (Sox2)[387]. 

The regulation of STAT3 activity is important for the self-renewal and pluripotent 

differentiation of embryonic stem cells (ESCs)[388]. This association has led to a 

number of recent studies examining the role of STAT3 activation in the CSC 

populations of numerous tumours. In breast cancer cell lines, inhibition of STAT3 

together with FAK and Src resulted in a reduction in the total CSC pool, 

tumourigenicity and metastatic potential[389]. Moon et al. found the proportion, 
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proliferation and capacity for differentiation of CSC activity of the gliobastoma cell 

line U87 MG was regulated by PTEN through the control of PI3K/Akt/STAT3 

signalling[390]. In prostate cancer the loss or downregulation of the androgen 

receptor (AR) resulted in: increased activation of STAT3, pronounced expression of 

CSC associated markers and a more active CSC population in terms of proliferation 

and tumourigenicity[390]  

Regulation of STAT3 activity can be carried out by a number of different upstream 

signalling pathways such as: the toll-like receptors (TLRs), receptor tyrosine kinases 

(RTKs), a wide variety of G-protein coupled receptors (GPRs) and cytokine 

receptors[391]. Of these regulatory signalling pathways the functional activation of 

STAT3 by interleukin-6 (IL-6) has been the most widely studied in relation to CSC 

biology. CD44+/CD24- breast CSCs have upregulated IL-6 expression which was 

responsible for activation of STAT3 by Janus kinase 2 (JAK2). This was found to be 

critical for maintenance of CSC function in these cells[392]. Activation of the IL-

6/JAK2/STAT3 pathway has also been observed in spheroid derived CSCs from the 

lung cancer cell line A549. IL-6 induced activation of STAT3 signalling resulted in 

the upregulation of the DNA methyltransferase 1 (DNMT1) inhibiting methylation to 

the promoter regions of p53 and p21, resulting in these lung CSCs[393]. The 

positive feedback loops characteristic of cytokine signalling pathways have been 

demonstrated to drive self-renewal of glioblastoma CSCs. Here, the constitutive 

activation of STAT3/NF-B signalling was found to regulate the Notch signalling 

pathway[394]. Direct activation of STAT3 by IL-6 is not the only means by which 

STAT3 can be activated to drive CSC phenotype. Activation of STAT3 by Toll-like 

receptor 2 has been observed in breast CSCs, this resulted in increased secretion 

of IL-6, thereby setting up constitutive STAT3 activation[395]. Regulation of STAT3 

activation by microRNAs has been demonstrated in primary pancreatic cancer 
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tissue where downregulation of mircoRNA-1181induced activation of STAT3 and 

induction of Sox2 expresion[396]. 

In RCC STAT3 has mainly been investigated in terms of its activation by IL-6, which 

has been demonstrated as an indicator of poor clinical outcome and implicated in 

disease progression[397]. The high expression of the active form of STAT3, 

pSTAT3, has been observed in RCC tumour samples by immunohistochemistry, 

relatively little activation was observed in adjacent non-cancerous kidney 

tissue[398]. This activation has also been observed RCC cell lines[399]. Inhibition of 

STAT3 activation in RCC cell lines 786-O and CAKI-1 has been shown to reduce 

proliferation and resistance to apoptosis[400]. It is possible that STAT3 may be a 

key component in driving CSC phenotype in RCC in a CAV1 dependant manner. 

 

5.1.3 Aims 

This chapter has aimed to understand how protein expression and phosphorylation 

was affected by downregulation of CAV1. Once identified, inhibitory studies were 

carried out to determine what affect direct inhibition of these pathways had on 

clonogenicity of the CAKI-1 cell line. These studies were carried out by: 

 Proteomic array analysis of key regulatory phosphokinases, stem cell related 

proteins and tumour supressing and oncogenic proteins. This analysis was 

carried out under normoxic adherent, normoxic spheroid and hypoxic 

spheroid forming conditions with CAV1 knockdown. 

 Small molecule inhibition of possible pro-clonogenic pathways seen to be 

downregulated by CAV1 with subsequent colony forming assays to assess 

the effect on clonogenicity. 
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5.2 Materials and Methods 

5.2.1 Proteomic microarrays 

Proteomic analysis of CAKI-1 scrambled shRNA control and CAV1 shRNA 

knockdown cells were conducted using the human Proteome Profiler Antibody 

arrays kits (R&D Systems): Human Phospho-Kinase Array, Human XL Oncology 

Array and the Human Pluripotent Stem Cell array. Preparation of the arrays was 

conducted as instructed by the product protocol, each kit used slightly different 

buffers and lysis buffers in each case the recommendations of each kit was followed 

therefore the following is a general summation of array preparation.  

Cell were first washed twice with PBS (by centrifugation for spheroid formed cells), 

lysed in their corresponding lysis buffers, centrifuged at 20,000g for 15 minutes to 

pellet cellular debris and protein concentration was then quantified as explained in 

Chapter 4. Before addition of protein lysates, microarray membranes containing 

immobilised capture antibodies were placed into either 6 or 4 rectangular well multi-

dishes and then blocked for 60 minutes in their corresponding blocking buffers. 

Following this 100g of total protein was diluted in the corresponding array buffer 

left to incubate with gentle agitation on a rocking platform shaker for 16 hours at 

4OC. Array membranes were then washed three times for 10 minutes each then 

incubated for 60 minutes at room temperature with a cocktail of detection antibodies 

followed by another three washes. To enable chemiluminescent detection of bound 

proteins Streptavidin-HRP was then added to each well and incubated for 30 

minutes at room temperature then washed a further three times. For imaging arrays 

were then placed onto the scanning bed of a ChemiDoc imaging system and 1mL 

of Chemi Reagent Mix was evenly applied to each membrane allowed to incubate 

for one minute then imaged. Images of developed microarrays were analysed using 

the ImageJ image analysis software package. 
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5.2.2 Inhibitor studies 

For small molecule inhibition of Wnt and STAT3 activation cells were seeded into 6-

well plates as previously described (see Chapter 4). Inhibition of -catenin activation 

was performed using IWP-2 which inhibits the N-palmitoyltransferase PORCN, 

thereby inhibiting the palmitoylation and secretion of Wnt proteins[401]. Inhibition of 

STAT3 was performed using WP1066. WP1066 inhibits STAT3 activation by 

inhibition of immediate upstream JAK2-mediated phosphorylation[402]. At 24 hours 

post-seeding cells were incubated with either 5 M IWP-2 (Tocris), 6 M WP1066 

(Santa Cruz Biotechnology), or DMSO as a vehicle control for a further 24 hours. 

Following this pre-treatment cells were harvested to assess inhibition of -catenin 

(polyclonal antibody obtained from Sigma Aldrich) by western blot (as described in 

Chapter 4) or phosphorylation of STAT3 at Y705 by flow cytometry (as described in 

Chapter 3). To access the effect of STAT3 and Wnt inhibition on clonogenicity, cells 

were trypsinised and resuspended as previously described and serially diluted to 

achieve a concentration of 400 cells per well in normal growth media without 

inhibitor. The remainder of the assay being carried out as previously described.  

5.2.3 Statistical analysis 

Statistical analysis was carried out using a one-way ANOVA using a Dunnett post-

hoc analysis; comparison of all treatments against control group where a P value of 

less than 0.05 was considered significant. 
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5.3 Results 

5.3.1 Effect of CAV1 knockdown on regulation of phospho-kinase regulated 

cell signalling under different culture conditions 

To assess how CAV1 expression effects the regulation of phospho-kinase signalling 

networks, many of which have been implicated in the maintenance of CSC function 

and phenotype, protein microarrays specific to the key regulatory markers in these 

pathways were used. The regulatory status of these proteins were investigated in 

normal adherent culture conditions but also in non-adherent spheroid conditions 

both normoxic and hypoxic. 

Under normoxic adherent conditions significant changes in phosphorylation were 

detected in many proteins in three proteins. Glycogen synthase kinase – 3/ 

(GSK-3/ showed a large 5.5 fold increase in phosphorylation sites serine 21 

(S21) and serine 9 (S9) indicating inhibition of GSK-3/ signalling (Table 5.1 

labelled 1 Figure 5.1)[403]. Signal transducer and activator of transcription 3 

(STAT3) displayed a loss of phosphorylation in both tyrosine 705 (Y705) and serine 

727 (S727) of 3 fold and 6.1 fold respectively (Table 5.1 labelled 2 and 3 Figure 5.1) 

meaning inhibition of STAT3 activity[404]. A 2.6 dowregulation of p27 

phosphorylation at the threonine 198 site was observed (Figure 5.1 labelled as 5 

Table 5.1), this indicates activation of p27[405]. AKT 1/2/3 phosphorylation at site 

serine 473 (S473) was decreased by 1.8 fold indicating possible inhibition of 

activation[406] (Table 5.1 labelled 6 Figure 5.1). However, no phosphorylation was 

detected in the second threonine (T308) phosphorylation site and CAV1 knockdown 

did not achieve a 2 fold decrease in phosphorylation. A downregulation of p53 

phosphorylation was detected at serine 15 (S15) by 1.8 fold (Figure 5.1 labelled as 

4 Table 5.1). This suggests an decreased response to DNA damage with CAV1 

knockdown[407]. Phosphorylation of p53 at serine 46 and serine 392 remained 

unaffected.  
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In cells CAKI-1 cells grown under normoxic spheroid forming conditions showed 

only one 1.9 fold or greater change in phosphorylation. Phosphorylation of 40kDa 

proline-rich protein (PRAS40) at threonine 246 displayed a 2.3 fold increase (Figure 

5.2 labelled as 1 Table 5.1), indicating PRAS40 activation[408]. Sight 

downregulation of p53 phosphorylation was observed in the phosphorylation sites 

serine 15 (S15) (1.6 fold downregulation), serine 46 (S46) (1.8 downregulation) and 

serine 392 (S392) (1.5 downregulation) (Figure 5.2 labelled together as 2 Table 5.1) 

compared to only a downregulation of p53 S15 phosphorylation in adherent cells 

(Figure 5.1). Two components of phosphatidylinositol (3,4,5)-triphosphate (PIP3) 

signalling pathway experience slight downregulations; Akt 1/2/3 phosphorylation at 

site threonine 308 exhibited a slight downregulation of 1.6 fold and GSK-3/ at 

S21/S9 a downregulation of 1.6 fold (Figure 5.2 Table 5.1).  

CAKI-1 cells grown under hypoxic spheroid conditions had no fold change in 

phosphorylation greater than 1.9 fold. However, unique to spheroid cells grown 

under hypoxic conditions HSP27 exhibits a 1.8 fold increase in phosphorylation at 

the serine 78 and 82 sites (S78 and S82) (Figure 5.3 labelled as 3 Table 5.1), 

indicating its activation[409]. In addition, reduction of STAT3 phosphorylation of both 

Y705 and S727 sites was also more pronounced with a 1.7 and 1.8 fold 

downregulation respectively  as well as reduction in p27 phosphorylation of T198 

(Figure 5.3 labelled as 4 Table 5.1). 
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Figure 5.1 Human phospho-kinase array data of CAKI-1 Scrambled shRNA control 
and CAV1 shRNA knockdown cells grown as an adherent monolayer under 
normoxic conditions. A Processed arrays phosphor-kinase arrays for both 
Scrambled shRNA and CAV1 shRNA cells. B Graph showing fold change in 
expression both positive and negative for each marker with respect to CAV1 down-
regulation. Numbers on the graph correspond to the position of a protein on the 
array. 
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Figure 5.2 Human phospho-kinase array data of CAKI-1 Scrambled shRNA control 
and CAV1 shRNA knockdown cells grown as spheroids in non-adherent normoxic 
conditions. A Processed arrays phosphor-kinase arrays for both Scrambled shRNA 
and CAV1 shRNA cells. B Graph showing fold change in expression both positive 
and negative for each marker with respect to CAV1 down-regulation. Numbers on 
the graph correspond to the position of a protein on the array. 
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Figure 5.3 Human phospho-kinase array data of CAKI-1 Scrambled shRNA control 
and CAV1 shRNA knockdown cells grown as spheroids in non-adherent hypoxic 
conditions. A Processed arrays phosphor-kinase arrays for both Scrambled shRNA 
and CAV1 shRNA cells. B Graph showing fold change in expression both positive 
and negative for each marker with respect to CAV1 down-regulation. Numbers on 
the graph correspond to the position of a protein on the array. 
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Table 5.1 Heat-map showing the fold changes in phosphorylation induced by CAV1 
down-regulation in adherent, spheroid and hypoxic spheroid cells. Only proteins 
with a fold decrease in at least one condition are shown.  indicates up-regulation  
indicates down-regulation. 

 

  

Proteins 
Normoxic 
Adherent 

Normoxic 
Spheroid 

Hypoxic 
Spheroid 

HSP27 S78/S82 1.4 -1.1  1.8 

PRA S40 T246 1.0  2.3 1.1 

Fgr Y412  1.5 -1.2 1.1 

AMPKa1 T183  1.6 -1.4 -1.2 

AMPKA2 T172  1.5 -1.2 -1.2 

GSK-3alpha/beta S21/S9  5.5  -1.6 1.1 

Akt 1/2/3 S473 -1.8 -1.3 1.2 

Akt 1/2/3 T308 1.0  -1.6 -1.1 

p70 S6 Kinase T389 -1.2  -1.5 -1.3 

p70 S6 Kinase T421/S424  -1.6 -1.4  -1.5 

STAT3 Y705  -3.0 -1.3  -1.7 

STAT3 S727  -6.1 -1.3  -1.8 

HSP60  1.5 -1.1 1.1 

p53 S392 1.0  -1.5  -1.7 

p53 S46 -1.2  -1.8  -1.6 

p53 S15  -1.8  -1.6  -1.5 

RSK1/2/3 S380/S386/S377  -1.6  -1.5 -1.4 

p27 T198  -2.6 -1.2  -1.8 

WNK1 T60 -1.1 -1.3  -1.7 

c-Jun S63 -1.1  -1.5 1.0 

eNOS S1177  -1.5 -1.3 -1.3 

PLC-y1 Y783 -1.4  -1.6  -1.5 

PYK2 Y402 -1.1 -1.7  -1.5 

 

 

>1.9 Fold change in expression  

1.5 – 1.8 Fold change in expression 
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5.3.2 Effect of CAV1 knockdown on cancer related cell signalling under 

different culture conditions 

To understand how downregulation of CAV1 affects the expression of common 

oncogenes, tumour suppressors and molecules capable of facilitating progression to 

malignant disease protein microarrays consisting of such proteins were used 

(referred to here after as the ‘oncology array’). Expression of these proteins were 

investigated in CAKI-1 scrambled shRNA and CAV1 shRNA knockdown cells under 

normoxic adherent growth conditions, normoxic non-adherent spheroid forming 

conditions and under hypoxic non-adherent spheroid forming conditions. 

Under normoxic adherent conditions CAV1 knockdown caused a greater that 1.9 

fold change in several proteins. Expression of a number of pro-invasive proteins 

was detected including: urokinase-type plasminogen activator (u-PA) upregulated 

2.2 fold, vascular cell adhesion protein (VCAM-1 or CD106) upregulated by 2.3 fold 

and Cathepsin S upregulated 2.2 fold (Figure 5.4 labelled 1, 2 and 3 respectively 

Table 5.2 Table 5.3). Hypoxia inducible factor - 1 (HIF-1) shows an upregulation 

of 4.5 fold in response to CAV1 knockdown (Figure 5.4 labelled 4 Table 5.3). 

Downregulation of CAV1 also appears to cause significant upregulation of the 

inhibitor of the Wnt signalling pathway DKK-1[410] with a 4.3 fold increase in 

expression (Figure 5.4 labelled 5 Table 5.2). The tumour surpressor p53 

demonstrated a 2.1 fold decrease in expression with CAV1 knockdown (Figure 5.4 

labelled 6 Table 5.3). Several members of the Kallikreins as well as MMP-9 appear 

to show down regulation however this is due to their extremely low expression 

similar to that of background resulting in apparent large changes in expression. 

While several proteins appear to show slight changes in expression the majority 

were at a level of expression similar to that of background.  

Analysis of the same microarrays in normoxic spheroid forming cells also found 

changes CAV1 dependent downregulation of pro-invasive proteins. VCAM-1/CD106 
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showed a downregulation of 2.6 fold which was found to be upregulated in normoxic 

adherent conditions with CAV1 knockdown (Figure 5.5 labelled 1 Table 5.2). In 

addition to this, intercellular adhesion molecule-1 (ICAM-1) showed downregulation 

of 2.1 fold with CAV1 knockdown (Figure 5.5 labelled as 3 Table 5.3). Interestingly, 

under spheroid forming conditions CAV1 shRNA knockdown cells displayed a 2.5 

fold decrease in expression of angiopoietin-like 4 which is not observed in normoxic 

adherent cells (Figure 5.5 labelled 2 Table 5.2). The CAV1 induced downregulation 

of p53 observed in adherent cells was also present in the spheroid forming cells, 

albeit to a much lesser extent, with a 1.6 fold change in expression (Figure 5.5 

labelled 4 Table 5.3).  

Downregulation of CAV1 in hypoxic spheroid forming cells causes changes in the 

expression of many proteins in the oncology array. In regard to proteins regulator 

and effector proteins upregulated under hypoxic conditions, upregulation of 

angiopoietin-like 4 and HIF-1 by 3 and 3.5 fold respectively (Figure 5.6 labelled 6 

and 7 Table 5.2 Table 5.3). In addition, the RCC CSC marker[61] and microvascular 

density marker[186] CD105 was shown to be upregulated 2 fold with CAV1 

downregulation under hypoxic conditions (Figure 5.6 labelled 3 Table 5.2). 

Interestingly, the pro-invasive proteins u-PA and cathepsin S, which showed no 

difference in expression in response to CAV1 knockdown in normoxic spheroids, 

were upregulated by 3.3 fold and 2.8 fold respectively (Figure 5.6 labelled 5 and 1 

respectively Table 5.2 Table 5.3). In addition to this, ICAM-1 and VCAM-1/CD106 

expression are both downregulated by 2.1 and 1.8 respectively fold in spheroid 

forming cells under hypoxic conditions, a change in expression which was also 

observed in normoxic spheroid forming cells (Figure 5.6 labelled 9 and 12 

respectively Table 5.3). Of note a 9.5 fold increase in serpin E1[411], an inhibitor of 

u-PA, with CAV1 downregulation under hypoxic conditions was observed (Figure 

5.6 labelled 8 Table 5.3). Significant changes in the regulation of the chemokine 
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molecules with CXCL8/IL-8 and CLL20/MIP-3a upregulated by 4.1 and 10.9 fold 

respectively (Figure 5.6 labelled 2 and 4 respectively Table 5.2.). Finally, the 

downregulation of tumour surpressors p53 and p27 by 1.8 was also detected, 

showing p53 activity to be downregulated in a CAV1 dependent manner in all three 

growth conditions (Figure 5.6 labelled 11 and 13 respectively Table 5.3). 
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Figure 5.4 Human oncology array data of CAKI-1 Scrambled shRNA control and 
CAV1 shRNA knockdown cells grown as an adherent monolayer under normoxic 
conditions. A Processed arrays phosphor-kinase arrays for both Scrambled shRNA 
and CAV1 shRNA cells. B Graph showing fold change in expression both positive 
and negative for each marker with respect to CAV1 down-regulation. Numbers on 
the graph correspond to the position of a protein on the array. 
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Figure 5.5 Human oncology array data of CAKI-1 Scrambled shRNA control and 
CAV1 shRNA knockdown cells grown as non-adherent spheroids under normoxic 
conditions. A Processed arrays phosphor-kinase arrays for both Scrambled shRNA 
and CAV1 shRNA cells. B Graph showing fold change in expression both positive 
and negative for each marker with respect to CAV1 down-regulation. Numbers on 
the graph correspond to the position of a protein on the array. 
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Figure 5.6 Human oncology array data of CAKI-1 Scrambled shRNA control and 
CAV1 shRNA knockdown cells grown as non-adherent spheroids under hypoxic 
conditions. A Processed arrays phosphor-kinase arrays for both Scrambled shRNA 
and CAV1 shRNA cells. B Graph showing fold change in expression both positive 
and negative for each marker with respect to CAV1 down-regulation. Numbers on 
the graph correspond to the position of a protein on the array. 
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Table 5.2 Heat-map showing the fold changes in proteins identified by the oncology 
array induced by CAV1 down-regulation in adherent, spheroid and hypoxic spheroid 
cells.  indicates up-regulation  indicates down-regulation.  

 

  

Protein 
Normoxic 
Adherent 

Normoxic 
Spheroid 

Hypoxic 
Spheroid 

CXCL8/IL-8 1.2  -1.6  4.1 
CCL3/MIP-1a  1.8  -1.5  2.3 

CD31/PECAM1  1.6  -1.6  4.0 
Thrombospondin-1 -1.1  -1.6 1.2 
Endoglin/CD105 1.4 -1.4  2.0 

IL-18 Bpa 1.4 -1.2  2.7 
CLL20/MIP-3a 1.2  -1.5  10.9 

Progesteron R/NR3c3  1.6 -1.2  1.6 
Tie-2  1.9 -1.3 1.0 

Amphiregulin 1.2  -1.5 -1.1 
Carbonic anhydrase IX 1.1  -1.5 1.1 

Endostatin  1.6  -1.8 1.2 
Kallikrein3/PSA  1.7 -1.2  1.6 

MMP-2 1.3  -1.5  1.5 
u-PA  2.2 -1.1  3.3 

Angiopoietin-1 1.2  -1.5 -1.3 
Cathepsin B -1.1  -1.6 1.1 
Kallikrein 5  2.2  -1.8 1.2 

Stromelysin-1  1.7  -1.5  1.6 
Prolactin  1.7  -1.4 1.3 

VCAM-1/CD106  2.3  -2.6  -1.8 
Angiopoietin-like 4 1.0  -2.4  3.0 

Cathepsin D 1.4  -1.7 1.2 
eNOS 1.3  -1.5 1.1 

Cga/b (HCG) 1.1  -1.5 -1.1 
Kallikrien 6  2.1  -1.8 1.2 

 

 

>1.9 Fold change in expression  

1.5 – 1.8 Fold change in expression 
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Table 5.3 Heat-map showing the fold changes in proteins identified by the oncology 
array induced by CAV1 down-regulation in adherent, spheroid and hypoxic spheroid 
cells.  indicates up-regulation  indicates down-regulation.  

 

  

Protein 
Normoxic 
Adherent 

Normoxic 
Spheroid 

Hypoxic 
Spheroid 

MMP-9  2.0  -1.9 1.2 
Prostasin/Prss8 1.0  -1.6 1.4 

VEGF 1.1  -1.6 1.4 
ENPP-2/Autotaxin 1.3  -1.5 -1.4 

Cathepsin S  2.2 1.2  2.8 
EpCAM/TROP1 -1.2  -1.7  -1.6 

HGFR/c-Met  1.6 -1.3  2.3 
Leptin  1.5  -1.5 1.2 

MSP/MST1 1.4  -1.8 1.3 
E-selectin/CD62E 1.4  -2.1 1.3 

Vimentin -1.1 -1.2 1.0 
Axl 1.0 -1.1 1.3 

CEACAM-5 1.5 -1.1 1.2 
Era/NR31 1.4 -1.2  1.5 

HIF-1a  4.5 -1.1  3.5 
Lumican  1.8  -1.5 1.4 
BCL-x  1.7 -1.3 -1.2 

Serpin E1/PAI-1 1.0  -1.5  9.5 
CA125/MUC16  1.5 1.0 -1.2 

DKK-1  4.3  -1.5 -1.2 
HO-1/HMOX1 1.1  -1.5  1.7 

E-Cadherin  1.6  -1.6 -1.3 
ICAM-1/CD54  -1.5  -2.1  -2.1 
CCL7/MCP-3  1.5  -1.6 1.0 

P27/Kip1 -1.5  -1.5  -1.8 
SPARC 1.0 -1.3  1.5 

EGFR/ErbB1 -1.3  -1.5 -1.4 
M-CSF -1.3  -1.6  -2.5 

p53  -2.1  -1.6  -1.8 
IL-6 -1.1 1.0 1.6 

 

 

>1.9 Fold change in expression  

1.5 – 1.8 Fold change in expression 
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5.3.3 Effect of CAV1 knockdown on the expression of pluripotent stem cell 

markers under different culture conditions 

Downregulation of CAV1 severely disrupted the clonogenic and sphere forming 

capacity of CAKI-1 cells. As a multitude of phenotypic and functional markers of 

self-renewal regulation have been identified in CSC populations of various tumours, 

a human pluripotent stem cell proteomics array was used to identify markers which 

showed around a 1.5 fold or greater change in expression. Analysis of these 

stemness markers was carried out under normoxic adherent and spheroid forming 

cells as well as spheroid forming cells under hypoxia.  

Under normoxic adherent conditions CAKI-1 cells showed no significant 

downregulation or upregulation in any of the stemness markers in the microarray 

(Figure 5.7 Table 5.4). However in cells capable of spheroid formation CAV1 

dependent downregulation was detected in three different proteins. The pro-

angiogenic vascular endothelial growth factor receptor 2 (VEGF R2) (1.9 fold) 

(Figure 5.8 labelled 3 Table 5.4). The self-renewal transcription factor of ESCs 

Nanog was downregulated 1.7 fold (Figure 5.8 labelled 2 Table 5.4). The marker of 

foetal development and hepatocellular carcinoma -fetoprotein (AFP) was 

downregulated 1.9 fold (Figure 5.8 labelled 1 Table 5.4). These changes observed 

in stemness markers of spheroid forming cells under normoxic were not apparent in 

spheroid forming cells under hypoxic conditions (Figure 5.9 Table 5.4). 
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Figure 5.7 Human pluripotent stem cell array data of CAKI-1 Scrambled shRNA 
control and CAV1 shRNA knockdown cells grown as an adherent monolayer under 
normoxic conditions. A Processed arrays phosphor-kinase arrays for both 
Scrambled shRNA and CAV1 shRNA cells. B Graph showing fold change in 
expression both positive and negative for each marker with respect to CAV1 down-
regulation. Numbers on the graph correspond to the position of a protein on the 
array. 

 

 

Figure 5.8 Human pluripotent stem cell array data of CAKI-1 Scrambled shRNA 
control and CAV1 shRNA knockdown cells grown as an non-adherent spheroids 
under normoxic conditions. A Processed arrays phosphor-kinase arrays for both 
Scrambled shRNA and CAV1 shRNA cells. B Graph showing fold change in 
expression both positive and negative for each marker with respect to CAV1 down-
regulation. Numbers on the graph correspond to the position of a protein on the 
array. 
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Figure 5.9 Human pluripotent stem cell array data of CAKI-1 Scrambled shRNA 
control and CAV1 shRNA knockdown cells grown as an non-adherent spheroids 
under hypoxic conditions. A Processed arrays phosphor-kinase arrays for both 
Scrambled shRNA and CAV1 shRNA cells. B Graph showing fold change in 
expression both positive and negative for each marker with respect to CAV1 down-
regulation. Numbers on the graph correspond to the position of a protein on the 
array. 

 

Table 5.4 Heat-map showing the fold changes in proteins identified by the 
pluripotent stem cell array induced by CAV1 down-regulation under all three 
conditions. 

 

  

CAKI-1 Scrambled shRNA 

CAKI-1 Cav-1 shRNA 

Hypoxic Spheroid A B 

Protein 
Normoxic 
Adherent 

Normoxic 
Spheroid 

Hypoxic 
Spheroid 

Oct-3/4 -1.2  -1.5 1.3 
AFP -1.2  -1.9 1.2 

SOX-17 -1.2  -1.5 -1.1 
Snail -1.1  -1.6 1.3 

Nanog -1.1  -1.7 1.0 
GATA-4 -1.1  -1.5 1.0 

Otx2 -1.1  -1.6 1.0 
VEGFR2/KDR/FLK-1 -1.1  -1.9 -1.3 

 

 

>1.9 Fold change in expression  

1.5 – 1.8 Fold change in expression 
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5.3.4 Down-regulation of CAV1 causes the downregulation of both STAT3 

phosphorylation and -catenin expression but only STAT3 inhibition 

affects clonogenicity. 

Microarray analysis of the regulation of cell signalling pathways with respect to 

CAV1 expression found a marked downregulation in the phosphorylation of STAT3 

and upregulation of DKK-1 an inhibitor of the Wnt pathway. As such we conducted 

inhibitor studies to ascertain the ability of each of these pathways to drive 

clonogenicity in the CAKI-1 cell line. 

Western blot analysis suggests that in addition to upregulation of DKK-1 in CAKI-1 

CAV1 shRNA knockdown cells -catenin was also downregulated compared to 

CAKI-1 scrambled shRNA control cells (Figure 5.10 B). In addition to this, flow 

cytometric analysis confirmed that CAV1 knockdown to reduce pSTAT3 

phosphorylation at its activating Y705 residue (Figure 5.10 A). Treatment of CAKI-1 

scrambled shRNA control cells resulted in significant reduction of both pSTAT3 

Y705 as determined by flow cytometry and -catenin expression as determined by 

Western blot (Figure 5.11 A and B). Colony formation assays with CAKI-1 

scrambled shRNA control and CAV1 shRNA knockdown cells pretreated with the 

either IWP-2 (Wnt pathway inhibitor) or WP1066 (STAT3 inhibitor) caused 

decreases in colony formation. Inhibition of STAT3 phosphorylation proved to be 

extremely potent reducing colony formation of scrambled shRNA control cells 98% 

(P=<0.001) (Figure 5.12). Inhibition of the Wnt pathway resulted in a more modest 

decrease in colony formation of 24% (P=<0.001) (Figure 5.12). 
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Figure 5.10 CAV1 dependant downregulation of STAT3 and b-catenin in CAKI-1 
cells A Flow cytometry of pSTAT3 associated fluorescence taken from 10,000 
events. The light grey histogram representing CAKI-1 Scrambled shRNA control 
cells and the dark grey histogram representing CAKI-1 CAV1 shRNA knockdown 
cells. B Western blots showing the CAV1 dependent downregulation of -catenin 
and c-Myc with GAPDH as a loading control.  

 

 

Figure 5.11 Inhibition of STAT3 phosphorylation by WP1066 (A) and -catenin by 
IWP-2 (B). A Flow cytometry histograms of fluoresence associated to pSTAT3 in 
DMSO treated CAKI-1 scrambled shRNA control (light grey histogram labelled 
Control) and WP1066 6M treated CAKI-1 scrambled shRNA control (blue 
histogram labelled WP treated). B Western blot showing inhibition of -catenin by 
IWP-2 with GAPDH used as a loading control. 
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Figure 5.12 Colony formation of CAKI-1 scrambled shRNA control and CAV1 
shRNA knockdown cells after small molecule inhibition of STAT3 phosphorylation 
by WP1066 and Wnt signalling by IWP-2. Data presented as mean  standard 
deviation of 3 experiments. Statistical difference determined by one-way ANOVA 
with a Dunnett post-hoc. *** = P<0.001  
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5.4 Discussion 

This chapter has used a broad spectrum analysis, in the form of proteomic 

microarrays, to assess multiple cell signalling pathways in the CAKI-1 cell line to 

understand which pathways become down or upregulated in response to CAV1 

downregulation. This analysis was carried out on normal adherent monolayer 

cultures as well as in cells capable of spheroid formation, hence increased potency 

for clonogenicity and self-renewal, under normoxic and hypoxic conditions.  

Microarray analysis found CAV1 knockdown under normoxic adherent conditions 

reduced the amount of STAT3 phosphorylation at both S727 and Y705 residues. In 

normoxic spheroid forming cells the decrease in STAT3 phosphorylation was far 

less pronounced. In hypoxic spheroid forming cells however more pronounced 

downregulation of STAT3 was once again observed in both sites. Inhibition of 

STAT3 phosphorylation by the small molecule inhibitor WP1066, which we found to 

significantly reduce the phosphorylation of STAT3, had a profound effect on the 

colony forming capacity of CAKI-1 cells, nearly completely ablating it.  

These results suggest the possibility that CAV1 is driving clonogenicity and spheroid 

formation through maintaining activation of STAT3. Activation of STAT3 signalling 

has been demonstrated as integral to driving self-renewal capacity in embryonic 

stem cells[412] and also implicated in driving the CSC phenotype in a number of 

cancers[389], [392], [393]. In some of these studies IL-6 stimulation has been 

shown to be the causative factor in STAT3 activation[393]. However, in microarray 

analysis, CAV1 knockdown did not alter IL-6 expression in either normoxic adherent 

or spheroid forming cells (Table 5.3). However the activation of STAT3 by IL-6 

signalling appears to be irrelevant for CAKI-1 cells. A previous study by Horiguchi et 

al. [413] demonstrated CAKI-1 cells to be unresponsive to stimulation by IL-6 and 

did not express a functional gp130 IL-6 receptor subunit. Indeed some studies have 

identified STAT3 activation through the phosphatase and tensin homolog 
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(PTEN)/Akt/mammalian target of rapamycin (mTOR) pathway stimulated by RTK 

activation[390], [414]. CAV1 downregulation of pSTAT3 has been observed before 

in metastatic lung cancer cells where siRNA silencing of CAV1 directly reduced the 

phosphorylation and downstream STAT3 and Erk[120]. CAKI-1 is known to be a 

PTEN expressing cell line and therefore maintains regulatory control of Akt 

activity[415]. In microarray analysis we observe that CAV1 knockdown induces a 

reduction in the activating phosphorylation site S473 of Akt. This poses the 

interesting possibility that CAV1 drives clonogenicity of CAKI-1 by maintaining Akt 

directed activation of STAT3. Under CAV1 knockdown PTEN is then able to inhibit 

Akt activation and thereby reduce the phosphorylation of STAT3 (Figure 5.13). In 

the PTEN competent A498 cell line such an effect may not be observed due to the 

VHL deficiency of that cell line which may mask the effect of downregulating CAV1 

mediated clonogenicity. Indeed, PTEN has been found to possess a CAV1 binding 

sequence[86], however interactions of CAV1 with PTEN thus far show increased 

CAV1 to increase the inhibitory activity of PTEN upon Akt[88]. Interestingly STAT3 

activation in RCC has been demonstrated to contribute to HIF-1 mediated 

expression of VEGF[416]. However in these studies we find that HIF-1 expression 

is actually increased when CAV1 and phosphorylated STAT3 are downregulated 

under hypoxic conditions. Again further suggesting a possible non synergistic 

relationship between CAV1 expression and hypoxic signalling.  

CAV1 downregulation also caused substantial upregulation of DKK-1 expression, an 

important inhibitor of Wnt signalling[410]. However, CAV1 downregulation also 

increase the inhibitory phosphorylation of GSK-3, a key component of the -

catenin targeting destruction complex. Inhibition of GSK-3/ activity would indicate 

-catenin stabilisation and accumulation of active -catenin[417]. While microarray 

analysis of -catenin found no substantial downregulation, western blot found -

catenin expression to be downregulated. In addition to this CAV1 knockdown 
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reduced the expression of the transcription factor c-Myc, understood to be an 

important factor in self-renewal and the induced pluripotency phenotype[418]. 

However, inhibition of -catenin activity in CAKI-1 scrambled shRNA control cells 

only resulted in a modest reduction in colony forming capacity of these cells. These 

data appear to suggest a complex role for CAV1 in maintaining the activation of -

catenin.  

CAV1 has been found to regulate CSC phenotype though regulation of -catenin in 

a previous study. Wang et al.[419] found CAV1 expression to be enriched in breast 

cancer CSC populations, knockdown of which caused reduced chemoresistance 

and self-renewal through Akt/GSK3/-catenin activation. However, this does not 

appear to be the only means by which CAV1 expression can regulate -catenin 

levels. Previous studies have shown a mechanistic relationship between CAV1, 

LRP6 and DKK1 in relation to the induction of -catenin stability and accumulation. 

Yamamoto et al.[420] found CAV1-dependent internalisation of LRP6 to be critical 

to the stabilisation of -catenin activity, by caveolar sequestration and trafficking of 

the LRP6 associated destruction complex to multivesicular endosomes[421], [422]. 

In the absence of CAV1 expression DKK1 causes the internalisation of LRP6 

through clathrin mediated endocytosis which is incapable of deactivating the 

destruction complex[420]. As CAV1 downregulation increases DKK1 expression it 

seems to indicate that as well as maintaining -catenin levels CAV1 is also 

suppressing DKK1 expression, potential through sustained activation of -catenin 

signalling (Figure 5.13).  

Western blotting revealed downregulation of c-Myc with CAV1 knockdown. c-Myc 

has been demonstrated as a downstream target of both -catenin[423], [424] and 

STAT3[425], [426], indicating the possibility of a synergistic interaction between the  

two. Furthermore, CAV1 knockdown induced slight downregulation of nanog, a 
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transcription factor implicated as key to the self-renewal capacity of a number CSC 

populations[427], however this was observed only in the spheroid forming cells and 

not present in hypoxic spheroid forming cells or normoxic adherent cells. Together, 

these factors suggest a possible transcriptional basis for the pro-clonogenic 

activities of CAV1 in CAKI-1. 
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Figure 5.13 Schematic overview of CAV1 regulation of clonogenicity in CAKI-1 
cells. CAV1 is capable of maintaining the activation of both pSTAT3, potentially 
through enabling the activation of Akt, and β-catenin through the inhibition of DKK1. 
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Downregulation of CAV1 under hypoxic conditions caused upregulation of hypoxia 

responsive proteins HIF-1 and angiopoietin-like 4 (ANGPTL4). Interestingly, in 

normoxic spheroid forming cells, CAV1 downregulation causes a decrease in 

ANGPTL4 whereas in normoxic adherent cells no effect is observed on ANGPTL4 

expression. From this data it appears that expression of ANGPTL4 is being 

maintained by the presence of CAV1 under normoxic conditions but also inhibited 

from overexpression under hypoxic conditions. ANGPTL4 has been shown to confer 

resistance to anoikis[428], [429], cell detachment induced apoptosis, in cancer cells 

a feature which must be present and induced in CSC populations in order to allow 

proliferation. This data indicates a possible mechanism by which CSC activity is 

upregulated under hypoxic CAV1 negative conditions. In addition to alterations in 

the expression of hypoxia induced proteins, CAV1 downregulation also significantly 

upregulated the expression of the chemokines IL-8 and CCL20/MIP-3a (here after 

referred to as CLL20). IL-8 and its receptor CXCR1 have been identified as 

regulators of CSC phenotype. Pre-treatment of pancreatic cancer cells with IL-8 

enhanced: expression of pancreatic CSC associated markers, spheroid formation 

and invasion[430]. CXCR1/IL-8 signalling has been extensively studied in breast 

CSCs with ablation of CXCR1 activity resulting in decreased tumourigenicity[431], 

such targeting was found to increase the effect of treatment with Her2[432]. 

Together, this data suggests the possibility that under hypoxic conditions CSC 

phenotype maybe upregulated by a combination of IL-8 stimulation of self-renewal 

and ANGPLT4 supported anoikis resistance.  

Finally, p53 was found to be consistently downregulated, to a greater or lesser 

extent in all three conditions. p53 has long been known as a major regulator of 

proliferation of cellular proliferation. Indeed in extensive in vitro and in vivo models 

Galbiati et al. [433] showed CAV1 to suppress progression of cells from G0/G1 into 
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the cell cycle through p53/p21 signalling, thus providing a potential explanation of 

how CAV1 supresses proliferation of CAKI-1 cells (Chapter 4).  

In summary, CAV1 appears to support clonogenicity of CAKI-1 cells through the 

activation of STAT3, prevention of -catenin degradation and allows the 

upregulation of c-Myc. In addition, under hypoxic conditions CAV1 knockdown 

resulted in the increased expression of IL-8, a known modulator of CSC phenotype, 

and ANGPTL4 suggesting a potential means by which hypoxia is able to 

compensate for loss of CAV1 driven clonogenicity. 
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Chapter 6 - Concluding discussion  
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6 Concluding discussion 

This work has sought to identify what role CAV1 plays in CSC activity in RCC cell 

lines and how CAV1 can be used in combination with common markers of CSC 

phenotype to inform patient prognosis. 

A large proportion of RCC tumours were found to be CAV1 positive. As in previous 

studies[99], [117], [132] CAV1 indicated poor disease free survival, positively 

correlated with several pathological indices of aggressive disease and acted as an 

independent prognostic indicator of poor disease outcome. Similarly, positive 

staining of CD44, a cell surface protein commonly used for the identification and 

purification of cancer stem cells (CSCs), identified patients with severely reduced 

disease free survival time and acted as an independent prognostic indicator of poor 

disease outcome. A strong correlation was found between CD44 and CAV1 

expression in RCC tumours which was also indicative of poor disease outcome. 

Furthermore, a comprehensive multivariate analysis of all marker and 

histopathological covariates found the combination of CD44 and CAV1 expression 

to be the most significant in terms of predicting disease outcome. Interestingly, while 

CD105 expression alone appeared to bare no significance to patient outcome alone, 

in combination with CAV1 it proved to bare prognostic importance being identified 

as the fourth most predictive marker of poor disease outcome. MCT4 expression in 

RCC tumours also identified patients with significantly shorted disease free survival, 

correlated with indicators of aggressive disease and acted as an independent 

prognostic indicator of disease relapse. Surprisingly, MCT4 did not correlate with 

CAV1 expression with the combination of the two markers in RCC tumours actually 

diminishing its prognostic significance in cox regression analysis.  
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With a panel of cell surface markers commonly used for the identification and 

purification of embryonic, mesenchymal and cancer stem cells it was possible to 

identify subpopulations of cells based on the expression CD146/CD90 in 786-O, 

A498 and CAKI-1 cells. While CD146/CD90 expression was not capable of 

identifying more clonogenic population of cells, cells found to be CD90High in the 

A498 and CAKI-1 cell lines demonstrated a significantly lower capacity for colony 

formation. While CSCs populations have been identified in primary RCC 

samples[61] by highly expression of CD105 no such bimodal expression was 

observed in the 786-O. High a high bimodal of CD105 was observed in the CAKI-1 

cells, however the highly expression population represented the majority of the cell 

line and did not appear to enrich for clonogenicity. Interestingly, in all three cell lines 

high expression of CD44 was noted and in the CAKI-1 cell line a bimodal 

expression was observable.  

Downregulation of CAV1 in 786-O and A498 cell lines caused changes to the 

proportion of CD146/CD90 cells; however downregulation of CAV1 expression did 

not significantly alter the clonogenic capacity of such populations. In the VHL+/+ 

CAKI-1 cells downregulation of CAV1 did not alter the proportions of CD146/CD90 

cells but did cause a substantial reduction in colony forming capacity in these cells 

as well as the total unsorted cell line. CAV1 downregulation decreased both colony 

forming capacity and spheroid forming capacity. By inducing activation of hypoxic 

pathways it was possible to reverse the CAV1 mediated downregulation of 

clonogenicity, suggesting CAV1 expression to be important in maintaining 

clonogenicity and self-renewal in tumours with active VHL expression.  

Proteomic microarray analysis revealed that downregulation of CAV1 in CAKI-1 cell 

lines resulted caused a downregulation of STAT3 phosphorylation and increased 

the expression of the Wnt pathway inhibitor DKK-1. Western blot and flow cytometry 

found downregulation of -catenin, pSTAT3 and c-Myc, a self-renewal driving 
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transcription factor downstream of both STAT3 and -catenin, dependent on CAV1 

knockdown in CAKI-1 cells. Subsequently inhibition of STAT3 and to a lesser extent 

-catenin resulted in reduced colony formation, suggesting CAV1 supports 

clonogenicity mainly through maintaining activation STAT3 signalling.  
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Figure 6.1 Schematic illustrating the role of CAV1 in the VHL +/+ PTEN +/+ CAKI-1 
cell line (A) and the VHL-/- PTEN -/- 786-O cell line. In CAKI-1 cells (A) the 
presence of CAV1 drives pSTAT3 Y705 phosphorylation and β-catenin while 
hypoxia driven clonogenicity is inhibited by function VHL. In 786-O cells (B) loss of 
PTEN means CAV1 loses control of pSTAT3 driven clonogenicity and loss of VHL 
ensures deregulation of hypoxic response resulting in upregulation of clonogenicity.  
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In conclusion CAV1 in combination with the marker of CSC phenotype CD44 can 

identify patients with aggressive disease at high risk of relapse after therapy. 

Additionally, in flow cytometry studies CAV1 downregulation did not appear to affect 

the amount of expression or cell surface localisation of CD44. This suggests that if a 

biological relationship exists between the two it may either be driven by CD44 

directly or CAV1 may affect the cell surface localisation of CD44. As such, 

mechanistic investigation into the role of CD44 in the invasive and migratory 

capacity of RCC cells merits further investigation. In VHL +/+ CAKI-1 cells 

downregulation of CAV1 drastically reduced clonogenicity through what appears to 

be a STAT3 dependent manner. Further study should be conducted to understand 

how CAV1 orchestrates STAT3 activiation, results here appear to indicate such a 

mechanism maybe carried out though Akt activation.  
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Appendix 1 (A) Agarose gel electrophoresis of Pst1 digest of purified 
SureSilencing shRNA plasmids. Pst1 digestion of plasmid generates a large 
3209 bp fragment and a smaller 1402 bp fragment confirming successful 
amplification of SureSilencing shRNA plasmids. (B) Minimum inhibitory 
concentration graphs of 786-O, A498 and CAKI-1 exposed to a concentration 
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gradient of puromycin from 2g/mL down to 0.125g/mL. Data represents 

mean  standard deviation from eight wells across two experiments.  
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Appendix 2 Raw data from phosphokinase proteomics array for normoxic 
adherent in CAKI-1 scrambled shRNA control (CAKI-1 CAV+) and CAV1 
shRNA knockdown cells (CAKI-1 CAV-) 
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Appendix 3 Raw data from phosphokinase proteomics array for normoxic 
spheroid conditions in CAKI-1 scrambled shRNA control (CAKI-1 CAV+) and 
CAV1 shRNA knockdown cells (CAKI-1 CAV-) 
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Appendix 4 Raw data from phosphokinase proteomics array for hypoxic 
spheroid conditions in CAKI-1 scrambled shRNA control (CAKI-1 CAV+) and 
CAV1 shRNA knockdown cells (CAKI-1 CAV-) 

  



 

273 
 

 

Appendix 5 Raw data from human oncology proteomics array for normoxic 
adherent conditions in CAKI-1 scrambled shRNA control (CAKI-1 CAV+) and 
CAV1 shRNA knockdown cells (CAKI-1 CAV-) 
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Appendix 6 Raw data from human oncology proteomics array for normoxic 
spheroid forming conditions in CAKI-1 scrambled shRNA control (CAKI-1 
CAV+) and CAV1 shRNA knockdown cells (CAKI-1 CAV-) 

Chemilluminesent intensity (a/u) Chemilluminesent intensity (a/u) 

Chemilluminesent intensity 

Chemilluminesent intensity 
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Appendix 7 Raw data from human oncology proteomics array for hypoxic 
spheroid forming conditions in CAKI-1 scrambled shRNA control (CAKI-1 
CAV+) and CAV1 shRNA knockdown cells (CAKI-1 CAV-) 
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Appendix 8 Raw data from human pluripotent stem cell proteomics array for 
(A) normoxic adherent, (B) normoxic spheroid and (C) hypoxic spheroid CAKI-
1 scrambled shRNA control (CAKI-1 CAV+) and CAV1 shRNA knockdown cells 
(CAKI-1 CAV-). 

A B 
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