
On the Workflow Satisfiability Problem with
Class-independent Constraints
Jason Crampton, Andrei Gagarin, Gregory Gutin, and Mark Jones

Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK

Abstract
A workflow specification defines sets of steps and users. An authorization policy determines for
each user a subset of steps the user is allowed to perform. Other security requirements, such
as separation-of-duty, impose constraints on which subsets of users may perform certain subsets
of steps. The workflow satisfiability problem (WSP) is the problem of determining whether
there exists an assignment of users to workflow steps that satisfies all such authorizations and
constraints. An algorithm for solvingWSP is important, both as a static analysis tool for workflow
specifications, and for the construction of run-time reference monitors for workflow management
systems. Given the computational difficulty of WSP, it is important, particularly for the second
application, that such algorithms are as efficient as possible.

We introduce class-independent constraints, enabling us to model scenarios where the set
of users is partitioned into groups, and the identities of the user groups are irrelevant to the
satisfaction of the constraint. We prove that solving WSP is fixed-parameter tractable (FPT) for
this class of constraints and develop an FPT algorithm that is useful in practice. We compare
the performance of the FPT algorithm with that of SAT4J (a pseudo-Boolean SAT solver) in
computational experiments, which show that our algorithm significantly outperforms SAT4J for
many instances of WSP. User-independent constraints, a large class of constraints including many
practical ones, are a special case of class-independent constraints for which WSP was proved to
be FPT (Cohen et al., J. Artif. Intel. Res. 2014). Thus our results considerably extend our
knowledge of the fixed-parameter tractability of WSP.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Workflow Satisfiability Problem, Constraint Satisfaction Problem, fixed-
parameter tractability, user-independent constraints

Digital Object Identifier 10.4230/LIPIcs.IPEC.2015.66

1 Introduction

It is increasingly common for organizations to computerize their business and management
processes. The co-ordination of the tasks or steps that comprise a computerized business
process is managed by a workflow management system (or business process management
system). Typically, the execution of these steps will be triggered by a human user, or a
software agent acting under the control of a human user, and each step may only be executed
by an authorized user. Thus a workflow specification will include an authorization policy
defining which users are authorized to perform which steps.

In addition, many workflows require controls on the users that perform certain sets of
steps [1, 2, 3, 7, 14]. Consider a simple purchase-order system in which there are four steps:
raise-order (s1), acknowledge-receipt-of-goods (s2), raise-invoice (s3), and send-payment (s4).
The workflow specification for the purchase-order system includes rules to prevent fraudulent
use of the system, the rules taking the form of constraints on users that can perform pairs
of steps in the workflow: the same user may not raise the invoice (s3) and sign for the

© Jason Crampton, Andrei Gagarin, Gregory Gutin, and Mark Jones;
licensed under Creative Commons License CC-BY

10th International Symposium on Parameterized and Exact Computation (IPEC 2015).
Editors: Thore Husfeldt and Iyad Kanj; pp. 66–77

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2015.66
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


J. Crampton, A. Gagarin, G. Gutin, and M. Jones 67

goods (s2), for example. Such a constraint is known as a user-independent (UI) constraint,
since the specific identities of the users that perform these steps are not important, only the
relationship between them (in this example, the identities must be different).

Once we introduce constraints on the execution of workflow steps, it may be impossible
to find a valid plan – an assignment of authorized users to workflow steps such that all
constraints are satisfied. The Workflow Satisfiability Problem (WSP) takes a workflow
specification as input and outputs a valid plan if one exists. WSP is known to be NP-hard,
even when the set of constraints only includes constraints having a relatively simple structure
(and arising regularly in practice). In particular, the Graph k-Colorability problem
can be reduced to a special case of WSP in which the workflow specification only includes
separation-of-duty constraints [14]. Clearly, it is important to be able to determine whether
a workflow specification is satisfiable at design time. Equally, when users select steps to
execute in a workflow instance, it is essential that the access control mechanism can determine
whether (a) the user is authorized, (b) allowing the user to execute the step would render the
instance unsatisfiable. Thus, the access control mechanism must incorporate an algorithm to
solve WSP, and that algorithm needs to be as efficient as possible.

Wang and Li [14] observed that, in practice, the number k of steps in a workflow will be
small, relative to the size of the input to WSP; specifically, the number of users is likely to
be an order of magnitude greater than the number of steps. This observation led them to set
k as the parameter and to study the problem using tools from parameterized complexity. In
doing so, they proved that the problem is fixed-parameter tractable (FPT) for simple classes
of constraints. However, Wang and Li also showed that for many types of constraints the
problem is fixed-parameter intractable (unless FPT 6= W[1] is false). Hence, it is important
to be able to identify those types of practical constraints for which WSP is FPT.

Recent research has made significant progress in understanding the fixed-parameter
tractability of WSP. In particular, Cohen et al. [5] introduced the notion of patterns and,
using it, proved that WSP is FPT (irrespective of the authorization policy) if all constraints in
the specification are UI. This result is significant because most constraints in the literature –
including separation-of-duty, cardinality and counting constraints – are UI [5]. Using a
modified pattern approach, Karapetyan et al. [11] provided both a short proof that WSP
with only UI constraints is FPT and a very efficient algorithm for WSP with UI constraints.

However, it is known that not all constraints that may be useful in practice are UI.
Consider a situation where the set of users is partitioned into groups (such as departments or
teams) and we wish to define constraints on the groups, rather than users. In our purchase
order example, suppose each user belongs to a specific department. Then it would be
reasonable to require that steps s1 and s2 are performed by different users belonging to the
same department. There is little work in the literature on constraints of this form, although
prior work has recognized that such constraints are likely to be important in practice [7, 14],
and it has been shown that such constraints present additional difficulties when incorporated
into WSP [9].

In this paper, we extend the notion of a UI constraint to that of a class-independent (CI)
constraint. In particular, every UI constraint is an instance of a CI constraint. Our second
contribution is to demonstrate that patterns for UI constraints [5] can be generalized to
patterns for CI constraints. The resulting algorithm, using these new patterns, remains FPT
(irrespective of the authorization policy), although its running time is slower than that of the
algorithm for WSP with UI constraints only. In short, our first two contributions identify a
large class of constraints for which WSP is shown to be FPT, and subsume prior work in
this area [9, 5, 14]. Our final contribution is an implementation of our algorithm in order to

IPEC’15



68 On the Workflow Satisfiability Problem with Class-independent Constraints

investigate whether the theoretical advantages implied by its fixed-parameter tractability
can be realized in practice. We compare our FPT algorithm with SAT4J, an off-the-shelf
pseudo-Boolean (PB) SAT solver. The results of our experiments suggest that our FPT
algorithm enjoys some significant advantages over SAT4J for hard instances of WSP.

In the next section, we define WSP and UI constraints in more formal terms, discuss
related work in more detail, and introduce the notion of class-independent constraints. In
Sections 3 and 4, we state and prove a number of technical results that underpin the algorithm
for solving WSP with class-independent constraints. We describe the algorithm and establish
its worst-case complexity in Section 5. In Section 6, we describe our experimental methods
and report the results of our experiments. We conclude in Section 7.

Proofs of results marked with a ? are given in Appendix A of the full version [8] of the
paper. We also provide some details about the implementation of our algorithm in Appendix
B of [8]. In the main body of the paper, we focus on the case of a single non-trivial partition
of the user set. In Appendix C of [8], we generalize our approach to handle multiple (nested)
partitions of the user set. (Such partitions can be used to model hierarchical organizational
structures, which can be useful in practice [9].)

2 Workflow Satisfiability

Let S = {s1, . . . , sk} be a set of steps, let U = {u1, . . . , un} be a set of users in a workflow
specification, and let k ≤ n. We are interested in assigning users to steps subject to certain
constraints. In other words, among the set Π(S,U) of functions from S to U , there are some
that represent “legitimate” assignments of steps to users and some that do not.

The legitimacy or otherwise of an assignment is determined by the authorization policy
and the constraints that complete the workflow specification. Let A = {A(u) : u ∈ U} be a
set of authorization lists, where A(u) ⊆ S for each u ∈ U , and let C be a set of (workflow)
constraints. A constraint c ∈ C may be viewed as a pair (T,Θ), where T ⊆ S is the scope
of c and Θ is a set of functions from T to U , specifying the assignments of steps in T to
users in U that satisfy the constraint. In practice, we do not enumerate all the elements
of Θ. Instead, we define its members implicitly using some constraint-specific syntax. In
particular, we write (s, s′, ρ), where s, s′ ∈ S and ρ is a binary relation defined on U , to
denote a constraint that has scope {s, s′} and is satisfied by any plan π : S → U such that
(π(s), π(s′)) ∈ ρ. Thus (s, s′, 6=), for example, requires s and s′ to be performed by different
users (and so represents a separation-of-duty constraint). Also (s, s′,=) states that s and s′
must be performed by the same user (a binding-of-duty constraint).

2.1 The Workflow Satisfiability Problem
A plan is a function in Π(S,U). Given a workflow W = (S,U,A, C), a plan π is authorized if
for all s ∈ S, s ∈ A(π(s)), i.e. the user assigned to s is authorized for s. A plan π is eligible
if for all (T,Θ) ∈ C, π|T ∈ Θ, i.e. every constraint is satisfied. A plan π is valid if it is
both authorized and eligible. In the workflow satisfiability problem (WSP), we are given a
workflow (specification) W , and our aim is to decide whether W has a valid plan. If W has
a valid plan, W is satisfiable; otherwise, W is unsatisfiable.

Note that WSP is, in fact, the conservative CSP (i.e., CSP with unary constraints
corresponding to step authorizations in the WSP terminology). However, unlike a typical
instance of CSP, where the number of variables is significantly larger than the number of
values, a typical instance of WSP has many more values (i.e., users) than variables (i.e.,
steps).



J. Crampton, A. Gagarin, G. Gutin, and M. Jones 69

We assume that in all instances of WSP we consider, all constraints can be checked in
time polynomial in n. Thus it takes polynomial time to check whether any plan is eligible.
The correctness of our algorithm is unaffected by this assumption, but using constraints not
checkable in polynomial time would naturally affect the running time.

I Example 1. Consider the following instance W ′ of WSP. The step and user sets are
S = {s1, s2, s3, s4} and U = {u1, u2, u3, u4, u5}. The authorization lists are A(u1) =
{s1, s2, s3, s4}, A(u2) = {s1}, A(u3) = {s2}, A(u4) = A(u5) = {s3, s4}. The constraints
are (s1, s2,=), (s2, s3, 6=), (s3, s4, 6=), and (s4, s1, 6=). Observe that π′ : S → U with
π′(s1) = π′(s2) = u1, π′(s3) = u5 and π′(s4) = u4 satisfies all constraints and authorizations,
and thus π′ is a valid plan for W ′. Therefore, W ′ is satisfiable.

2.2 Constraints using Equivalence Relations
Crampton et al. [9] introduced constraints defined in terms of an equivalence relation ∼ on
U : a plan π satisfies constraint (s, s′,∼) if π(s) ∼ π(s′) (and satisfies constraint (s, s′,�) if
π(s) � π(s′)). Hence, we could, for example, specify the pair of constraints (s, s′, 6=) and
(s, s′,∼), which, collectively, require that s and s′ are performed by different users that
belong to the same equivalence class. As we noted in the introduction, such constraints are
very natural in the context of organizations that partition the set of users into departments,
groups or teams.

Moreover, Crampton et al. [9] demonstrated that “nested” equivalence relations can be
used to model hierarchical structures within an organization1 and to define constraints on
workflow execution with respect to those structures. More formally, an equivalence relation
∼ is said to be a refinement of an equivalence relation ≈ if x ∼ y implies x ≈ y. In particular,
given an equivalence relation ∼, = is a refinement of ∼. Crampton et al. proved that
WSP remains FPT when some simple extensions of constraints (s, s′,∼) and (s, s′,�) are
included [9, Theorem 5.4]. Our extension of constraints (s, s′,∼) and (s, s′,�) is much more
general: it is similar to generalizing simple constraints (s, s′,=) and (s, s′, 6=) to the wide
class of UI constraints. This leads, in particular, to a significant generalization of Theorem
5.4 in [9].

Let c = (T,Θ) be a constraint and let ∼ be an equivalence relation on U . Let U∼ denote
the set of equivalence classes induced by ∼ and let u∼ ∈ U∼ denote the equivalence class
containing u. Then, for any function π : S → U , we may define the function π∼ : S → U∼,
where π∼(s) = (π(s))∼. In particular, ∼ induces a set of functions Θ∼ = {θ∼ : θ ∈ Θ}.

I Example 2. Continuing from Example 1, suppose U∼ consists of two equivalence classes
U1 = {u1, u2, u5} and U2 = {u3, u4}. Let us add to W ′ another constraint (s1, s4,∼) (s1
and s4 must be assigned users from the same equivalence class) to form a new instance W ′′
of WSP. Then plan π′ does not satisfy the added constraint and so π′ is not valid for W ′′.
However, π′′ : S → U with π′′(s1) = π′′(s2) = u1, π′′(s3) = u4 and π′′(s4) = u5 satisfies all
constraints and authorizations, and thus π′′ is valid for W ′′. Here (π′′)∼(s1) = (π′′)∼(s2) =
(π′′)∼(s4) = U1 and (π′′)∼(s3) = U2.

Given an equivalence relation ∼ on U , we say that a constraint c = (T,Θ) is class-
independent (CI) for ∼ if θ∼ ∈ Θ∼ implies θ ∈ Θ, and for any permutation φ : U∼ → U∼,
θ∼ ∈ Θ∼ implies φ ◦ θ∼ ∈ Θ∼. In other words, if a plan π : s 7→ π(s) satisfies a constraint c,

1 Many organizations exhibit nested hierarchical structure. For example, the academic parts of many
universities are divided into faculties/schools which are divided into departments.

IPEC’15



70 On the Workflow Satisfiability Problem with Class-independent Constraints

which is class-independent for ∼, then for each permutation φ of classes in U∼ if we replace
π(s) by any user in the class φ(π(s)∼) for every step s, then the new plan will satisfy c.

We say a constraint is user-independent (UI) if it is CI for =. In other words, if a plan
π : s 7→ π(s) satisfies a UI constraint c and we replace any user in {π(s) : s ∈ S} by an
arbitrary user such that the replacement users are all distinct, then the new plan satisfies c.

We conclude this section with a claim whose simple proof is omitted.

I Proposition 3. Given two equivalence relations ∼ and ≈ such that ∼ is a refinement of
≈, and any plan π : S → U , π∼(s) = π∼(s′) implies π≈(s) = π≈(s′).

3 Plans and Patterns

In what follows, unless specified otherwise, we will consider the equivalence relation = along
with another fixed equivalence relation ∼. We will write [m] to denote the set {1, . . . ,m}
for any integer m > 1. We assume that all constraints are either UI or CI for ∼. For
brevity, we will refer to constraints that are CI for ∼ as simply CI. We consider only two
equivalence relations for simplicity of presentation, but our results below can be generalized
to any sequence ∼1, . . . ,∼l of equivalence relations such that ∼i+1 is a refinement of ∼i for
all i ∈ [l − 1], see Appendix C in the full version [8] of the paper. It is important to keep in
mind that we put no restrictions on authorizations.

We will represent groups of plans as patterns. The intuition is that a pattern defines a
partition of the set of steps relevant to a set of constraints. For instance, suppose that we
only have UI constraints. Then a pattern specifies which sets of steps are to be assigned to
the same user. A pattern assigns an integer to each step and those steps that are labelled by
the same integer will be mapped to the same user. A pattern p defines an equivalence relation
∼p on the set of steps (where s ∼p s

′ if and only if s and s′ are assigned the same label).
Moreover, this pattern can be used to define a plan by mapping each of the equivalence
classes induced by ∼p to a different user. Since we only consider UI constraints, the identities
of the users are irrelevant (provided they are distinct). Conversely, any plan π : S → U

defines a pattern: s and s′ are labelled with the same integer if and only if π(s) = π(s′). And
if π satisfies a UI constraint c, then any other plan with the same pattern will also satisfy c.
We can extend this notion of a pattern to CI constraints where entries in the pattern encode
equivalence classes of users instead of single users.

More formally, let W = (S,U,A, C = C= ∪ C∼) be a workflow, where C= is a set of UI
constraints and C∼ is a set of CI constraints. Let p= = (x1, . . . , xk) where xi ∈ [k] for all
i ∈ [k]. We say that p= is a UI-pattern for a plan π if xi = xj ⇔ π(si) = π(sj), for all
i, j ∈ [k], and p= is eligible for C= if any plan π with p= as its UI-pattern is eligible for C=.

In Example 2, C= = {(s1, s2,=), (s2, s3, 6=), (s3, s4, 6=), (s1, s4, 6=)} and C∼ = {(s1, s4,∼)}.
Tuples (1, 1, 2, 3) and (2, 2, 4, 3) are UI-patterns for plan π′′ of Example 2.

I Proposition 4 (?). Let p= be a UI-pattern for a plan π. Then p= is eligible for C= if and
only if π is eligible for C=.

Let p∼ = (y1, . . . , yk), where yi ∈ [k] for all i ∈ [k]. We say that p∼ is a CI-pattern for a
plan π if yi = yj ⇔ π∼(si) = π∼(sj), for all i, j ∈ [k], and p∼ is eligible for C∼ if any plan
π with p∼ as its CI-pattern is eligible for C∼. For example, (1, 1, 2, 1) and (2, 2, 4, 2) are
CI-patterns for plan π′′ of Example 2. The next result is a generalization of Proposition 4.

I Proposition 5 (?). Let p∼ be a CI-pattern for a plan π. Then p∼ is eligible for C∼ if and
only if π is eligible for C∼.



J. Crampton, A. Gagarin, G. Gutin, and M. Jones 71

Now let p = (p=, p∼) be a pair containing a UI-pattern and an CI-pattern. Then we call
p a (UI, CI)-pattern. We say that p is a (UI, CI)-pattern for π if p= is a UI-pattern for π and
p∼ is a CI-pattern for π. We say that p is eligible for C = C= ∪ C∼ if p= is eligible for C=
and p∼ is eligible for C∼. The following two results follow immediately from Propositions 4
and 5 and definitions of UI- and CI-patterns.

I Lemma 6. Let p = (p=, p∼) be a (UI, CI)-pattern for a plan π. Then p is eligible for
C = C= ∪ C∼ if and only if π is eligible for C.

I Proposition 7. There is a (UI, CI)-pattern p for every plan π.

We say a (UI, CI)-pattern p is realizable if there exists a plan π such that π is authorized
and p is a (UI, CI)-pattern for π. Given the above results, in order to solve a WSP instance
with user- and class-independent constraints, it is enough to decide whether there exists a
(UI, CI)-pattern p such that (i) p is realizable, and (ii) p is eligible (and hence π is eligible)
for C = C= ∪ C∼.

We will enumerate all possible (UI, CI)-patterns, and for each one check whether the
two conditions hold. We defer the explanation of how to determine whether p is realizable
until Sec. 4. We now show it is possible to check whether a (UI, CI)-pattern p = (p=, p∼)
is eligible in time polynomial in the input size N . Indeed, in polynomial time, we can
construct plans π= and π∼ with patterns p= and p∼, respectively, where π=(si) = π=(sj) if
and only if xi = xj and π∼(si) ∼ π∼(sj) if and only if yi = yj . (In particular, we can select
a representative user from each equivalence class in U∼.) By Lemma 6 and Propositions 4
and 5, p is eligible if and only if both π= and π∼ are eligible. By our assumption before
Example 1, eligibility of both π= and π∼ can be checked in polynomial time.2 Note, however,
that π= and π∼ may be different plans, so this simple check for eligibility does not give us a
check for realizability of p.

4 Checking Realizability

A partial plan π is a function from a subset T of S to U . In particular, a plan is a partial
plan. To avoid confusion with partial plans, sometimes we will call plans complete plans. We
can easily extend the definitions of eligible, authorized and valid plans to partial plans: the
only difference is that we only consider authorizations for steps in T and constraints with
scope being a subset of T .

We also define partial patterns. For a UI or CI-pattern q = (x1, . . . , xk) and a subset
T ⊆ S, let the pattern q|T = (z1, . . . , zk), where zi = xi if si ∈ T , and zi = 0 otherwise. We
say that p|T is a (UI, CI)-pattern for a partial plan π : T → U if p|T with all coordinates
with 0 values removed is a (UI, CI)-pattern for π. We therefore have that if p is a (UI,
CI)-pattern for a plan π, then p|T is a (UI, CI)-pattern for π restricted to T .

Let p = (p= = (x1, . . . , xk), p∼ = (y1, . . . , yk)) be a (UI, CI)-pattern. We say that p is
consistent if xi = xj ⇒ yi = yj for all i, j ∈ [k]. Recall that if p is the (UI, CI)-pattern for π,
then xi = xj ⇔ π(si) = π(sj), and yi = yj ⇔ π∼(si) = π∼(sj). Thus Proposition 3 implies
that if p is the (UI, CI)-pattern for any plan then p is consistent. Henceforth, we will only
consider (UI, CI)-patterns that are consistent.

Given a (UI, CI)-pattern (p=, p∼), we must determine whether this (UI, CI)-pattern can
be realized, given the authorization lists defined on users. The patterns p= and p∼ define

2 Clearly, it is not hard to check eligibility of p without explicitly constructing π= and π∼, as is done in
our algorithm implementation, described in Appendix B of [8].

IPEC’15



72 On the Workflow Satisfiability Problem with Class-independent Constraints

two sets of equivalence classes on S: si and sj are in the same equivalence class of S defined
by p= (p∼, respectively) if and only if xi = xj (yi = yj , respectively).

Moreover each equivalence class induced by p∼ is partitioned by equivalence classes induced
by p=. We must determine whether there exists a plan π : S → U that simultaneously (i)
has UI-pattern p=; (ii) has CI-pattern p∼; and (iii) assigns an authorized user to each step.
Informally, our algorithm for checking realizability computes two things.

For each pair (T, V ), where T ⊆ S is an equivalence class induced by p∼ and V ⊆ U is
an equivalence class induced by ∼, whether there exists an injective mapping from the
equivalence classes in T induced by p= to authorized users in V . We call such a mapping
a second-level mapping.
Whether there exists an injective mapping f from the set of equivalence classes induced
by p∼ to the set of equivalence classes induced by ∼ such that f(T ) = V if and only if
there exists a second-level mapping from T to V . We call f a top-level mapping.

If a top-level mapping exists, then, by construction, it can be “deconstructed” into authorized
partial plans defined by second-level mappings. We compute top- and second-level mappings
using matchings in bipartite graphs, as described below.

The Top-level Bipartite Graph. The UI-pattern p= = (x1, . . . , xk) induces an equivalence
relation on S = {s1, . . . , sk}, where si and sj are equivalent if and only if xi = xk. Let
S = {S1, . . . , Sl} be the set of equivalence classes of S under this relation. Similarly, the
CI-pattern p∼ = (y1, . . . , yk) induces an equivalence relation on S, where si, sj are equivalent
if and only if yi = yj . Let T = {T1, . . . , Tm} be the equivalence classes under this relation.
Observe that since p is consistent, we have k ≥ l ≥ m and for any Si, Tj , either Si ⊆ Tj or
Si ∩ Tj = ∅.

I Definition 8. Given a (UI, CI)-pattern p = (p=, p∼), the top-level bipartite graph Gp is
defined as follows. Let the partite sets of Gp be T and U∼. For each Tr ∈ T and class u∼,
we have an edge between Tr and u∼ if and only if there exists an authorized partial plan
πr : Tr → u∼ such that p=|Tr

is a UI-pattern for πr.

I Lemma 9. If a (UI, CI)-pattern p = (p=, p∼) is realizable, then Gp has a matching
covering T .

Proof. Let π be an authorized plan such that p is a (UI, CI)-pattern for π. As p∼ is
a CI-pattern for π, we have that for each Tr ∈ T and all si, sj ∈ Tr, π∼(si) = π∼(sj).
Therefore π(Tr) ⊆ u∼ for some u ∈ U . Let u∼r be this equivalence class for each Tr. As p∼
is a CI-pattern for π, we have that for all r 6= r′ and any si ∈ Tr, sj ∈ Tr′ , π∼(si) 6= π∼(sj).
It follows that u∼r 6= u∼r′ for any r 6= r′.

Let M = {Tru
∼
r ∈ E(Gp) : Tr ∈ T }. As u∼r 6= u∼r′ for any r 6= r′ we have that M is a

matching that covers T . It remains to show that M is a matching of Gp covering T , i.e. that
Tru

∼
r is an edge in Gp for each Tr. For each Tr ∈ T , let πr be π restricted to Tr. Then πr is

a function from Tr to u∼r . As π is authorized, πr is also authorized. As p= is a UI-pattern
for π, we have that p=|Tr

is a UI-pattern for πr. Therefore πr satisfies all the conditions for
there to be an edge Tru

∼
r in Gp. J

We have shown that for any (UI, CI)-pattern to be realizable, it must be consistent and
its top-level bipartite graph must have a matching covering T . We will now show that these
necessary conditions are also sufficient.

I Lemma 10 (?). Let p = (p= = (x1, . . . , xk), p∼ = (y1, . . . , yk)) be a (UI, CI)-pattern which
is consistent, and such that Gp has a matching covering T . Then p is realizable.



J. Crampton, A. Gagarin, G. Gutin, and M. Jones 73

The Second-level Bipartite Graph. For each (UI, CI)-pattern p = (p=, p∼), we need to
construct the graph Gp and decide whether it has a matching covering T , in order to decide
whether p is realizable. Given Gp, a maximum matching can be found in polynomial time
using standard techniques, but constructing Gp itself is non-trivial. For each potential edge
Tru

∼ in Gp, we need to decide whether there exists an authorized partial plan πr : Tr → u∼

such that p=|Tr is a UI-pattern for πr. We can decide this by constructing another bipartite
graph, GTru∼ . Recall that S = {S1, . . . , Sl} is a partition of S into equivalence classes, where
si, sj are equivalent if xi = xj , and for each Sh ∈ S, either Sh ⊆ Tr or Sh ∩ Tr = ∅. Define
Sr = {Sh : Sh ⊆ Tr}.

I Definition 11. Given a (UI, CI)-pattern p = (p= = (x1, . . . , xk), p∼ = (y1, . . . , yk)), a set
Tr ∈ T and equivalence class u∼ ∈ U∼, the second-level bipartite graph GTru∼ is defined as
follows: Let the partite sets of G be Sr and u∼ and for each Sh ∈ Sr and v ∈ u∼, we have
an edge between Sh and v if and only if v is authorized for all steps in Sh.

I Lemma 12 (?). Given Tr ∈ T , u∼ ∈ U∼, the following conditions are equivalent.
There exists an authorized partial plan π : Tr → u∼ such that p=|Tr is a UI-pattern for π.
GTru∼ has a matching that covers Sr.

5 FPT Algorithm

Our FPT algorithm generates (UI, CI)-patterns p in a backtracking manner as follows.
(Its implementation is described in Appendix B of [8].) It first generates partial patterns
p= = (x1, . . . , xk), where the coordinates xi = 0 are assigned one by one to integers in
[k′], where k′ = max1≤j≤k{xj} + 1. The algorithm checks that the pattern p= does not
violate any constraints whose scope contain the corresponding step si. If an eligible pattern
p= = (x1, . . . , xk) has been completed (i.e., xj 6= 0 for each j ∈ [k]), the partial patterns
p∼ = (y1, . . . , yk) are generated as above but with a difference: the algorithm ensures the
consistency condition. If an eligible (UI, CI)-pattern p has been constructed, a procedure
constructing bipartite graphs and searching for matchings in them as described in Section 4
decides whether p is realizable.

I Theorem 13. We can solve WSP with UI and CI constraints in O∗(4k log2 k) time.

Proof Sketch. Our algorithm is correct by Proposition 7 and the fact that every complete
(UI, CI)-pattern can be generated. It remains to estimate the running time.

If p∼ in our algorithm were generated as p=, i.e., consistency were not taken into
consideration, the search tree T of our algorithm (nodes are partial (UI, CI)-patterns) would
have at least as many nodes as the actual search tree of our algorithm. Observe that each
internal node (corresponding to an incomplete (UI, CI)-pattern) in T has at least two children,
and each leaf in this tree corresponds to a complete (UI, CI)-pattern. Thus, the total number
of partial (UI, CI)-patterns considered by our algorithm is less than twice the number of
complete (UI, CI)-patterns, which is k2k = 4k log k as each of 2k coordinates takes values in
[k].

We have to compute a matching in the top-level bipartite graph and matchings for
each second-level bipartite graph. The number of second-level bipartite graphs is bounded
above by nk (since the number of equivalence classes in U and S cannot exceed n and k,
respectively). We can compute a maximum matching in time polynomial in the number of
vertices in the top- and second-level bipartite graphs (which is bounded in all our graphs by
n+ k). The result follows. J

IPEC’15



74 On the Workflow Satisfiability Problem with Class-independent Constraints

6 Algorithm Implementation and Computational Experiments

There can be a huge difference between an algorithm in principle and its actual implementation
as a computer code, e.g., see [13]. We have implemented the new pattern-backtracking FPT
algorithm and a reduction to the pseudo-Boolean satisfiability (PB SAT) problem in C++,
using SAT4J [12] as a pseudo-Boolean SAT solver. Reductions from WSP constraints
to PB ones were done similarly to those in [4, 6, 11]. Our FPT algorithm extends the
pattern-backtracking framework of [11] in a nontrivial way, for details see Appendix B of [8].

In this section we describe a series of experiments that we ran to test the performance
of our FPT algorithm against that of SAT4J. Due to the difficulty of acquiring real-world
workflow instances, we generate and use synthetic data to test our new FPT algorithm and
reduction to the PB SAT problem (as in similar experimental studies [6, 11, 14]). All our
experiments use a MacBook Pro computer having a 2.6 GHz Intel Core i5 processor, 8 GB
1600 MHz DDR3 RAM and running Mac OS X 10.9.5.

We generate a number of random WSP instances using not-equals (i.e, constraints of the
form (s, s′, 6=)), equivalence and non-equivalence constraints (i.e., constraints of the types
(s, s′,∼) and (s, s′,�)), and at-most constraints. An at-most constraint is a UI constraint
that restricts the number of users that may be involved in the execution of a set of steps. It
is, therefore, a form of cardinality constraint and imposes a loose form of “need-to-know”
constraint on the execution of a workflow instance, which can be important in certain business
processes. An at-most constraint may be represented as a tuple (t, Q,6), where Q ⊆ S,
1 6 t 6 |Q|, and is satisfied by any plan that allocates no more than t users in total to the
steps in Q. In all our at-most constraints t = 3 and |Q| = 5 as in [6, 11].

6.1 Experimental Parameters and Instance Generation
We summarize the parameters we use for our experiments in Table 1. Values of k, n and
r were chosen that seemed appropriate for real-world workflow specifications. The values
of the other parameters were determined by preliminary experiments designed to identify
“challenging” instances of WSP: that is, instances that were neither very lightly constrained
nor very tightly constrained. Informally, it is relatively easy to determine that lightly
constrained instances are satisfiable and that tighly constrained instances are unsatisfiable.
Thus the instances we use in our experiments are (very approximately) equally likely to be
satisfiable or unsatisfiable. In particular, by varying the numbers of at-most constraints and
constraints of the form (s, s′,�), we are able to generate a set of instances with the desired
characteristics (as shown by the results in Table 2).

A constraint (s, s′,�) implies the existence of a constraint (s, s′, 6=), so we do not vary
the number of not-equals a great deal (in contrast to existing work in the literature [6]).
Informally, a constraint (s, s′,∼) reduces the difficulty of finding a valid plan. Thus, given
our desire to investigate challenging instances, we do not use very many of these constraints.

All the constraints, authorizations, and equivalence classes of users are generated for
each instance separately, uniformly at random. The random generation of authorizations,
not-equals, and at-most constraints uses existing techniques [6]. The generation of equivalence
and non-equivalence constraints has to be controlled to ensure that an instance is not trivially
unsatisfiable. In particular, we must discard a constraint of the form (s, s′,�) if we have
already generated a constraint of the form (s, s′,∼). The equivalence classes of the user set
are generated by enumerating the user set and then splitting the list into contiguous sublists.
The number of elements in each sublist varies between 3 and 7 (chosen uniformly at random
and adjusted, where necessary, so that the total number of members in the r sub-lists is n).



J. Crampton, A. Gagarin, G. Gutin, and M. Jones 75

Table 1 Parameters used in our experiments.

Parameter Values
Number of steps k 20, 25, 30
Number of users n 10k
Number of user equivalence classes r 2k

k = 20 20, 25
Number of constraints (s, s′, 6=) k = 25 25, 30

k = 30 30, 35
k = 20 0

Number of constraints (s, s′,∼) k = 25 1
k = 30 2
k = 20 10, 15, 20, 25, 30

Number of constraints (s, s′,�) k = 25 15, 20, 25, 30, 35
k = 30 20, 25, 30, 35, 40
k = 20 10, 15, 20, 25, 30, 35, 40

Number of at-most constraints k = 25 15, 20, 25, 30, 35, 40, 45
k = 30 20, 25, 30, 35, 40, 45, 50

6.2 Results and Evaluation

We adopt the following labelling convention for our test instances: a.b.c.d denotes an instance
with a not-equals constraints, b at-most constraints, c equivalence constraints, and d non-
equivalence constraints (as used in the first and fourth columns of Table 2, for instances
with k = 25 and k = 30, respectively). In our experiments we compare the run-times and
outcomes of SAT4J (having reduced the WSP instance to a PB SAT problem instance)
and our FPT algorithm, which we will call PBA4CI (pattern-based algorithm for class-
independent constraints). Table 2 shows some detailed results of our experiments (the results
for k = 20 were excluded due to the space limit). We record whether an instance is solved,
indicating a satisfiable instance with a ‘Y’ and an unsatisfiable instance with a ‘N’; instances
that were not solved are indicated by a question mark. PBA4CI reaches a conclusive decision
(Y or N) for every test instance, whereas SAT4J fails to reach such a decision for some
instances, typically because the machine runs out of memory. The table also records the
time (in seconds) taken for the algorithms to run on each instance. We would expect that
the time taken to solve an instance would depend on whether the instance is satisfiable or
not, and this is confirmed by the results in the table.

In total, the experiments cover 210 randomly generated instances, 70 instances for each
number of steps, k ∈ {20, 25, 30}. PBA4CI successfully solves all of the instances, while
SAT4J fails on almost 40% of the instances (mostly unsatisfiable ones). In terms of CPU
time, SAT4J is more efficient only on 5 instances (2.4%) in total: 1 for 20 steps, 1 for 25
steps, and 3 for 30 steps, all of which are lightly constrained. For these instances PBA4CI
has to generate a large number of patterns in the search space before it finds a solution.

Overall, PBA4CI is clearly more effective and efficient than SAT4J on these instances.
Table 3 put in Appendix B of [8] shows the summary statistics for all the experiments. The
numbers of unsolved instances by SAT4J are indicated in parenthesis. For average CPU time
values, we assume that the running time on the unsolved instances can be considered as a
lower bound on the time required to solve them. Therefore average time values in Table 3
take into consideration unsolved instances for SAT4J: they are estimated lower bounds on its

IPEC’15



76 On the Workflow Satisfiability Problem with Class-independent Constraints

Table 2 Results for k = 25 and 30. Time in seconds. Y,N,? mean satisfied, unsatisfied, unsolved.

Instance SAT4J PBA4CI Instance SAT4J PBA4CI
k = 25 k = 30

25.15.1.15 Y 2.62 Y 2.464 30.20.2.20 Y 2.72 Y 50.804
25.20.1.15 Y 22.38 Y 0.010 30.25.2.20 Y 271.78 Y 2.323
25.25.1.15 Y 11.03 Y 0.010 30.30.2.20 ? 2,141.60 Y 2.946
25.30.1.15 Y 35.54 Y 0.040 30.35.2.20 ? 2,250.02 N 0.412
25.35.1.15 N 1,439.94 N 0.075 30.40.2.20 ? 1,942.57 N 2.238
25.40.1.15 ? 2,088.06 N 0.033 30.45.2.20 ? 2,198.02 N 2.171
25.45.1.15 Y 113.37 Y 0.022 30.50.2.20 ? 2,580.81 N 0.494
25.15.1.20 Y 1.52 Y 111.799 30.20.2.25 Y 4.18 Y 237.604
25.20.1.20 Y 7.77 Y 0.024 30.25.2.25 Y 76.41 Y 0.789
25.25.1.20 Y 297.39 Y 0.065 30.30.2.25 ? 2,288.07 N 0.401
25.30.1.20 ? 2,273.56 N 0.033 30.35.2.25 Y 1,364.66 Y 0.238
25.35.1.20 Y 48.29 Y 0.067 30.40.2.25 ? 2,383.92 N 0.775
25.40.1.20 N 105.48 N 0.045 30.45.2.25 ? 1,743.87 N 0.394
25.45.1.20 ? 2,105.61 N 0.031 30.50.2.25 ? 2,385.39 N 0.218
25.15.1.25 Y 14.40 Y 0.014 30.20.2.30 Y 35.40 Y 0.071
25.20.1.25 Y 80.25 Y 0.021 30.25.2.30 Y 9.37 Y 1.063
25.25.1.25 ? 2,284.78 N 0.023 30.30.2.30 N 1,632.51 N 0.347
25.30.1.25 N 442.91 N 0.237 30.35.2.30 Y 803.50 Y 0.029
25.35.1.25 ? 2,188.01 N 0.060 30.40.2.30 ? 2,022.71 N 0.981
25.40.1.25 ? 2,293.77 N 0.043 30.45.2.30 ? 1,902.84 N 1.501
25.45.1.25 ? 2,041.02 N 0.144 30.50.2.30 ? 1,730.93 N 0.467
25.15.1.30 Y 3.22 Y 0.011 30.20.2.35 Y 24.12 Y 0.453
25.20.1.30 Y 240.59 Y 0.014 30.25.2.35 Y 456.51 Y 0.085
25.25.1.30 Y 66.74 Y 0.050 30.30.2.35 N 1,817.76 N 1.088
25.30.1.30 ? 2,301.75 N 0.088 30.35.2.35 ? 1,949.77 N 0.111
25.35.1.30 N 1,562.30 N 0.023 30.40.2.35 ? 2,115.32 N 0.551
25.40.1.30 ? 2,332.07 N 0.127 30.45.2.35 ? 1,535.57 N 0.118
25.45.1.30 N 950.25 N 0.040 30.50.2.35 ? 1,647.41 N 0.454
25.15.1.35 Y 10.57 Y 0.014 30.20.2.40 ? 3,088.54 N 0.729
25.20.1.35 N 218.70 N 0.166 30.25.2.40 ? 1,746.81 Y 0.542
25.25.1.35 Y 37.87 Y 0.012 30.30.2.40 ? 2,350.01 Y 0.949
25.30.1.35 ? 2,421.30 N 0.054 30.35.2.40 ? 1,857.27 N 0.576
25.35.1.35 N 1,524.68 N 0.022 30.40.2.40 ? 1,938.63 N 0.221
25.40.1.35 N 1,001.67 N 0.028 30.45.2.40 ? 2,159.50 N 0.209
25.45.1.35 ? 1,974.05 N 0.034 30.50.2.40 ? 1,815.15 N 0.337

average time performance. As the number of steps k increases, SAT4J fails more frequently
and is unable to reach a conclusive decision for more than 65% of instances when k = 30,
some of which are satisfiable. However, SAT4J is clearly more efficient (and effective) on
satisfiable instances than on the unsatisfiable ones, while for PBA4CI the converse is true.
This can be explained by very different search strategies used by the solvers.

7 Conclusion

We have introduced the concept of a class-independent constraint, which significantly gener-
alizes user-independent constraints and substantially extends the range of real-world business
requirements that can be modelled. We have designed an FPT algorithm for WSP with



J. Crampton, A. Gagarin, G. Gutin, and M. Jones 77

class-independent constraints. Our computational results demonstrate that our FPT al-
gorithm is useful in practice for WSP with class-independent constraints, in particular for
WSP instances that are too hard for SAT4J.

The full generalization of our approach is briefly described in Appendix C of [8] and the
time complexity of the corresponding algorithm, O∗(2rk log2 k) (r is the number of nested
equivalence relations including =), indicates that it will remain practical at least when three
rather than two equivalence relations are considered.

Acknowledgement. This research was supported by an EPSRC grant EP/K005162/1. The
FPT algorithm’s executable code and experimental data set are publicly available [10].

References
1 American National Standards Institute. ANSI INCITS 359-2004 for Role Based Access

Control, 2004.
2 D.A. Basin, S. J. Burri, and G. Karjoth. Obstruction-free authorization enforcement: Align-

ing security and business objectives. J. Comput. Security, 22(5):661–698, 2014.
3 D.F.C. Brewer and M. J. Nash. The Chinese Wall security policy. In IEEE Symposium on

Security and Privacy, pages 206–214. IEEE Computer Society, 1989.
4 D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Engineering algorithms

for workflow satisfiability problem with user-independent constraints. In J. Chen, J.E.
Hopcroft, and J. Wang, editors, Frontiers in Algorithmics, FAW 2014, volume 8497 of
Lecture Notes in Computer Science, pages 48–59. Springer, 2014.

5 D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Iterative plan construction
for the workflow satisfiability problem. J. Artif. Intel. Res., 51:555–577, 2014.

6 D. Cohen, J. Crampton, A. Gagarin, G. Gutin, and M. Jones. Algorithms for the workflow
satisfiability problem engineered for counting constraints. J. Comb. Optim., to appear,
2015. (DOI: 10.1007/s10878-015-9877-7).

7 J. Crampton. A reference monitor for workflow systems with constrained task execution.
In E. Ferrari and G.-J. Ahn, editors, SACMAT, pages 38–47. ACM, 2005.

8 J. Crampton, A.V. Gagarin, G. Gutin, and M. Jones. On the workflow satisfiability problem
with class-independent constraints. CoRR, abs/1504.03561, 2015.

9 J. Crampton, G. Gutin, and A. Yeo. On the parameterized complexity and kernelization
of the workflow satisfiability problem. ACM Trans. Inf. Syst. Secur., 16(1):4, 2013.

10 A. Gagarin, J. Crampton, G. Gutin, and M. Jones. Implementation of the pattern-
backtracking FPT algorithm and experimental data set for the WSP with class-independent
constraints. http://dx.doi.org/10.6084/m9.figshare.1502692, Aug 2015.

11 D. Karapetyan, A. Gagarin, and G. Gutin. Pattern backtracking algorithm for the work-
flow satisfiability problem. In Frontiers in Algorithmics 2015, volume 9130 of Lect. Notes
Comput. Sci., pages 138–149. Springer, 2015.

12 D. Le Berre and A. Parrain. The SAT4J library, release 2.2. J. Satisf. Bool. Model. Comput.,
7:59–64, 2010.

13 W. Myrvold and W. Kocay. Errors in graph embedding algorithms. J. Comput. Syst. Sci.,
77(2):430–438, 2011.

14 Q. Wang and N. Li. Satisfiability and resiliency in workflow authorization systems. ACM
Trans. Inf. Syst. Secur., 13(4):40, 2010.

IPEC’15

http://dx.doi.org/10.6084/m9.figshare.1502692

	Introduction
	Workflow Satisfiability
	The Workflow Satisfiability Problem
	Constraints using Equivalence Relations

	Plans and Patterns
	Checking Realizability
	FPT Algorithm
	Algorithm Implementation and Computational Experiments
	Experimental Parameters and Instance Generation
	Results and Evaluation

	Conclusion

