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Abstract—This paper presents the computation of harmonic
clipping contours using a Matlab script that guarantees a fast
calculation. Thanks to the numerical nature of the solution,
an arbitrary number of harmonics can be taken into account
with minimal added computational cost. The results for second
harmonic clipping contours are compared with the analytical
solutions available in literature, while for the first time 3rd

harmonics clipping contours are presented. The latter allow the
improvement of the output power and the efficiency achievable
with the active device, while strong-linearity due to clipping can
be consciously avoided in the design stage.

I. INTRODUCTION

The power amplifier (PA) is one of the most critical
components in radio frequency (RF) transmitters due to its
strong impact on linearity, power efficiency, and overall cost.
Designers can rely on computer-aided design, exploiting large
signal models of the active devices to finalize the schematic
of the PA, accounting for all the given constraints. However,
it is common practice, in the first stages of the design, to
adopt a simplified approach based on the identification of
the load terminations to be applied at the device ports. For
narrowband design, tuned-load class AB, class F, or second
harmonic tuned PAs refer to precise harmonic load locations,
that are derived from theoretical analysis [1], [2] and chosen
according to the technology of the device, the frequency of
operation, and the feasibility of the matching networks. When
turning to wideband design, as required by last-generation
communication systems, it becomes difficult to guarantee a
fixed load termination over a large bandwidth. To mitigate
this issue, a feasible approach is to rely on the continuous PA
modes, revealed in [3], and extended in [4], [5] to other classes
of PAs. A limitation of the continuous modes’s theory is rep-
resented by the requirement of a purely reactive impedance at
harmonic frequencies, that in practical realization of matching
networks is hardly achieved. This aspect is even more evident
in broadband PAs, where the harmonics of the lower band
fundamentals are very close, or even inside, the higher portion
of the fundamental band. Moreover, a clear indication of the
effect on output power and linearity of dissipative higher
harmonics was not available, and empirical or a posteriori
methods have been used to verify this effect [6]. The clipping
contours have been first introduced in [7], and then in [8] with

a different formulation, to address the presence of second
harmonic loads containing a resistance. For a given second
harmonic load, the clipping contours identify a region of
fundamental impedance loads, i.e., the contour, that lead to a
zero-grazing voltage waveform. The contour divides the Smith
Chart in two regions: one on the left of the contour, where
loads lead to a waveform non-reaching zero, and on the right,
where the loads lead to a clipped voltage waveform. Alterna-
tively, if the fundamental load is fixed, the second harmonic
clipping contour can be plotted. The clipping contours are a
powerful method to understand the involved trade-offs when
designing the matching network. In fact, it can be seen that
reducing the fundamental voltage, i.e., reducing the output
power, the region of second harmonic loads that avoid clipping
is enhanced, thus relaxing the necessity of a purely reactive
second harmonic load [7]. In this paper, a numerical evaluation
of the clipping contours is presented, allowing for the first
time to account for the effect of higher harmonics, that were
considered at short circuit in [7], [8]. The plot of the contours
is performed in Matlab exploiting a computationally efficient
procedure. Experimental characterization is ongoing to prove
the advantages deriving from higher harmonics inclusion.

II. COMPUTATION OF CLIPPING CONTOURS

The adopted approach assumes that the intrinsic device
plane is considered, see Fig. 1, and that the drain current
waveform is known. Moreover, zero voltage is considered as
the limit for clipping, but all the calculations can be re-scaled
to account for a higher knee voltage. The periodical drain
current waveform, if characterised by even symmetry, can be
written as a Fourier series with cosine only terms:

ids(θ) = I0 +

∞∑
n=1

In cos(nθ) (1)

where θ = 2πf0t, with f0 fundamental frequency, I0 is
the DC current component, and In are the current harmonic
components. According to Ohm’s law, and considering har-
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Fig. 1. Simplified schematic used for the analysis.

monics higher than N as short circuits, the voltage waveform
becomes:

vds(θ) =

= VDD +
∑N

n=1 (<e{Vn} cos(nθ) + =m{Vn} sin(nθ))

= VDD −
∑N

n=1 (RnIn cos(nθ) +XnIn sin(nθ))
(2)

where Zn = Rn + jXn is the n-th harmonic impedance
presented at the device port, Z(nf0), and VDD is the drain
bias voltage. If the current waveform is not even, current sin
components are present as well, and care must be taken when
evaluating the voltage waveform components. However, the
proposed procedure is still valid.

The clipping contours at the k-th harmonic can be plotted if
the i-th harmonic loads, with i 6= k, are known. To build the
clipping contours, a grid of loads is created and assigned to
Zk. For each load, the voltage waveform is built according to
(2) on a period −π ≤ θ ≤ π, and its minimum Mv(Rk, Xk) is
evaluated. The loads at which the minimum of the waveform
is equal to zero represent the clipping contour.

Unfortunately, being the loads located on a discrete grid, it
is highly improbable that the locus of Mv(Rk, Xk) = 0 can be
exactly identified. For this reason, it has been decided to use
the Matlab function contour, that given a function of two-
variables quickly identifies the contour levels. In particular,
the contour level at which Mv(Rk, Xk) = 0 is shown. The
Matlab contour function still performs an interpolation, so it is
necessary to use a large number of impedance points to achieve
an accurate clipping contour. Moreover, also θ is discretized
into a column vector with T points, and its discretization
step must be low enough for an accurate identification of
the minimum. As a consequence, to avoid a non-acceptable
computational time for the contour generation, the algorithm
has been designed exploiting the capability of Matlab to
efficiently operate on vectors and matrices.

The impedance Zk is represented by a P ×M matrix Z̃k,
obtained by inner product of a column vector of length P
containing the complex numbers of unitary module and phase

equal to all the possible phase of Zk, and a row vector with
length M containing all the possible modulus of Zk. An
important observation is made to limit the range of |Zk| to
Rm ≤ |Zk| ≤ RM. In fact, considering the limit case of all
the i-th harmonics in phase or phase opposition at the negative
peak of the k-th harmonic, the amplitude of the k-th harmonic
voltage must be between Vm and VM:

Vm = VDD −
∑

i |Vi|
VM = VDD +

∑
i |Vi|

(3)

to eventually achieve zero grazing. If Vm is negative, it is
changed to zero. Once Vm and VM are identified, the corre-
sponding impedance limits Rm and RM can be extracted, since
the Ik current is known. Only passive loads are considered,
thus the phase of Zk is limited between −π/2 and π/2.

The matrix Z̃k is then reshaped columnwise into a row
vector Zk with length MP , and the corresponding Vk values
are obtained as a scalar product between Zk and the constant
Ik. This permits the calculation of ṽds, the matrix of voltage
waveforms that will have dimension T ×MP . Each column
of ṽds is a voltage waveform corresponding to a load Zk. By
defining 1̃M as a matrix with dimension T ×MP , and 1V as
a row vector with dimension MP , both composed by unitary
elements, the waveform matrix can be obtained as:

ṽds = VDD · 1̃M + cos(kθ) · <e{Vk}+ sin(kθ) · =m{Vk}+

+
∑

i (<e{Vi} cos(iθ) · 1V + =m{Vi} sin(iθ) · 1V) .
(4)

Finally, the row vector MV, with length MP , is evaluated
with the function min(ṽds), that performs the columnwise
minimum of ṽds. The matrix M̃V, with dimension P ×M ,
is obtained reshaping MV.

The plot in the Smith Chart is then obtained simply mapping
Z̃k into a matrix Γ̃k of reflection coefficients, using Ropt

as normalization impedance, i.e., the theoretical optimum
load with shorted harmonic, Ropt = VDD/I1. The function
contour(<{Γ},={Γ}, Z̃k) is finally adopted, visualizing the
zero value contour.

(a) (b)

Fig. 2. Second harmonic loads (a) and fundamental clipping contour (b) for
class B (black square), class J (red circle), and class J−1 (blue diamond).



The algorithm is tested with simple loading conditions,
as for example class B, J, and J−1, assuming a class B
current waveform. Fig. 2 shows, for these 3 classes, the fixed
second harmonic load on the lef, and the fundamental clipping
contour, on the right, with the symbols placed at the maximum
power loads. The computation time, using T = 361,M =
10, P = 37, and an Intel Core i7 2.6 GHz processor, is
around 0.33s when starting from an empty workspace, while
it decreases to ≈0.05s if the variables are already initiated.

III. CLIPPING CONTOURS WITH 2nd HARMONIC

Before proceeding to insert higher harmonics, the algorithm
is also tested against the results provided in [7]. Fig. 3 shows
how the fundamental clipping contours (right) are affected
by a second harmonic load (left) moving from short circuit
to a purely resistive impedance, again assuming a class B
waveform. It is clear that, for an increasing second harmonic
load, the fundamental load must be moved towards lower
impedances to avoid clipping, meaning a reduction of output
power and efficiency. Similarly, but providing arbitrary second

(a) (b)

Fig. 3. Second harmonic loads (a) and fundamental clipping contour (b) for
3 different cases. Z2 = 0 (black square), Z2 = Ropt/4 (red diamond), and
Z2 = Ropt (blue circle).

harmonic complex load, different clipping contours can be
seen in Fig. 4.

(a) (b)

Fig. 4. Second harmonic loads (a) and fundamental clipping contour (b) for
3 different cases. Z2 = (1− j)Ropt/4 (black square), Z2 = (1− j)Ropt/2
(red diamond), and Z2 = (1− j2)Ropt/2 (blue circle).

A situation of great interest is also when the fundamental
load is fixed, i.e., a certain power reduction is accepted, and
the second harmonic clipping contour needs to be found. Fig. 5
reports 3 cases, one with the fundamental load (left) at its
power optimum, and the other two with reduction of 0.95 and
0.9, respectively. The second harmonic clipping contour (right)
passes from the short circuit only, to a much larger impedance
region, allowing for more flexibility in the matching network
design without clipping the waveform. The symbols on the

(a) (b)

Fig. 5. Fundamental loads (a) and second harmonic clipping contour (b) for
3 different cases. Class B (black square), Z1 = 0.95Ropt (red diamond), and
Z1 = 0.9Ropt (blue circle).

second harmonic clipping contours are only shown as markers;
in fact, they do not indicate the locus of maximum power,
being the latter determined by the fundamental load.

IV. CLIPPING CONTOURS WITH 3rd HARMONIC

The insertion of high harmonics, and in particular the third
harmonic, in the voltage waveform can provide beneficial
effects in terms of power and efficiency: class F is an example
of this application. For this reason, it is of great interest to
observe the clipping contours including the effect of the third
harmonic. A 10% class AB bias is used instead of class B to
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Fig. 6. Third harmonic loads (a) and fundamental clipping contours (b) for
3 different cases, fixing Z2 = 0. Z3 = 0 (black square), Z3 = 5Ropt (red
diamond), and Z3 = (5 + j5)Ropt (blue circle).

generate a finite third harmonic current. As a first exercise,



the fundamental clipping contours with short circuited second
harmonic and different values of third harmonic are calculated,
and reported in Fig. 6. The fundamental load, when applying
a high third harmonic load, is allowed to reach a higher
impedance than the optimum for tuned load. This leads to
an output power ≈1.16 larger than the correspondent tuned
load, consistently with the class F theory results. Moreover,
the adoption of a complex third harmonic load moves the
fundamental optimum load away from the real impedance axis.
Fig. 7 reports the normalized voltage waveforms for the three

Fig. 7. Normalized voltage waveform for 3 different cases, fixing Z2 = 0.
Z3 = 0 (black), Z3 = 5Ropt (red), and Z3 = (5 + j5)Ropt/

√
2 (blue).

presented cases, selecting the maximum output power load at
fundamental. The class F-like waveform is clearly visible, and
the change of phase of third harmonic load results in a shift
of the full waveform.

A more realistic case is represented by dissipative second
and third harmonics. In particular, in many continuous mode
implementations the second harmonic is usually in the third
quadrant of the Smith Chart, while the third harmonic tends
to rotate towards the second and first quadrants. Fig. 8 shows

(a) (b)

Fig. 8. Third harmonic loads (a) and fundamental clipping contours (b) for
3 different cases, fixing Z2 = (1 − j)Ropt/2. Z3 = 0 (black square),
Z3 = 5Ropt (red diamond), and Z3 = (5 + j5)Ropt/

√
2 (blue circle).

the fundamental clipping contours when the second harmonic
is Z2 = (1− j)Ropt/2, for the three different third harmonic
loads. Introducing a high impedance for the third harmonic has
a beneficial effect, and the maximum output power is back to
the tuned load value. Fig. 9 reports the normalized voltage

Fig. 9. Normalized voltage Third harmonic loads (a) and fundamental clipping
contours (b) for 3 different cases, fixing Z2 = (1 + j)Ropt/2. Z3 = 0
(black), Z3 = 5Ropt (red), and Z3 = (5 + j5)Ropt/

√
2 (blue).

waveform obtained with the maximum output power load.
The experimental evaluation of the proposed third harmonic
contours is ongoing, and it will allow for the verification of
the beneficial effects of third harmonic on a real device.

V. CONCLUSION

A quick computational method for harmonic clipping con-
tours has been demonstrated using a Matlab script. With
respect to previously published methods, the present one
allows for the insertion of higher harmonics. In particular, the
effect of introducing a third harmonic voltage is discussed,
showing the potential benefits in terms of output power and
efficiency.
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