
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/92122/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Albaaji, Amar J. , Castle, Elinor G., Reece, Mike J., Hall, Jeremy P. and Evans, Sam L. 2016. Synthesis and
properties of graphene and graphene/carbon nanotube-reinforced soft magnetic FeCo alloy composites by

spark plasma sintering. Journal of Materials Science 51 (16) , pp. 7624-7635. 10.1007/s10853-016-0041-2 

Publishers page: http://dx.doi.org/10.1007/s10853-016-0041-2 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



 
 
 

1 
 

Synthesis and properties of Graphene and Graphene/carbon nanotube reinforced 

soft magnetic FeCo alloy composite by Spark Plasma Sintering  

Amar J Albaaji1*, Elinor G Castle2,3, Mike J Reece2,3, Jeremy P Hall1, Sam L Evans4 

1-Wolfson Centre for Magnetics, Cardiff School of Engineering, Cardiff University, UK 

2-School of Engineering and Materials Science, Queen Mary University of London, UK 

3-Nanoforce Technology Ltd., London, UK 

4-Institute of Mechanical and Manufacturing Engineering, Cardiff School of Engineering, Cardiff 

University, UK 

 

Abstract 

The effect of the addition of graphene nanoplatelets (GNP) and graphene nanoplatelet/carbon 

nanotube (GNT) mixtures on the mechanical and magnetic properties of spark plasma sintered (SPS) 

soft magnetic FeCo alloys was studied. Three different volume fractions (0.5, 1& 2 vol.%) of GNPs 

and GNTs were investigated. Ball milling was used to disperse the GNPs in monolithic FeCo 

powder; while magnetic stirring and ultrasonic agitation were used to prepare hybrid GNT prior to 

ball milling. The highest saturation induction (Bsat) of 2.39 T was observed in the 1 vol. % GNP 

composite. An increase in the volume fraction of the ordered nano crystalline structure was found to 

reduce the coercivity (Hc) of the composites. The addition of CNTs to the GNP composite prevented 

grain growth, leading to grain refinement. An 18% increase in hardness was observed in the 1 vol. % 

GNP composite as compared to the as received FeCo alloy. A reduction in tensile strength was 

observed in all of the composite materials, except for the 0.5 vol. % GNT composite, for which a 

value of 643 MPa was observed. Raman spectroscopy indicated a reduction in the defect density of 

the GNPs after adding CNTs.  
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1. Introduction 

 Graphene is a material composed of sp2 carbon atoms arranged in a two-dimensional 

honeycomb structure; and is the strongest material ever recorded [1]. Graphene sheets stack on top of 

one another, leading to weak van der Waals forces in the c-axis with an approximate separation 

distance of 3.4 Å. Graphene nanoplatelets (GNPs) typically consist of a ~ 100 nm thick stack of 

graphene sheets [2, 3]. Due to its unique electrical, thermal and mechanical properties [4, 5], 

graphene has the potential to significantly improve the properties of materials through its addition as 

a second phase.  

 Intermetallic compounds generally exhibit a very low level of ductility at room temperature. 

Due to the formation of the ordered B2 state, near equiatomic FeCo alloys exhibit very good 

magnetic properties, yet are extremely brittle at room temperature. Modern power generation 

systems demand new materials with both good magnetic and mechanical properties. The magnetic 

properties of FeCo alloys satisfy this requirement, however the mechanical properties of FeCo alloy 

must be improved in order to meet this need. An improvement in the ductility of the FeCo alloy has 

been achieved through grain refinement, reducing the degree of ordering and addition of the alloying 

element vanadium [6]. Kawahara [7] tested the effect of combined cold working and heat treatment 

plus the addition of different alloying elements on the magnetic and mechanical properties of FeCo 

alloys. He reported that the magnetic and mechanical properties are effectively improved by the 

addition of C, V, Cr, Ni, Nb, Mo, Ta and W. A model for the improvement of ductility in FeCo 

alloys has been suggested by adding carbon in [8].  Yu et al. [9]; electrodeposited FeCo alloys onto W 

fibres. An improvement in mechanical properties was achieved; however, non-soft magnetic 

behaviour in the as deposited composite was observed due to the stresses introduced by the 

fabrication process. Powder metallurgy followed by ball milling is considered to be the best route to 

manufacture extremely brittle FeCo alloy components, since there is more flexibility in the final 
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dimensions and shape and a high mechanical strength can be achieved with little effect on the 

magnetic properties [10]. Almost all properties, including strength, ductility and magnetic 

performance, are improved with increasing density in powder metallurgy products [11].  

The spark plasma sintering (SPS) process has been used extensively in the last decade to 

densify a wide variety of powdered materials. The application of high pressure and pulsed DC 

current to the electrically conductive dies leads to rapid heating and sintering. As such, the technique 

makes it possible to achieve high densities, close to theoretical density, without prior compaction or 

binder addition. The rapid nature of the technique enables the characteristics of the starting powder 

to be transferred to the final sintered part; such as a fine grain size, metastable phase or composition 

or inclusion of volatile elements. The application of a current during processing has been shown to 

‘clean’ the powder particles of surface oxides [12, 13]. Many studies have employed SPS to sinter 

CNT composites and nanopowders with the aim of restricting grain growth [2, 14]. Mani et al. 

obtained 99% theoretical density and a saturation induction (Bsat) of 2.33 T in Fe-50% Co alloy 

prepared by SPS at 900°C for 2-5 min under a pressure of 80 MPa [15]. Recently, a Ni-P electroless 

coated CNT-reinforced Fe-50Co composite was fabricated by ball milling and SPS processing; an 

improvement in ductility and strength was observed at the expense of the magnetic properties [16]. 

The phase transformation of metal magnetic alloys during processing effects the processing 

parameters of the SPS furnace, making it is possible to calibrate temperature [17]. 

 While extensive research has been published on polymer-graphene composites [1] and to a 

lesser extent on ceramic-graphene composites [18], to the best of our knowledge there are very 

limited publications on metal graphene composites; especially FeCo alloys. Issues involving the 

formation a stable dispersion of graphene nanoplatelets (GNPs) are rather complicated as compared 

to carbon nanotube (CNTs) since GNPs tend to agglomerate and restack on one another during 

dispersion and drying. 
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Kim et al. [19] used graphene oxide as a dispersion agent for both multiwall and single wall 

carbon nanotubes in water. The authors demonstrate that graphene oxide is able to strongly interact 

with the surface of CNTs throughout π-π attractions due to many π-conjugated on the surface of 

graphene oxide. Wimalasiri et al. [20] have used single walled carbon nanotubes (SWCNTs) to 

prevent restacking between graphene sheets when they fabricated electrodes from carbon nanotube 

and graphene composite. Increasing the space between graphene using CNTs improves the transport 

of electrolyte ions within the electrode. This strategy has been previously tested in ceramic [21, 22], 

polymer [23] and light weight metal alloy [24] based systems. Excellent mechanical properties due to 

improved dispersions were achieved. So far, there has been no systematic study into the use of CNTs 

to improve the dispersion of GNPs in soft magnetic FeCo alloys. 

This article outlines the results from a study into the effects of GNP and CNT additions on 

the structural, magnetic and mechanical properties of Fe-Co composites fabricated by ball milling 

and SPS.  

2. Material and Method 

2.1. Starting materials 

Gas atomised FeCo alloy powder was supplied by Sandvik Osprey Powder Group. The mean 

size of powder, measured by Malvern Mastersizer 3000 with laser scattering, is 23.4 μm. Multi-

walled carbon nanotubes (MWCNT) and graphene nanoplatelets (GNP) were provided from Haydale 

Ltd. They are functionalized by plasma treatment to incorporate covalently bonded oxide group on 

their surfaces.  

2.2. Powder mixing 

GNP was dispersed in FeCo powder by using Spectromill ball pestle impact grinder in air 

atmosphere (Chemplex Industries Inc., Model 1100) with steel ball pestles with a ball to powder ratio 
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(BPR) of ~1:1for 1h. Three different volume fractions (0.5, 1 & 2 vol. %) of GNP were dispersed in 

20 g of FeCo powders. The mixture of CNT and GNP referred to as GNT, was also used as 

reinforcement for soft magnetic FeCo alloy at same volume fraction. The mixing ratio of CNT: GNP 

was 1:10. The theoretical densities used to calculate of the volume fractions using a rule of mixture 

are 1.4g/ccm, 2.2 g/ccm and 8.174 g/ccm for CNT, GNP and FeCo powder respectively. GNT was 

magnetically stirred in 100 ml of ethanol for 0.5 h, followed by ultrasonication for (0.5 h). 20 g of 

FeCo powder was mixed with GNT to form composite slurry. The composite mixture was tip 

sonicated for 1 h in 150 ml ethanol. Drying was performed by heating at 80 ˚C on hot plate 

overnight. After drying, the powder was ball milled using the same conditions described for the GNP 

dispersions. 

2.3. SPS fabrication 

20 g of FeCo alloy powders and composite powder mixtures were consolidated in a graphite 

die lined with graphite foil using a spark plasma sintering furnace (HPD 25/1 FCT, Germany). All of 

the samples were heated to the sintering temperature at a constant rate of 50˚Cmin-1 under a vacuum 

of 1.5 Pa. The initial 7 MPa pressure was applied to 400˚C; followed by an increase to 80 MPa 

pressure and simultaneous heating to 900 °C for a 3 minute soak at this temperature [15]. After rapid 

cooling in contact with the water cooled pistons of the spark plasma sintering furnace, the samples 

were manually extracted from the die using a hydraulic press.  

2.4. Characterisation 

 In order to measure the density of the sintered materials, the graphite layer was removed from 

surface of sintered materials by grinding with Emery paper. The density was measured using 

Archimedes’ immersion method in water. To evaluate the structure of raw nanomaterials, a high 

resolution Transmission Electron Microscope (TEM) (JEM-2100LaB6) was used to evaluate the as 

received GNPs and CNTs. For optical microscopy analysis, cross sections of the sintered materials 
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were ground and polished with different grade abrasive discs followed by etching using 10 % Nital 

for 30 sec. Scanning Electron Microscopy (SEM) (Oxford instruments) was used to analyse the 

fracture surfaces of the tensile samples. The crystallographic phases and ordering state present in the 

as received and composite materials were examined using X-Ray Diffraction (XRD) (Philips PW 

3830 Automated Powder Diffraction) supplied with a Co target X-ray tube. The scans were 

performed between 10 and 110 ˚2θ at a scan speed of 8x10-3˚2θ sec-1at operation conditions of 35 kV 

and 40 mA. A slow scan was performed in the expected˚2θ range of the ordered phase at a scan 

speed of 25 x 10-5˚2θ sec-1 and operating conditions of 42 kV and 40 mA.  

Raman spectroscopy was performed on the GNP and CNT powders and on tensile samples of 

composites of different volume fractions (using Renishaw inVia Raman microscope). The excitation 

wavelength was maintained at 514 nm for all samples with a power of 25 mW and spot size of 5 µm. 

The Raman spectra scans between 1000 and 3200 cm-1 were obtained after 15 accumulations. 

2.5. Mechanical and magnetic properties 

Tensile tests were performed on 3 samples cut from the 30 mm diameter monolithic FeCo 

alloy and composites discs by electron discharge machining (EDM). The cut samples were ground 

with silicon carbide to remove any crack initiation sites produced by cutting. Tensile properties were 

evaluated using a Shimadzu testing machine with a cross head speed of 2 mm/min. The tensile 

sample dimensions in mm were 11 x 3 x 1.25 [25]. Hardness measurements for both the matrix alloy 

and composite were performed at five different locations using a Vickers hardness tester using 30g 

load for 4 sec. In order to evaluate the magnetic properties, samples with a rectangular cross section 

24 mm x 5 mm were cut from the 30 mm diameter sintered discs using an EDM cutting machine. 

Samples were ground using Emery paper to remove the scratches produced during cutting. An 

automatic universal measurement system was used to evaluate the quasi DC magnetic response for 

samples by changing the magnetic field up to 25 kA m-1 [26]. 
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3. Results and discussion 

3.1. TEM analysis of nano powder 

The graphene nanoplatelets and carbon nanotube morphologies are shown in (Fig.1). A 

wrinkled morphology is observed for the GNPs, which may produce porosity in the composites. A 

variety of sizes were observed, and very small sheets were observed to be stacked on larger sheets. 

The thickness of the GNP sheets ranges from ~ 4 to 42 nm. The width of the sheets ranges from ~ 27 

to 223 nm, while the length varies from ~ 85 to 487 nm. Most of CNTs are tangled together, which 

impedes their dispersion. The measured dimensions of the CNTs exhibit a mean outer diameter of 

around 10.45 nm, while the inner diameter is around ~ 4 nm (corresponding, to ~ 10 concentric shells 

of carbon sheets).  

3.2. Optical microstructure 

 The optical micrographs of the monolithic FeCo alloy and composite materials are shown in 

(Fig.2). The as received monolithic FeCo alloy consists of grains of uniform size, as shown in (Fig.2. 

(a)). The sintered samples prepared with powders that had been ball milled contained elongated 

grains, as shown in (Fig.2. (b)). The microstructure of the GNP composites was inhomogeneous (Fig. 

2. (c)) with excessively growth grains surrounded by small grains. Adding a small amount of CNTs 

(1:10) significantly change the microstructure. The homogenous microstructure observed may result 

from the uniform dispersion of the nanophases and the prevention of their stacking of the 

nanophases. Fig. 2. (d) shows the refined microstructure, which is occurred due to the addition CNTs 

to GNPs as compared to the GNP composite (Fig. 2. (c)). An increase in the volume fraction of 

reinforcement leads to the introduction of agglomerates, which results in increased porosity. Impurity 

elements such as (O, N, H2) may segregate at grain boundaries, grain boundaries were investigated 
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using EDX spectra. The spectra were taken from the grain boundaries of sintered 1 vol. %GNP and 

FeCo alloy did not shown any difference in chemical composition between materials. 

3.3. Densification of sintered FeCo composites 

 The relative density of the spark plasma sintered FeCo-GNP and FeCo-GNT compacts are 

shown in (Fig.3). Almost full densification was achieved for the as received FeCo compact, with a 

relative density higher than 99%. In comparison, the final density of the FeCo alloy after 1 h ball 

milling was reduced to 98%. The addition of reinforcements increased the final density in 

comparison to the ball milled FeCo alloy, yet decreased overall with increasing volume fraction of 

reinforcement. The density of the GNT composites was lower as compared to the GNP composites, 

which might be attributed to the presence of carbon nanotubes in the GNT composites. The 2D 

morphology of the GNPs leads to a higher surface area as compared to the 1D carbon nanotubes. An 

increase in the contact area between the GNPs and the matrix alloy leads to a higher density; while, 

CNTs inserted between the GNPs may introduce porosity between the sheets and reduce the density.  

3.4. Analysis X-ray diffraction results of raw materials and FeCo composites 

XRD patterns of the sintered FeCo alloy and its composites are presented in (Fig.4). In spite 

of the slow X-ray scan rate used for all of the FeCo alloy composites, the distinctive 2θ =26.5° peak 

of the GNPs was not observed due to its relatively low volume fractions, which are beyond the 

sensitivity of the XRD technique. To clarify any shift in peaks position, the figure was enlarged, as 

shown in the insert (Fig.4). The fundamental peaks were shifted to lower angles in the composite 

materials as compared to the as received FeCo alloy. This is due to the stresses introduced during 

ball milling. A broadening of the XRD peaks was also observed in the composite materials, due to 

microstructure refinement following ball milling. The volume fraction of the ordered state has an 

effect on both the magnetic and mechanical properties of FeCo alloys. Avery slow scan rate and high 
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intensity XRD (Co Kα) was employed in order to investigate the (100) super-lattice line reflection of 

the sintered FeCo alloy, 1 h ball milled FeCo alloy, GNT and GNP composites as shown in (Fig.5). 

The long range ordering fraction in FeCo alloy has been shown to reduce following ball mill [27]. 

With 1 vol. % GNP dispersion in the FeCo alloy an increased volume fraction of ordering was 

observed. However, the introduction of 2 vol. % GNP did not make any significant difference to the 

degree of ordering and crystallite size. The intensity of the super lattice reflection was found to be 

higher in the GNP composites as compared to the GNT composites; indicating a greater volume 

fraction of ordering in the GNP composite. This is confirmed by the shift of the peak to lower angles 

in the GNP composites due to the strains induced by the more significant ordering reaction as 

compared to the GNT composites. Clegg and Buckley [28] reported that the change in lattice 

parameter between the disordered and ordered phases is about 0.2%; varying from 0.28550 to 

0.28570 nm. The anti-phase domain sizes were estimated from the super lattice line in (Fig.5) using 

the Scherrer equation. A significant reduction in the anti-phase domain sizes was observed in the 1 

vol. % GNT composite, which reflects the role of carbon nanotubes in refining the crystallite 

structure or due to improved dispersion, while GNP additions did not influence the nanostructure. 

3.5. Magnetic properties 

 A summary of the magnetic induction (Bsat.), coercivity (Hc) and remanence (Br) of the 

materials is shown in (Fig.6). An increase in saturation induction and reduction in coercivity is 

observed in the GNP composites compared to as received FeCo alloy, for reinforcement additions up 

to 1 vol. %. In general, a higher remanence is observed in the GNT composite as compared to the 

GNP composites (Fig. 6 (inset)). In order to separate the effects of ball milling from the effect of 

reinforcement on the magnetic properties, the 1 h ball milled FeCo compact was also investigated. 

The saturation induction of 1 h ball milled FeCo compact was reduced from (2.30 T) to (2.23 T), 

while exhibiting a decline in coercivity from (836 A/m) to (763 A/m). 
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 It was shown in the previous section that the density after ball milling under air atmosphere 

dropped, which can account for the reduced in saturation induction due to oxide formation [27]. The 

1 vol. % of GNPs composite exhibited a higher saturation induction value of (2.39T) than the1 h ball 

mill FeCo alloy (2.23 T) due to the increase in density produced by the addition GNPs to the ball 

milled FeCo alloy as confirmed in (Fig.3). However, with addition of 1 vol. % of GNTs the 

saturation induction dropped to (2.12 T). The increased space between GNPs due to inserting CNTs 

leads to drop in density due to porosity (Fig.3). Further, the increased saturation in GNP composite 

can also be explained by the ferromagnetic behaviour of graphene and improved electrical 

conductivity of this composite [29, 30], which could affect the densification processes during SPS 

and subsequent magnetic properties. The 2D form of the GNPs exhibits open edges, in contrast to the 

inserted CNTs which have closed π-electron systems. The nonbonding state also creates 

nanomagnetic properties at edges [31]. While, the inserted CNTs will influence magnetic properties 

primarily due to the introduction of porosity and due to the presence of any residual metallic 

catalysts on their surface. 

The coercivity after ball milling under air atmosphere dropped, which may have been caused 

by the formation of nanocrystalline structure. The slow scan rates XRD (Co Kα) patterns (Fig. 7) 

revealed a (100) super lattice reflection with crystallite dimensions reduced to nanoscale. It has been 

shown [31, 32] that at this scale the trend in coercivity would follow that of the average magneto-

crystalline anisotropy when the crystallite size becomes less than the ferromagnetic exchange length, 

leading to a drop in coercivity. The composites with GNT displayed a higher coercivity than the 

GNP composites, which is due to the more refined grain size (Fig. 2. (d)) of GNT composite as a 

result of better dispersion. The restacking of GNPs increased at higher volume fraction composites, 

leading to an increase of the particle size of the GNPs to micron size, which decreases the 

effectiveness of GNPs to reduce grain growth. 
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3.6. Mechanical properties 

The tensile strength, the mechanical hardness and failure strain of the as a received 

monolithic FeCo alloy (represented as 0 vol. % reinforcement) and the composites with different 

volume fraction of GNPs and GNTs are summarised in (Fig.7) and (Fig.8) respectively. The 1 h ball 

milled FeCo compact was also examined and compared to alloy prepared with unmilled powder 

exhibited a decrease in ultimate tensile strength from (673 ±17.43 MPa) to (643 ±40 MPa), failure 

strain was also dropped from (2.9 ±0.70 %) to (2.4%), while the hardness increased from (326.5 

±18VHN) to (355.7±5 VHN).  

Hard oxides formed during ball milling lead to an increase in hardness, yet hindered 

densification process and hence lower the tensile strength and failure strain. The addition of GNPs to 

the FeCo alloy led to a decrease in tensile strength. This was possibly due to the restacking of GNP 

sheets as shown in (Fig. 10 (c)), which cause easily slip in GNPs with respect to one another and 

separate under stresses. Strength arising from nano-reinforcement mechanisms will deteriorate once 

the GNPs become agglomerated into micro-sized clusters, reducing the tensile strength by acting as 

stress concentrators. An improvement in tensile strength was subsequently observed in the hybrid 

GNT composite, where the addition of CNTs prevents agglomeration of the GNPs. A marked 

increase in hardness to 385.3 ±35 VHN was observed in the FeCo-1 vol. % GNP composite, as 

shown in (Fig.7). This represents an 18% increase in hardness in comparison to the as received FeCo 

alloy. The highest density value among the composite materials was achieved for the 1 vol. % GNP 

composite, leading to increase in hardness. The hardness decreased for the 2 vol. % GNP composite, 

because of the decrease in density produced by agglomeration of GNPs. 
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Fig. (8) shows failure strains with volume fraction of reinforcement, the composite material 

exhibit decrease in failure strain especially at higher loading as compared to as received FeCo alloy, 

confirming increased brittleness in FeCo alloy from agglomeration. 

Fig. 9 shows a comparison between the fracture surfaces of monolithic FeCo alloy, 1 vol. % 

GNP composite and 1 vol. % GNT composite. Mixed mode of intergranular and transgranular 

fracture predominate in all of the sintered materials, indicating that the inherent weakness of grain 

boundaries cannot be avoided by the nanophase additions. Evidence of toughening mechanisms, such 

as crack deflection and platelet pull out are observed in (Fig.10 (a, c)). A large GNP can be seen to 

warp around a grain. It is expected that the flexibility of GNPs allows them to bend around and 

become embedded between the grains during sintering. The large surface area of GNPs increases the 

contact area with the matrix, leading to an increased interfacial force, requiring more energy to pull 

out the GNP sheets as compared to the CNTs. However, overlapping between GNPs decreases the 

interface bonding efficiency. It is observed that thin GNP sheets are effective at inhabiting crack 

propagation as compared to thick overlapped GNP sheets, which are easily sheared and form pores, 

degrading the mechanical and physical properties. The CNTs are embedded between the GNPs as 

observed in (Fig.10 (d)); pull-out of the CNTs occurred during fracture. The high aspect ratio of the 

CNTs allows them to bridge the fracture surface, as shown in (Fig.10 (b)). 

3.7. Raman spectroscopy 

Graphene is routinely characterised using Raman spectroscopy. In a typical Raman spectrum 

of single layer graphene the main peaks are seen at 1583 cm-1(commonly referred to as G), D peak at 

1350 cm-1and the shoulder D' at around 1620 cm-1. In addition to this: the overtone peak, 2D or G', 

appears at 2680 cm-1; the D+G peak appears at around 2950 cm-1, the 2D' peak appears at 3245cm-1; 

and finally the 2D+G peak occurs at 4290 cm-1 [34]. The ratio (R=ID/IG) is typically used to measure 
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the disorder and defect density in graphene, while the strain in graphite can be observed as a shifting 

and splitting of the Raman modes [35]. Raman spectra of the as received GNT, FeCo alloy and the 

FeCo alloy-GNP and GNT composites are shown in (Fig.11). The FeCo alloy does not produce any 

Raman signals. The structure of GNP was retained after all of the fabrication processes as evidenced 

from the shape of the single-peak shape of the 2D band in the Raman spectrum; indicating the 

presence of the graphene morphology as opposed to the graphite morphology, which would give rise 

to a split-peak [36]. 

Table1 lists the peak intensity ratio (R=ID/IG), the position of the G and 2D peak positions. 

The GNPs were observed to be of higher quality than the CNTs, as evidenced from the lower R ratio 

of the GNPs (1.00) compared to CNTs (1.11). An increase in R ratio was observed for all of the 

composites. This was particularly notable for the GNP composites as compared to the as received 

GNPs. This may have resulted from an interfacial reaction of the matrix with the side wall of the 

GNPs, or could have induced by ball milling. However, this ratio decreased in the GNT composites 

as compared to the GNP composites, suggesting that the addition of CNT to GNP in ethanol may 

help to maintain the structure of the GNP. High quality for vacuum during sintering process is crucial 

to preservation carbon nanostructure in sintered composites materials [37]. The oxidation for 

reinforcement was reduced due to using a good vacuum (1.5 Pa), helping to improve the quality of 

carbon nanostructure.  Strains are induced in the GNPs by the fabrication processes and by 

mechanical testing of the composite material. Such strains will lead to alterations in the interatomic 

distance of the graphene. The G band peak position is very sensitive to strain in the graphene 

structure. Hence the shift in wave number will change according to alteration in the vibration 

frequency of the G band due to strain [35]. Up shifting was observed in the peak position of the G-

band (ωG) peak for the composites in comparison to the as received GNP. A shift of between 8.6 cm-1 

to 22.8 cm-1 is observed in the GNP composites as compared to the as received GNP; and a 10.6 cm-1 
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to 13.6 cm-1 shift is observed for the GNT composites. This indicates that significant strains have 

been induced in the GNPs in the aforementioned composites. Up shifting is also observed in the 2D 

peak. Since the 2D band peak is very sensitive to the number of layers in graphene, a change in 

position, width and shape could occur in the 2D peak with an increasing number of layers [36]. The 

shifting was reduced in 1 and 2 vol. % GNT composite indicating that less overlapping had occurred 

between the GNP sheets as a result of the addition CNTs. 

4. Conclusions 

Composites containing 1 vol. % GNP displayed the highest saturation induction (2.39 T) and 

the lowest coercivity (583 A/m); while the remenance values were higher in the GNT composites 

than GNP composites for the same loading. The mechanical properties reveal a maximum increase in 

hardness of 18% for the 1 vol. % GNP composite. The highest tensile strength observed in the 

composite materials occurred in the 0.5 vol. % GNT composite. The ordered nano crystallite 

structure was promoted in the FeCo alloy by the addition of GNPs. Adding CNTs to the GNPs in 

FeCo leads to a more uniform and refined structure. However, porosity was induced leading to a 

decrease in the density of the GNT composites. Raman spectra show that the quality of the GNPs 

was improved by adding CNTs, which reduce the amount of overlapping of the GNP sheets. 
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Fig.1. Transmission Electron Microscope (TEM) of; (a, b) GNP and (c, d) CNT. 

 

Fig.2. Optical microstructure of: (a) as received FeCo alloy;  (b) 1 h ball milling FeCo compact (c) 2 vol.% 

GNP composite (d) 2 vol.% GNT composite.  

 



 
 
 

18 
 

 

 

 

Fig.3. Variation of relative density of SPS sintered composite materials against volume fraction of 

GNP and GNT (vol. %) as compared to the monolithic FeCo alloy. 

 

Fig.4. XRD patterns for FeCo as received; 1vol. % GNP composite; 2 vol.% GNP composite; 1 vol.% GNT and 

2vol.% GNT composite. 
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Fig.5. Slow scan XRD patterns show (100) super lattice line reflection with anti-phase domain size (APDS) 

of monolithic FeCo alloy, 1 h ball milled FeCo alloy and displayed composites. 

Fig.6. Effect of volume fraction of GNP and GNT on: saturation induction (solid lines); coercivity 

(dashed lines) and remanence (insert) of (Fe50Co) composites fabricated by spark plasma sintering. 
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Fig.8. Effect of volume fraction of GNP and GNT on failure strain of Fe50Co composites 

fabricated by spark plasma sintering. 

 

 

 

 

Fig.7. Effect of volume fraction of GNP and GNT on: tensile strength and 

hardness of Fe50Co composites fabricated by spark plasma sintering. 
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Fig.9. Fractographic images of: (a) as received FeCo alloy; (b) 1 vol. % GNP composites; and (c) 1 vol. 

% GNT composites fabricated by spark plasma sintering. 

 

Fig.10. High magnification of fractographic images; (a,c) 0.5 and 1 vol. % GNP composites 

respectively; (b, d) 0.5 and 1 vol. % GNT composites respectively. The arrows show pull-out of GNP 

(a), thin and overlapped GNP(c). Ellipses exhibit CNTs bridging (b) and pull-out from GNPs (d).  
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 State R=ID/IG ωG (cm-1) ω2D (cm-1) 

 Raw GNP  1.00 1573.0 2691.0 

 Raw CNT  1.11 1578.0 2691.0 

0.5 vol.% GNP composite 1.37 1581.6 2699.8 

1 vol.% GNP composite 1.15 1595.0 2708.6 

2 vol.% GNP composite 1.09 1595.8 2716.4 

0.5 vol.% GNT composite 1.07 1586.6 2710.7 

1 vol.% GNT composite 1.06 1583.2 2703.5 

2 vol.% GNT composite 1.06 1585.5 2709.0 

Fig.11. Raman spectra of GNP, GNT composites and as-received graphene. 

 

Table 1: Raman data of sintered materials. 

 


