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Uniqueness from discrete data in an inverse spectral problem
for a pencil of ordinary differential operators

Malcolm Brown, Marco Marletta and Freddy Symons

Abstract

We prove a pair of uniqueness theorems for an inverse problem for an ordinary differential
operator pencil of second order. The uniqueness is achieved from a discrete set of data, namely,
the values at the points −n2 (n ∈ N) of (a physically appropriate generalization of) the Weyl–
Titchmarsh m-function m(λ) for the problem. As a corollary, we establish a uniqueness result
for a physically motivated inverse problem inspired by Berry and Dennis (‘Boundary-condition-
varying circle billiards and gratings: the Dirichlet singularity’, J. Phys. A: Math. Theor. 41 (2008)
135203).

To achieve these results, we prove a limit-circle analogue to the limit-point m-function
interpolation result of Rybkin and Tuan (‘A new interpolation formula for the Titchmarsh–
Weyl m-function’, Proc. Amer. Math. Soc. 137 (2009) 4177–4185); however, our proof, using
a Mittag-Leffler series representation of m(λ), involves a rather different method from theirs,
circumventing the A-amplitude representation of Simon (‘A new approach to inverse spectral
theory, I. Fundamental formalism’, Ann. Math. (2) 150 (1999) 1029–1057). Uniqueness of the
potential then follows by appeal to a Borg–Marčenko argument.

1. Introduction: new definitions and problem statements

Let H denote the Hilbert space L2(0, 1; r dr) = {u : (0, 1) → C | ∫1

0
r|u(r)|2 dr <∞}. Suppose

that q, w ∈ L∞
loc(0, 1], with w > 0 almost everywhere and q real-valued. In the space H we

examine the following operator pencil:

Lu(r;λ) = λPu(r;λ) (r ∈ (0, 1)). (1.1)

Here L is a realization in H of the differential expression

�u(r) = −1
r
(ru′(r))′ + q(r)u(r)

which we shall define precisely below, and P is the unbounded multiplication operator

Pu(r) = w(r)u(r)

with domain

D(P ) =
{
u ∈ L2(0, 1; rdr)

∣∣∣∣
∫1

0

w(r)|u(r)|2 dr <∞
}

= L2(0, 1;w(r) dr),

in which the weight w is assumed to have the following singular behaviour:

w(r) =
1
rν

(1 + o(1)) (r −→ 0),
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where ν � 0 is fixed. Typically, one might treat equation (1.1) by writing it in the form

1
rw(r)

(ru′(r))′ +
q(r)
w(r)

u(r) = λu(r)

and noting that the expression on the left-hand side is formally symmetric in the space
L2(0, 1; rw(r)dr). In this paper, however, we work in the space H, which is the natural choice
in the physical setting from which our problem arises. Briefly, if w(r) = r−2 and λ = −λn, then
(1.1) becomes the μ = 0 case of

− 1
r
(ru′n(r;μ))′ + q(r)un(r;μ) +

λn

r2
un(r;μ) = μun(r;μ). (1.2)

This is a Bessel-type equation with potential, and equations related to it have been studied
quite extensively [2, 3, 9, 10, 19]. In addition, if λn are the angular eigenvalues of a spherically
symmetric time-independent Schrödinger equation in a sub-domain of R

2, then separating the
same equation into polar coordinates with radial component un yields precisely the system
(1.2). These eigenvalues are determined by the domain and boundary conditions. A particular
choice of these is discussed later, in relation to a scenario first formulated in [7] and further
explored in [22]. We refer the reader to Section 4 and to these two references for further details.

We now describe the domain of the pencil L− λP . It turns out that, in some cases, the
natural choice of domain is λ-dependent, and we require the following definition.

Definition 1.1. We say that the equation

− 1
r
(ru′(r))′ + q(r)u(r) = λw(r)u(r) (1.3)

is in pencil-limit-point or pencil-limit-circle at 0, corresponding, respectively, to the
L2(0, 1; r dr) solution space being one- or two-dimensional. We abbreviate these, respectively,
by PLP and PLC.

Remark 1.1. For our example, with w(r) = r−ν(1 + o(1)), it turns out that the problem
is always in PLC at 0 if ν ∈ [0, 2), always in PLP if ν > 2, and has λ-dependent classification
if ν = 2; see Appendix C. In the case ν = 2, (1.3) is in PLP at 0 if Im(

√
λ) � 1 and in PLC

at 0 if Im(
√
λ) < 1; we choose the branch of the square root with Im

√
λ > 0. The parabola

Im
√
λ = 1 divides C into components Ωp and Ωc, and the pencil is in PLP for λ ∈ Ωp, PLC

for λ ∈ Ωc; see Figure C.1 in Appendix C.

The definition of the domain of the pencil L− λP is slightly simplified by noting that, except
when the problem is in PLP for all λ, the point λ = 0 always lies in the domain Ωc in which the
equation is in PLC: see Figure C.1. Thus, in the PLC case, we can take U to be any non-trivial
real-valued solution of the equation �U = 0, and use it to define a boundary condition in the
usual way for the classical limit-circle case. Let [·, ·] denote the Wronskian.

Definition 1.2. In the PLC case let U be any non-trivial real-valued solution of �U = 0.
Then the boundary condition at 0 defined by U is

[u,U ](0+;λ) := lim
r↘0

{u(r;λ)rU ′(r) − ru′(r;λ)U(r)} = 0. (1.4)

Definition 1.3 (Domain of L− λP ). In the PLP case,

D(L− λP ) = {u ∈ H | �u− λwu ∈ H, u(1;λ) = 0}.
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In the PLC case,

D(L− λP ) = {u ∈ H | �u− λwu ∈ H, u(1;λ) = 0, [u,U ](0+;λ) = 0}.

To introduce the Weyl–Titchmarsh function m(λ) for our pencil, we first remark that, owing
to the asymptotics in Appendix C, equation (1.3) has at least one non-trivial solution in H.
We can therefore make the following definition.

Definition 1.4. In the PLP case, let u(· ;λ) denote the unique (up to scalar multiples)
solution of (1.3) in H. In the PLC case, let u(· ;λ) denote the unique-up-to-multiples solution
with [u,U ](0+;λ) = 0. Then the Dirichlet m-function is

m(λ) = u′(1;λ)/u(1;λ). (1.5)

Using the variation-of-parameters formula, one may show that, with the domains as in
Definition 1.3, the operator L− λP is invertible whenm(λ) is analytic, and that the eigenvalues
of the pencil L− λP , which are poles of (L− λP )−1, are the poles of m(λ). Note that, in the
case ν = 2, there is generally a discontinuity of m across the boundary curve between Ωp and
Ωc, due to the freedom in choosing the boundary condition function U for Im(

√
λ) < 1.

The main objective of this paper is to obtain a pair of uniqueness theorems for the
following.

Inverse Problem 1.1. Let w : (0, 1] → (0,+∞) be locally bounded and suppose (1.1) is
in PLP or PLC at 0. If in PLC, suppose that we have a boundary condition as in Definition 1.3.
Now let S := ((−n2,mn))∞n=1 be a sequence of admissible points in the graph of a generalized
Titchmarsh–Weyl m-function for (1.3). Recover the potential q from the sequence S under
these conditions.

Our approach is firstly to show that, in both the PLP and PLC cases, the m-function is
uniquely determined by its values at −n2 (n ∈ N), then secondly to invoke the Borg–Marčenko-
type theorem in Appendix A that uniquely determines a potential from its associated m-
function. In the PLP case ν � 2 (note ν = 2 turns out to be treatable by a PLP technique),
we will transform (1.3) to Liouville normal form on the half-line [0,∞), in PLP at ∞, regular
at 0, before utilizing the Rybkin–Tuan interpolation formula [24] for the classical limit-point
m-function associated with such an equation. This is valid because the PLP and classical limit-
point m-functions are formally the same where their domains overlap, that is, all of C when
ν > 2 and Ωp when ν = 2; the Rybkin–Tuan interpolation holds in this region. However, when
0 � ν < 2, the Liouville normal form of (1.3) holds on a finite interval; to our knowledge, there
is no interpolation result for such a classical limit-circle problem.

To fill this gap, in Section 2 we will prove an interpolation result similar to that in [24], but
which holds in a finite-interval limit-circle case. We will then argue using the same reasoning
as in the PLP case that we may use the interpolation to prove our PLC uniqueness theorem.
The uniqueness theorems will be stated and proved by the outlined methods in Section 3.

We will conclude the paper with an illustration of the relevance of this result in Section 4,
where we explain how it proves a uniqueness theorem for the physically motivated Berry–
Dennis PDE inverse problem, which involves boundary singularities and partial Cauchy data
at the boundary.
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2. Interpolation of a classical limit-circle m-function

We will use Theorem A.1 [24, Theorem 5] to prove our PLP uniqueness result. A drawback
of the theorem is that it will not help for the PLC uniqueness, as it only applies to classical
limit-point operators on the half-line. The purpose of this section is to establish an analogous
result, for a particular finite-interval classical limit-circle Sturm–Liouville problem.

Suppose Q ∈ L2(0, 1) is real-valued. Then considered over L2(0, 1) the differential equation

− u′′(x;λ) +
(
Q(x) − 1

4x2

)
u(x;λ) = λu(x;λ), (x ∈ (0, 1)) (2.1)

is classical limit-circle non-oscillatory at 0 (see Lemma C.3 and note we may formally transform
between (2.1) and (1.3) using the Liouville–Green transformation [13, equation (2.5.2)]). Hence,
we require a boundary condition at 0: we will use the Friedrichs or principal one. Let Up be a
principal solution of (2.1), that is, Up is non-trivial, and, for any linearly independent solution V,
we have Up(x) = o(V (x)) as x→ 0. The Friedrichs boundary condition at 0 is the requirement
that a solution u satisfy

[u,Up](0+;λ) = 0. (2.2)

Up to a scalar multiple, (2.1) and (2.2) uniquely specify a solution u (a simple consequence
of Lemma C.3). Taking such a non-trivial solution u, we choose a purely Robin (-to-Robin)
m-function, that is, for h �= H both real, the unique mh,H(λ) satisfying

u′(1;λ) −Hu(1;λ) = mh,H(λ)(u′(1;λ) − hu(1;λ)). (2.3)

We will interpolate this m-function, in the style of Theorem A.1.
The proof of Theorem A.1 in [24] relies fundamentally on the observation that the classical

limit-point half-line Dirichlet m-function has a representation using a Laplace transform of the
A-amplitude [4, 14]. This is used by first proving [24, Theorem 4] that a Laplace transform

F (z) = L [f ](z) =
∫∞

0

e−zxf(x) dx
(

Re(z) >
1
2

+ β

)
has representation

F (z) =
∞∑

n=0

cn

(
z +

1
2
− β

) n∑
k=0

ankF (k + β), (2.4)

for cn, ank defined as in Theorem A.1 and fixed positive β, provided∫∞

0

e−δx|f(x)| dx <∞ for every δ > 0. (2.5)

Rybkin and Tuan then show [24, Theorem 5] that interpolation formula (2.4) applies to
F (κ) = m(−κ2) − κ.

We shall follow a similar line of attack, and eventually implement (2.4). Unfortunately, the
A-amplitude Laplace transform representation in [14] is not valid in the classical limit-circle
case at one endpoint of a finite interval, since one cannot transform such a problem to the
half-line whilst retaining the Liouville normal form. Another approach must be used.

We will find a Laplace transform representation of mh,H(λ) by showing that its so-called
Mittag-Leffler series expansion (see, for example, [12, Chapter 8]) is simply related to a Laplace
transform. We then prove that condition (2.5) holds, implying the validity of interpolation
formula (2.4).

Self-adjoint operators associated with a classical limit-circle non-oscillatory Sturm–Liouville
problem on a finite interval, with separated boundary conditions, have purely discrete
spectrum comprising simple eigenvalues. One way to observe this is to use the Niessen–Zettl
transformation [23] of such a problem to a regular problem on the same interval, then recall
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that spectra of regular Sturm–Liouville problems comprise simple eigenvalues (see, for example,
[11]). This holds under any choice of separated boundary conditions, whence we see that mh,H

has, as its only singular behaviour, simple poles at the eigenvalues λn of (2.1) and (2.2) with
the further boundary condition

u′(1;λ) = hu(1;λ), (2.6)

since these are where the denominator of mh,H(λ) vanishes.
In Lemma B.1, we show that in the classical limit-circle non-oscillatory case, enumerating

the eigenvalues as λn, n = 1, 2, 3, . . ., we have

λn = (n+ 1/4)2π2 +O(1),√
λn = (n+ 1/4)π +O(1/n) (n −→ ∞). (2.7)

For each n, the eigenfunction ϕn corresponding to λn is defined by

ϕn = ϕ(· ;λn),

where ϕ solves (2.1) with initial conditions ϕ(1;λ) = 1, ϕ′(1;λ) = h. Suppose that ψ is the
linearly independent solution with ψ(1;λ) = 1, ψ′(1;λ) = H, and

Φ(λ) := ϕ(0+;λ),
Ψ(λ) := ψ(0+;λ).

Then, by checking that f(x;λ) := ψ(x;λ) +mh,H(λ)ϕ(x;λ) satisfies the ‘boundary condition’
in (2.3), it follows that

mh,H(λ) = −Ψ(λ)
Φ(λ)

. (2.8)

Therefore, Φ(λn) being 0 implies via integration by parts that

H − h = f ′(1;λ)ϕn(1) − f(1;λ)ϕ′
n(1)

= (λ− λn)
∫1

0

f(· ;λ)ϕn

= (λ− λn)
∫1

0

ψ(· ;λ)ϕn − (λ− λn)
Ψ(λ)

Φ(λ) − Φ(λn)

∫1

0

ϕ(· ;λ)ϕn

−→ − Ψ(λn)
Φ′(λn)

∫1

0

ϕ2
n as λ −→ λn. (2.9)

If we denote the norming constants associated with λn by αn :=
∫1

0
ϕ2

n, then we see from (2.8)
and (2.9) that the residue of the m-function at its poles is given by

Res(mh,H ;λn) =
H − h

αn
. (2.10)

Furthermore, in Lemma B.2 we prove that

αn = 1/2 +O(1/n). (2.11)

The asymptotics (2.11) and (2.7) immediately imply that
∑∞

n=1 1/αn(λ− λn) is convergent,
uniformly for λ in any compact set bounded away from {λn}∞n=1. Furthermore,

∞∑
n=1

1
αn(λ− λn)

−→ 0 (Im(λ) −→ ∞). (2.12)

This will ultimately turn out to be the Mittag-Leffler series we seek, but we need to link this
result to the m-function. We can achieve this via Nevanlinna-type properties of mh,H . For
completeness, we briefly repeat here the following well-known calculation, showing that mh,H
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is (anti-)Nevanlinna. Observe that, for any solution u of (2.1) and (2.2), we have

(λ− λ̄)
∫1

0

u(· ;λ)u(· ; λ̄) = u′(0;λ)u(0; λ̄) − u(0;λ)u′(0; λ̄)

= (h−H)(mh,H(λ) −mh,H(λ̄));

subtracting the complex conjugate of this whilst noting u(· ; λ̄) = u(· ;λ) shows that∫1

0

|u(· ;λ)|2 = (h−H)
Im(mh,H(λ))

Im(λ)
.

Hence, if h > H, then mh,H is in the Nevanlinna class of functions that map the upper and
lower half-planes to themselves, whilst if h < H, then mh,H is the negative of such a function,
known as anti-Nevanlinna.

It is known that all (anti-)Nevanlinna functions have a Stieltjes integral representation; here

mh,H(λ) = A+Bλ+
∫

R

(
1

t− λ
− t

1 + t2

)
dρ(t),

where ρ is the spectral measure associated with the problem (2.1), and

A = Re(mh,H(i)), B = lim
τ−→+∞

mh,H(iτ)
iτ

.

Note that ρ is increasing if and only if h > H. Furthermore, as a measure it assigns ‘mass’ only
at points in the spectrum of the Sturm–Liouville operator associated with (2.1), that is, for
any dρ-integrable g, ∫

R

g(t) dρ(t) =
∞∑

n=1

γng(λn),

γn being the mass at λn. Thus

mh,H(λ) = A+Bλ+
∞∑

n=1

γn

(
1

λn − λ
− λn

1 + λ2
n

)
.

Integrating anti-clockwise along a sufficiently small, simple, closed contour around λn and
comparing with (2.10) shows that γn = −Res(mh,H ;λn) = (h−H)/αn. Hence, we may split
up the sum and write

mh,H(λ) = Ã+Bλ+
∞∑

n=1

h−H

αn(λn − λ)
.

To proceed, we need large-Im(λ) asymptotics of mh,H(λ). Expressing mh,H in terms of the
Neumann m-function mN (λ) := u(1;λ)/u′(1;λ) and using Lemma B.3, we see

mh,H(λ) =
1 −HmN (λ)
1 − hmN (λ)

∼ 1 −H/C
√
λ

1 − h/C
√
λ

−→ 1 (Im(λ) −→ +∞).

From this and (2.12), we see that Ã = 1 and B = 0. Thus we have proved the following lemma.

Lemma 2.1. Uniformly for λ in any compact set that is non-intersecting with {λn}∞n=0, we
have a Mittag-Leffler series representation for the Robin m-function given by

mh,H(λ) − 1 =
∞∑

n=1

h−H

αn(λn − λ)
. (2.13)

Remark 2.1. Our calculations proving this result are adapted from parts of a calculation
in [20, Chapter 3] for a regular Sturm–Liouville problem in normal form.
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Lemma 2.1 gives us enough to deduce a Laplace transform representation of mh,H , and hence
our interpolation result. For the reader’s convenience we state the theorem in full.

Theorem 2.1 (Classical limit-circle m-function interpolation). Under the hypothesis that
Q ∈ L2(0, b) is real-valued, the Robin m-function

mh,H(λ) =
u′(1;λ) −Hu(1;λ)
u′(1;λ) − hu(1;λ)

,

for any square-integrable solution u of the limit-circle non-oscillatory problem⎧⎨
⎩−u′′(x;λ) +

(
Q(x) − 1

4x2

)
u(x;λ) = λu(x;λ) (x ∈ (0, 1)),

[Up, u](0+;λ) = 0,
(2.14)

satisfies the interpolation formula

mh,H(λ) − 1 =
∞∑

n=0

cn(1/2 − β − i
√
λ)

n∑
k=0

ank{m(−(k + β)2) − 1}.

Here β > 0 is fixed,

cn(z) := (2n+ 1)
(1/2 − z)n

(1/2 + z)n+1
(for a.e. z ∈ C),

(z)n := z(z + 1) · · · (z + n− 1) (z ∈ C),

ank :=
(−n)k(n+ 1)k

(k!)2
(n, k � 0),

and the convergence of the series is uniform in any compact subset of Im(
√
λ) > 1/2 + β.

The proof uses Lebesgue’s dominated convergence theorem. We need the following lemma.

Lemma 2.2. Let ε > 0 and define ρn =
√
λn. Then gN (t) := e−εt

∑N
n=1 sin(ρnt)/αnρn is

uniformly bounded, in t ∈ (0,∞) and N ∈ N, by a fixed integrable function.

Proof. First note that the asymptotic expansion (2.7) may be written as ρn = (n+ 1/4)π +
εn, where εn = O(1/n). Then, for each fixed t � 0,

sin(ρnt) = sin((n+ 1/4)πt) cos(εnt) + cos((n+ 1/4)πt) sin(εnt). (2.15)

Write ε = 2σ. It would be enough to find an L1(0, 2π) function that bounds, uniformly in N ,
the expression

sN (t) := e−σt
N∑

n=1

sin(ρnt)
αnρn

(t ∈ (0, 2π)),

so that gN (t) = e−σtsN (t) (t ∈ (0,∞)) is dominated by an L1(0,∞) function, owing to the
exponential decay of e−σt. So, note that

if t ∈ [0, σ−1 log(n)), then |εnt| = O(log(n)/n),

and
if t � σ−1 log(n), then e−σt � e−σσ−1 log(n) = 1/n,

so that e−σt sin(εnt) = O(1/
√
n); by a similar argument e−σt(cos(εnt) − 1) = O(1/n). Both

estimates are uniform in t � 0. With (2.15), these are enough to ensure a constant bound for

sN (t) − e−σt
N∑

n=1

sin((n+ 1/4)πt)
αnρn

(t ∈ (0, 2π)).
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Hence, substituting the asymptotic expansions (2.7) and (2.11) into the second sum in
the above expression means the following: if we can show that both

∑N
n=1 cos(nx)/n and∑N

n=1 sin(nx)/n (x ∈ (0, 2π)) are bounded, uniformly in N , by some fixed element of L1(0, 2π),
then it will follow that so is sN (t) (t ∈ (0, 2π)), proving the lemma.

We will prove the uniform L1(0, 2π) bound for the cos-series; the same approach produces a
similar bound for the sin-series. Denote by cN (x) the partial sum

∑N
n=1 cos(nx)/n and note

c′N (x) = −
N∑

n=1

sin(nx) =
cos((N + 1/2)x) − cos(x/2)

2 sin(x/2)
.

Thus c′N (x) is bounded by 1/ sin(x/2). Noting |cN (π)| � 1, we see |cN (x)| � 1 +
∫x

π
|c′N | �

1 + 2 log | cot(x/4)|, which is certainly integrable over (0, 2π) since to leading-order it is − log(x)
for x near 0 and − log(2π − x) near 2π.

Proof of Theorem 2.1. We first observe that the Mittag-Leffler series (2.13) may be written
as

mh,H(−κ2) − 1 =
∞∑

n=1

h−H

αn(ρ2
n + κ2)

= (h−H)
∞∑

n=1

∫∞

0

e−κt sin(ρnt)
αnρn

dt (Re(κ) > 0). (2.16)

Assuming that integration and summation may be interchanged (we show this below), we see
that mh,H(−κ2) − 1/(h−H) is the Laplace transform L [f ](κ) of the series

f(t) :=
∞∑

n=1

sin(ρnt)
αnρn

(t � 0). (2.17)

We now prove the convergence of (2.17) and justify the interchange of summation and
integration in (2.16).

From (2.15), we have sin(ρnt) = cos(πt/4) sin(nπt) + sin(πt/4) cos(nπt) +O(1/n). Hence,
by (2.7) and (2.11), the pointwise convergence of (2.17) is determined by that of∑∞

j=1 e
ijx/j. But this is simply the Fourier series for the 2π-periodic extension of the

expression − log |2 sin(x/2)| + i(π − x)/2 (x ∈ (−π, π)) so the pointwise convergence of (2.17)
is immediate.

We may now simply apply Lemma 2.2 to see that gN (t) := e−Re(κ)t
∑N

n=1 sin(ρnt)/αnρn is
dominated by an integrable function. Dominated convergence follows, and hence we may write

mh,H(−κ2) − 1 = (h−H)
∫∞

0

e−κtf(t) dt (Re(κ) < 0).

All that remains is to check condition (2.5). But this is obvious, since, by dominated con-
vergence, e−δt|f(t)| is integrable for every δ > 0. Therefore, by application of the interpolation
result (2.4) to F (κ) = mh,H(−κ2) − 1, the theorem follows, with uniform convergence in any
compact subset of the parabolic λ-region Im(

√
λ) > 1/2 + β.

3. Uniqueness theorems for the inverse problem

The main result of this paper is a pair of uniqueness theorems for Inverse Problem 1.1. We
will state and prove these here, by means of Theorem A.1 and our interpolation result in
Theorem 2.1. The uniqueness theorems are kept separate due to certain technical conditions
in both being similar in representation, but fundamentally different in structure.
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Theorem 3.1 (Uniqueness in the PLP case). Fix ν � 2, c > 0 and α > ν/2 − 1 � 0, and let
w, q ∈ L∞

loc(0, 1], with q real-valued and w � c almost everywhere (a.e.). Suppose that w,w′ ∈
AC(0, 1] with w′, w′′ ∈ L∞

loc(0, 1]. Suppose also that, as r → 0,

(i) w(r) = (1/rν)(1 +O(rα));
(ii) q(r) = w(r)O(rα);
(iii) (w(r)rν)′ = O(r−ν/2), and (w(r)rν)′′ = O(r−ν).

If w is known, then the interpolation sequence ((−n2,mn))∞n=1, of values (in the graph) of the
PLP Dirichlet m-function (1.5) for (1.3), uniquely determines the potential q.

Proof. We perform a Liouville–Green transformation:

t(r) =
∫1

r

√
w,

z(t(r)) = r1/2w(r)1/4u(r) (r ∈ (0, 1)).

This leads to the corresponding solution space L2(0,∞; r(t)ν dt) in which we seek z(· ;λ);
further, over this space, the transformed equation is in PLP at ∞ (or, in the case ν = 2, has the
PLP/PLC behaviour outlined in Appendix C, to which the reader is directed for details). That
the domain in which t lies is (0,∞) follows from the fact that, as r → 0, t(r) ∼ ∫1

r
s−ν/2 ds→

∞.) The equation satisfied by z is

− z′′(t;λ) +Q(t)z(t;λ) = λz(t;λ) (t ∈ (0,∞)), (3.1)

where

Q(t(r)) :=
q(r)
w(r)

− r−1/2w(r)−3/4 d

dr

{
r
d

dr
(r−1/2w(r)−1/4)

}

= −
(
ν − 2

4

)2

rν−2(1 + ζ(r)) + ε2(r) (r ∈ (0, 1)),

and

ε1(r) = w(r)rν − 1, (3.2)

ε2(r) =
q(r)
w(r)

, (3.3)

ζ(r) = − ε1(r)
1 + ε1(r)

−
(

2
ν − 2

)2
r2ε′′1(r)

(1 + ε1(r))2

+
5

(ν − 2)2
r2ε′1(r)

2

(1 + ε1(r))3
− 2ν

(ν − 2)2
rε′1(r)

(1 + ε1(r))2
. (3.4)

We now want to apply Theorem A.1 to the m-function of equation (3.1); for this we need∫x+1

x
|Q| to be a bounded expression in x ∈ (0,∞), that is, Q ∈ l∞(L1)(0,∞). It would suffice

that Q ∈ L∞(0,∞). Note that
∫x+1

x

|Q(t)| dt =
∫x+1

x

∣∣∣∣∣
(
ν − 2

4

)2

r(t)ν−2(1 + ζ(r(t))) − ε2(r(t))

∣∣∣∣∣ dt. (3.5)

By applying the hypotheses (i) and (iii) to (3.2), we easily observe that

ε′1(r) = O(r−ν/2) ⊂ O(r1−ν) and ε′′1(r) = O(r−ν) (r −→ 0).

Thus ζ(r) ∈ L∞
loc(0, 1] and is O(r2−ν) as r → 0. Further, w, q ∈ L∞

loc(0, 1] implies that ε2(r) is
bounded. Therefore Q ∈ L∞(0,∞) ⊂ l∞(L1)(0,∞), so (3.1) is in classical limit-point at ∞.
Formally the classical limit-point and PLP m-functions of (3.1), respectively, over the spaces
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L2(0,∞) and L2(0,∞; r(t)ν dt), have the same expression. Since the integral hypothesis of
Theorem A.1 is satisfied, m(·) can be interpolated from its values at the points (−n2)∞n=1.

In particular, given any non-real ray through the origin and the sequence of interpolation
pairs

((−n2,mn))∞n=1, (3.6)

for any λ on this ray we can calculate the value of m(λ). Choosing any such ray in the first
quadrant and applying Corollary A.1, we have immediately that Q is uniquely determined by
the sequence (3.6), and by the reverse transformation it follows that q is as well.

Theorem 3.2 (Uniqueness in the PLC case). Let 0 � ν < 2, c > 0 and α > 3/2 − 3ν/4 > 0,
and fix w, q ∈ L∞

loc(0, 1], with q real-valued and w � c almost everywhere (a.e.). Suppose that
w,w′ ∈ AC(0, 1] with w′, w′′ ∈ L∞

loc(0, 1], and that, as r → 0,

(i) w(r) = (1/rν)(1 +O(rα));
(ii) q(r) = w(r)O(rα−2);
(iii) (w(r)rν)′ = O(rα−1), and (w(r)rν)′′ = O(rα−2).

If w is known, then the interpolation sequence ((−n2,mn))∞n=1, of values (in the graph) of the
PLC Dirichlet m-function (1.5) for (1.3) with boundary condition (1.4), uniquely determines
the potential q.

Proof. First note that, under these assumptions,
√
w is integrable. All asymptotic estimates

are as r or t→ 0. We use a different transformation from that in the proof of Theorem 3.1,
namely

t(r) =
∫ r

0

√
w

‖√w‖L1(0,1)
,

z(t(r)) = r1/2w(r)1/4u(r) (r ∈ (0, 1)).

This gives rise to

− z′′(t;λ) + Q̃(t)z(t;λ) = λz(t;λ) (t ∈ (0, 1)), (3.7)

where this time

Q̃(t(r)) = −
(

2 − ν

4

)2

r−(2−ν)(1 + ζ(r)) + ε2(r),

with ε2 and ζ defined as in (3.3) and (3.4). Note ε2(r) = O(rα), and that

−
(

2 − ν

4

)2

r(t)−(2−ν) = − 1
4t2

,

whilst

t(r) =
2

(2 − ν)‖√w‖L1(0,1)
r1−ν/2(1 +O(rα)).

Our aim is to apply Theorem 2.1, for which we need Q(t) := Q̃(t) + 1/4t2 ∈ L2(0, 1).
Recalling (3.2), we use condition (iii) to observe ε′1(r) = O(rα−1) and ε′′1(r) = O(rα−2). Thus,
by (3.4), ζ(r) = O(rα). Since f(t) ∈ L2(0, 1) if and only if f(t(r)) ∈ L2(0, 1;

√
w(r) dr) (easily

checked), and 2(α− 2 + ν) − ν/2 > −1, we see Q ∈ L2(0, 1), as required.
Hence, by Theorem 2.1 the Robin m-function (and by a fractional linear transformation,

any m-function) is uniquely determined by the sequence (3.6). Corollary A.1 concludes the
proof.
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Corollary 3.1. Any finite number of values m(−n2) in the interpolation sequence may
be discarded, yet the m-function, and hence the potential, will still be uniquely determined.

Proof. Since, in (2.4), the parameter β > 0 may be chosen freely, one may choose β
to be any positive integer. The resulting interpolation formula does not require the values
F (1), . . . , F (β − 1), and so the values m(−1), . . . ,m(−(β − 1)2) are not needed.

4. The Berry–Dennis problem

We now explain the claim made in the introduction, namely, that uniqueness for a physically
inspired inverse problem is achieved as a corollary of the above result on pencils. The setup is
that of [7, 22]. Consider the two-dimensional Schrödinger equation with spherically symmetric
potential q ∈ L1

loc(0, 1],

− ΔU(x) + q(|x|)U(x) = 0 (x ∈ Ω), (4.1)

where Ω is the semi-circular region {x = (χ, η) ∈ R
2 |χ2 + η2 � 1, χ � 0}. Let

Γ := {(χ, η) ∈ R
2 |χ2 + η2 = 1, χ > 0} ⊂ ∂Ω,

and take 0 < ε < 1, g ∈ H1/2(Γ). Write x = (x, y) and assign to the differential equation (4.1)
the boundary conditions

U(x) = g (x ∈ Γ), (4.2)

U(x) + εy
∂U

∂ν
(x) = 0 (x ∈ ∂Ω\Γ), (4.3)

where ∂/∂ν is the outward-pointing normal derivative on ∂Ω. These considerations define
an operator L over L2(Ω), taking values LU = (−Δ + q)U and having domain D(L) :=
{U ∈ L2(Ω) |ΔU ∈ L2(Ω); (4.2), (4.3) hold}.

In polar coordinates x = (r, θ), the action of L is that of

− ∂2

∂r2
− 1
r

∂

∂r
− 1
r2

∂2

∂θ2
+ q(r).

Since on ∂Ω\Γ the normal derivative is given by −∂/∂x = ±r−1∂/∂θ (θ = ±π/2), we find that
(4.3) becomes

U(x) + ε
∂U

∂θ
(x) = 0

(
r ∈ (0, 1), θ = ±π

2

)
.

Hence, after performing the separation of variables U(r, θ) = u(r)Θ(θ), we arrive at the angular
eigenvalue problem

−Θ′′ = λΘ on (−π/2, π/2)
Θ(−π/2) + εΘ′(−π/2) = 0 = Θ(π/2) + εΘ′(π/2),

which, it is easily calculated, has eigenvalues and eigenfunctions

λ0 = − 1
ε2
, λn = n2 (n ∈ N);

Θn(θ) =

⎧⎨
⎩
e−θ/ε (n = 0),
cos(nθ) − (nε)−1 sin(nθ) (n even),
cos(nθ) + nε sin(nθ) (n odd).

Feeding this information back into the problem, one can find (as remarked in [22]) that
L is isometrically equal to the orthogonal direct sum of the ordinary differential operators
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Ln (n = 0, 1, 2, . . .) given by

Lnu(r) := −1
r

d

dr

(
r
du

dr

)
+ q(r)u(r) +

λn

r2
u(r),

and equipped with the domains

D(Ln) := {u ∈ L2
r(0, 1) | Lnu ∈ L2

r(0, 1), u(1) = 0}.
We are concerned with an associated inverse problem. Consider the generalization Lλ (λ ∈ C)

of Ln:

Lλu(r) := −1
r

d

dr

(
r
du

dr

)
+ q(r)u(r) − λ

r2
u(r),

with domain
D(Lλ) := {u ∈ L2

r(0, 1) |Lλu ∈ L2
r(0, 1), u(1) = 0}.

The differential equation Lλu = 0 is precisely (1.3) with w(r) = 1/r2, and hence displays the
PLP/PLC behaviour outlined in Lemma C.1 and Figure C.1. We define the Dirichletm-function
m(λ) as in (1.5).

Now recall, from the theory of inverse problems in PDEs, the Dirichlet-to-Neumann operator
ΛΓ : H1/2(Γ) → H−1/2(Γ). This maps Dirichlet data U |Γ to Neumann data ∂U/∂ν|Γ for any
solution U ∈ H1(Ω) of (4.1) and (4.3). We may write any such solution using the generalized
Fourier basis (un(r)Θn(θ))∞n=0:

U(r, θ) =
∞∑

n=0

un(r)Θ(θ). (4.4)

By differentiating, it follows that, in this basis, ΛΓ takes the form of the diagonal matrix
diag(m(−λ0),m(−λ1),m(−λ2), . . .).

Inverse Problem 4.1. Given an admissible Dirichlet-to-Neumann map ΛΓ for

(−Δ + q(|x|))U(x) = 0 (x ∈ Ω),

U(x) + εy
∂U

∂ν
= 0 (x ∈ ∂Ω\Γ),

recover the radially symmetric potential q.

Uniqueness for this inverse problem is immediate from Theorem 3.1, under the conditions
q ∈ L∞

loc(0, 1] and q(r) = O(rα−2) (r → 0) for some fixed α > 0. The uniqueness follows since,
for positive n, the restrictions on q make the type (1.3) pencil, associated with each operator Ln,
be in PLP at 0 (see [22]), whilst the sequences −λn = −n2 and m(−n2) form the interpolation
sequence required in Theorem 3.1. Thus we have proved the following theorem.

Theorem 4.1 (Uniqueness for the Berry–Dennis inverse problem). Any given Dirichlet-
to-Neumann map ΛΓ for the system (4.1) and (4.3) may have arisen from at most one radially
symmetric potential q ∈ L∞

loc(0, 1] ∩O(rα−1; r → 0).

The 0th term (1/ε2,m(1/ε2)) is superfluous for our needs. However, we can go farther.
Following Corollary 3.1, we may discard arbitrarily many of the diagonal terms of Λ and still
retain uniqueness of q.

Remark 4.1. Theorem 4.1 is markedly different from existing results for inverse problems
involving partial-boundary Dirichlet-to-Neumann measurements in two-dimensional domains.
Such existing results, for example, [16–18] all deal with problems in which the portion of
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the boundary where the measurements are not made, ∂Ω\Γ, has a homogeneous Dirichlet or
Neumann condition assigned; the Berry–Dennis setup has a singular boundary condition here.

Appendix A. Limit-point interpolation and a Borg–Marčenko theorem

We collect here some useful theorems. The first is the interpolation result from [24] mentioned
in Section 2 and applied in the proof of Theorem 3.1, whilst the second is a general Borg–
Marčenko uniqueness result and a simple corollary, the latter being what we need in Section 3.
We state the first in full to highlight its similarities with Theorem 2.1.

Theorem A.1 (Rybkin–Tuan; classical limit-point m-function interpolation). Let Q be a
real-valued function in l∞(L1)(0,∞), that is,

‖Q‖ := sup
x�0

∫x+1

x

|Q| <∞.

Suppose thatm is the Weyl–Titchmarshm-function associated with the limit-point Schrödinger
operator

S := −d2/dx2 +Q(x) (x ∈ (0,∞))

on L2(0,∞), that is, m(λ) := u′(0, λ)/u(0, λ) (Imλ > 0) for any square-integrable solution u of
Su(· ;λ) = λu(· ;λ). If λ is from the parabolic domain with (Imλ)2 > 4β2

0Reλ+ 4β4
0 , then

m(λ) − i
√
λ =

∑
n�0

cn(−i
√
λ− β0 + 1)

n∑
k=0

ank(m(−ω2
k) + ωk),

where ε > 0 is a fixed parameter, β0 := max{√2‖Q‖, e‖Q‖} + 1
2 + ε,

cn(z) := (2n+ 1)
(1/2 − z)n

(1/2 + z)n+1
(for a.e. z ∈ C),

(z)n := z(z + 1) · · · (z + n− 1) (z ∈ C),

ank :=
(−n)k(n+ 1)k

(k!)2
(n, k � 0),

and

ωk := k + β0 − 1
2 .

Remark A.1. The parabolic domain (Imλ)2 > 4β2
0Reλ+ 4β4

0 may be written more suc-
cinctly as Im

√
λ > β0, where arg(

√
λ) ∈ [0, π). Furthermore, it is concave, and its intersection

with any non-real ray through the origin is an infinite complex interval.

Theorem A.2 (Simon, Gesztesy–Simon, Bennewitz; Borg–Marčenko-type uniqueness).
Let Qj ∈ L1

loc[0, b) (j = 1, 2) be real-valued, b ∈ (0,∞], and mj(λ) (λ ∈ C\R, j = 1, 2) be the
Titchmarsh–Weyl m-functions associated, respectively, with the differential expressions

−d2/dx2 +Qj(x) (x ∈ (0,∞), j = 1, 2)

(with self-adjoint boundary conditions at b if needed). In addition, let a ∈ (0, b), 0 < ε < π/2
and suppose that as λ→ ∞ along the ray arg(λ) = π − ε, we have

|m1(λ) −m2(λ)| = O(exp(−2Im(
√
λ)a)).

Then Q1 = Q2 a.e. in [0, a].
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Theorem A.2 was originally stated in a slightly weaker form (without the ray condition)
by Simon in 1999 [25]; the above improvement was first published, with a shorter proof,
by Gesztesy and Simon in 2000 [15]. An alternative, even shorter, limit-point proof was
found by Bennewitz in 2001 [6]. All are generalizations of the original, much-celebrated
uniqueness theorem proved separately in 1952 by Borg [8] and Marchenko [21]. As an immediate
consequence we have the result we need in this paper.

Corollary A.1. If m1 = m2 in an infinite sub-interval of the ray {r ei(π−ε) | r ∈ (0,∞)}
with fixed 0 < ε < π/2, then Q1 = Q2 a.e. in [0, b).

Appendix B. Various asymptotics for a Bessel-type equation

In this appendix, we collect some necessary results on the large-n asymptotics of the eigenvalues
and norming constants defined in Section 2, as well as a result on asymptotics of them-function,
needed in the same section.

The eigenvalues of the Bessel equation of zeroth order, with Dirichlet and Neumann boundary
conditions at the left and right endpoints, respectively, of (0, 1), are well-studied, and are
algebraically equivalent to the positive zeros of the Bessel function J1. This information is
enough to determine the eigenvalues λn for the boundary value problem (2.1), (2.2) and (2.6),
asymptotically to order 1/n. We calculate these first for the unperturbed equation, and then
use a result from [10] to move to the perturbed version.

Lemma B.1. Let Q ∈ L2(0, 1), h ∈ R and denote by Up(· ;λ) the principal solution at 0 of

− u′′(x;λ) +
{
Q(x) − 1

4x2

}
u(x;λ) = λu(x;λ) (x ∈ (0, 1)), (B.1)

that is, Up is non-trivial, and for all linearly independent solutions V we have Up(0+) =
o(V (0+)). When ordered by size and enumerated by n = 1, 2, 3, . . . the eigenvalues λn of the
above differential equation with the boundary conditions{

[u,Up](0+;λ) = 0,
u′(1;λ) = hu(1;λ),

satisfy the asymptotics √
λn = (n+ 1/4)π +O(1/n).

Proof. Suppose firstly that Q ≡ 0, and denote the corresponding eigenvalues by λ0
n. The

boundary condition at 0 allows us to choose any constant multiple of x1/2J0(
√
λx) as our

solution. The condition at 1 then forces the eigenvalues to be the positive zeros of
√
λJ1(

√
λ) + (h− 1/2)J0(

√
λ).

Thus, for each fixed c, we seek asymptotics for the zeros of

f(z) := zJ1(z) − cJ0(z).

Recall that J0 and J1 have only simple positive zeros [1, Subsection 9.5], and note f(j0,n) =
j0,nJ1(j0,n), which alternates in sign as n is incremented because j0,n interlace with j1,n. The
intermediate value theorem then gives a zero zn ∈ (j0,n, j0,n+1) for f , whilst the fact that J0 and
J1 oscillate with asymptotically the same ‘period’ [1, Subsection 9.2] means zn is unique. Since
j0,n = (n− 1/4)π +O(1/n) and j1,n = (n+ 1/4)π +O(1/n) [1, equation 9.5.12], the positive
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zeros of f are

zn = (n+ 1/4)π + εn

∼ n,

with the leading-order behaviour following from |εn| � π/2 +O(1/n). We now use the asymp-
totic expansion [1, equation 9.2.1] of the first-order Bessel function Jμ(x) =

√
(2/πx)(cos(x−

μπ/2 − π/4) +O(1/x)) (x→ +∞) to observe that

O(1/n) � c√
zn
J0(zn) =

√
znJ1(zn)

= −
√

2
π

(cos(zn + π/4) +O(1/n)).

Taylor-expanding around the zeros of cosine implies
√
λ0

n = zn = (n+ 1/4)π +O(1/n). Finally,
the second equation of [10, p. 17] is precisely

√
λn =

√
λ0

n +O(1/n).

The next lemma provides a powerful asymptotic representation of the norming constants in
Section 2. For its proof we will relate our notation to that of [10] and then utilize some results
from the same paper.

Lemma B.2. Let Q ∈ L2(0, 1), h ∈ R and suppose that ϕ(· ;λ) solves (2.1) with initial

conditions ϕ(1;λ) = 1, ϕ′(1;λ) = h. Then the norming constants αn :=
∫1

0
ϕ(· ;λn) satisfy

αn = 1/2 +O(1/n).

Proof. By checking the boundary conditions, one may easily see that ϕn = y2(· ;λn)/
y2(1;λn), where y2(· ;λ) is the solution of the differential equation (B.1) satisfying the boundary
condition t−1/2y2(t;λ) → 1 (t→ 0). In the second-to-last equation of [10, p. 16] it is observed
that, as ρ→ +∞, we have

∫1

0

y2(· ; ρ2)2 =
1
ρ

[
1
2

+O

(
log(ρ)
ρ

)]
. (B.2)

Defining ρn =
√
λn, we see that the lemma would follow if y2(1;λn)−2 = ρn(1 +O(1/n)). To

justify this we appeal to [10, Lemma 3.2], which implies that∣∣∣∣y2(1;λn) −
√
π

2
J0(ρn)

∣∣∣∣ � C√
n

(eI(n) − 1), (B.3)

where (using Cauchy–Schwarz for the third line)

0 � I(n) :=
∫1

0

t

1 + ρnt
(1 − log(t))|Q(t)| dt

� 1
ρn

∫1

0

(1 − log(t))|Q(t)| dt

� 1
ρn

(∫1

0

(1 − log(t))2 dt
)1/2

‖Q‖L2(0,1)

<
3‖Q‖L2(0,1)

ρn
. (B.4)
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Owing to (B.3), (B.4), and Lemma B.1, we find

y2(1;λn) =
√
π

2
J0(ρn) +O(n−3/2). (B.5)

Lemma B.1 shows, furthermore, that ρn = j1,n +O(1/n) = (n+ 1/4)π +O(1/n) which, owing
to J ′

0 = −J1, are asymptotically the local extrema of J0. Hence, by expanding the cosine part
of [1, equation (9.2.1)] in a first-order Taylor approximation around nπ, it follows that

J0(ρn) =
√

2
πρn

[
(−1)n +O

(
1
n

)]
.

Upon substitution into (B.5), this yields the desired result.

The large-imaginary-part asymptotics of m-functions is also a well-studied topic. The result
we use in Section 2 is an application of the very general Theorem 4.1 of [5] to (2.1); we state
it as a lemma.

Lemma B.3. LetmN be the Neumannm-function for (2.1), (2.2) with Q ∈ L2(0, b), that is,
mN (λ) := u(1;λ)/u′(1;λ) for a non-trivial solution u(· ;λ). Then, as λ→ ∞ along any non-real
ray through 0,

mN (λ) =
1
i
√
λ

(1 + o(1)).

Appendix C. PLP and PLC behaviour; dimension of solution space

We will analyse here the dimension of the solution space of (1.3) with w(r) ∼ r−ν and
ν � 0. It will be helpful to treat the two cases ν � 2 and 0 � ν < 2 separately, respectively, in
Lemmas C.1 and C.3. The first analysis is by transforming the problem to Liouville normal
form on the half-line and using known large-x asymptotics of solutions. The second follows a
different approach, using asymptotic analysis and variation of parameters to build recursion
formulae that can be used to construct a pair of linearly independent solutions.

Lemma C.1. Suppose ν � 2 and α > (ν − 2)/2, and, furthermore, let q, w ∈ L∞
loc(0, 1] be

real-valued with w > 0 a.e., satisfying, as r → 0,

(i) w(r) = (1/rν)(1 +O(rα));
(ii) w(r) is a.e. bounded away from 0; and
(iii) q(r) = w(r)O(rα).

Then equation (1.3) is in

(i) PLP at 0 when ν > 2 or Im
√
λ � 1, and in

(ii) PLC at 0 when ν = 2 and 1 > Im
√
λ > 0.

To prove this, we will use a result given by Eastham [13, Ex. 1.9.1], which, by providing
asymptotic expressions for the solutions of equation (1.3), will give us the means to determine
when any solution is in L2(0, 1; r dr). For convenience and completeness we state the form of
this result, which provides the most generality when applied here.

Lemma C.2 (Eastham; one-dim. Schrödinger equation solution asymptotics). Let c be
non-real and R ∈ L2(a,∞). Then the differential equation

−y′′ +Ry = c2y on (a,∞)
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has solutions y± asymptotically given, as x→ ∞, by

y±(x) = exp
(
±i

{
cx− 1

2c

∫x

a

R

})
(1 + o(1)).

With this in mind, we proceed with the proof.

Proof of Lemma C.1. We write

w(r) =
1
rν

(1 + ε1(r)),

q(r)
w(r)

= ε2(r) (r ∈ (0, 1)),

where

εj(r) = O(rα) (r −→ 0, j = 1, 2). (C.1)

By performing a Liouville–Green-type transformation, with

t(r) =
∫1

r

ρ−ν/2 dρ (r ∈ (0, 1)), (C.2)

z(t) = r(t)(2−ν)/4u(r(t)) (t ∈ (0,∞)),

we arrive at the following equation, for t ∈ (0,∞),

− z′′(t;λ) +

[
(ε1ε2 − λε1 + ε2)(r) −

(
ν − 2

4

)2

rν−2

]
(t)

︸ ︷︷ ︸
=:Q(t;λ)

z(t;λ) = λz(t;λ). (C.3)

Note that if ν > 2, then we have t(r) = ((ν − 2)/2)(r1−ν/2 − 1), whereas if ν = 2, then t(r) =
− log(r). For conciseness, we will treat both cases ν = 2 and ν > 2 at the same time, as the only
difference between them arises near the end of the reasoning, and will be highlighted clearly.

We want to apply Lemma C.2 to equation (C.3), for which we need Q(· ;λ) ∈ L2(0,∞). Since
Q(· ;λ) ∈ L∞

loc[0,∞), the large-t behaviour of Q(t;λ) determines its square-integrability. Hence,
Q(· ;λ) ∈ L2(0,∞) if and only if

∞ >

∫∞

0

|(ε1ε2 − λε1 + ε2)(r(t))|2 dt =
∫1

0

r−ν/2|(ε1ε2 − λε1 + ε2)(r)|2 dr. (C.4)

But this holds automatically, due to (C.1). Thus we have a pair of solutions z±(· ;λ) for equation
(C.3) given, as t→ ∞, by

z±(t;λ) = exp
(
±i

{√
λt− 1

2
√
λ

∫ t

0

Q(· ;λ)
})

(1 + o(1)).

Now, the integral in the argument of this exponential is easily calculated to be
∫1

r(t)

{
(ε1ε2 − λε1 + ε2)(ρ) −

(
ν − 2

4

)2

ρν−2

}
ρ−ν/2 dρ.

By (C.1), the first part of this integral is convergent to a finite limit as t→ ∞. The second
part is 0 if ν = 2 and convergent if ν > 2, since ν − 2 − ν/2 > −1. Thus, in fact, we have the
leading-order asymptotics

z±(t;λ) ∼ e±i
√

λt. (C.5)

For any solution u(· ;λ) of equation (1.3) and its corresponding transformed solution z(· ;λ) of
(C.3), we have

∫1

0
r|u(r;λ)|2 dr =

∫∞
0
r(t)2|z(t;λ)|2 dt. But the leading-order asymptotics (C.5)
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Figure C.1. A partition of the λ-plane for equation (1.3) with ν = 2.

show that
∫∞
0
r(t)2|z±(t;λ)|2 dt <∞ if and only if

∞ >

∫∞

0

r(t)2|e±i
√

λt|2 dt =
∫∞

0

r(t)2 e±2Im
√

λt dt. (C.6)

When ν > 2, the transformation (C.2) simplifies to r(t) = (1 − ((2 − ν)/2)t)2/(2−ν), which
will not affect the exponential large-t asymptotics of the integrand in (C.6). This implies that
precisely one solution of equation (1.3) (up to scaling by a constant), namely, u−(· ;λ), is in
L2(0, 1; r dr). In other words, for ν > 2, (1.3) is in PLP at 0.

On the other hand, when ν = 2, we find r(t)2 = e−2t, which when multiplied with the other
exponential factor e±2Im

√
λt in (C.6) means that Im

√
λ � 1 makes (1.3) in PLP at 0, whilst if

Im
√
λ < 1, the latter must be in PLC at 0.

Remark C.1. When ν = 2, we may represent graphically the L2(0, 1; r dr) nature of the
solutions of (1.3); see Figure C.1. Here, Ωp := {λ ∈ C | Im√

λ � 1} and Ωc := {λ ∈ C | Im√
λ <

1}, so that if λ ∈ Ωp or Ωc, then equation (1.3) is, respectively, in PLP or PLC.

Lemma C.3. Consider equation (1.3) with real-valued w, q ∈ L1
loc(0, 1]. Let 0 � ν < 2.

Define ε1(r) = rνw(r) − 1 and ε2(r) = q(r)/w(r), and suppose that

εj(r) = o(1) (r −→ 0, j = 1, 2). (C.7)

Then there is a fundamental system {u1(· ;λ), u2(· ;λ)} satisfying u1(r;λ) → 1, u2(r;λ) ∼
log(r) as r → 0, and both u1 and u2 are in L2(0, 1; r dr).

Proof. Transform by v(r) = r1/2u(r), so that (1.3) becomes

−v′′(r;λ) − 1
4r2

v(r;λ) = (λw − q)(r)v(r;λ)

= r−ν(1 + ε1(r))(λ− ε2(r))v(r;λ). (C.8)

Consider the sequences (vk(· ;λ))∞k=0 and (yk(· ;λ))∞k=0 defined by

−v′′k+1(r;λ) − 1
4r2

vk+1(r;λ) = (λw − q)(r)vk(r;λ),

and an equation of the same form for yk, satisfying v0(r;λ) = r1/2 and y0(r;λ) = r1/2 log(r).
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We now suppress the λ-dependence to simplify notation. If we can show that the series (note,
starting from k = 1) V :=

∑∞
k=1 vk and Y :=

∑∞
k=1 yk converge uniformly near 0, and satisfy

the asymptotics

V (r) = o(r1/2), Y (r) = o(r1/2 log(r)) (r −→ 0), (C.9)

then r−1/2v = r−1/2v0 + r−1/2V and r−1/2y = r−1/2y0 + r−1/2Y is the required solution pair.
Note that v0, y0 form a fundamental system in the kernel of the left-hand side of (C.8), and

their Wronskian is 1. Therefore, by variation of parameters, vk (and yk in place of vk) must
satisfy

vk+1(r) =
∫ r

0

(v0(r)y0(s) − y0(r)v0(s))(λw − q)(s)vk(s) ds

= r1/2

∫ r

0

s1/2−ν(log(s) − log(r))(1 + ε1(s))(λ− ε2(s))vk(s) ds.

We want to estimate this integrand. By (C.7), this is straightforward. For each fixed λ there
is δ1 > 0 such that

|(1 + ε1(r))(λ− ε2(r))| < 2|λ| (0 < r < δ1). (C.10)

Furthermore, there is δ2 > 0 with

|log(r)| < r−1+ν/2 (0 < r < δ2). (C.11)

Take δ(ε) = min{δ1, δ2}, where ε = 1 − ν/2 > 0.
We first consider vk. By the triangle inequality, (C.10) and (C.11), we have the estimate

|vk+1(r)| � 2|λ|r1/2

{∫ r

0

sε−3/2|vk(s)| ds+ r−ε

∫ r

0

s2ε−3/2|vk(r)| ds
}

(0 < r < δ, k = 0, 1, 2, . . .).

From this and |v0(r)| � r1/2, we derive inductively that

|vk(r)| � (3/2)k

(k + 1)!k!
r1/2

(
4|λ|rε

ε

)k

(0 < r < δ, k = 1, 2, 3, . . .), (C.12)

where (z)k = z(z + 1) · · · (z + k − 1) is the Pochhammer symbol. But, for all j � 0, we have

3/2 + j

2 + j
< 1 =⇒ (3/2)k

(k + 1)!
< 1 (k ∈ N).

Thus (C.12) simplifies to

|vk(r)| < r1/2 1
k!

(
4|λ|rε

e

)k

(0 < r < δ, k ∈ N), (C.13)

implying, by Weierstrass’ M-test for convergence of functional series, that V is uniformly
convergent on the interval (0, δ). Furthermore, by (C.13), all terms in V are O(r1/2+ε) =
o(r1/2), so one-half of (C.9) is satisfied; it follows that v(r) = r1/2(1 +O(rε)) (r → 0), as
required.
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We appeal to a similar argument in the case of y, using (C.10) alongside the slightly different
estimates

|log(r)| < r−ε/2 (0 < r < δ(ε/2)),

|y1(r)| � 10|λ|r1/2+ε

3ε
(0 < r < δ(ε/2)),

|yk+1(r)| � 2|λ|r1/2

{∫ r

0

sε−3/2|yk(s)| ds+ r−ε

∫ r

0

s2ε−3/2|yk(s)| ds
}

(0 < r < δ(ε), k ∈ N).

These can be used inductively to show that

|yk(r)| � 2(3/2)k

(k + 1)!k!
r1/2

(
4|λ|rε

ε

)k

(0 < r < δ(ε/2), k ∈ N).

Thus, as with vk, the series Y is uniformly convergent on (0, δ(ε/2)), and the estimates show
that the remaining half of (C.9) is satisfied: Y (r) = O(r1/2+ε) = o(r1/2 log(r)).

The last claim is that both u1(r) = r−1/2v(r) and u2(r) = r−1/2y(r) are in L2(0, 1; r dr).
Clearly, for any δ > 0, on the interval (δ, 1) the equation (1.3) is regular, so its solutions
are all continuous. We now see that u1(r) → 1, u2(r) ∼ log(r) as r → 0, so the claim follows
immediately.
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