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Abstract: Thermo-active ground structures represent low-energy and sustainable technology which is a clear priority for many 
countries. Heat transfer between such structures and the surrounding soil is understood to play an important role both in the overall 
thermal performance of buildings and in the evolution of stresses in structural elements and the surrounding soil. This paper presents 
an overview of recent research efforts and developments in relation to energy piles. General aspects on the performance of energy 
piles and their impact on the surrounding ground are presented based on previous field, laboratory and numerical investigations as 
well as existing case studies. Based on the current knowledge, further research opportunities are identified and highlighted.    
Keywords: Energy piles, temperature effects, renewable energy, ground source heat pump 
 
Sažetak: Termički aktivne podzemne konstrukcije predstavljaju nisko-energetsku i održivu tehnologiju čija je primjena prioritet za 
mnoge države. Izmjena topline između podzemnih konstrukcija i okolnog tla ima važnu ulogu u ukupnoj energetskoj učinkovitosti 
zgrada te doprinosi naprezanjima u konstruktivnim elementima i okolnom tlu. U ovom je radu prikazan pregled nedavnih terenskih, 
laboratorijskih i numeričkih znanstvenih istraživanja te izvedenih projekata i dobivenih saznanja na području energetskih pilota gdje 
su prikazani glavni aspekti energetskih pilota i utjecaji njihova rada na okolno tlo. Na temelju navedenih spoznaja, u ovom se radu 
navode smjernice za buduća istraživanja u ovom području. 
Ključne riječi: Energetski piloti, temperaturni efekti, obnovljiva energija, dizalica toplina 
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1. INTRODUCTION 
 

Climate change is one of the greatest issues the world 

has been exposed to with a huge environmental, economic 

and social impact. There are currently more than 160 mil-

lion buildings across the Europe accounting for over 40% 

of the total energy usage which is predominantly used for 

heating, ventilation and air conditioning (Thomas & Rees 

2009). Burning fossil fuels is the most common method of 

generating energy. Due to the fact that fossil fuels are non-

renewable and contribute to the greenhouse effect, alterna-

tive technologies which promise renewable and sustaina-

ble ways of producing energy are required. Moreover, e-

nergy-efficient design of buildings is essential for achie-

ving the EU Action Plan for Energy Efficiency which tar-

gets 20% energy saving by 2020 (Thomas and Rees 2009). 

In the recent years, utilisation of the shallow geother-

mal energy for heating of buildings is spreading rapidly in 

Europe and around the world. The emerging technology 

that is known for using such energy is ground source heat 

pump (GSHP) system. Two conventional systems can be 

used for extracting the heat from the ground, i.e. open loop 

and closed loop systems. The former one uses the             

groundwater and pumps it directly into the heat pump 

while the latter uses fluid carrying pipes laid either hori-

zontally or vertically (Kovačević et al. 2012). Due to the 

high cost of vertical drilling and the need of large land area  

 

 

for placing horizontal loops, fluid carrying pipes are re-

cently being installed within structural foundation ele-

ments known as energy piles (Suryatriyastuti et al. 2012).  

Energy piles represent a sustainable geo-energy           

solution with significant environmental and economic    

advantages. They combine structural  components of the 

buildings with ground source heat technologies which can 

be used for heating and cooling applications. In most        

regions of Europe, seasonal ground temperature is relati-

vely constant below a depth of 10-15 m with values 

between 10°C and 15°C, representing good conditions for 

heat extraction and injection (Brandl 2006). 

During the past decades, there were many energy pile 

systems installed all over the world, particularly in Austria, 

Germany, Switzerland and United Kingdom as well as in 

Japan and China (Laloui & Di Donna 2011). One of the 

largest projects in the UK was a building at the Keble Col-

lege, Oxford which was also the first energy pile structure 

in the UK, built in 2001 (Suckling & Smith 2002). Since 

then, a number of installed energy piles in the UK has        

rapidly been increasing, with almost 4600 piles (cumula-

tive) in 2010 (Laloui & Di Donna 2011). For comparison, 

by the end of 2004 there were already around 23 000           

energy piles installed in Austria and since 2005 more than 

6000 energy piles per year (Brandl 2013).  
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It is obvious that energy piles represent a good solution 

for heating and cooling of residential, office and commer-

cial buildings since they are a combination of ground    

structures needed for stability and energy source which    

results in an additional low costs. Therefore, many univer-

sities and research centres have focused both their experi-

mental and numerical work to enhance the understanding 

of the behaviour of thermal piles under significant tempe-

rature changes. Extensive overview of such efforts has 

been presented in Laloui & Di Donna (2013). Although a 

lot of information has been gained by researchers and 

many buildings have been built all over the world up to 

date, there are still some uncertainties regarding the long 

term behaviour of energy piles in groups and their influ-

ence on the surrounding soil in terms of thermal, hydraulic 

and mechanical behaviour (THM). Furthermore, due to the 

fact that implementation of underground geo-structures is 

currently in its beginnings in some European countries, 

further research in that area is crucial to have a clear          

understanding on the performance of such structures and 

their impact on the overlaying building and the surroun-

ding soil. 

The current paper presents a review on the usage of      

energy piles and recent research efforts. A focus is put on 

recent case studies and research efforts in Europe, however 

with several examples throughout the world. In the first 

section, a conceptual understanding of general aspects of 

energy piles and the surrounding soil as well as common 

recommendations for their implementation and usage are 

presented. The second part presents and discusses recent 

results and findings obtained by in situ analyses, small-

scale experiments and numerical simulations performed by 

researchers and engineers in the field. This section is then 

followed by real case studies conducted around the world. 

Finally, based on recent research findings, knowledge gaps 

and further research opportunities are identified and       

proposed. 

 

 

 

 
 

Figure 1. Typical energy pile arrangement with different pipe shapes (modified after Gao et al. 2008a) 

 
 

2. TECHNOLOGICAL BACKGROUND  
 

Energy piles are a type of closed-loop ground source 

heat pump system; hence they have higher initial cost but 

long-term economic benefits. Piles represent a primary u-

nit of the overall heat pump system with the purpose of 

extracting and injecting heat into the ground through the 

heat carrying fluid flowing through the pipe system       

(Fig. 1). System can operate in two different modes, i.e. a 

single mode with heating/cooling only or both heating and 

cooling operation (De Moel et al. 2010). Heat pump works 

similar to the principle of a reverse refrigerator (Brandl 

2006). It contains a fluid with low boiling point which 

turns into vapour in contact with the fluid circulated within 

energy piles (Brandl 2006). Temperature of the vapour is 

then increased via compressor. Obtained heat is subsequ-

ently used to heat the fluid within the secondary unit, i.e. 

pipework for heating within the building (De Moel et al. 

2010). In the cooling mode, secondary unit is used as the 

heat source and energy piles transfer heat into the surroun-

ding ground which represents a heat sink. Hence, primary 

and secondary units have a reverse role depending on the 

season (De Moel et al. 2010). A device parameter that ref-

lects the performance of the GSHP system is COP, i.e. 

Coefficient of Performance (Brandl 2006). This parameter 

indicates how much heat can be gained for a unit input of 

electrical energy and its value often varies between 3 and 

5 (De Moel et al. 2010). 

Precast or cast in situ reinforced concrete is the most 

common material used for energy piles because of its high 

thermal storage capacity and heat transfer capabilities 

(Brandl 2006). Steel foundation pile, because of its low 

thermal resistance and high thermal conductivity, can also 

be used (Nagano 2007). Absorber pipes used in energy pi-

les are made of high-density polyethylene (HDPE) and 

their diameter ranges from 20 mm to 25 mm. Pipes are 

commonly delivered to working sites on reels and then 

fixed to the reinforced cage of the energy foundation 

(Brandl 2006). The most common shapes used in piles are 

single, double or triple U-shaped pipes and W-shaped pi-

pes (Fig. 1). Due to the increased heat exchange rate resul-

ting from higher fluid flow rates, turbulent flow conditions 
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should be achieved in pipes (Brandl 2006). Moreover, the 

effectiveness of the heat transfer might reduce as the tem-

perature difference between the fluid and the pile-soil in-

terface reduces around the pipe circuit (Loveridge 2012). 

Hence, it is recommended to keep the circuit length 

between 300 m and 400 m, depending on flow conditions. 

In case where there are several piles connected into a sin-

gle pile circuit, a temperature difference between each 

successive pile will occur, but its magnitude will decrease 

at higher fluid flow rate (Loveridge 2012).  

Pile diameters range from <300 mm up to 1500 mm 

(Loveridge 2012). Regarding the pile length, it should be 

larger than the soil upper heterothermal zone which is in-

fluenced by seasonal fluctuations (Suryatriyastuti et al. 

2012). According to Brandl (2006, 2013), the economical 

minimum is 6 m because for getting 1 kW of energy, requ-

ired contact area between the pile-saturated soil and pile-

dry sand is 20 m2 and 50 m2, respectively. Investigations 

have also proved that spherically shaped heat-exchanging 

elements can extract more heat energy per unit area than 

squared ones, hence are more effective (Brandl 2006). 

Long term behaviour of energy piles is best to represent by 

the aspect ratio (length divided by the diameter) where     

piles with shorter length to diameter ratios will reach ther-

mal equilibrium with their surroundings more quickly  

(Loveridge 2012). However, Nagano (2007) showed that 

steel piles with effective length of only 4.7 m and diame-

ters from 600 mm to 800 mm, screwed at 4.0 m deep from 

the ground level proved efficient. 

Because of the possibility that negative fluid tempera-

tures might affect the pile behaviour as well as the soil-pile 

interface and cause freezing, a mixture of glycol and water 

is commonly used as a heat transfer fluid (Brandl 2006). 

Both experimental and numerical work suggest that 

extreme fluid temperatures last for a limited period of time 

and that would not cause freezing in the pile-soil interface. 

Moreover, Loveridge (2012) suggested that if concrete’s 

significant role in storing energy rather than just transfer-

ring it to the ground is considered, it is possible that fluid 

temperatures fall below 0°C.  Hence, guidance suggested 

by Brandl (2006) that the fluid temperature should not fall 

below 2°C is considered conservative for the UK ground 

conditions (Loveridge et al. 2013). Nevertheless, it is         

advisable in the absence of calculations that fluid tempera-

tures for large diameter piles (≥600 mm) and small             

diameter piles are kept above -1°C and 0°C, respectively 

(Amis et al. 2008; Bourne Webb et al. 2009; Loveridge et 

al. 2012; Di Donna et al. 2013).  

In case where the temperature at the soil-pile interface 

is negative, thermal conductivity and thermal storage       

capacity of soil with high water content change, reducing 

the efficiency of the energy system.  Furthermore, signifi-

cant heave and reduction in the shaft capacity of the pile 

might occur (Brandl 2006). Hence, it is important to keep 

the temperatures at the interface above the freezing point. 

However, temperature gradient that exists across the pile, 

which can be up to 10°C, depends on the position of the 

pipes, applied heat flux and properties of the pile (Love-

ridge et al. 2012). Thermal deformation brings out increa-

sing of mobilised shaft friction at soil-concrete interface 

(Suryatriyastuti et al. 2012). Furthermore, adhesion and 

the friction angle on the interface are affected by moisture 

transfer in the partially saturated soil caused by tempera-

ture changes.  

Behaviour of the pile is affected by heat extraction     

during winter and heat storage during summer because in     

reality a pile will be able to expand slightly during heating 

and contract during cooling due to the restraints at the top 

by the building and at the toe by the underlying soil          

(Amatya et al. 2012). Hence, there will be a certain amount 

of additional axial forces developed in the pile (Bourne-

Webb et al. 2013). It was observed in several examples that 

responses are quite complex, but the variation also depends 

on the type and properties of the soil surrounding the pile 

(Laloui et al. 2006). Brandl (2006) suggested that the 

hydration of the fresh pile concrete may also cause thermal 

strain-induced cracking since temperatures up to 70°C can 

develop. Hence, pile should have sufficient reinforcement.  

Heat transfer mechanism in soil is very complex due to 

its multiple phase system and involves conduction,         

convection, vaporisation and condensation processes 

while   radiation, ion exchange and freezing-thawing pro-

cesses can be neglected (Brandl 2006). Hence, knowledge 

on ground thermal properties is required for a proper de-

sign of energy piles (Loveridge et al. 2013). One of the 

most important parameters, soil thermal conductivity, is 

commonly measured using a thermal response test (TRT) 

or alternatively using laboratory testing (Loveridge et al. 

2013).  

High-permeability ground and groundwater with high 

hydraulic gradient are of an advantage if only heating or 

only cooling is to be performed because if a flow of water 

is present and sufficiently large, a natural regeneration of 

soil is achieved. For seasonal operation where heat is being 

stored in the ground during the cooling mode, reversed 

conditions are favourable (Brandl 2006; Suryatriyastuti et 

al. 2012). Moreover, saturated soils conduct heat at a much 

faster rate while loose dry soils trap air and are less effec-

tive for heat transfer (De Moel et al. 2010). Work of Tho-

mas and Rees (2009) has showed the importance of the 

groundwater table on the energy efficiency of the over-

laying buildings where with deeper groundwater table heat 

losses from the building are decreasing. Consequently, this 

indicated the importance of considering soil moisture con-

tent above the groundwater table when estimating soil 

thermal properties. 

It should be noted that the Thermal Pile Standard pub-

lished by the GSHP Association (GSHPA 2012) provides 

more detailed information for materials and general speci-

fications of a closed-loop energy pile system which can be 

used as guidance when considering ground source instal-

lation. 

 

3. RESEARCH EFFORTS 
  

 Many authors focused their work in both numerical and 

experimental investigation of energy piles’ behaviour.   

Majority of this work was carried out in terms of        

thermo-mechanical behaviour of piles and temperature 

changes in the surrounding soil. Work of Bourne-Webb et 

al. (2009), Amis et al. (2008) and Amatya et al. (2012) 

have provided information about an in-situ test performed 

at the Lambeth College in South London where a pile loa-

ding test incorporating temperature cycles was performed. 
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Thermal-mechanical behaviour of a pile 600 mm in dia-

meter and 23 m in length was    observed for 7 weeks, as 

well as the temperature profiling in the adjacent borehole 

and anchor piles located 0.5 m and 2.15 m from the pile, 

respectively. The site investigation showed 4 m of sand 

and gravel overlying the London clay formation with gro-

undwater table about 3 m below ground level. 

Working load of 1200 kN was applied which resulted 

in an initial pile settlement of 2.4 mm. The temperature 

range applied was from -6°C to 56°C which represents an 

extreme case because in the operational range, temperature 

changes are more likely to vary between -1°C and 30°C. 

In situ ground temperatures varied from 18°C to 20°C 

because of the heat energy radiating from the nearby Lon-

don underground tunnels. A maximum cooling was provi-

ded to the test pile throughout the period of 4 weeks with 

the inlet fluid temperature of -6°C. In the first week, pile 

cooled by 14°C – 16°C and after 2 weeks reached a state 

of near equilibrium showing that low injection temperature 

did not lead to freezing at the pile-soil interface (Fig. 2).  

During the daily cooling and heating cycle, pile head mo-

vement was increased to 4.4 mm and decreased to 2.8 mm, 

respectively proving the thermally-elastic behaviour of the 

pile. Total mobilised shaft resistance developed during the 

thermo-mechanical loading was within the permissible 

range of ultimate shaft resistance, with some margin of sa-

fety. Hence, it was considered unlikely that the geotechni-

cal capacity of the pile was affected significantly. During 

the cooling stage, negative shaft friction developed over 

the lower section while during the heating stage, negative 

shaft friction developed over the top section as the pile 

expanded upwards. The lowest temperature recorded was 

0.3°C near the toe of the pile, while the maximum tempe-

rature change in the adjacent borehole was 9°C, but the 

temperature reduction appeared in a much slower rate. Af-

ter the heat pump was switched off and the recovery period 

begun, temperatures in the pile and the borehole recovered 

and appeared to be stabilising towards an initial value from 

the start of the test. Anchor piles located 2.15 m from the 

test pile showed 4°C reduction during the cooling phase 

and returned to near ambient conditions during heating. As 

a result of observations, a descriptive framework for expla-

ining the contribution of pile material and end-restraints to 

the overall response of thermo-mechanically stressed piles 

has been presented in Bourne-Webb et al. (2013). 

 

 
 

Figure 2. Contours of temperature variation at 12 m depth at the end of cooling  

(modified after Bourne-Webb et al. 2009) 

 

 
Figure 3. Thermo-mechanical vertical stresses in the pile: (a) experimental results; (b) numerical simulations 

 (modified after Laloui et al. 2006) 
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In situ test and numerical simulations have been repor-

ted by Laloui et al. (2006) for a new four storey building 

at the Swiss Federal Institute of Technology of Lausanne, 

Switzerland. Tested pile was 0.88 m in diameter and 25.8 

m in length with a slight increase in pile section with depth. 

Hence, a radius of 0.5 m was adopted for further numerical 

analysis. The first 12 m of ground consisted of alluvial soil 

overlaying sandy gravelly moraine layer with groundwater 

table very close to the ground surface. Pile was subjected 

to two types of loading, mechanical and thermal, which 

were applied separately. Maximum thermal increment ap-

plied to the pile was on the order of 21°C. It was shown 

that the thermal load is larger and rather uniform than the 

mechanical one and that temperature increment of 1°C re-

sulted in an additional temperature induced vertical force 

on the order of 100 kN. In addition, a numerical modelling 

(THM) of soil behaviour was performed through which it 

was shown that even if the thermal effect propagates more 

in the soil than does the mechanical load, the induced stra-

ins are limited and do not affect the pore water pressure 

evolution. It was also shown that the developed numerical 

model was able to reproduce the increase in thermally-in-

duced vertical stresses with depth as well as the decrease 

in mechanical vertical stresses with depth (Fig. 3). 

An experimental observation of the ground tempera-

ture change and its impact on the pump efficiency over 

time in relation to heat extraction has been presented in the 

work of Wood et al. (2009). System consisted of 21 energy 

piles 300 mm in diameter and 10 m in length installed wit-

hin 2 distinct layers, where the first 3 m consisted of an 

inhomogeneous material made of gravel, cobbles, sand 

and fine coal overlaying a very soft, red-brown clay with a 

slight gravel content, for a two-storey residential dwelling. 

The moisture content varied from 23% at 3.5 m depth to 

16% below 5.5 m. The heat load and the inlet water tem-

perature were adjusted throughout the season as would be 

typical for an actual heat pump installation. It was obser-

ved that the overall change in COP was not significant     

during the period of a case study, i.e. one heating season, 

proving the efficiency of the overall system (Fig. 4). 

Furthermore, temperature data showed that the effect 

of heat extraction dominates at a distance of up to 1 m from 

the pile edge at a depth of 10 m while the seasonal influ-

ence is a dominant process at a depth of 2.5 m For compa-

rison, at a distance of 5 m from the pile edge at a depth of 

10 m, no temperature change has been observed. Recorded 

temperatures before the start of the heating season made at 

abovementioned depths, i.e. 2.5 m and 10 m were taken as 

reference temperatures for calculating the change in gro-

und temperature across the heating season.  

A full scale experiment with two concrete energy piles 

1.5 m in diameter and 20 m long has been reported by       

Sekine et al. (2007) for the experimental institution built 

on-site at the University of Tokyo where both heating and     

cooling were required. Thick layer of fine sand was over-

laid by 8 m of clay with groundwater level at 11 m below 

the ground. Underground temperatures were observed for 

a whole season at two different measuring points, i.e. point 

A 0.5 m and point B 2 m from the pile edge. During the 

heating period, temperatures at 1 m below the ground      

surface were influenced by the ambient air temperature 

while temperatures at 10 m and 19 m fell gradually after 

the start of the heat extraction and stabilized at about 15°C 

0.5 m from the pile edge (Fig. 5a). Initial ground tempera-

tures at depths of 10 m and 19 m were 19°C and 17°C, 

respectively. At the distance of 2 m from the pile edge, 

temperature reduction appeared at a much slower rate at 

depths of 10 m and 19 m suggesting that the effect of heat 

extraction on ground temperature approximately halved in 

comparison to the measure point located 0.5 m from the 

pile edge (Fig. 5b). 

 

 
Figure 4. Heat pump monitored parameters and ground temperature 1 m and 5 m from the pile edge at different 

depths across the heating season (modified after Wood et al. 2009) 
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Figure 5. Underground and air temperature variations at different locations from the pile edge, A: 0.5 m; B: 2 m 

(modified after Sekine et al. 2007) 

 

 
Figure 6. (A) Temperature profiles and (B) thermal axial strain profiles within the energy foundation for different 

average changes in foundation temperature (modified after Murphy & McCartney 2012) 

 
 

Due to the high cost of boring in Japan, an examination 

of construction costs was performed by comparing the 

conventional borehole system and the energy pile system. 

It was concluded that the cost of construction per heat 

extraction and rejection unit of the proposed energy pile 

system was 75% cheaper than that of a borehole system 

and was expected to pay for itself within ten years.          

Furthermore, based on the average COP of 4.89 for this 

system, authors concluded that it is about 1.7 times more 

efficient than the more commonly used air-source heat 

pump (ASHP) system which makes it commercially via-

ble.  

Two of 60 drilled shaft foundations for an eight storey 

building built in Denver, Colorado were converted into      

energy piles and their behaviour has been discussed in the 

work of Murphy & McCartney (2012). Both foundations 

were 1.1 m in diameter but with different lengths, 14.8 m 

and 13.4 m. Hard sandy claystone bedrock found at 7.6 m 

of depth was overlaid by a 4.6 m thick layer of sand and 

gravel and 3 m of fill consisted mostly of clayey sand. 

Since temperature difference between the inlet and the ou-

tlet fluid of 2°C is sufficient for normal operation of heat 

pump, maximum difference in this case of 10°C had         

potential for good heat exchange. During the heating ope-

ration, temperature of the energy foundation tended to sta-

bilize at 10°C (initial ground temperature was 15°C), indi-

cating steady flow of heat from the ground into the energy 

pile while for the cooling operation maximum increase of 

pile temperature was 3°C from the initial ground tempera-

ture. Although shorter foundation had one additional heat 

exchange loop comparing to the longer one, temperatures 

of both foundations were similar which indicated that the 

number of loops may lead to a more uniform temperature 

distribution within a pile but may not improve heat 

exchange (Fig. 6a). The shapes of thermal strain profiles 

indicated that foundations are expanding upwards from the 

relatively rigid bedrock (Fig. 6b). Hence, conclusion was 

made that strains and stresses as a result of temperature 

changes are not expected to lead to structural issues. 

A case study has been performed for a district cooling 

and heating system in Shanghai, China by Gao et al. 

(2008a, 2008b). A group of 5500 concrete pile foundati-

ons, 600 mm in diameter and 25 m in length, was planned 

to be installed in a land parcel of 100 m x 1000 m which 

would take about 30% thermal load of district cooling and 

heating. Besides 5 year numerical simulation of ground 

temperatures, both numerical and in situ tests were perfor-

med to investigate the effect of pile type. Thermal effici-

ency between single, double, triple U-shaped and W-sha-

ped types was compared under different flow rates. It was 

concluded that under the same flow rate within the pipes, 

W-shaped type is the most thermally efficient if the cost is 

not the definitive index.    

Wang et al. (2012) have conducted a laboratory inve-

stigation of a coupled thermo-mechanical loading of a steel 

heat exchanger pile with an outside diameter of 25.4 mm 
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and 250 mm in length. Silica sand around the pile at initial 

moisture contents of 0%, 2% and 4% was heated to 40°C 

and 60°C. The influence of temperature on the moisture 

content adjacent to the pile was observed. Additionally, 

mechanical loading/unloading was performed before and 

after the heating to assess the change in the shaft resis-

tance. It was concluded that the shaft resistance reduction 

is proportional to thermal loading, i.e. higher shaft resis-

tance reduction resulted from higher thermal loading in a 

soil sample with the initial moisture content of 2%. More-

over, higher drop in moisture content immediately next to 

the pile was observed with higher thermal load (Fig. 7). 

However, pile shaft resistance recovered when thermal 

load was removed and the soil sample was cooled to room 

temperature at 20°C for 24 hours due to moisture migra-

ting back towards the pile. Furthermore, in the soil sample 

with the initial moisture content of 4%, drop in the mois-

ture content adjacent to the model pile and the shaft resis-

tance reduction were less significant comparing to the soil 

with the initial moisture content of 2%, while the change 

in the shaft resistance in dry sand was negligible after ap-

plying the thermal load. 

 

 
Figure 7. Soil moisture content after 24 hours for soil with initial soil content of 2% and 4% 

 (modified after Wang et al. 2012) 

 

 

Numerical investigation of the energy pile foundation 

behaviour, focusing on its long-term response to a seaso-

nally cyclic thermal loading has been performed by Di 

Donna et al. (2013). The assumption was made that both 

concrete and soil were porous materials and the whole me-

dium was fully saturated with initial temperature of 11°C. 

Numerical model consisted of a slab with 7 rows of 15 e-

nergy piles each (0.8 m in diameter and 20 m in length) 

with 7 m spacing between each pile. After the first 5 years, 

temperature in the most thermally solicited zone (10 m 

depth) between two piles oscillated among a maximum va-

lue of 17°C during summer and 10°C during winter. Ac-

cording to soil’s proposed behaviour, its thermal deforma-

tion resulted in additional displacements of the foundation 

which made the foundation moving downward during the 

cooling period and upward during the heating period. In 

such case, irreversible displacements were also registered, 

completely developed during the first 5 years. Since piles 

were heated and cooled equally together, an additional dif-

ferential settlement was not induced. Thermally induced 

pore water pressure was negligible, hence conclusion was 

that the heating phase occurred in almost drained condition 

which is likely the case in all energy pile foundations. 

However, authors used relatively high value of hydraulic 

conductivity (10-8 m/s) which allowed quick pore water 

pressure dissipation. In this study, piles had a structural ca-

pability to carry both the mechanical and the thermal load 

applied. It was concluded that soil plastic contraction de-

veloped during the first thermal cycles induced a reduction 

of the confinement cycle after cycle. Consequently, the 

portion of external load which was initially transmitted 

through the pile-soil interface reduced during the first 5 

years from 70% to 66% and the difference was transmitted 

through the base of the pile.  

A new user-friendly numerical tool, called “Thermo-

pile” has been developed on the basis of previous experi-

mental and numerical analyses (Knellwolf et al. 2011).    

Receiving conventional soil parameters such as cohesion, 

internal friction angle of the soil and lateral earth pressure 

coefficient as an input, it is able to couple the thermal evo-

lution in the soil to the thermo-mechanical behaviour of 

the soil-heat exchanger pile system. Since it is based on the 

discretisation of the pile into segments, it allows for the 

consideration of different soil layers with different proper-

ties. Numerical model was validated through the existing 

data from in situ tests, i.e. Lambeth College and Lausanne 

Test Pile. 

Work of Mimouni & Laloui (2014) gave insight on the 

impact of temperature variation on the mobilised                

bearing capacities of energy piles that has been obtained 
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by numerical modelling using the “Thermopile” software. 

Change of soil and soil-pile interaction properties with 

temperature was not taken into account. The mechanics in-

volved in variations of the bearing forces mobilised by pi-

les under the temperature variation was not found to induce 

failure. Hence, conclusion was made that increasing the fa-

ctor of safety of geothermal piles does not provide better 

serviceability, while it can significantly increase costs. 

Suryatriyastuti et al. (2012, 2014) have suggested that 

there is a lack of knowledge concerning the impact of ther-

mal cyclic behaviour of energy piles on the geotechnical 

performance and that no design code is available yet that 

takes into account the thermal interactions on the geo-

technical capacity. Numerical simulation to analyse the 

cyclic behaviour of energy piles on the pile-soil interface 

was performed and conclusion was made that according to 

the axial fixity at the pile head, degradation of the soil-pile 

resistance during heating-cooling cycles generates an in-

crease in pile head settlement for the free pile head or de-

crease in pile head capacity for the restrained head pile. 

Furthermore, it was found that the groundwater flow has 

an important role in the heat diffusion process controlling 

both the ground temperature equilibrium and the soil-pile 

stress equilibrium.  

In order to investigate the impact of an energy pile on 

ground temperatures, a simple two dimensional heat trans-

fer model of a pile heat exchanger has been set up by       

Loveridge et al. (2012). Pile was 600 mm in diameter with 

4 heat transfer pipes of 25 mm outer diameter symmetri-

cally placed 75 mm from the outside edge of the pile. A 

sensitivity analysis was performed with different combina-

tions of thermal properties of the concrete and the surroun-

ding ground. Results of the analysis showed that if the ther-

mal conductivity of the concrete is higher than the conduc-

tivity of the surrounding ground, temperature difference 

between the pipes and the pile edge is small. Hence in such 

case, negative fluid temperatures could lead to the pile-soil 

interface freezing.  

In the work of Ghasemi-Fare and Basu (2013), nume-

rical modelling of the heat transfer through a concrete geo-

thermal pile with an embedded U-shaped circulation tube 

has been performed. Pile with radius of 300 mm and length 

of 30 m was considered. It was noticed that the thermal 

influence zone around the pile extends approximately up 

to a radius of 3.2 m after 60 days of heat injection from the 

pile to the ground which can be considered as an extreme 

scenario. Beyond a depth of 6 pile radii below the pile 

base, the change in ground temperature was less than 1°C 

which was considered negligible. Since with the decrease 

in soil water content, value of the soil thermal conductivity 

reduces, heat transfer performance was investigated in the 

presence of a 5 m desiccated zone from the ground surface. 

It was noticed that the thermal influence zone is smaller 

within this layer, but increase of the ground temperature 

adjacent to the pile is greater due to lower thermal conduc-

tivity of unsaturated soil.  
 

Moritz and Gabrielsson (2001) have performed a field 

experiment for heat storage in clay for two stores with gro-

undwater 2 m below the ground surface. Maximum tem-

peratures of 70°C and 90°C were applied to the first and 

the second store, respectively. It was observed after 7.5 ye-

ars that the settlement in the first store was 70 mm while 

in the second store a settlement of 140 mm was recorded. 

Furthermore, an excess pore water pressure developed du-

ring the heating phase and negative pore water pressure 

developed during the subsequent cooling.  

Thermally induced volume changes of saturated fine-

grained soils have been experimentally investigated by nu-

merous researchers and an extensive review has been pre-

sented in Abuel-Naga et al. (2015). Excess pore pressure 

during heating is induced by 7-10 times higher thermal 

expansion coefficient of water with respect to the solid par-

ticles (Laloui and Di Donna 2013). Volume variations ca-

used by heating clayey soils in drained conditions depend 

on the consolidation state of the soil. For normally or 

lightly over-consolidated clayey soils, heating usually re-

sults in contraction while for highly over-consolidated 

clays elastic expansion is typical (Abuel-Naga et al. 2007). 

Furthermore, with an increase in temperature, yield limit 

shrinks and the reduction of the pre-consolidation pressure 

occurs (Laloui & Di Donna 2011). In case where the soil 

is highly permeable and the temperature is increased 

slowly enough, pore pressures have time to dissipate beca-

use the heating phase approaches drained conditions (Di 

Donna et al. 2013). Conversely, an increase in the pore wa-

ter pressure in low permeable soils causes a decrease in 

effective stress of the soil (Brandl 2006). In saturated low 

permeable and chemically active porous media, osmosis 

phenomena are among key processes identified to control 

the water flow and deformation behaviour. In particular, 

flow of water driven by a temperature gradient, i.e. 

thermo-osmosis was found to contribute to pressure distri-

bution and flow in such media (e.g. Trémosa et al. 2010). 

Zagorščak et al. (forthcoming 2016) have conducted an in-

vestigation on the effects of thermo-osmosis on hydraulic 

behaviour of saturated soils. Sensitivity analysis was per-

formed using different values of thermo-osmotic conduc-

tivity and it was concluded that the effect of thermo-osmo-

sis is considerable for chemically active soils with thermo-

osmotic conductivity values larger than 10-12 m2K-1s-1.  

It was showed that temperature changes in the partially 

saturated soil cause moisture movement towards the colder 

region which changes the stress-strain-strength behaviour 

of the soil and the soil-pile interface (e.g. Wang et al 2012). 

Consequently, soil thermal properties are affected (De 

Moel et al. 2010; Ghasemi-Fare and Basu 2013). Such pro-

cesses gradually cause shrinkage in the warm zone and 

expansion in the cold one in unsaturated fine-grained sen-

sitive soils (Brandl 2006). From geotechnical point of 

view, heating of foundations may also have an important 

advantage in improvement of soil characteristics which 

might result in a reduction of foundation costs (Laloui et 

al. 2006). Positive effect on resilience of clayey soils under 

cyclic loading can be achieved by thermal pre-treatment 

which can result in a higher resistance of the buildings a-

gainst earthquakes (Laloui et al. 2006). 

 

4. EXAMPLES OF ENERGY PILE  

    INSTALLATIONS 
 

Many examples of successful energy pile installations 

exist around the world. By the end of 2006 in Austria, there 

were nearly 300 buildings fitted with energy piles or           

energy diaphragm walls (Brandl 2006). In Switzerland, 
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more than 40 projects have been built on energy pile foun-

dations and probably the most famous one is the Dock 

Midfield terminal at Zürich airport (Laloui & Di Donna 

2011). Germany and UK are countries in which several 

buildings have been equipped with energy piles (Laloui & 

Di Donna 2011). In the UK, energy pile systems are ma-

inly constructed in London, but the first one ever built in 

the UK was at the Keble College, Oxford. According to 

Laloui & Di Donna (2011) some installations have been 

made in Japan, Canada, Scotland, Liechtenstein, Italy and 

Netherlands. 

 

4.1. Keble College, Oxford, UK 
 

In the work of Suckling & Smith (2002), an example 

of the first energy pile installation in the UK built in 2001 

has been presented. A six storey structure included a base-

ment up to 7 m below the existing ground level. Soil consi-

sted of 4 different layers with a groundwater table at about 

5 m below the surface. Mean ground temperature below 10 

m depth was around 13°C. Very stiff to hard Oxford clay 

at a depth of 7.5 m was overlaid by a 3.5 m thick Thames 

river deposits above which mixed layers of firm alluvial 

clay and made ground were found. It was planned that the 

heat pump increases the temperature of the fluid from 

13°C to between 25°C and 35°C. The retaining wall was 

executed as a hard/soft secant wall comprising in total of 

223 piles of different type. Length and diameter of the piles 

ranged from 9-15 m and 600-750 mm, respectively.       

Furthermore, 61 bearing piles with 450 mm diameter and 

12 m in length were added to accommodate structural 

loads. Plastic pipes for fluid flow were attached to the re-

inforcement of the foundation elements prior to concre-

ting. No pile diameter or length was increased to accom-

modate geothermal requirements above that designed for 

the required structural or geotechnical applied loads. 

 

4.2. Sapporo City University, Japan 
 

The world’s first energy pile system which utilized 

steel foundation piles as heat exchangers for the new      

building at Sapporo City University built in 2005 has been 

presented in the work of Nagano (2007). System consisted 

of 51 energy piles screwed into the ground predominantly 

consisted of gravel and sand at 4 m depth from the ground 

level. Diameter of the piles varied from 600 mm to 800 

mm, while their average length was 6.2 m. Due to the         

usage of indirect closed circulating system (using U-tubes 

soused in water) with 2 sets of U-tubes inserted into each 

pile, effective length of each pile resulted in 4.7 m.           

According to calculations based on the condition that the 

pipe temperature did not fall below –2°C, system could 

supply daily base heating load of 40 kW. However, heating 

output of 50 kW was required so three additional boreholes 

were planned to be drilled at a reasonable length of 75 m 

to satisfy the heat output.  

A novel GSHP designing and performance prediction 

tool has been also developed based on the work of author’s 

group, able to treat the random layout of ground heat 

exchangers with high speed calculation algorithm. Tool   

includes database of heat pump performance curves         

according to both outlet temperature of the primary side, 

i.e. energy piles and inlet temperature of the secondary 

side, energy prices and specific CO2 emissions. As a         

result, hourly energy consumption and energy cost can be 

obtained. Moreover, life cycle energy and life cycle CO2 

emissions can be evaluated. 

Prediction of performance showed that when the sys-

tem adopted a constant-speed pump in order to satisfy 

maximum heat output, Seasonal Coefficient of Perfor-

mance (SCOP) was 2.7. However, during winter and sum-

mer the maximum SCOP can reach 4.4 and 5.7, respecti-

vely suggesting that a variable speed pump depending on 

the heat loads can be effective to improve SCOP. Annual 

operating cost and annual CO2 emissions of the GSHP sys-

tem were compared with those of gas systems; a gas boiler 

providing heating only and a system providing both hea-

ting and cooling. Operating cost for the GSHP system re-

presented half the cost of a gas boiler providing heating 

only and 42% of the one with cooling and heating system. 

Annual CO2 emission of GSHP was 12 tons which is 3.8 

tons and 7.4 tons less compared with a gas boiler providing 

heating only and system providing both heating and coo-

ling, respectively. 

 

4.3. Dock midfield of Zürich airport, Switzerland 
 

System design and construction of the New Terminal 

E at Zürich Airport has been presented in Laloui & Di 

Donna (2013). New terminal was built on 440 foundation 

piles, of which 300 were equipped with five U-pipes fixed 

on the reinforcement. Piles were approximately 30 m in 

length with a diameter ranging from 0.9-1.5 m fully pas-

sing through soft lake deposits and standing on a moraine 

layer. It was expected that energy piles meet around 65% 

and 70% of heating and cooling demands, respectively. 

Terminal has been in use since 2004 and the overall ratio 

of thermal energy obtained by the system and the total e-

lectric energy used to run was set as 5.1. Hence, it has pro-

ven to be economically more profitable than a conventio-

nal pile system. 

 

4.4. Projects in Austria 
 

Few research projects performed in Austria have been 

presented in the work of Brandl (2006). A rehabilitation 

centre comprising of seven floors, two of them beneath the 

ground surface, was constructed on a system of 175 piles, 

of which 143 were fitted with heat exchangers. Diameter 

of the piles was 1.2 m while the pile length varied between 

9-18 m depending on the static requirements and ground 

properties. Ground consisted mostly of silty sand and 

clayey to sandy silt with groundwater at 4-5 m below the 

surface. In the first winter period, minimum pile tempera-

ture was close to 2°C. It was shown that operational fluid 

temperatures between –2°C to –3°C (temporarily – 5°C) 

caused the formation of ice lenses in the ground and a 

heave of 15 cm of the surface behind the piles. However, 

this was partly attributed to low air temperatures. The sys-

tem has been in use since the autumn 1997 without any 

problem. Significant influence of the groundwater flow as 

well as the influence of air temperature on the system was 

clearly visible where strong groundwater flow enhanced 

pile temperature recovery (Fig. 8). 
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Figure 8. Temperature evolution (measured in the centre of the pile) along two different piles  

A) Strong groundwater flow (6 l/s), B) Poor groundwater flow (0.6 l/s) (modified after Brandl 2006) 
 

 

A deep foundation comprised of 320 cast in situ con-

crete piles was built for a multipurpose hall with a capacity 

of 8000 people. Piles were 18 m long and 0.5 m in diameter 

totally containing about 65 km of absorber pipes. An 

annual saving of 85 000 m3 of natural gas, equivalent to 73 

tons of CO2 was achieved by this cooling and heating sys-

tem. Nearby, a spa hotel with geothermal cooling and he-

ating was also built. In a foundation of 357 piles, 30 m long 

around 69 km of plastic pipes were installed. Energy extra-

cted from the ground during the winter corresponds to the 

energy demand of about 160 modern one-family houses.  

Arts Centre with a foundation comprised of energy pi-

les and diaphragm walls was built. The diaphragm wall 

thickness varied between 0.5 m and 1.2 m while the dia-

meter of the piles was 1.2 m. Depth of a diaphragm wall 

was 28 m while the pile length varied between 17 m and 

25 m. Soil was mostly consisted from loose sand and weak 

clay with a groundwater level about 1 m below the surface. 

Building was heated during the winter and cooled during 

the summer through the energy pile system which resulted 

in both environmental and economic benefits. Calculations 

showed that the saving in investment costs was €1.32 mil-

lion while the annual savings in energy and operation costs 

were €22,700 in comparison with a conventional air-con-

ditioning system.  

Paper-processing plant was built on a piled raft foun-

dation consisting of 570 driven reinforced concrete piles 

(0.4 m x 0.4 m). Length of each pile was 24 m with only 

the top 14 m used to accommodate absorber pipes. Buil-

ding heating demand was achieved through combined u-

sage of the waste heat from machines and energy piles 

while the cooling demand was predominantly achieved 

through the usage of energy piles. System has been run-

ning since autumn 1995 without problems. 

The first thermo-active traffic tunnel (“energy tunnel”) 

was also built in Austria using two different methods. The 

first section was performed using the cut and cover met-

hod, consisting of 59 energy piles 1.2 m in diameter and 

17.1 m in length, while the other one was the NATM sec-

tion. The cut and cover section was connected with the ad-

jacent school in order to provide heating to the building. 

Predictions were made that annual savings in operation 

will be €10,000, compared with the old natural gas system, 

and a decrease in annual CO2 emissions of 30 tons will be 

achieved. Calculations showed that down to –5°C of the 

outdoor temperature, school building can be fully heated 

with the GSHP system. 

Besides for residential and commercial heating and co-

oling purposes, energy geo-structures are used in various 

environments, e.g. cooling and heating of metro stations, 

bridge decks, road pavements and parking places, airport 

runaways, etc. Brandl (2006) and Laloui & Di Donna 

(2013) have given a more detailed overview on the usage 

of ground energy. 

 

5. FUTURE PROSPECTS AND RESEARCH  

    CHALLENGES 
 

During the past 30 years, the number of installed e-

nergy pile systems has been constantly increasing. Altho-

ugh their geotechnical dimensioning and designing was 

based on experience and empirical considerations, there 

has not been any structural or geotechnical collapses up to 

date. However, common practice was to adopt increased 

safety factors in comparison to conventional piles which 

resulted in additional cost. It was proved in several exam-

ples, both numerically and experimentally, that thermal 

stresses in the pile within normal and expected temperature 

boundary conditions are significant and if this is conside-

red in the design, potential hazards should be avoided. 

However, stresses and strains were measured only in the 

axial direction while it can be expected that the radial be-

haviour of the concrete and the soil mass could have an 

impact on the pile-soil interaction. Furthermore, large ther-

mal stresses measured in situ for isolated thermal piles that 

were part of a conventional pile system may be unrepre-

sentative of situations where a system of energy piles is 

heated or cooled at the same time. Most numerical a-

nalyses were based on regular arrangement of energy piles, 

developed from borehole heat exchangers which are com-

monly used in regular patterns. Since in reality this is        

rarely the case, numerical modelling including irregular 

position of piles with different lengths would provide fur-

ther understanding of their influence on the overlaying 

structure and the surrounding soil. Furthermore, investiga-

ting the effect of such system in a dense urban environment 

where the surrounding soil is also being used for                

heat extraction by other dwellings would be beneficial. In 

addition to that, as recommended by the GSHPA Thermal 

Pile Standard (GSHPA 2012), case where energy piles are 
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connected into a single pile circuit across different soil 

layers should also need to be considered in the future work 

because variable temperature field developed in the gro-

und could cause differential settlements of the system and 

potentially endanger the structure stability. 

An extensive experimental work in relation to ther-

mally induced volume changes in cohesive soils has been 

conducted showing that normally consolidated and lightly 

over-consolidated soils exhibit significant consolidation o-

ver time. In addition, it has been shown that pore water 

pressure in low permeable soils increases reducing the ef-

fective stress near the heat source. Influence of such beha-

viour on end bearing and shaft resistance of pile groups has 

not yet been sufficiently understood and adopted in daily 

energy pile designs. Majority of numerical models consi-

der soil as a single bulk phase ignoring the thermodynamic 

pore water density, viscosity and pressure variation with 

temperature. While it has been experimentally shown that 

heating of foundations cause the moisture migration away 

from the heat source reducing the shaft resistance even in 

non-cohesive soils such as sands, considering soil as fully 

saturated and neglecting the phase transition in unsaturated 

soils in the current models limits their application in diffe-

rent conditions and climates. Induced volume changes in 

soil are of high importance in cases where the soil around 

energy piles is being used as heat storage, as it has been 

experimentally shown that heat injection over several ye-

ars can cause significant settlement of the soil.  

Additionally, moisture migration is expected to alter 

heat transfer properties of the partially saturated bulk soil, 

i.e. thermal conductivity, heat capacity and thermal diffu-

sivity. One of the most important thermal properties of the 

soil, i.e. thermal conductivity can be measured using field 

or laboratory test. While field tests, such as TRT are 

expensive and time consuming, laboratory test are simple 

to conduct but the interpretation of results should be per-

formed with great care due to the soil disturbance and ide-

alized boundary conditions used in comparison to the real 

ground conditions. Hence, interpreting such properties o-

ver a range of time periods taking into account cyclic ther-

mal behaviour of energy piles in multiphase and multicom-

ponent soil materials and comparing to the initial design 

values, would enhance the design of energy pile systems. 

In that case, more realistic linear rates of heat injec-

tion/extraction would be able to be determined.  

Several in situ tests revealed the importance of gro-

undwater flow in the natural thermal recharge of the gro-

und, while numerical studies have not taken such pheno-

mena into account. While convection is of less importance 

in low-permeable soils, i.e. clays, the significance of inve-

stigating the groundwater flow is obvious and great in 

semi- and highly-permeable soils. Such studies are of im-

portance because ground temperature can gradually          

increase or decrease during the years if the amount of heat 

extracted during the winter and heat injected during the 

summer is imbalanced which can result in lowering the ef-

ficiency of the heat pump. In such cases, additional hea-

ting/cooling systems would have to be added increasing 

the cost of the overall energy system. In order to                    

analyse the long-term performance of the entire system, 

predictions regarding the soil recovery process should be 

performed especially in cases where heating demand is 

predominant. Furthermore, due to unpredictable weather 

conditions that might arise as a result of climate change 

leading to modified groundwater recharge and changing 

the aquatic environment, taking groundwater flow and 

change in groundwater table into further analyses is of im-

portance for long-term prediction of energy piles’ perfor-

mance. 

According to several researchers and the current stan-

dard (GSHPA 2012), possible soil freezing which causes 

expansion of the water phase and a subsequent permanent 

soil deformation that may have a severe effect on the shaft 

resistance and end bearing capacity should be avoided. 

Such condition can be satisfied by keeping the fluid tem-

peratures above 0°C, while in reality this can easily be vi-

olated simply by leaving the heating system operating 

beyond its design constraint. However, previous research 

findings showed contradictory results. While some in situ 

tests showed that negative fluid temperatures did not lead 

to freezing in the soil-pile interface, a combination of both 

negative air temperatures and fluid temperatures within pi-

les caused significant heave next to piles in the other case 

study. Therefore, if such constraint is improved by taking 

into account concrete’s significant role in storing the e-

nergy, it would allow the range of temperatures in piles to 

be extended and more heat to be derived from the energy 

pile system. On the other hand, in cases where freezing 

might occur due to the unexpected failure of the heat pump 

system or change in climate conditions, the influence of 

freezing and thawing cycles on volume change and subs-

equent changes in shear behaviour between the soil and the 

pile concrete should be further investigated. Such findings 

would also be highly useful in advanced geotechnical con-

structions conducted in areas with colder climate, i.e. per-

mafrost areas. 

In recently conducted numerical simulations, presented 

models have been simplified taking heat conduction as the 

only way of heat transfer and have been conducted focu-

sing mostly on heat propagation around the heat source 

with assumption that material properties of the ground do 

not change with temperature. Such simplifications are in-

troduced mostly because numerical tools for analysis of 

coupled processes are in general mesh-dependent, oscilla-

tory and computationally resource demanding. Hence, 

such models exhibit limitations and cannot be fully used 

for general structural conditions and climates in daily en-

gineering practice. Because past in situ tests were perfor-

med over a short time period, i.e. mostly one heating/coo-

ling season, 3-dimensional numerical modelling descri-

bing transient thermo-hydro-mechanical behaviour of e-

nergy piles embedded in a soil mass is essential for provi-

ding insights into energy piles’ behaviour over a long time 

period. Hence, further effort should be focused in develo-

ping comprehensive but numerically efficient tools that 

will be designed to run on desktop machines that could be 

utilised in engineering practice. However, full scale field 

experiments focusing on the long-term thermo-mechanical 

soil-pile interaction and laboratory experiments through 

which material parameters and thermo-hydro-mechanical 

constitutive relationships would be derived are essential 

for development and validation of such numerical models 

that would be capable of addressing potential                        

failure mechanisms. In addition, such models could be 
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then utilised for establishing standards and norms as well 

as enhancing existing guidelines. 

 

6. CONCLUSION 

 
In the past few decades, energy piles have proved to be 

innovative and environmentally friendly structural ele-

ments that function as heat exchangers providing energy to 

the overlaying structure. Different examples and existing 

research studies are presented in this paper, providing ge-

neral information obtained in the previous work. Although 

this technology has been recently applied in various coun-

tries, there are still important knowledge gaps on the 

consequences of the application of such technology beca-

use of the potential risks that might arise due to unforeseen 

induced cyclic thermal stresses making construction com-

panies reluctant to apply energy piles in daily practice. Po-

tential issues and knowledge gaps related to thermal, 

hydraulic and mechanical behaviour of soil and the soil-

pile interaction are pointed out which, if further investiga-

ted, could help to better understand the long term beha-

viour of such systems. 
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