Effects of thermo-osmosis on hydraulic behaviour of saturated clays

Renato Zagorščak¹, Majid Sedighi²,³ and Hywel R. Thomas⁴

¹ Ph.D. Student, Geoenvironmental Research Centre, School of Engineering, Cardiff University, The Queen’s Buildings, The Parade, Cardiff, CF24 3AA, United Kingdom (corresponding author). E-mail: ZagorscakR@cardiff.ac.uk

² Research Fellow, Geoenvironmental Research Centre, School of Engineering, Cardiff University, The Queen’s Buildings, The Parade, Cardiff, CF24 3AA, United Kingdom.

³ Lecturer, School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Sackville Street, Manchester, M1 9PL, United Kingdom (current affiliation). E-mail: majid.sedighi@manchester.ac.uk

⁴ Professor, Geoenvironmental Research Centre, School of Engineering, Cardiff University, The Queen’s Buildings, The Parade, Cardiff, CF24 3AA, United Kingdom. E-mail: ThomasHR@cardiff.ac.uk

Abstract

Despite a body of research carried out on thermally coupled processes in soils, understanding of thermo-osmosis phenomena in clays and its effects on hydro-mechanical behaviour is incomplete. This paper presents an investigation on the effects of thermo-osmosis on hydraulic behaviour of saturated clays. A theoretical formulation for hydraulic behaviour is developed incorporating an explicit description of thermo-osmosis effects on coupled hydro-mechanical behaviour. The extended formulation is implemented within a coupled numerical model for thermal, hydraulic, chemical and mechanical behaviour of soils. The model is tested and applied to simulate a soil heating experiment. It is shown that the inclusion of thermo-osmosis in the coupled thermo-hydraulic simulation of the case study provides a
better agreement with the experimental data compared with the case where only thermal
expansion of the soil constituents was considered. A series of numerical simulations are also
presented studying the pore water pressure development in saturated clay induced by a
heating source. It is shown that pore water pressure evolution can be considerably affected by
thermo-osmosis. Under the conditions of the problem considered, it was found that thermo-
osmosis changed the pore water pressure regime in the vicinity of the heater in the case where
value of thermo-osmotic conductivity was larger than 10^{-12} m2.K$^{-1}$.s$^{-1}$. New insights into the
hydraulic response of the ground and the pore pressure evolution due to thermo-osmosis are
provided in this paper.

Keywords

Thermo-osmosis; saturated clay; hydraulic behaviour; coupled modelling; hydro-mechanical
Introduction

Temperature variations can induce various processes and changes in soil-water system and affect the engineering behaviour of soil. In many engineering applications, considerable changes in ground temperature can be expected. Examples are i) the geological disposal of high level radioactive waste where elevated temperature is generated by the waste and ii) ground source heat or energy foundations where thermal gradients in the soil are induced by exchanging heat with the ground. Understanding the processes and parameters involved in the behaviour of soils under non-isothermal conditions is therefore of importance for performance analysis and sustainable design of various geo-structures.

It has been previously shown that heating of soils can cause pore water pressure development and contraction/dilation in the soil depending on the stress history (Campanella and Mitchell 1968; Towhata et al. 1993; Sultan et al. 2002; Laloui and François 2009). Observations from a field experiment of heat storage in clay have indicated that by applying a temperature gradient, an excess pore water pressure has developed during the heating period which has resulted in a considerable settlement after pore water pressure dissipation (Moritz and Gabrielsson 2001). The difference between the thermal expansion properties of water and solid particles of soil has been described as being the most influential mechanism for pore water pressure development in saturated soils (Mitchell 1993).

Osmosis phenomena are among key processes controlling the water flow, chemical transport and deformation behaviour of clays. Under non-isothermal conditions, thermo-osmosis is a coupled mechanism that describes fluid flow in saturated clays under a temperature gradient. From a thermodynamics point of view, thermo-osmosis is controlled by the enthalpy difference between the free water/fluid in the clay pores and the pore water affected by the
clay interactions (Gonçalvès and Trémosa 2010). In particular, the presence of an electric field normal to the clay mineral surface modifies the structure and properties of the fluid at the solid surface which causes an alteration of the specific enthalpy of the solution in the pore space. Due to such alteration, a positive change in enthalpy can cause a liquid flow from the warm to the cold side of a sample (Gonçalvès and Trémosa 2010). Despite a significant body of research studying the hydraulic behaviour of saturated and unsaturated clays, limited studies have discussed the effects of thermo-osmosis on the overall thermo-hydro-mechanical behaviour of saturated soils.

The soil property associated with thermo-osmosis is expressed by the thermo-osmotic conductivity which has been reported to be in the range of $10^{-14} - 10^{-10}$ m2.K$^{-1}$.s$^{-1}$ (Dirksen 1969; Soler 2001; Zheng and Samper 2008; Ghassemi et al. 2009). Due to the wide range of values reported in the literature, the impact of thermo-osmotic conductivity value on pore water pressure evolution and fluid flow near a heat source is still unclear. While it can be expected that the effect of thermo-osmosis on pore water pressure evolution becomes more significant with an increase in the magnitude and duration of a heat emission due to the established thermal gradient in the vicinity of the heat source, further understanding on the importance of thermo-osmosis on such behaviour is required.

Experimental investigations have demonstrated the effects of thermo-osmosis on water flow under temperature gradient in saturated clays (e.g. Dirksen 1969; Trémosa et al. 2010). Dirksen (1969) has reported the flow of water in compacted saturated clays induced by applying a temperature gradient. Trémosa et al. (2010) have reported a series of in-situ experiments where the importance of thermo-osmosis on water flow in clay-rock has been examined. The results have suggested that thermo-osmosis can affect the water flow and contribute to the excess pore pressure observations in impervious rocks. Gonçalvès et al.
(2012) have reported that in low porosity saturated clays, the water flow induced by a temperature gradient occurs from the warm boundary to the cold boundary whilst in high-porosity soils with a weak thermo-osmotic property, the water flow can occur in the opposite direction of the temperature gradient.

Recent studies have indicated that the electro-chemical interactions in the water-clay interface correlate with thermo-osmotic properties (Gonçalvès and Trémosa 2010; Gonçalvès et al. 2012). An expression for the thermo-osmotic conductivity considering the enthalpy change due to hydrogen bonding to the clay surfaces has been suggested by Gonçalvès et al. (2012). Correlations have been provided between thermo-osmotic permeability and intrinsic permeability for different clays which indicate that the ratio of thermo-osmotic conductivity to the intrinsic permeability is strongly correlated with the electrochemical properties of the soil (Gonçalvès et al. 2012). For most of the soils, the ratio falls within a range of 10^{-3} Pa.K$^{-1}$, while for some shales it can be up to 10^{8} Pa.K$^{-1}$ (Gonçalvès et al. 2012).

A limited number of modelling studies exist describing the effects of thermo-osmosis on coupled thermo-hydraulic and thermo-hydro-mechanical behaviour of saturated clays. A coupled thermo-poroelastic numerical investigation on semi-impermeable clay barriers has been presented by Zhou et al. (1998) which considers compressibility, thermal expansion of constituents and thermo-osmosis. Sánchez et al. (2010) have studied the thermo-hydro-mechanical behaviour based on the results of a mock-up heating test with a special emphasis on the effect of the thermo-osmotic flow in the hydration of the clay barrier. The results of this study have indicated that the inclusion of the thermo-osmotic flow in the analysis of moisture migration has improved the accuracy of the model prediction. Zheng et al. (2011) have presented a numerical investigation of the coupled thermal, hydraulic and chemical behaviour of compacted clay including the effects of thermo-osmosis. The results of
sensitivity analyses presented by Zheng et al. (2011) have indicated that the water contents and dissolved concentrations are strongly sensitive to the intrinsic permeability and the thermo-osmotic permeability. Furthermore, authors have concluded that chemical osmosis is of less importance comparing to Darcian flux and thermo-osmosis. An analysis of the pore pressure distribution in shale formations under thermal, hydraulic, chemical and electrical interactions has been conducted by Roshan and Aghighi (2012). Authors have shown that thermo-osmosis plays a considerable effect on the pore pressure evolution when considering the temperature gradient between the formation and the drilling fluid. Chen et al. (2013) have studied the effect of positive and negative thermo-osmotic coefficients on pore water pressure evolution in low porous material. A conclusion has been made that thermo-osmosis can have a strong influence on water transport and mechanical deformation. Further research needs have been suggested as a result of this work to obtain a better understanding of the direction of the water flow in the domain.

More recently, Yang et al. (2014) have presented an analytical model for the coupled effect of thermo-osmosis in saturated porous medium and studied the pore pressure and stress variations of clay under thermal effects. Similarly, Roshan et al. (2015) have developed an analytical solution for a thermo-osmotic test that includes the effects of the solid-thermal expansion and thermo-osmosis. By conducting a series of thermo-osmotic experiments and further analysis using the analytical model, authors have concluded that for the correct interpretation of experimental data, it is important that both solid-fluid thermal expansion and thermo-osmosis are considered in the analysis.

This paper presents the development of a formulation and a numerical model for coupled thermal, hydraulic and mechanical behaviour of saturated clay with emphasis on studying the effects of thermo-osmosis on hydraulic behaviour. A formulation of water flow is presented
which is implemented within an existing numerical model of coupled thermal, hydraulic,
chemical and mechanical behaviour of unsaturated soils (Thomas and He 1997; Thomas et al.
2003; Sedighi et al. 2016). The results of a series of numerical investigations are presented to
test the implementation of the formulation in the model. The effects of thermo-osmosis are
considered by comparison with analytical and experimental benchmarks. In addition, a series
of numerical simulations are presented which aim to investigate the effects of thermo-
osmosis on pore water pressure development around a heat source.

Theoretical formulation and numerical model

The formulation presented below is based on the general formulation of coupled thermal,
hydraulic and mechanical behaviour (THM) for unsaturated soils presented by Thomas and
He (1997). A simplified form of the coupled THM formulation for saturated clays is extended
here which considers the effects of thermo-osmosis in hydraulic behaviour. It is noted that the
focus of the paper is on the effects of thermo-osmosis on hydraulic behaviour; hence a
simplified mechanical formulation is adopted and included in the governing equations for
water flow. The system is fully saturated; therefore the vapour flow is not considered.

Hydraulic behaviour

The governing equation of water flow is considered based on the principle of mass
conservation and following the formulation provided by Thomas and He (1997). This can be
expressed as (Thomas and He 1997):

\[\frac{\partial}{\partial t}(\rho_l \theta_l \delta V) = -\delta V \cdot (\rho_l \nu_l) \] (1)
where \(t \) is time, \(\rho_l \) is the density of liquid water, \(\theta_l \) is the volumetric water content, \(\nabla \) is the gradient operator and \(\delta V \) is the incremental volume of the soil. \(v_l \) is the velocity of liquid that is calculated based on Darcy’s law for water flow in saturated soils.

Expanding equation (1) for fully saturated clay with respect to its partial derivatives and using an incremental volume as a summation of the void volume and solid volume yields:

\[
e\delta V_s \frac{\partial \rho_l}{\partial t} + \rho_l \delta V_s \frac{\partial e}{\partial t} + \rho_l e \frac{\partial (\delta V_s)}{\partial t} = -\delta V_s (1 + e) \nabla \cdot (\rho_l v_l)
\]

where \(\delta V_s \) is the increment volume of the solids and \(e \) stands for the void ratio of soil.

Dividing equation (2) by \(\delta V_s \) and \((1 + e) \), yields:

\[
n \frac{\partial \rho_l}{\partial t} + \rho_l \frac{\partial e}{\partial t} + \rho_l n \frac{1}{\delta V_s} \frac{\partial (\delta V_s)}{\partial t} = -\nabla \cdot (\rho_l v_l)
\]

For a deformable soil the term \(\frac{\partial e}{\partial t} (1 + e) \) can be expressed as \(\frac{\partial \varepsilon_v}{\partial t} \), where \(\varepsilon_v \) is the volumetric strain that is, by definition, the rate of change of the void ratio with respect to the initial volume. The total volumetric elastic strain should include the contributions of thermal expansion and effective stress which can be presented as (Thomas and He 1997; Hueckel et al. 2011); therefore:

\[
\frac{\partial \varepsilon_v}{\partial t} = \alpha \frac{\partial T}{\partial t} - m_v \frac{\partial \sigma'}{\partial t}
\]

where \(\alpha \) is the thermal expansion coefficient of the soil structure, \(m_v \) is the coefficient of soil compressibility, \(T \) is the temperature and \(\sigma' \) is the effective stress which is based on Terzaghi’s effective stress principle equal to \(\sigma' = \sigma - u_l \) where \(\sigma \) is the total stress and \(u_l \) is the pore water pressure. Thermal expansion coefficient of the soil structure is a negative value if an increase in temperature causes a decrease in volume (Mitchell 1993; Thomas et al. 1996).
Assuming a constant mass of the solid phase, the temporal variation of the solid volume is equal to the temporal variation of the solid density, given as:

\[
\frac{1}{\delta V_s} \frac{\partial (\delta V_s)}{\partial t} = -\frac{1}{\rho_s} \frac{\partial (\rho_s)}{\partial t} \quad (5)
\]

where \(\rho_s \) is density of the solid phase.

The density of liquid phase can be presented as a function of water pressure and temperature (François et al. 2009); therefore:

\[
\frac{\partial (\rho_l)}{\partial t} = \rho_l \beta_l \frac{\partial u_l}{\partial t} - \rho_l \beta'_l \frac{\partial T}{\partial t} \quad (6)
\]

where \(\beta_l \) is the compressibility coefficient of liquid water and \(\beta'_l \) is the thermal expansion coefficient of water.

The solid grains are assumed to be incompressible by stress. Therefore the density of the solid phase is expressed only as a function of temperature:

\[
\frac{\partial (\rho_s)}{\partial t} = -\rho_s \beta'_s \frac{\partial T}{\partial t} \quad (7)
\]

where \(\beta'_s \) is the thermal expansion coefficient of solid particles.

Replacing equations (4) to (7) into equation (3) and rearranging the similar terms, yields:

\[
\rho_l [n \beta_l + m_v] \frac{\partial u_l}{\partial t} + \rho_l [n (\beta'_s - \beta'_l) + \alpha] \frac{\partial T}{\partial t} - \rho_l m_v \frac{\partial \sigma}{\partial t} = -\nabla \cdot (\rho_l \mathbf{v}_l) \quad (8)
\]

The mechanisms of water flow are considered to be due hydraulic, thermo-osmosis and gravitational potentials (Gonçalvès and Trémosa 2010). It is noted that the chemical osmosis is not considered here. Using Darcy’s law and considering the potentials for water flow described above, the velocity of liquid can be presented as (Gonçalvès and Trémosa 2010):

\[
\mathbf{v}_l = -k_l \left(\frac{\nabla u_l}{\rho_l g} + \frac{k_T}{k_l} \nabla T + \nabla z \right) \quad (9)
\]
where k_l is the saturated hydraulic conductivity, k_T stands for the thermo-osmotic conductivity, z is the elevation and g is the gravitational constant.

The general form of water flow described in equation (8) can be extended considering the water flow mechanisms presented in equation (9) as:

$$
\rho_l \left[n \beta_l + m_v \right] \frac{\partial u_l}{\partial t} + \rho_l \left[n (\beta'_s - \beta'_l) + \alpha \right] \frac{\partial T}{\partial t} - \rho_l m_v \frac{\partial \sigma}{\partial t} = \nabla \cdot \left(\frac{k_l}{g} \nabla u_l \right) + \nabla \cdot (k_T \rho_l \nabla T) + \nabla \cdot (k_l \rho_l \nabla z)
$$

Equation (10) can be further simplified under the constant total stress as:

$$
\rho_l \left[n \beta_l + m_v \right] \frac{\partial u_l}{\partial t} + \rho_l \left[n (\beta'_s - \beta'_l) + \alpha \right] \frac{\partial T}{\partial t} = \nabla \cdot \left(\frac{k_l}{g} \nabla u_l \right) + \nabla \cdot (k_T \rho_l \nabla T) + \nabla \cdot (k_l \rho_l \nabla z)
$$

Thermal behaviour

The governing equation of heat transfer has been developed based on the energy conservation law in unsaturated porous media (Thomas and He 1997). Based on the formulation presented in Thomas and He (1997), the governing equation of heat transfer in saturated soil can be presented as:

$$
\frac{\partial}{\partial t} \left[H_c (T - T_r) \right] = -\delta V \nabla \cdot [-\lambda_T \nabla T + A(T - T_r)]
$$

where H_c is the heat storage capacity, T_r represents the reference temperature, λ_T is the thermal conductivity and A stands for the sum of the heat convection components.

Details of the expanded formulation for the governing equations of heat transfer presented in equation (12) can be found in Thomas and He (1997).

Numerical model development
The formulation of water flow is implemented within an existing numerical model (COMPASS) developed at the Geoenvironmental Research Centre, Cardiff University which is based on finite element and finite difference methods (Thomas and He 1997; Thomas et al. 2012). The Galerkin weighted residual method has been adopted by which the spatial discretisation is developed and the temporal discretisation is achieved by applying an implicit finite difference algorithm (Thomas and He 1997; Seetharam et al. 2011; Sedighi et al. 2016). The model has been extensively tested, applied and extended to study the coupled behaviour of unsaturated soils, in particular, the behaviour of highly compacted swelling clays in relation to geological disposal of high level radioactive waste (e.g. Thomas et al. 2003; Cleall et al. 2007; Vardon et al. 2011; Thomas and Sedighi 2012). The chemistry of clay-water interaction and the effects on coupled processes of highly compacted swelling clays have recently been integrated in the model (Sedighi 2011; Sedighi and Thomas 2014). Details of the numerical formulation and computational aspects have been discussed in previous publications; therefore the details are not repeated here.

The components of the hydraulic behaviour considering thermo-osmosis, thermal expansion relationships and associated parameters of consolidation presented in equation (11) are implemented in the numerical model. It is noted that the application of the model presented in this paper is under constant total stress. Therefore the simulations have been carried using the thermo-hydraulic modules of the model.

Verification under steady state conditions

Inclusion of the thermo-osmosis formulation in the water flow equation (equation 11) in the numerical model is tested here. The problem considered is a fully saturated clay where a
fixed temperature gradient in the system causes a gradient of water pressure. As the flow occurs horizontally, the gravitational effects can be neglected. Under these conditions, the temporal variations of temperature and pore water pressure become zero and equation (11) can be simplified as:

\[
\frac{k_i}{g} \nabla u_i = -k_T \rho_i \nabla T
\]

(13)

This section presents the results of a verification test on the inclusion of thermo-osmosis component for moisture flow in comparison with the above algebraic equation and under the same conditions. A two dimensional soil domain (1.0 × 0.1 m) is considered in this simulation. The soil is assumed to be fully saturated. Temperatures at the boundaries are assumed to be fixed values, i.e. 300K and 285K which provide a constant temperature gradient over the domain at steady-state condition. The water pressure is considered fixed at the boundary with lower temperature while the other side of the domain is considered as an impermeable boundary for water flow. The initial pore water pressure is assumed to be equal to the water pressure at the boundary, i.e. 100 kPa.

The domain is discretised into 100 equally sized 4-nodded quadrilateral elements. A constant time-step of 3600 seconds is considered. Material parameters used in the simulation are presented in Table 1.

By knowing the temperature gradient in the system, the gradient of water pressure can be analytically calculated at steady state using equation (13). For the conditions and parameters used in this problem, the gradient of pore water pressure can be given as:

\[
\nabla u_i = -\frac{5.0 \times 10^{-12} \times 998.0 \times 9.81}{1.0 \times 10^{-11}} \times \frac{285 - 300}{1} = 73427.85 \text{ Pa.m}^{-1}
\]
The pore water pressure at the left hand side boundary with temperature of 300K is therefore obtained to be equal to 26572.15 Pa.

Fig. 1 presents the profile of water pressure in the domain. The same value for the gradient of pore water pressure is obtained from the numerical results as that calculated from the analytical solution. It can be observed that the pore pressure decreases in the warmer boundary of the domain due to the thermo-osmosis effect in order to maintain the overall water potential balance in the system.

Pore water pressure development in a heating experiment

In order to examine the effects of thermo-osmosis in pore water pressure development under non-isothermal conditions, numerical simulations are carried out based on a field scale heating experiment (ATLAS test) carried out in Mol, Belgium in an underground research facility at a depth of 223 m in Boom Clay (François et al. 2009; Chen et al. 2011). The simulation conditions including the domain, initial conditions and boundary conditions are selected based on the experimental conditions described in François et al. (2009). The numerical analysis includes studying the pore water pressure generation due to thermal load through two series of analysis: i) without considering thermo-osmosis in the analysis and ii) by including the thermo-osmosis effects.

The simulation problem is a 100 m axisymmetric domain where the inner boundary is impermeable for flow. At the inner boundary, temperature is instantaneously increased by 45K from the initial value of 289.5K and kept constant for 3 years. Temperature is then increased by 40K and kept constant for 11 months after which it is restored back to the initial temperature and remains constant until the end of the simulation. At the outer boundary, the
temperature and the pore water pressure are fixed at the same value of the initial condition, i.e. 289.5K and 2.025 MPa, respectively.

The physical properties of Boom Clay have been presented in several published works (e.g. Baldi et al. 1988; Hong et al. 2013; Hueckel and Baldi 1990; Sultan et al. 2002; Cui et al. 2009; François et al. 2009; Chen et al. 2011). A summary of the material properties used in this study is presented in Table 2. For the sake of simplicity, the outlined parameters are taken as constants in the numerical simulation. The value of thermo-osmotic permeability is calculated based on data presented in Gonçalvès and Trémosa (2010) and Gonçalvès et al. (2012) who provided a ratio of osmotic permeability to intrinsic permeability (k_T/k) as a function of half-pore thickness of the porous media. Using the specific surface area values ranging between 150 m2.g$^{-1}$ and 163 m2.g$^{-1}$ presented in Deng et al. (2011) and half-pore thickness equation in Gonçalvès et al. (2012), a value for half-pore thickness of approximately 1.5nm for the Boom clay is calculated. Hence, following Gonçalvès and Trémosa (2010) and Gonçalvès et al. (2012), an approximate value for thermo-osmotic conductivity of 3×10^{-12} m2.K$^{-1}$.s$^{-1}$ is chosen. It is noted that in the absence of exact values for thermo-osmotic conductivity, the approximated value may involve a level of uncertainty, yet providing a reasonable value to be used for investigating the effect of thermo-osmosis phenomenon on pore water pressure development in this example.

The domain is discretised to 300 unequally sized 4-noded quadrilateral elements. A maximum time-step of one week is considered for the simulations for a total period of 2,500 days. Fig. 2 presents the results of temperature variation with time at 1.183 m distance from the symmetrical axis of the domain. The results are compared with those observed in the
experiment (François et al. 2009). From Fig. 2, it can be observed that the modelling results are in close agreement with the experimental data. The numerical results show a slight overestimation of the temperature evolution during the stages of temperature increase, while the numerical results agree well with the experimental data at the stages where temperature has been restored back to the initial soil temperature.

The results of the pore water pressure development with time at 1.183 m distance from symmetrical axis are presented in Fig. 3. Experimental data are also shown in Fig. 3. Two series of results from the numerical analysis are presented including the results of modelling without thermo-osmosis effects and those with this effect. The pore water pressure development in the analysis without thermo-osmosis is only related to thermal expansion effect. The numerical trend obtained is similar to the observation in the experiment. However, there are considerable discrepancies in terms of pore water dissipation at the end of both heating phases when temperature stabilised. In other words, the simulation without thermo-osmosis effect over-predicts the pore water pressure development. It can be observed that closer agreements with the experimental data are achieved when combined effects of thermo-osmosis and thermal expansion are considered in the simulations. The phenomenon can be explained by analysing the effect of thermo-osmosis on the fluid flow. Water flow is diverging from the warmer side towards the colder side of the domain causing a pressure decrease closer to the heat source. From the results presented in Fig. 3, it can be observed that during the stage at which temperature is stable, the thermo-osmosis contributes to the pore water pressure decrease. A similar observation has been presented in the work of Trémosa et al. (2010) where after an applied temperature pulse, the contribution of thermo-osmosis to the pore water pressure dissipation was found to be more pronounced than the reduction of the water volume due to the temperature decrease.
The results of the numerical model show good agreement with the first pore water dissipation stage while the results for the second and the third dissipation stages show slightly different pressure values compared with the experimental data. However, the general trend demonstrates a similar qualitative trend observed in the experiment. The discrepancies observed both for temperature and pore pressure evolutions may be related to various factors including the heat diffusion and liquid flow via radial direction (axisymmetric analysis), the approximated value for thermo-osmotic conductivity, duration of the simulation and constant values considered for the parameters used in the numerical simulation.

Simulation of thermo-osmosis effects

Numerical analysis

This section provides the results of a series of numerical simulations on the hydraulic behaviour of clay around a heating source. The aim of the simulations is to investigate the effects of thermo-osmosis on temporal and spatial pore water pressure developments around a heating source in saturated clay.

The problem studied is a two dimensional saturated soil domain (30 m × 1 m) which is heated at one boundary by a heating source 0.6 m in diameter. An axisymmetric analysis is considered where the axis of the symmetry is at the centre of the heat source. The internal boundary of the model corresponds to the external boundary of the heat source, which is 0.3 m away from the axis of the symmetry. The external boundary of the model is placed at 30.3 m from the symmetrical axis of the domain. The inner boundary condition is considered as an impermeable and adiabatic where a time curve is applied for temperature values. Temperature is constantly increasing from an initial value of 285K for the first 2 days until it
reaches a fixed value at 310K and then remains constant throughout the rest of the computation. At the external boundary, temperature and the pore water pressure are fixed to be the same as the initial condition values of 285K and 100 kPa, respectively.

The domain is discretised to 300 equally sized 4-noded quadrilateral elements. A maximum time-step of 2 hours (7200 seconds) is considered and the duration of the simulation is 30 days.

The soil parameters used in the simulations are summarised in Table 3. The simulation is carried out using three values of thermo-osmotic conductivity based on the range of \(\frac{k_T}{k} \) provided by Gonçalvès et al. (2012) given as \(k_T/k = 10 \), \(k_T/k = 100 \) and \(k_T/k = 1000 \).

The variation of water viscosity with temperature is not considered following the approach presented in Soler (2001) and Ghassemi and Diek (2002) and a constant value of \(10^{-3} \text{ Pa.s} \) at 20 °C is selected.

It should be noted that the thermo-osmotic conductivity is calculated with respect to intrinsic permeability with a value of \(3.3 \times 10^{-17} \text{ m}^2 \). As described by Goncalves et al. (2012), this ratio is expressed in Pa.K\(^{-1} \) which means that the intrinsic permeability has to be divided by the viscosity first in order to obtain the value of \(k_T \) in \(\text{m}^2 \cdot \text{K}^{-1} \cdot \text{s}^{-1} \). Therefore, water viscosity is taken as a constant value at 20°C.

The compressibility of the studied soils is calculated based on the specific surface area yielding an approximate value of coefficient of soil volume compressibility. A reference value of the specific surface area of 30 m\(^2\cdot\text{g}^{-1} \) is taken (Goncalves et al. 2012). Using approach proposed in Mitchell (1993) where an empirical relation between liquid limit and specific surface is given, a liquid limit is obtained through which an approximate value of coefficient of consolidation is assumed. Hence, using the obtained value for coefficient of
consolidation and known value of hydraulic conductivity, an approximate value of coefficient of soil volume compressibility of 3.3×10^{-8} Pa$^{-1}$ is calculated and used in the simulation which falls within a range of compressibility values for medium-hard clays.

The results of simulations using different coefficients of thermo-osmotic conductivity are presented and compared with the case where only thermal expansion is considered. Fig. 4 presents the variation of pore water pressure with time at the heat source and soil interface boundary. It can be observed that for the lowest value of thermo-osmotic conductivity used, i.e. 3.4×10^{-13} m2.K$^{-1}$.s$^{-1}$, the difference between the pore water pressure development in comparison with the case where only thermal expansion was considered is negligible, while for the higher values of thermo-osmotic conductivity the difference is more highlighted. As it can be observed after 5 days of heating, the pore water pressure value at the interface is 14.1% less when $k_T = 3.4 \times 10^{-11}$ m2.K$^{-1}$.s$^{-1}$ is used, compared to the analysis without thermo-osmosis contribution.

Due to the liquid flow caused by the temperature gradient in the domain, it can be expected that the rate of pressure drop would only enhance with time. This can be confirmed from Fig. 4 where after 25 days, pressure drop caused by thermo-osmosis increases to 16.31% for the case of $k_T = 3.4 \times 10^{-11}$ m2.K$^{-1}$.s$^{-1}$ in comparison with the results of simulations with thermal expansion only.

Temperature profiles in the domain after 2, 7 and 30 days are presented in Fig. 5. After 30 days of heating at a constant temperature of 310 K, heat propagates up to a distance of approximately 3.5 m from the heat source creating a temperature gradient in the domain.

Further discussion on the spatial variation of pore pressure development in the domain is presented for the simulation with high thermo-osmotic conductivity of 3.4×10^{-11} m2.K$^{-1}$.s$^{-1}$. In
addition, the results are compared with the case where only thermal expansion is included in
the simulation. Profiles of the pore water pressure in the domain for the case of the thermo-
osmotic conductivity of $3.4 \times 10^{-11} \text{ m}^2\cdot\text{K}^{-1}\cdot\text{s}^{-1}$ are shown in Fig. 6. The results are presented for
three different heating periods, i.e. 2 days, 7 days and 30 days after the start of the simulation.
The difference in pore water pressure evolution between the cases without and with the effect
of thermo-osmosis is considerable as shown in Fig 6. It can be observed that after 2 days of
heating, thermo-osmosis affects the pore water pressure evolution next to the heat source
yielding a reduction in the pore water pressure value for 12% in comparison to the case with
thermal expansion only. Due to the temperature gradient established in the vicinity of a heat
source, the effect of thermo-osmosis becomes more pronounced with an increase in
simulation time yielding a reduction in pore water pressure of 15% and 17% after 7 and 30
days, respectively. In addition, it can be seen that the pore water pressure almost returns to
the initial value at the interface after 30 days of heating due to thermo-osmosis effect. As a
consequence of water flowing away from the heat source under the temperature gradient, the
water pressure is slowly increasing further away in the domain.

The effects of thermo-osmosis

The results demonstrate the relative importance of thermally driven flow on pore water
pressure in the case of high thermo-osmotic properties. Under the conditions of the
simulations presented, it can be concluded that values of thermo-osmotic conductivity larger
than $10^{-12} \text{ m}^2\cdot\text{K}^{-1}\cdot\text{s}^{-1}$ can affect the water pressure field around the heat source. This
conclusion is in agreement with the observation reported in Soler (2001) who has performed
simple one-dimensional transport simulations including thermal and chemical osmosis,
hyper-filtration and thermal diffusion with the objective of estimating the effects of different
coupled transport phenomena where a temperature gradient of 0.25 K.m\(^{-1}\) has been used. Author has concluded that thermo-osmosis will have a significant effect if the value of thermo-osmotic conductivity is larger than \(10^{-12} \text{ m}^2\text{.K}^{-1}\text{.s}^{-1}\). As previously mentioned, values of the ratio of thermo-osmotic conductivity and intrinsic permeability against the total ionic content used in this paper are adopted from the data presented by Gonçalvès and Trémosa (2010) and Gonçalvès et al. (2012). This approach adopted provides relationships between the thermo-osmotic conductivity and clay surface-charge, bulk fluid concentration, type of counter ion in the pore water and pore size. In addition, authors have verified it with the available data which ones again confirm the electrochemical control of thermo-osmosis. Hence, for a constant value of intrinsic permeability, coefficient of thermo-osmotic conductivity could be influenced and modified by a combination of the aforementioned soil properties.

It is noted that the boundary conditions can have considerable influence on the pore water pressure evolution. In the case study presented, the outer boundary was considered to be a constant pore water pressure representing the far field condition. Under other scenarios where the outer boundary is impermeable or several heat sources are located close to each other, the thermo-osmosis could enhance the pore water pressure and induce local reduction in the effective stress. This could be an important aspect as the reduction in the effective stress could cause deformation and geomechanical instability.

Due to the fact that the temperature gradient is the driving potential for thermo-osmosis, the observed phenomenon could be further highlighted in media with low thermal conductivity where a large temperature gradient can develop next to the heat source. Using a value of \(3.4 \times 10^{-10} \text{ m.s}^{-1}\) for hydraulic conductivity in this study, it was observed that water flow both
under pressure gradients and temperature gradients contributes to the overall flow of water in
the system. However, in saturated porous media with hydraulic conductivity lower than the
abovementioned, liquid flow due to thermo-osmosis could become a dominant process
prevailing over a classical Darcian flow. This could be important in the context of a nuclear
waste disposal and radionuclide release where high temperature gradient is established in the
vicinity of waste packages and thermo-osmosis might contribute to the overall convective
transport of water and radionuclides. As this simulation for 30 days of heat emission shows
that thermo-osmosis affects the pore water pressure field around the heat source only when
relatively high value of thermo-osmotic conductivity is considered, this might not be the case
where heat emission lasts for prolonged time periods, i.e. thousands of years for the case of
nuclear waste. In such case, it can be expected that even lower values of thermo-osmotic
conductivity might contribute to the water flow in low permeability porous media. For such
purpose, further research should be undertaken for reliable estimation of the thermo-osmotic
conductivity value and its dependence on temperature and soil properties.

Conclusions

The work presented describes the effects of thermo-osmosis phenomenon on hydraulic
behaviour of fully saturated soils. The theoretical formulation accommodates thermo-osmosis
in the formulation of water flow under coupled thermal, hydraulic and mechanical behaviour.
The developed model was tested against an analytical benchmark and a heating experiment in
order to examine the accuracy of the model development and implementation. It was shown
that the inclusion of thermo-osmosis in the coupled thermo-hydraulic simulation of a heating
experiment provides a better agreement with the experimental data compared with the case where only thermal expansion of the soil constituents was considered.

A series of simulations were performed that examine the pore water pressure behaviour under heating. Through the numerical simulations presented, it was shown that the thermally driven liquid water flow due to thermo-osmosis can affect the pore water pressure evolution in the vicinity of the heat source. Under the conditions of the simulation related to the clay behaviour subjected to a constant heating source, it was found that the effect of thermo-osmosis is considerable at thermo-osmotic conductivity values larger than $10^{12} \text{m}^2\text{K}^{-1}\text{s}^{-1}$.

Acknowledgments

The work described in this paper has been carried out as a part of the GRC’s (Geoenvironmental Research Centre) Seren project, which is funded by the Welsh European Funding Office (WEFO). The financial support is gratefully acknowledged.

References

List of Tables:

Table 1. Material parameters for verification exercise
Table 2. Material parameters for validation exercise
Table 3. Material parameters for thermo-osmosis simulation
List of Figures:

Fig. 1. Profile of pore water pressure in the domain at steady-state

Fig. 2. Variation of temperature with time at the distance of 1.183 m from the axis of symmetry

Fig. 3. Variation of pore water pressure with time at the distance of 1.183 m from the axis of symmetry

Fig. 4. Pore water pressure evolution with time at the heat source-soil interface

Fig. 5. Temperature distributions around the heat source after 2, 7 and 30 days of heating

Fig. 6. Pore water pressure variation in the domain for the case of analysis without and with thermo-osmosis ($k_T = 3.4 \times 10^{-11} \text{ m}^2 \cdot \text{K}^{-1} \cdot \text{s}^{-1}$)
Table 1. Material parameters for verification exercise

<table>
<thead>
<tr>
<th>Material parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity</td>
<td>0.4</td>
</tr>
<tr>
<td>Water density</td>
<td>998.0 kg.m(^{-3})</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td>1.0×10(^{-11}) m.s(^{-1})</td>
</tr>
<tr>
<td>Thermo-osmotic conductivity</td>
<td>5.0×10(^{-12}) m(^2).K(^{-1}).s(^{-1})</td>
</tr>
<tr>
<td>Material Parameters</td>
<td>Value</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Porosity</td>
<td>0.4</td>
</tr>
<tr>
<td>Solid density</td>
<td>2670.0 kg.m(^{-3})</td>
</tr>
<tr>
<td>Specific heat capacity of liquid</td>
<td>4186.0 J.kg(^{-1}).K(^{-1})</td>
</tr>
<tr>
<td>Specific heat capacity of solid</td>
<td>732.0 J.kg(^{-1}).K(^{-1})</td>
</tr>
<tr>
<td>Thermo-osmotic conductivity</td>
<td>3.0x10(^{-12}) m(^2).K(^{-1}).s(^{-1})</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>1.69 W.m(^{-1}).K(^{-1})</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td>1.5x10(^{-12}) m.s(^{-1})</td>
</tr>
<tr>
<td>Solid thermal expansion coefficient</td>
<td>1.0x10(^{-5}) K(^{-1})</td>
</tr>
<tr>
<td>Water thermal expansion coefficient</td>
<td>3.5x10(^{-4}) K(^{-1})</td>
</tr>
<tr>
<td>Water compressibility</td>
<td>4.5x10(^{-10}) Pa(^{-1})</td>
</tr>
<tr>
<td>Soil compressibility</td>
<td>4x10(^{-9}) Pa(^{-1})</td>
</tr>
<tr>
<td>Soil thermal expansion coefficient</td>
<td>-5.0x10(^{-5}) K(^{-1})</td>
</tr>
</tbody>
</table>
Table 3. Material parameters for thermo-osmosis simulation

<table>
<thead>
<tr>
<th>Material parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porosity</td>
<td>0.47</td>
</tr>
<tr>
<td>Solid density</td>
<td>2630.0 kg.m⁻³</td>
</tr>
<tr>
<td>Specific heat capacity of liquid</td>
<td>4186.0 J.kg⁻¹.K⁻¹</td>
</tr>
<tr>
<td>Specific heat capacity of solid</td>
<td>937.0 J.kg⁻¹.K⁻¹</td>
</tr>
<tr>
<td>Thermo-osmotic conductivity</td>
<td>(1) 3.4×10⁻¹¹ m².K⁻¹.s⁻¹</td>
</tr>
<tr>
<td></td>
<td>(2) 3.4×10⁻¹² m².K⁻¹.s⁻¹</td>
</tr>
<tr>
<td></td>
<td>(3) 3.4×10⁻¹³ m².K⁻¹.s⁻¹</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>1.55 W.m⁻¹.K⁻¹</td>
</tr>
<tr>
<td>Hydraulic conductivity</td>
<td>3.4×10⁻¹⁰ m.s⁻¹</td>
</tr>
<tr>
<td>Solid thermal expansion coefficient</td>
<td>3.0×10⁻⁵ K⁻¹</td>
</tr>
<tr>
<td>Water thermal expansion coefficient</td>
<td>3.5×10⁻⁴ K⁻¹</td>
</tr>
<tr>
<td>Water compressibility</td>
<td>4.5×10⁻¹⁰ Pa⁻¹</td>
</tr>
<tr>
<td>Soil compressibility</td>
<td>3.3×10⁻⁸ Pa⁻¹</td>
</tr>
<tr>
<td>Soil thermal expansion coefficient</td>
<td>-5.0×10⁻⁸ K⁻¹</td>
</tr>
</tbody>
</table>
Fig. 1. Profile of pore water pressure in the domain at steady-state.
Fig. 2. Variation of temperature with time at the distance of 1.183 m from the axis of symmetry
Fig. 3. Variation of pore water pressure with time at the distance of 1.183 m from the axis of symmetry
Fig. 4. Pore water pressure evolution with time at the heat source-soil interface
Fig. 5. Temperature distributions around the heat source after 2, 7 and 30 days of heating.
Fig. 6. Pore water pressure variation in the domain for the case of analysis without and with thermo-osmosis ($k_T = 3.4 \times 10^{-11} \text{ m}^2.K^{-1}.s^{-1}$)