
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/92 5 3 6/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Zh a n g, Fan g-Lue, Wang, Jue, S h e c h t m a n, Eli, Zhou, Zi-Ye, S hi, Jia-Xin a n d H u, S hi-

Min 2 0 1 6. Ple noP atc h: p a t c h-b a s e d ple no p tic im a g e m a nip ula tion. IEEE Tra ns ac tions

on Visu aliza tion a n d Co m p u t e r Gr a p hics 2 3 (5) , p p. 1 5 6 1-1 5 7 3.

1 0.11 0 9/TVCG.20 16.2 5 3 2 3 2 9

P u blish e r s p a g e: h t t p://dx.doi.or g/10.11 0 9/TVCG.201 6.25 3 2 3 2 9

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

1

PlenoPatch: Patch-based Plenoptic Image

Manipulation
Fang-Lue Zhang, Member, IEEE, Jue Wang, Senior Member, IEEE,

Eli Shechtman, Member, IEEE, Zi-Ye Zhou, Jia-Xin Shi, and Shi-Min Hu, Member, IEEE

Abstract—Patch-based image synthesis methods have been successfully applied for various editing tasks on still images, videos and stereo

pairs. In this work we extend patch-based synthesis to plenoptic images captured by consumer-level lenselet-based devices for interactive,

efficient light field editing. In our method the light field is represented as a set of images captured from different viewpoints. We decompose

the central view into different depth layers, and present it to the user for specifying the editing goals. Given an editing task, our method

performs patch-based image synthesis on all affected layers of the central view, and then propagates the edits to all other views. Interaction

is done through a conventional 2D image editing user interface that is familiar to novice users. Our method correctly handles object boundary

occlusion with semi-transparency, thus can generate more realistic results than previous methods. We demonstrate compelling results on

a wide range of applications such as hole-filling, object reshuffling and resizing, changing object depth, light field upscaling and parallax

magnification.

Index Terms—Plenoptic image editing, light field, patch-based synthesis

✦

1 INTRODUCTION

Light field (or plenoptic) cameras have significantly ad-

vanced and become wide spread in recent years, showing a

high potential to revolutionize photography. Such cameras

typically use microlens arrays to capture 4D light field

information of the scene, resulting in a plenoptic image that

encodes scene appearance from different viewpoints. Since

it contains 3D scene information, a plenoptic image enables

new post-processing possibilities that are impossible for

conventional 2D images, such as changing the viewpoint

and refocusing. As recent consumer-level plenoptic cameras

such as Lytro 1 ,PiCam [48] and Raytrix 2 are gaining

popularity, there is an increasing demand for advanced

editing tools for manipulating their outputs.

Despite the rapid development in hardware design of

plenoptic cameras, plenoptic image editing has been a less

explored territory. Previous approaches have explored a

limited range of editing operations [21] such as super-

resolution [4], morphing [50], view c synthesis [27], re-

focusing [36] and retargeting [3]. In contrast, 2D image

editing has been an extensively studied area and among

numerous available techniques, patch-based synthesis meth-

ods have emerged as the state-of-the-art for many applica-

tions such as hole filling, retargeting and reshuffling [2]. In

this paper, we extend patch-based methods for interactively

• Fang-Lue Zhang, Zi-Ye Zhou, Jia-Xin Shi and Shi-Min Hu

are with TNList, Tsinghua University, Beijing, China. E-mail:

z.fanglue@gmail.com, jerry.zhou@gmail.com, ishijiaxin@qq.com and

shimin@tsinghua.edu.cn. Shi-Min Hu is the corresponding author.

• Jue Wang and Eli Shechtman are with the Creative Technologies

Lab of Adobe Research, Seattle, WA 98103 USA., E-mail: jue-

wang@adobe.com and elishe@adobe.com

1. https://www.lytro.com

2. http://www.raytrix.de

manipulating consumer plenoptic images, to achieve new

light field editing effects that were not explored with

existing techniques, such as removing an object from the

scene, locally editing and reshuffling objects, changing the

depth of an object and increasing the depth range of the

scene through parallax magnification. Our method also

generates better light field upscaling results than existing

methods.

Our system is designed for consumer light field data. We

(a) (b)

(c) (d)

Fig. 1. Patch-based plenoptic image editing. (a) A refo-

cused central view of the input light field. (b) Shrinking the

flower bouquets. (c) Moving an object towards the camera.

(d) Narrowing the depth-of-field by parallax magnification

(Bokeh effect).

2

 Input light field Affected layers Edited light field

 Layered synthesis

 Mask synthesis

User input

Depth layers

 Appearance synthesis

Fig. 2. The flowchart of the proposed interactive light field editing system. The light field is represented by a set of images

captured at 37 viewpoints with a hexagonal layout, visualized in the top-right corner of the left image. Given an input light

field, our system extracts a depth layered representation at the central view, where the user specifies the editing task.

Patch-based synthesis is then applied to all layers that are affected by the task to create the edited version of the central

view. Finally, the edits are propagated to all other views to generate the full modified light field.

therefore take advantage of the fact that the scene content

of such data can be approximately treated as overlapped

layers, a common approximation in consumer lenselet-

based cameras. The view angle differences in the lenselet

array of a consumer camera are small compared to large

camera array prototypes, making the same objects have

very similar appearance across different views. This is also

the reason why the Lambertian assumption can be used to

recover the light field from the raw data of lenselet-based

cameras. In our work we thus represent the light field as a

set of sub-images arranged by the coordinates of the lenses,

and each image can be decomposed into a few depth layers.

As shown in Figure 2, given an input light field, we first

recover the depth layers for the central view image (Sec-

tion 4), which is then presented to the user for specifying

an editing task using rough scribbles, providing a natural

user interface that is similar to common interfaces in exist-

ing photo editing tools. Given the user-specified task, we

identify all layers that are affected by it, and apply patch-

based, depth-layer-aware image synthesis on all affected

layers to meet the editing specifications (Section 5). Finally,

edits made on the central view are propagated coherently

to all other views to generate the final modified light field

(Section 6).

Our main technical contributions include:

1) A novel framework that enables applying advanced

patch-based image synthesis methods for plenoptic

image editing, through a conventional 2D image

editing user interface;

2) A layered synthesis method for depth-aware image

editing (of the central view);

3) A method for propagating edits from the central

view to other views while maintaining view point

consistency;

4) A variety of new light field editing applications that

are made possible by the proposed system, including

hole filling, reshuffling and cloning, change of depth

and parallax magnification.

2 RELATED WORK

Light field capture and analysis. Earlier systems use large

camera arrays for light field capturing [28], [54], while Ng

et al. [36] developed the first hand-held light field camera.

The light field can also be captured by microscopes [29].

With the recently developed compact light field cameras

such as PiCam [48] and Lytro, plenoptic images have

become accessible to consumers. To process the raw data

captured by such devices, Dansereau et al. [7] proposed

a parametric plenoptic camera model and a corresponding

procedure for decoding, calibrating and rectifying plenoptic

data. There have also been a series of works on how to

display high quality light fields [52][32][25][20][14] and

reconstruct them [26][44], and how to generate stereo-

scopic views [18] and stereo images [23] from them.

These approaches are mainly concerned with capturing and

displaying the light field rather than interactive light field

editing, the main goal of this work.

Ng [35] and Egan et al. [11] analyzed the light field

data in the 4D Fourier domain, which leads to more

recent works on using the spectrum domain methods for

analyzing the dimensionality gap and recovering the full

light field from the focal stack based on the Lambertian

assumption [27] [24]. However, Fourier methods do not

support precise local object editing, which is the goal of

our work. Recently, Goldluecke et al. [16] and Wanner

et al. [51] propose methods to analyze the structure and

perform segmentation in light fields, which do not focus

on interactive editing either.

Plenoptic and Stereo image editing. There have been

some previous approaches on interactive light field editing.

Seitz and Kutukakos [40] and Horn and Chen [19] proposed

interactive systems for directly editing the light rays while

preserving the consistency of the scene when viewing the

light field from different perspectives. Various interactive

methods for morphing 3D objects represented by light

fields [50] [6] [55] and stabilizing light field video [45]

have also been presented. However, these methods do not

support more advanced editing goals such as completion

3

Fig. 3. The hexagonal layout of the camera array.

and reshuffling. Jarabo et al. [22] proposed a novel affinity

function that can be used to propagate sparse user edits

to the full light field, and presented a thorough study to

evaluate workflows of related editing tasks [21]. Birklbauer

and Bimber [3] presented a z-stack seam carving method

for light field retargeting. One major limitation of the

above work is that they adopt a holistic approach (e.g.,

using a global deconvolution) to recover the edited light

field, which often leads to visual artifacts when rendering

regions near depth edges. Our method carefully handles

object boundaries to avoid producing such artifacts. These

approaches are also aiming a specific editing task and are

not general enough to be applicable for other tasks.

Our work is also related to stereo image editing. Various

editing tools such as object cut-and-paste [31] [47] [33],

resizing [30] and warping [37] have been developed for

stereo image pairs. Patch-based methods have also been

explored for hole filling in stereo pairs [34], but this method

cannot be directly extended to plenoptic images. This is

because it uses a cross-image patch searching and matching,

while a plenoptic image contains so many views that would

make the search space intractable. We tried a more elaborate

extension of their method but found that it still does not

provide enough consistency across views comparing to

our method. A recent method by Boominathan et al. [5]

applied patch-based approach for the upsampling (super-

resolution) a plenoptic image, an applications we show as

well. Similarly to [34], these patch-based methods do not

handle properly depth boundaries, where there are pixels

that are only visible in certain views. We compare to both

methods in Section 7 and 8.

Patch-based image editing. Non-parametric patch-based

synthesis methods have advanced substantially in recent

years and achieved state-of-the-art performance in various

image and video editing tasks. These include image-based

rendering [12], hole-filling [53], texture synthesis [10],

retargeting and reshuffling [9], super-resolution [15], mor-

phing [43], image compositing and interpolation [8] and

HDR reconstruction [41]. In particular, Barnes et al. [2]

proposed a patch-based fast approximate nearest-neighbor

search algorithm called PatchMatch, enabling image editing

at interactive rates. The success of this approach has led

to implementations in popular commercial tools such as

Adobe Photoshop [1] and other image editing software.

These methods however were not designed for plenoptic

image editing.

x

u

x

u

l

l

Fig. 4. 2D (x, u) slices for an original light field (top) and an

edited version that is not coherent across views (bottom),

and the corresponding images on the left and right. In the

top slice, the highlighted scene point on the eyebrow is

on a line that has the same color across different views.

In the wrongly-modified light field, pixel colors along the

same line contain sudden changes, corresponding to visual

discontinuities and incorrect depth perception.

3 OVERVIEW

A continuous light field is represented discretely by a set

of images Iu,v(x, y): each captured by a single camera

from a view (u, v), where the intensity (or color) value at

pixel (x, y) in Iu,v is L(x, y, u, v). Each image Iu,v(x, y)
contains a set of pixels that are arranged in a rectangular

2D grid.

Several constraints need to be taken into consideration

when editing a light field. First, we need to consider fidelity,

meaning that an edited view image should have similar

appearance with the corresponding input view. Secondly,

we want to preserve cross-view coherence to ensure that

the edits in neighboring views do not introduce visual

discontinuity so the viewer perceives a realistic scene when

switching between views. We propose a method to edit

the light field while considering the fidelity and cross-

view coherence, as shown in Figure 2. To describe fidelity

mathematically, similar to previous patch-based image ma-

nipulation methods [2], for each view (u, v), we compute

a fidelity measure as the sum of the differences between

every patch in the edited image I ′u,v and its most similar

patch in Iu,v , where the patch differences D are measured

using SSD (Sum of Squared Differences) in Lab color space

as:

Ef (u, v) = D(At, As), (1)

where D(s, t) is the depth-aware patch difference function

that will be defined in Section 4. At and As refer to

the edited region in I ′u,v and the source region in Iu,v ,

respectively. Detailed explanations will be given in Section

4.

Cross-view coherence means that a point on a real scene

should have very similar appearance when observed from

4

different views. In the original light field, for every point

(x, y, u, v) in the 4D space, the points that map to the same

scene point should be on one plane that passes though it, on

which the pixel values are near constant. Figure 4 illustrates

the 2D projection of 4D light field on the (x, u) plane,

where the lines are the projection of those planes. The

slope of each line is determined by the distance between the

scene point and the camera. If the editing operations violate

cross-view coherence, these lines might break, resulting in

sudden visual jumps when switching views. This is shown

in the bottom of Figure 4. Formally, we define the cross-

view coherence for each point (u, v, x, y) as:

Ec(u, v) =
∑

p∈I′

u,v

min
d

∑

m,n

||I ′u,v(p)− I ′m,n(p
′)||,

with p = (x, y), p′ = (x+ d(m− u), y + d(n− v)),
(2)

where d is the disparity value, p is a point in the current

view (u, v) and p′ is a corresponding point according to

the disparity, in a different view (m,n). We first find the

disparity of p, i.e. the slope of its coherent line along which

the appearance variation is minimal, and then evaluate the

view consistency along this line. To minimize the impact

of color noise, we use a local 5 ∗ 5 patch instead of a

single pixel to measure the view consistency by calculating

the L2-norm between the patches. Finally, we sum over

all patches in I ′u,v to derive the coherence measurement: a

large value indicates a violation of the cross-view coher-

ence constraint. In this cost function, the variables to be

optimized are the edited pixel value I ′u,v(p).

Our method firstly minimizes Ef for the central view in the

edited light field using a modified layer-based PatchMatch

method (see Section 5). Then the edits are propagated to

other views based on the layered scene approximation,

resulting in low Ec for the modified light field (see Section

6.1). Finally, we use a sub-pixel refinement method to

further minimize Ec across all views (see Section 6.2).

4 LAYERED SCENE REPRESENTATION

4.1 Justification

Our light field editing framework is based on the as-

sumption that the captured light field data can be well

approximated by a fixed number of scene layers at different

depths. While this is not generally true for any light field

data, we have found that it holds well for images captured

by consumer-level light field cameras such as Lytro. To

quantitatively evaluate how well the layered representation

can approximate the original data captured by such camera,

we conduct the following experiment.

We extract different numbers of depth layers from the

original light field data using the optimization approach

proposed in Section 4.2. The number of scene layers ranges

from 1 to 128. We then use the extracted depth layers to

reconstruct the light field using the view synthesis approach

proposed in Section 7.3, and constrain the target views

to be exactly the same as the input views. We compute

the average per-pixel reconstruction error as the means to

evaluate the accuracy of the layered representation. The

results for some examples and the average errors for all

examples used in this paper are plotted as curves in Figure

5.

The results show that when the number of depth layers

are small (less than 8), the reconstruction error quickly

drops as the number of scene layers increases, indicating

that more accurate representation is achieved. However, the

reconstruction error becomes stable after reaching 32 depth

layers, and adding depth layers beyond that does not help.

This experiment suggests that the light field data produced

by the Lytro camera may have already been compressed

and is possibly represented internally using a finite set of

discrete layers. This is a reasonable choice given that the

camera has narrow parallax.

Fig. 5. The image reconstruction errors using different

number of scene layers to represent the original light field

data captured by a Lytro camera.

4.2 Layer Extraction

The layered representation consists of a series of soft layer

masks M l defined in the central view image I(0, 0). Each

layer is associated with a disparity value dl, which can be

used for transferring the mask of the current layer to other

views.

We first use the cost-volume filtering method [38] to

generate an initial layered depth map for I0,0. Suppose we

have L depth layers in the scene (by default L = 32),

and each layer l ∈ {1, ..., L} is associated with a unique

disparity value dl. For each pixel p in I0,0, we define its

cost of being assigned to a specific layer l as:

Cl(p) =
I∑

(u,v)

||Iu,v(p
′)− I0,0(p)||,

p′ = p+ dl(u, v).

(3)

Here, I is the image array representing the light field.

Intuitively, I0,0(p
′) is the corresponding pixel of p in Iu,v

5

under the current disparity value dl. If dl is correct, then

these two pixels should have similar colors, leading to a

lower cost value Cl(p). In this way we can construct a

cost volume with axes (x, y, l), which is noisy given that the

costs of each pixel are computed individually. Note that our

cost function is different from the ones used in [38]. This is

because in applications like optical flow or stereo matching,

the cost function needs to be designed to be robust against

illumination changes, while in our application the light field

data has more consistent color values across the different

views. Note that this cost function is defined over pixels

instead of patches, given that a single patch on the depth

boundary could contain pixels that have different disparity

values. After the initial cost volume is computed, we follow

the approach in [38] and smooth it by applying edge-aware

guided filter [17] on the cost map Cl for each layer, where

the radius of the filter is 9. Afterwords the layer label for

each pixel L(p) is calculated as:

L(p) = argmin
l

Cl(p). (4)

The initial labeling generates hard region boundaries. To

achieve seamless compositing of different layers, we further

process the regions to produce soft boundaries, by applying

the guided image filter again on each layer with a small

radius of 4. Examples of the soft layer mask extraction are

shown in Figure 7. In the work of Zitnick et al. [56], an

alpha matting method is used to extract soft layer masks

in video. We also compare with a latest alpha matting

method [42] for soft mask generation in Figure 7, which

suggests that both methods produce visually similar results.

However, the alpha matting method takes about 2-3 minutes

to compute a soft mask for each layer, while guided image

filtering takes only about 100-200 ms. We thus choose

guided image filtering to produce soft layer masks in our

implementation.

Colors at pixels with mask values between 0 and 1 are

mixtures of object colors in different layers. We therefore

apply color decontamination in each layer by extrapolating

object colors from the interior of the object to its soft

boundary region, under the assumption that object colors

are spatially consistent. This is a common technique in

image matting and compositing [49]. The extended layer

after color decontamination is denoted as I l, which serves

as the basis for our patch-based synthesis process detailed

in the next section.

5 LAYERED SYNTHESIS WITH PATCHES

5.1 Why Layered Synthesis?

To demonstrate why layered synthesis is necessary in our

application, we first consider a simple alternative approach.

We can first synthesize a new central view image based

on user inputs, then propagate edited pixels to all other

views based on their disparities. As shown in the example

in Figure 8, this strategy is likely to introduce artifacts near

object boundaries. This is because different depth layers

have different disparities, and a pixel at the depth boundary

on the central view corresponds to different scene points in

other views. In other words, modifying only the foremost

layers in the central view image is insufficient for light field

editing.

To avoid this problem our system employs a back-to-front

layered synthesis framework for content consistency across

views. To set up the context for explaining this framework,

lets assume the user has specified a region ω on the central

view image for an object removal task. Furthermore, for

simplicity we assume the entire edited region belongs to

depth layer lω . In practice if ω occupies multiple depth

layers, we decompose it into sub-regions where each sub-

region belongs to only a single depth layer, and apply

the following procedures to all sub-regions sequentially.

Given this user input, the depth layer lω and all others

that are behind it are treated as layers that are affected by

this operation, denoted as I l, where l = {0, 1, ..., lω}, in

descending order of depth. For each affected layer I l, we

need to synthesize two things in order to complete it in ω:

(1) the layer mask; and (2) the layer appearance. In other

words, we need to recover a portion from region ω, which

was originally occluded by a foreground object, and now

occupied by a background layer, as well as the appearance

of that portion. The only exception is the deepest layer I0,

for which we assume the layer mask includes the entire ω

region to avoid creating holes in the final result.

The layered synthesis framework also allows us to measure

the cross-view coherence defined in Equation (2) more

Fig. 6. Examples of soft layer mask extraction. Left: the

central view of the light field. Right: the estimated depth

map.

6

(a)

(b)

Fig. 7. Comparisons of soft layer mask generation. Left:

the central view of the light field. Middle: Close-up soft

masks of one layer, extracted by guided image filtering [17].

Right: Close-up soft mask extracted by an alpha matting

method [42].

(a) (b) (c)

Fig. 8. The motivation for layered synthesis on the central

view image. (a) original central view image; (b) edited

central view as a regular image without layered synthesis;

(c) propagate the result in (b) to view (-0.14, 0.24), notice

the artifacts around the original object boundary. See an-

other comparison to a non-layered synthesis result in the

supplementary video.

easily. We can simply compute cross-view coherence in

each edited layer individually without worrying about oc-

clusion among different layers, and then sum the coherence

values of different layers together as the overall coherence

measure.

5.2 Layer Mask Synthesis

We first describe how to complete a layer mask in the

user-specified region ω, which is essentially a shape com-

pletion task. This is done using a multi-scale patch-based

synthesis approach in our system. We treat the layer mask

outside ω as the source mask Ms, which is known and

fixed, and the entire layer mask including ω as the target

mask Mt to be completed. We build Gaussian pyramids

for both masks, denoted as M
(0)
s ,M

(1)
s , ...,M

(n)
s , and

M
(0)
t ,M

(1)
t , ...,M

(n)
t , respectively. As shown in Figure

9, in order to fill in the hole ω(0) in M
(0)
t , we find the

boundary of the layer mask in ω(0) first. Specifically, we

start from a pixel p that is on the hole boundary, and denote

the patch centered at p as Nt(p). p is on the hole boundary

only if Nt(p) contains both in-layer pixels (pi ∈ Nt(p)

Algorithm 1 Mask synthesis on M
(0)
t

function SYNTHESIZE(M
(0)
t)

while p = FindBoundaryPixel(ω(0)) do

if p is valid then

qs ← argminq Dm(Ns(q), Nt(p)), q ∈

M
(0)
s

for pi in Ns(p) do

pi ← qi in Nt(qs) if pi is not filled

Set pi as filled pixel

end for

elsebreak;

end if

end while

Fill pixels inside the boundary as 1.

return

end function

function FINDBOUNDARYPIXEL(ω(0))

for p ∈ ω(0) and p is not filled do

if ∃pi ∈ Nt(p) is filled and M
(0)
t (pi) = 0

and ∃pj ∈ Nt(p) is filled and M
(0)
t (pj) > 0 then

return p

end if

end for

end function

and Mt(pi) = 1) and off-layer ones (pj ∈ Nt(p) and

Mt(pj) = 0). We then search in M
(0)
s to find a patch

Ns(q) that is most similar to Nt(p), according to the

distance metric defined as:

Dm(Nt(p), Ns(q)) =
∑

i∈N

||Ms(i)−Mt(i)||, (5)

∀i where Mt(i) is known or already filled. This process

is repeated until no hole boundary pixel remains. The

remaining unfilled pixels are all inside the boundary and are

filled with full opacity. This process is formally described in

Algorithm. 1. Note that when the source mask boundaries

are soft, this above process is capable of generating soft

layer boundaries in ω as well.

Once the top level mask M
(0)
t has been completed, it is

upsampled to the next level as an initialization for M
(1)
t ,

which is then further refined by finding nearest patches in

M
(1)
s according to Equation (5) and using them to update

the target region ω(1). This process continues until the

bottom level of the pyramid is completed.

Our shape completion approach is similar to the shape

synthesis method proposed by Rosenberger et al. [39] in the

sense that both methods use hierarchical layers for shape

synthesis. The difference is that they focus on local details

and use a random initialization for the base layer and only

then transfer the shape feature details in higher levels, while

we need to synthesize a mask with the same structure as

the original mask while satisfying boundary conditions, as

shown in Figure 9.

7

Ms

ss

(0) Mt
(0)

Mark the

hole region

p

q

Up scale

Refine

Fig. 9. Mask synthesis. After building the gaussian pyramid-

s of the layer mask, the target region is defined by marking

the hole region on the layer mask and the source region is

taken as the rest of the layer mask. In the coarsest scale,

the hole mask is filled using Algorithm. 1 and then up-scaled

and refined using the corresponding source mask until the

finest scale.

5.3 Layer Appearance Synthesis

The synthesized layer mask Mt defines the shape of

the current layer in the target region, and we need to

further synthesize its appearance for rendering purposes.

The known region of the layer l outside ω is denoted as Al
s,

and the region to be synthesized (containing ω) is denoted

as Al
t. Our goal is to synthesize the appearance of ω so that

Al
t is consistent with Al

s. This objective is mathematically

defined as minimizing the following appearance distance

between Al
t and Al

s:

Dl(Al
t,A

l
s) =

∑

p∈M
+

t

min
q∈M

+
s

Da(Nt(p), Ns(q)), (6)

where M+
t includes all pixel locations i so that Mt(i) >

0. Similarly, M+
s refers to the non-zero region in Ms. p

and q are pixel indexes in Al
t and Al

s, respectively, and

Nt(p) and Ns(q) are local image patches that center at

them. Da(·) is the appearance distance metric between two

image patches, which plays the central role in enforcing

appearance coherence. We thus can rewrite Equation (1)

using the layered representation:

Ef (u, v) =
∑

l=1,...,L

Dl(Al
t, A

l
s), (7)

The simplest way to define Da(·) is to define it as the

sum of Euclidean distances of corresponding pixel colors.

In our application, considering that the layer appearance

could be spatially-varying towards the boundary of the

region, we prefer to use patches that are on the layer mask

boundary in Al
s to synthesize boundary patches in ω in Al

t.

To achieve this we also include the mask similarity in the

patch appearance distance metric, which is defined as:

Da(Nt(p),Ns(q)) =

α||Ns(q)−Nt(p)||+ (1− α)Dm(Ns(q), Nt(p)),
(8)

where the balancing weight α is set at 0.5 in the system.

We solve this optimization problem using the multi-scale

patch synthesis approach [53] with the modified distance

metric. The target region in the coarsest level is initialized

with random offset values. In the finer levels, the offsets are

initialized by upsampling the offsets in the previous level.

Given the offsets map, the ω region in Al
t are synthesized

using the same pixel voting method as in [53].

In our experiments, we use 5 × 5 patches and set the

default number of pyramid levels to four (image size is

68×68 at the coarsest level). At each level, we perform four

PatchMatch (propagation and random search) iterations [2].

Because the masks provide extra constraints during the

patch search and the search space is limited to the same

layer, a few EM iterations are sufficient for a good conver-

gence - we perform three iterations at the coarsest scale and

two at finer scales. An example of the final synthesis result

is shown in Figure 10. In this way, the energy in Equation

(7) is minimized by assigning the optimized color value for

every pixel in each layer we extracted.

Fig. 10. Layered synthesis results of the example shown in

Figure 2. In each layer, the green region in the mask is the

target region to fill.

6 EDIT PROPAGATION ACROSS VIEWS

After the central view image has been edited, we propagate

the edits to all the other views while keeping the appearance

consistency and the perceived depth.

6.1 Initial Propagation

For a layer l in the central view I0,0, the user-specified edits

may produce two regions: one caused by object removal

(i.e. the hole), denoted as Rl
0,0; the other associated with

object insertion (i.e. synthesized new object), denoted as

R′l
0,0. The goal of edit propagation is to first find the

corresponding regions Rl
u,v and R′l

u,v in another view Iu,v ,

and then accomplish two tasks: (1) synthesize a new object

in R′l
u,v; and (2) fill the remaining hole {R̄l

u,v|R̄
l
u,v =

Rl
u,v −R′l

u,v}, as shown in Figure 11.

Color-based propagation. Rl
u,v and R′l

u,v can be found

using the disparity value dl. A straightforward way to

accomplish the above two tasks is: for a pixel p that needs to

be synthesized in Iu,v , find its corresponding pixel location

in I0,0. Then find the topmost layer at this location that is

visible by examining the layer masks, and copy the pixel

value on this layer to p. For the example shown in Figure

8

R
1

R
1

p

p1p0

View (0.14, 0.24)

I
1

I
0

p=p0

R
1

From

Layers

Result

R
1

R
1
’

u,v

u,v

u,v

0,0

0,0

Fig. 11. Edit propagation from the central view (dashed

bounding box) to another view. For pixel p in R̄1
u,v (top-left),

p0 and p1 are the corresponding pixels computed using the

disparity in layer I0 and I1, respectively (bottom-left). Since

M0
p0 > 0 and M1

p1 = 0, the color of p0 is assigned to p.

The final propagated result of the new view is on the right.

error

u
v

x

u

u
v

error

u
v

error

p q
(d) (e) (f)

x

u

x

u

(a) (b) (c)

Fig. 12. Comparing color-based and offset-based editing

propagation. (a-c) The schematic diagrams of 2D-slices for:

original light field, edited results using patch-offset-based

propagation, and results using direct color-based propaga-

tion. (d) The SSD patch distance map for patches centered

at q, an un-edited pixel in the original data (a real example,

shown in the lower left corner). (e) The SSD distance map

for patches centered at p, a pixel edited by offset-based

propagation. (f) The distance map for p by color-based

propagation. Note that (d) and (e) contain similar variations

while (f) is too flat.

11, the corresponding pixel location of p is not visible

on the front layer (layer 1), so the pixel value on layer

0 (denoted as p0) is assigned to p.

The above method can generate plausible results, but one

drawback is that all corresponding pixels across different

views will have exactly the same synthesized color. In

contrast, in the original light field, the same scene point

often has a small appearance variance across views, as the

object surfaces are rarely pure Lambertian. In addition, to

retain a natural image appearance we want to preserve

the original image noise. Such an example is shown in

Figure 12. Lets consider two pixels p and q on I0,0, where

the former is inside the user-edited region and consequently

is assigned to a new color across all views, and the latter is

outside the edited region, and thus is unchanged. If we take

patches centered at them in different views, and compute

the SSD patch distances, we can see for q the typical patch

distances have relatively large variations that naturally exist

in the light field data (Figure 12d), while for p the variations

are much smaller (Figure 12f).

Offset-based propagation. To make the synthesized re-

gions look more realistic, we do not directly copy the pixel

values from I0,0 to other views. Instead, for pixel p that

is edited in I0,0, we look at the location of source patch

S(p) that was chosen during the patch based synthesis

process (the offset value from the nearest neighbor field

in the last EM iteration, see Section 5.3). We then find the

corresponding source location in Iu,v , and use its color for p

in the edited region of Iu,v . In other words, our propagation

process propagates patch offsets to ensure: (1) Iu,v is edited

using pixel colors sampled from the image itself; and (2)

the edits applied in Iu,v are consistent with the ones in I0,0
as well as in other views. It essentially uses 4D-chunks in

the original light field to generated the novel content.

Figure 12 shows a comparison of color-based and offset-

based propagation methods, on their abilities to maintain

the original object appearance variation across views. It

suggests that the offset-based propagation generates more

natural appearance variations that are consistent with the

original data. We thus choose the offset-based propagation

scheme to generate final results. With better cross-view

coherence when assigning pixel values, the cost function

defined by Equation (2) is also minimized. Next, we de-

scribe a sub-pixel refinement method which further reduces

the cost.

6.2 Sub-pixel Refinement

Typical light field data contains evenly distributed views

(Figure 3), where the scene content changes smoothly

across neighboring views. Thus ideally, the edited light field

should maintain the same level of cross-view smoothness.

However the initial editing propagation process does not

consider sub-pixel accuracy, thus small alignment errors

may accumulate and cause noticeable sudden scene change

across certain neighboring views.

Our system adopts an optical-flow-based sub-pixel refine-

ment approach to eliminate such artifacts, based on the

observation that optical flow is capable of detecting the

actual region shifts in the neighboring views. Specifically,

for each edited layer of the current view i in the edited

light field, we compute the optical flow using the method

in [46] from the same layer of all neighboring views j to the

current view i, denoted as Fji, and compute the sub-pixel

9

shift for the current layer in view i as:

δi = −
1

N

N∑

j

Fji, (9)

where N is the number of neighboring views. This is

essentially applying a local smoothing on the region shift

vectors across views.

We iteratively apply the correction for all the views and

update them if necessary, until all corrections are less than

a small threshold δ (set at (0.2, 0.2) in our system). The

effect of this sub-pixel refinement step is shown in the

supplementary video. In our experiments, the refinement

will converge in 2-3 iterations.

7 APPLICATIONS AND RESULTS

We have successfully applied the proposed approach in a

wide range of plenoptic image editing applications, such as

region completion, reshuffling, parallax magnification and

depth manipulation. Due to limited space we only show

a few examples here. Given the difficulty of showing the

light field in still figures, we adopt a visualization method

of showing outputs with different focus planes, to illustrate

that our results contain the correct depth. Complete results

can be seen in the supplementary video.

The complete light field data, both original and synthesized

and an executable for viewing such data, are all included

in the supplementary materials. For the ease of comparison

with the original light field, we chose to use the same

hexagonal layout with 37 views as our outputs. However

technically, our system is not limited to it and we can render

any in-between views using common view interpolation

techniques. Unless specified, all the light field data are

captured using a Lytro camera. We use Lytro’s desktop

software to extract the rendered image arrays containing

37 views from the LFP files exported by the Lytro camera,

and use them as the inputs to our system.

7.1 Completion and Reshuffling/Cloning

To remove an object in the input light field, we mark pixels

in all affected layers in the user specified region as “hole

pixels”, and complete each layer using the layered synthesis

process described in Section 5.

After all affected layers are completed, the entire light

field is modified using the propagation method described in

Section 6. One completion result is shown in Figure 13(a).

A reshuffling or cloning an image region to a target position

is implemented based on the completion algorithm above.

To move an object to another place, we first use the

completion method to fill in the region of the original

object. By adding hard constraints in the target region

of the patch offset map, a new object can be directly

synthesized at the target location using the algorithms in

Section 5. Reshuffling example is shown in Figure 13(b),

more examples are in the supplementary materials.

7.2 Changing Depth

The proposed method can be used to change the depth

of an object in a light field. This is accomplished in two

steps: we first remove the user-specified object from its

original layer using hole filling. Then the object and its

layer mask are copied onto the new depth layer specified

by the user as an initialization, followed by a similar patch-

based synthesis process to blend it into the target depth

layer. An example is shown in Figure 13(c). We can also

combine multiple operations, such as depth changing and

reshuffling, to achieve more sophisticated editing goals, as

shown in Figure 13(d).

7.3 Parallax Magnification

One of the major limitations of existing consumer light

field cameras is their narrow viewpoint range, especially

when the scene is far from the camera. Our system enables

a new important application of parallax magnification, by

synthesizing the appearance of occluded pixels in each

layer. Specifically, given a magnifying factor the user wants

to apply to the viewpoint range, we first compute the

synthesis region in each layer of the central view M l

that will be revealed in the output views. We denote the

inverted mask M̃ l = 1−M l as the region that needs to be

synthesized for this application. Specifically, the maximum

region we need to synthesize is the part in M̃ l that will

be revealed, i.e. cannot be covered by all layers in front of

l, in the farthest perspectives from the central view. It is

computed by:

Rl =
⋃

j∈Sl

((M̃ l −M
j
1)

⋃
(M̃ l −M

j
2)), (10)

where M
j
1 and M

j
2 are the shifted masks for layer j

by the vector of (umax, vmax) and (umin, vmin) of the

generated novel views, i.e., the largest disparity vectors. Sl

denotes the set of layers that is in front of l. (M̃ l −M j
x)

means subtracting pixels belonging to M j
x from M̃ l. By

completing each layer in Rl and recovering the entire light

field according to the given new camera coordinates, we

can magnify the parallax in the original light field. This is

shown in Figure 14(c).

In this application, the regions that need to be synthesized

are larger if the user wants a wider range of viewpoints.

Larger “holes” are notoriously harder to fill automatically

so previous patch-based methods employed user constraints

to obtain good results [2]. Similarly, we allow the user to

specify structural constraints that are used to locally limit

the search region of the marked pixels (see [2] for more

details). We include a comparison between results with and

without constraints in our supplemental video. To evaluate

our method, we also render two light fields from a CG scene

with different parallax range. Figure. 14(d) shows the left

and right most views generated by our method and the real

corresponding image rendered from that scene.

10

d = -10.3

d = -3.1

d = -7.2

d = 5.6

d = 7.8

d =8.4

(a)

(b)

(c)

Input Result

(d)

d = -15.0 d = 0.6

Fig. 13. Applying our system to different light field editing tasks. (a) Removing selected objects. (b) Reshuffling the selected

leaf region. (c) Changing object depth. (d) Combining reshuffling with a depth change. The third and fourth columns are

refocusing results to show that our results contain the correct depth. The complete results are shown in the supplementary

video.

7.4 Light Field Super-resolution

Due to hardware limitations, the resolution of curren-

t consumer-level plenoptic cameras is much lower than

the resolution of DSLRs. Using our framework, we can

increase the resolution of the light-field, with the help of a

reference high resolution image taken by a regular camera

from the same perspective, denoted as Ir.

We first increase the resolution of each layer in the central

view I0,0 using Ir. On each layer l, we compute the region

Rl
u that we need to up-scale in a similar way to Equation

(10) (with the magnification rate 1). Since this region

contains pixels that cannot be seen in I0,0, we fill the holes

using corresponding visible pixels from other views. Using

the non-dyadic filter banks proposed in [13], we downsize

Ir to the size of I0,0 to get the low frequency and high

frequency bands for each patch, and up-scale I lu to the size

of Ir. In Ir, we search for the patch whose lower frequency

band is most similar to the patch in up-scaled I0,0. We then

use the corresponding high resolution patches to generate

the up-scaled I lu. In our experiment, the resolution of the

reference picture is 3 times of the resolution of I0,0, and

we use 5:4, 5:4, 4:3, and 3:2 filter banks as in [13]. Using

a similar process to Section 6, the nearest neighbor field is

used to generate an up-scaled image for each view.

11

R =
0

M
0~

M
1

1 M
2

1
M

1

2 M
2

2

U

M
0

Input

Layers(a) (b) Original Result(c) Original Our results Ground truth(d)

Fig. 14. Parallax magnification. (a) The central view and its depth layers; (b) The region needs to be synthesized (yellow)

for the background layer (layer 0) computed from the farthest views (see Section 7.3); (c) Top row: the original leftmost

and rightmost views. Bottom row: enlarged parallax of the leftmost and rightmost views by a factor of 8. (d) A comparison

with the ground truth of a synthetic light field.

(a) (b) (c)Reference image

Fig. 15. Light field upscaling. (a) Bicubic upsampling of two

different views. (b) Results of our method. (c) Results of [5].

Figure. 15 shows one super-resolution example. We com-

pare our result with the recent patch-based method of

Boominathan et al. [5]. Their method uses a uniform patch-

based upsampling approach for all pixels, ignoring bound-

ary discontinuities. Our method generates more consistent

results along layer boundaries. See supplemental video for

further examples.

8 DISCUSSION

8.1 More Comparisons

Morse et al. [34] use a patch-based synthesis method to

complete stereo image pairs. They first estimate the dispar-

ities in the hole, then compute the nearest neighborhood

fields (NNF) by considering both appearance and depth

consistency and allowing propagation between different

views. Then a stereo-consistent patch blending step is

applied to produce the final result. One may argue that this

method could be potentially extended to light field editing.

However, when adapting this method to light field com-

pletion, the random nature of the PatchMatch algorithm [2]

used in that method, makes it unlikely to complete a region

so that it appears consistent in different views (even though

the consistency has been considered when computing NNFs

and blending patches). In Figure. 16 we extend this method

from handling stereo pairs to a plenoptic image, by simul-

taneously optimizing all the views in the light field in the

Input

Morse et al.

Ours

Errors

10 -2

10 -2

Fig. 16. Comparison with the stereo inpainting method of

Morse et al. Left: input central view with a user specified

hole. Right: two neighboring views in the completed results

using the method of Morse et al. (top) and our approach

(bottom). The error map shows the sum of content differ-

ence between all other views and the central view. Our

method generates much smaller errors.

hole region. When generating the final image, we generate

the blending weights for each patch by taking into account

all SSD-distances of corresponding patches in other views

(extension of their weighting function to multiple images).

To check the content consistency across different views, we

visualize the difference map of the filled region between

each view and the central view in Figure. 16. As can be

seen, the difference map produced by the generalization of

their method contains large pixel-wise difference, indicating

content jittering of their results when shifting perspectives.

This kind of jitter is not an issue for perceiving stereo but is

a major artifact for viewing a plenoptic image. Please refer

to the supplementary video for the complete comparison.

8.2 Run-time

The light field data used in our experiments was captured

by a Lytro camera. Images of different views were resized

to 544×544. We implemented our approach in C++ on a PC

with an Intel Xeon E5620 CPU with 4 cores (8 threads) at

2.4GHz and 8GB RAM. In our experiments, using a single

12

core, extracting the depth layers takes about 1 second, the

synthesis on each related layer takes about 0.5 ∼ 3 seconds,

and it costs about 3 ∼ 6 seconds to propagate the edits

on each layer to the entire light field. Some components

of our method can be easily parallelized, like the cost-

volume filtering in the depth layers extraction and edit

propagations across views. The synthesis of each layer

can be also trivially parallelized. It takes about 0.2 ∼ 0.4
seconds to extract the depth layers and 0.5 ∼ 0.8 seconds

to propagate edits to all views. The overall run-time using

a parallel implementation for all the examples in the paper

was between 3 to 10 seconds (e.g., the examples from Fig. 1

and Fig. 13(a) took 3.7 and 6.3 seconds, respectively).

8.3 Limitations

The proposed approach does have several limitations. First,

when the captured scene contains a large ground plane or

other non-frontal surface with a smoothly-varying depth, as

the example shown in Figure 17(a), our method might not

work well. The slanted surface cannot be well modeled as

a single depth layer, so applications like completion and

reshuffling might exhibit artifacts, especially if the surface

has visually salient patterns. Furthermore, since we do not

take into account any relation between neighboring layers

in our representation, scenes with contiguous dominant

structures which span across multiple layers might cause

artifacts in applications like parallax widening. Figure 17(b)

shows such an example, where the trail on the ground

cannot be preserved as a continuous line in the farthest

view, and instead is decomposed into discrete segments

contained in different layers. However, our method often

works well for slanted planes that do not contain salient

patterns or strong textures (e.g. in Figure 17(c)).

(a) (b) (c)
Fig. 17. Our system does not work well if the scene

contains visually salient patterns in a plane with smoothly-

varying depth. (a) Central view of the input, which contains a

large smoothly-varying depth layer; (b) Synthesized farthest

view with a widened parallax where the long line structure

is broken. (c) Our method can still generate fine results for

slanted surfaces that are not highly textured.

In addition, our system requires a rather accurate depth

layer extraction for high quality results. However accurate

automatic depth estimation is a challenging computer vision

problem, especially for complex scenes, even in a structured

setting such as a lightfield camera. In order to obtain more

realistic results and a better consistency of the perceived

depth, our system allows the user to manually specify

additional constraints as shown in Figure. 13(a), and to

adjust the depth values when propagating edits across

different views. Out of all the results shown in the paper,

only the examples in Figure. 13(a) were obtained using

manual adjustments.

Finally, our current system extracts soft layer masks using

guided image filtering with a small radius. It works well

for objects with near-solid or slightly furry boundaries, but

cannot handle large semi-transparent regions such as long

hair blowing in the wind. Additional user input is needed

to specify such regions, and more advanced alpha matting

methods can be potentially employed for creating more

accurate soft masks in such cases.

9 CONCLUSION AND FUTURE WORK

We have demonstrated an interactive system for light field

editing using recent advances in patch-based image syn-

thesis methods. Our method represents the light field as an

image set with a hexagonal layout, and models the captured

scene as overlapping layers with different depths. After the

user specifies an editing task in the central view image, the

method employs a back-to-front layered synthesis to edit

all affected layers. The edits on these layers are then prop-

agated to all other views while maintaining the appearance

consistency and the perceived depth. Experimental results

show that our method allows applications like completion,

reshuffling and parallax magnification to be performed

effectively on plenoptic images for the first time. Additional

results are shown in the supplementary materials.

As future work, we plan to consider additional geometric

features and inter-layer correlations in the layered scene

representation, to handle more complex scenes such as

the one shown in Figure 17. We also plan to extend this

framework to enable new applications such as plenoptic

image compositing and merging.

ACKNOWLEDGMENTS

This work was supported by the National High Technology

Research and Development Program of China (Project

No. 2013AA013903), the Natural Science Foundation of

China (Project No. 61521002, 61272226), Research Grant

of Beijing Higher Institution Engineering Research Center,

the General Financial Grant from the China Postdoctoral

Science Foundation (Grant No. 2015M580100), and Ts-

inghua University Initiative Scientific Research Program.

REFERENCES

[1] Adobe, “Photoshop cc content-aware fill,” 2013,
http://www.adobe.com/technology/projects/content-aware-fill.html.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“Patchmatch: a randomized correspondence algorithm for structural
image editing,” ACM TOG, vol. 28, no. 3, pp. 24:1–24:11, Jul. 2009.

13

[3] C. Birklbauer and O. Bimber, “Light-field retargeting,” in Computer

Graphics Forum, vol. 31, no. 2pt1, 2012, pp. 295–303.

[4] T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,”
in Proc. ICCP, 2009, pp. 1–9.

[5] V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving res-
olution and depth-of-field of light field cameras using a hybrid
imaging system,” in Proc. ICCP, 2014.

[6] B. Chen, E. Ofek, H.-Y. Shum, and M. Levoy, “Interactive deforma-
tion of light fields,” in Proc. I3D. ACM, 2005, pp. 139–146.

[7] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding,
calibration and rectification for lenselet-based plenoptic cameras,”
in Proc. CVPR, 2013.

[8] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen,
“Image melding: Combining inconsistent images using patch-based
synthesis,” ACM TOG, vol. 31, no. 4, pp. 82:1–82:10, Jul. 2012.

[9] W. Dong, F. Wu, Y. Kong, X. Mei, T.-Y. Lee, and X. Zhang, “Image
retargeting by texture-aware synthesis,” IEEE TVCG, vol. 22, no. 2,
pp. 1088–1101, Feb 2016.

[10] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proc. SIGGRAPH, 2001, pp. 341–346.

[11] K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi, “Frequency
analysis and sheared filtering for shadow light fields of complex
occluders,” ACM TOG, vol. 30, no. 2, pp. 1–13, Apr. 2011.

[12] A. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-based rendering
using image-based priors,” in Proc. ICCV. Washington, DC, USA:
IEEE Computer Society, 2003, p. 1176.

[13] G. Freedman and R. Fattal, “Image and video upscaling from local
self-examples,” ACM TOG, vol. 30, no. 2, p. 12, 2011.

[14] M. Fuchs, M. Kächele, and S. Rusinkiewicz, “Design and fabrication
of faceted mirror arrays for light field capture,” Computer Graphics

Forum, vol. 32, no. 8, pp. 246–257, Aug. 2013.

[15] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single
image,” in Proc. CVPR, 2009.

[16] B. Goldluecke and S. Wanner, “The variational structure of disparity
and regularization of 4d light fields,” in IEEE CVPR, June 2013, pp.
1003–1010.

[17] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE TPAMI,
vol. 35, no. 6, pp. 1397–1409, 2013.

[18] M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing
and fabricating multilayer models,” ACM TOG, vol. 30, no. 6, pp.
187:1–9, 2011.

[19] D. R. Horn and B. Chen, “Lightshop: interactive light field manip-
ulation and rendering,” in Proc. I3D, 2007, pp. 121–128.

[20] Y. Itoh and G. Klinker, “Light-field correction for spatial calibration
of optical see-through head-mounted displays,” IEEE TVCG, vol. 21,
no. 4, pp. 471–480, 2015.

[21] A. Jarabo, B. Masia, A. Bousseau, F. Pellacini, and D. Gutierrez,
“How do people edit light fields?” ACM TOG(SIGGRAPH 2014),
vol. 33, no. 4, 2014.

[22] A. Jarabo, B. Masia, and D. Gutierrez, “Efficient propagation of light
field edits,” in Proc. of SIACG, 2011.

[23] C. Kim, A. Hornung, S. Heinzle, W. Matusik, and M. Gross, “Multi-
perspective stereoscopy from light fields,” ACM TOG, vol. 30, no. 6,
p. 190, 2011.

[24] K. Kodama and A. Kubota, “Efficient reconstruction of all-in-focus
images through shifted pinholes from multi-focus images for dense
light field synthesis and rendering,” IEEE Transactions on Image

Processing, vol. 22, no. 11, pp. 4407–4421, 2013.

[25] D. Lanman and D. Luebke, “Near-eye light field displays,” ACM

TOG, vol. 32, no. 6, pp. 220:1–220:10, 2013.

[26] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, “Temporal
light field reconstruction for rendering distribution effects,” ACM

TOG, vol. 30, no. 4, pp. 55:1–55:12, Jul 2011.

[27] A. Levin and F. Durand, “Linear view synthesis using a dimen-
sionality gap light field prior,” in Proc. CVPR. IEEE, 2010, pp.
1831–1838.

[28] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. SIG-

GRAPH. ACM, 1996, pp. 31–42.

[29] M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling
the 4d light field in a microscope using microlens arrays,” Journal

of Microscopy, vol. 235, no. 2, pp. 144–162, 2009.

[30] Y. Liu, L. Sun, and S. Yang, “A retargeting method for stereoscopic
3d video,” Computational Visual Media, vol. 1, no. 2, pp. 119–127,
2015.

[31] W.-Y. Lo, J. van Baar, C. Knaus, M. Zwicker, and M. Gross,
“Stereoscopic 3d copy & paste,” ACM TOG, vol. 29, no. 6, pp.
147:1–147:10, 2010.

[32] H. Lu, R. Pacanowski, and X. Granier, “Position-dependent impor-
tance sampling of light field luminaires,” IEEE TVCG, vol. 21, no. 2,
pp. 241–251, Feb 2015.

[33] S.-J. Luo, I.-C. Shen, B.-Y. Chen, W.-H. Cheng, and Y.-Y.
Chuang, “Perspective-aware warping for seamless stereoscopic im-
age cloning,” ACM TOG, vol. 31, no. 6, pp. 182:1–182:8, Nov. 2012.

[34] B. Morse, J. Howard, S. Cohen, and B. Price, “Patchmatch-based
content completion of stereo image pairs,” in Proc. 3DIMPVT, 2012,
pp. 555–562.

[35] R. Ng, “Fourier slice photography,” ACM TOG, vol. 24, no. 3, pp.
735–744, 2005.

[36] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanra-
han, “Light field photography with a hand-held plenoptic camera,”
Computer Science Technical Report, vol. 2, no. 11, 2005.

[37] Y. Niu, W.-C. Feng, and F. Liu, “Enabling warping on stereoscopic
images,” ACM TOG, vol. 31, no. 6, pp. 183:1–183:10, 2012.

[38] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, “Fast
cost-volume filtering for visual correspondence and beyond,” in Proc.

CVPR. IEEE, 2011, pp. 3017–3024.

[39] A. Rosenberger, D. Cohen-Or, and D. Lischinski, “Layered shape
synthesis: Automatic generation of control maps for non-stationary
textures,” ACM TOG, vol. 28, no. 5, pp. 107:1–107:9, Dec. 2009.

[40] S. M. Seitz and K. N. Kutulakos, “Plenoptic image editing,” IJCV,
vol. 48, no. 2, pp. 115–129, 2002.

[41] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman,
and E. Shechtman, “Robust Patch-Based HDR Reconstruction of
Dynamic Scenes,” ACM TOG (SIGGRAPH Asia 2012), vol. 31,
no. 6, 2012.

[42] E. Shahrian and D. Rajan, “Weighted color and texture sample
selection for image matting,” in IEEE CVPR, 2012, pp. 718–725.

[43] E. Shechtman, A. Rav-Acha, M. Irani, and S. Seitz, “Regenerative
morphing,” in Proc. CVPR, San-Francisco, CA, June 2010.

[44] L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light
field reconstruction using sparsity in the continuous fourier domain,”
ACM TOG, vol. 34, no. 1, p. 12, 2014.

[45] B. M. Smith, L. Zhang, H. Jin, and A. Agarwala, “Light field video
stabilization,” in Proc. ICCV. IEEE, 2009, pp. 341–348.

[46] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation
and their principles,” in Proc. CVPR. IEEE, 2010, pp. 2432–2439.

[47] R.-F. Tong, Y. Zhang, and K.-L. Cheng, “Stereopasting: Interactive
composition in stereoscopic images,” IEEE TVCG, vol. 19, no. 8,
pp. 1375–1385, 2013.

14

[48] K. Venkataraman, D. Lelescu, J. Duparr, A. McMahon, G. Molina,
P. Chatterjee, R. Mullis, and S. Nayar, “Picam: an ultra-thin high
performance monolithic camera array,” ACM TOG, vol. 32, no. 6,
pp. 166:1–166:12, 2013.

[49] J. Wang and M. Cohen, “Image and video matting: A survey,”
Foundations and Trends in Computer Graphics and Vision, vol. 3,
no. 2, pp. 97–175, 2007.

[50] L. Wang, S. Lin, S. Lee, B. Guo, and H.-Y. Shum, “Light field
morphing using 2d features,” IEEE TVCG, vol. 11, no. 1, pp. 25–
34, 2005.

[51] S. Wanner, C. Straehle, and B. Goldluecke, “Globally consistent
multi-label assignment on the ray space of 4d light fields,” in IEEE

CVPR, 2013, pp. 1011–1018.

[52] G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Dis-
plays: Compressive Light Field Synthesis using Multilayer Displays
with Directional Backlighting,” ACM TOG, vol. 31, no. 4, pp. 1–11,
2012.

[53] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE TPAMI, vol. 29, no. 3, pp. 463–476, Mar. 2007.

[54] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” ACM TOG, vol. 24, no. 3, pp. 765–776,
2005.

[55] Z. Zhang, L. Wang, B. Guo, and H.-Y. Shum, “Feature-based light
field morphing,” ACM TOG, vol. 21, no. 3, pp. 457–464, 2002.

[56] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szelis-
ki, “High-quality video view interpolation using a layered represen-
tation,” ACM TOG, vol. 23, no. 3, pp. 600–608, Aug. 2004.

Fang-Lue Zhang received his Ph.D (2015) de-

gree from Department of Computer Science from

Tsinghua University and BS degree from the

Zhejiang University in 2009. He is currently a

post-doctor in Tsinghua University. His research

interests include computer graphics, image pro-

cessing and enhancement, image and video

analysis and computer vision. He is a member

of IEEE and ACM.

Jue Wang is a Principle Research Scientist at

Adobe Research. He received his B.E. (2000)

and M.Sc. (2003) from Department of Automa-

tion, Tsinghua University, Beijing, China, and

his Ph.D (2007) in Electrical Engineering from

the University of Washington, Seattle, WA, US-

A. He received Microsoft Research Fellowship

and Yang Research Award from University of

Washington in 2006. He joined Adobe Research

in 2007 as a research scientist. His research

interests include image and video processing,

computational photography, computer graphics and vision. He is a senior

member of IEEE and a member of ACM.

Eli Shechtman is a Senior Research Scientist

at Adobe Research. He received the B.Sc. de-

gree in electrical engineering (magna cum laude)

from Tel-Aviv University in 1996. Between 2001

and 2007 he attended the Weizmann Institute

of Science where he received with honors his

M.Sc. and Ph.D. degrees. He was awarded the

Weizmann Institute Dean prize for M.Sc. stu-

dents, the J.F. Kennedy award (highest award

at the Weizmann Institute) and the Knesset (Is-

raeli parliament) outstanding student award. He

received the best paper award at ECCV 2002 and a best poster award at

CVPR 2004. His research interests include image and video processing,

computational photography, object recognition and patch-based analysis

and synthesis. He is a member of the IEEE and the ACM.

Zi-Ye Zhou received his BS degree from the

Tsinghua University in 2014. He is currently a

Phd candidate in University of Pennsylvania. His

research interests include computer graphics,

image processing and enhancement.

Jia-Xin Shi is an undergraduate student at the

Tsinghua University. His research interests in-

clude computer graphics, image processing and

enhancement and machine learning.

Shi-Min Hu is currently a professor in the de-

partment of Computer Science and Technology,

Tsinghua University, Beijing. He received the

PhD degree from Zhejiang University in 1996.

His research interests include digital geometry

processing, video processing, rendering, com-

puter animation, and computer-aided geometric

design. He has published more than 100 papers

in journals and refereed conference. He is Editor-

in-Chief of Computational Visual media, and on

editorial board of several journals, including IEEE

Transactions on Visualization and Computer Graphics, Computer Aided

Design and Computer & Graphics.

