
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/92536/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Zhang, Fang-Lue, Wang, Jue, Shechtman, Eli, Zhou, Zi-Ye, Shi, Jia-Xin and Hu, Shi-Min 2016. PlenoPatch:
patch-based plenoptic image manipulation. IEEE Transactions on Visualization and Computer Graphics 23

(5) , pp. 1561-1573. 10.1109/TVCG.2016.2532329

Publishers page: http://dx.doi.org/10.1109/TVCG.2016.2532329

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.

1

PlenoPatch: Patch-based Plenoptic Image
Manipulation

Fang-Lue Zhang, Member, IEEE, Jue Wang, Senior Member, IEEE,
Eli Shechtman, Member, IEEE, Zi-Ye Zhou, Jia-Xin Shi, and Shi-Min Hu, Member, IEEE

Abstract—Patch-based image synthesis methods have been successfully applied for various editing tasks on still images, videos and stereo
pairs. In this work we extend patch-based synthesis to plenoptic images captured by consumer-level lenselet-based devices for interactive,
efficient light field editing. In our method the light field is represented as a set of images captured from different viewpoints. We decompose
the central view into different depth layers, and present it to the user for specifying the editing goals. Given an editing task, our method
performs patch-based image synthesis on all affected layers of the central view, and then propagates the edits to all other views. Interaction
is done through a conventional 2D image editing user interface that is familiar to novice users. Our method correctly handles object boundary
occlusion with semi-transparency, thus can generate more realistic results than previous methods. We demonstrate compelling results on
a wide range of applications such as hole-filling, object reshuffling and resizing, changing object depth, light field upscaling and parallax
magnification.

Index Terms—Plenoptic image editing, light field, patch-based synthesis

�

1 INTRODUCTION

Light field (or plenoptic) cameras have significantly ad-
vanced and become wide spread in recent years, showing a
high potential to revolutionize photography. Such cameras
typically use microlens arrays to capture 4D light field
information of the scene, resulting in a plenoptic image that
encodes scene appearance from different viewpoints. Since
it contains 3D scene information, a plenoptic image enables
new post-processing possibilities that are impossible for
conventional 2D images, such as changing the viewpoint
and refocusing. As recent consumer-level plenoptic cameras
such as Lytro 1 ,PiCam [48] and Raytrix 2 are gaining
popularity, there is an increasing demand for advanced
editing tools for manipulating their outputs.

Despite the rapid development in hardware design of
plenoptic cameras, plenoptic image editing has been a less
explored territory. Previous approaches have explored a
limited range of editing operations [21] such as super-
resolution [4], morphing [50], view c synthesis [27], re-
focusing [36] and retargeting [3]. In contrast, 2D image
editing has been an extensively studied area and among
numerous available techniques, patch-based synthesis meth-
ods have emerged as the state-of-the-art for many applica-
tions such as hole filling, retargeting and reshuffling [2]. In
this paper, we extend patch-based methods for interactively

• Fang-Lue Zhang, Zi-Ye Zhou, Jia-Xin Shi and Shi-Min Hu
are with TNList, Tsinghua University, Beijing, China. E-mail:
z.fanglue@gmail.com, jerry.zhou@gmail.com, ishijiaxin@qq.com and
shimin@tsinghua.edu.cn. Shi-Min Hu is the corresponding author.

• Jue Wang and Eli Shechtman are with the Creative Technologies
Lab of Adobe Research, Seattle, WA 98103 USA., E-mail: jue-
wang@adobe.com and elishe@adobe.com

1. https://www.lytro.com
2. http://www.raytrix.de

manipulating consumer plenoptic images, to achieve new
light field editing effects that were not explored with
existing techniques, such as removing an object from the
scene, locally editing and reshuffling objects, changing the
depth of an object and increasing the depth range of the
scene through parallax magnification. Our method also
generates better light field upscaling results than existing
methods.

Our system is designed for consumer light field data. We

(a) (b)

(c) (d)

Fig. 1. Patch-based plenoptic image editing. (a) A refo-
cused central view of the input light field. (b) Shrinking the
flower bouquets. (c) Moving an object towards the camera.
(d) Narrowing the depth-of-field by parallax magnification
(Bokeh effect).

2

 Input light field Affected layers Edited light field
 Layered synthesis

 Mask synthesis

Input light fieldInput light field

User input

Depth layers

 Appearance synthesis

Fig. 2. The flowchart of the proposed interactive light field editing system. The light field is represented by a set of images
captured at 37 viewpoints with a hexagonal layout, visualized in the top-right corner of the left image. Given an input light
field, our system extracts a depth layered representation at the central view, where the user specifies the editing task.
Patch-based synthesis is then applied to all layers that are affected by the task to create the edited version of the central
view. Finally, the edits are propagated to all other views to generate the full modified light field.

therefore take advantage of the fact that the scene content
of such data can be approximately treated as overlapped
layers, a common approximation in consumer lenselet-
based cameras. The view angle differences in the lenselet
array of a consumer camera are small compared to large
camera array prototypes, making the same objects have
very similar appearance across different views. This is also
the reason why the Lambertian assumption can be used to
recover the light field from the raw data of lenselet-based
cameras. In our work we thus represent the light field as a
set of sub-images arranged by the coordinates of the lenses,
and each image can be decomposed into a few depth layers.

As shown in Figure 2, given an input light field, we first
recover the depth layers for the central view image (Sec-
tion 4), which is then presented to the user for specifying
an editing task using rough scribbles, providing a natural
user interface that is similar to common interfaces in exist-
ing photo editing tools. Given the user-specified task, we
identify all layers that are affected by it, and apply patch-
based, depth-layer-aware image synthesis on all affected
layers to meet the editing specifications (Section 5). Finally,
edits made on the central view are propagated coherently
to all other views to generate the final modified light field
(Section 6).

Our main technical contributions include:

1) A novel framework that enables applying advanced
patch-based image synthesis methods for plenoptic
image editing, through a conventional 2D image
editing user interface;

2) A layered synthesis method for depth-aware image
editing (of the central view);

3) A method for propagating edits from the central
view to other views while maintaining view point
consistency;

4) A variety of new light field editing applications that
are made possible by the proposed system, including
hole filling, reshuffling and cloning, change of depth
and parallax magnification.

2 RELATED WORK

Light field capture and analysis. Earlier systems use large
camera arrays for light field capturing [28], [54], while Ng
et al. [36] developed the first hand-held light field camera.
The light field can also be captured by microscopes [29].
With the recently developed compact light field cameras
such as PiCam [48] and Lytro, plenoptic images have
become accessible to consumers. To process the raw data
captured by such devices, Dansereau et al. [7] proposed
a parametric plenoptic camera model and a corresponding
procedure for decoding, calibrating and rectifying plenoptic
data. There have also been a series of works on how to
display high quality light fields [52][32][25][20][14] and
reconstruct them [26][44], and how to generate stereo-
scopic views [18] and stereo images [23] from them.
These approaches are mainly concerned with capturing and
displaying the light field rather than interactive light field
editing, the main goal of this work.

Ng [35] and Egan et al. [11] analyzed the light field
data in the 4D Fourier domain, which leads to more
recent works on using the spectrum domain methods for
analyzing the dimensionality gap and recovering the full
light field from the focal stack based on the Lambertian
assumption [27] [24]. However, Fourier methods do not
support precise local object editing, which is the goal of
our work. Recently, Goldluecke et al. [16] and Wanner
et al. [51] propose methods to analyze the structure and
perform segmentation in light fields, which do not focus
on interactive editing either.

Plenoptic and Stereo image editing. There have been
some previous approaches on interactive light field editing.
Seitz and Kutukakos [40] and Horn and Chen [19] proposed
interactive systems for directly editing the light rays while
preserving the consistency of the scene when viewing the
light field from different perspectives. Various interactive
methods for morphing 3D objects represented by light
fields [50] [6] [55] and stabilizing light field video [45]
have also been presented. However, these methods do not
support more advanced editing goals such as completion

3

Fig. 3. The hexagonal layout of the camera array.

and reshuffling. Jarabo et al. [22] proposed a novel affinity
function that can be used to propagate sparse user edits
to the full light field, and presented a thorough study to
evaluate workflows of related editing tasks [21]. Birklbauer
and Bimber [3] presented a z-stack seam carving method
for light field retargeting. One major limitation of the
above work is that they adopt a holistic approach (e.g.,
using a global deconvolution) to recover the edited light
field, which often leads to visual artifacts when rendering
regions near depth edges. Our method carefully handles
object boundaries to avoid producing such artifacts. These
approaches are also aiming a specific editing task and are
not general enough to be applicable for other tasks.

Our work is also related to stereo image editing. Various
editing tools such as object cut-and-paste [31] [47] [33],
resizing [30] and warping [37] have been developed for
stereo image pairs. Patch-based methods have also been
explored for hole filling in stereo pairs [34], but this method
cannot be directly extended to plenoptic images. This is
because it uses a cross-image patch searching and matching,
while a plenoptic image contains so many views that would
make the search space intractable. We tried a more elaborate
extension of their method but found that it still does not
provide enough consistency across views comparing to
our method. A recent method by Boominathan et al. [5]
applied patch-based approach for the upsampling (super-
resolution) a plenoptic image, an applications we show as
well. Similarly to [34], these patch-based methods do not
handle properly depth boundaries, where there are pixels
that are only visible in certain views. We compare to both
methods in Section 7 and 8.

Patch-based image editing. Non-parametric patch-based
synthesis methods have advanced substantially in recent
years and achieved state-of-the-art performance in various
image and video editing tasks. These include image-based
rendering [12], hole-filling [53], texture synthesis [10],
retargeting and reshuffling [9], super-resolution [15], mor-
phing [43], image compositing and interpolation [8] and
HDR reconstruction [41]. In particular, Barnes et al. [2]
proposed a patch-based fast approximate nearest-neighbor
search algorithm called PatchMatch, enabling image editing
at interactive rates. The success of this approach has led
to implementations in popular commercial tools such as
Adobe Photoshop [1] and other image editing software.
These methods however were not designed for plenoptic
image editing.

x

u

x

u

l

l

Fig. 4. 2D (x, u) slices for an original light field (top) and an
edited version that is not coherent across views (bottom),
and the corresponding images on the left and right. In the
top slice, the highlighted scene point on the eyebrow is
on a line that has the same color across different views.
In the wrongly-modified light field, pixel colors along the
same line contain sudden changes, corresponding to visual
discontinuities and incorrect depth perception.

3 OVERVIEW

A continuous light field is represented discretely by a set
of images Iu,v(x, y): each captured by a single camera
from a view (u, v), where the intensity (or color) value at
pixel (x, y) in Iu,v is L(x, y, u, v). Each image Iu,v(x, y)
contains a set of pixels that are arranged in a rectangular
2D grid.

Several constraints need to be taken into consideration
when editing a light field. First, we need to consider fidelity,
meaning that an edited view image should have similar
appearance with the corresponding input view. Secondly,
we want to preserve cross-view coherence to ensure that
the edits in neighboring views do not introduce visual
discontinuity so the viewer perceives a realistic scene when
switching between views. We propose a method to edit
the light field while considering the fidelity and cross-
view coherence, as shown in Figure 2. To describe fidelity
mathematically, similar to previous patch-based image ma-
nipulation methods [2], for each view (u, v), we compute
a fidelity measure as the sum of the differences between
every patch in the edited image I ′u,v and its most similar
patch in Iu,v , where the patch differences D are measured
using SSD (Sum of Squared Differences) in Lab color space
as:

Ef (u, v) = D(At, As), (1)

where D(s, t) is the depth-aware patch difference function
that will be defined in Section 4. At and As refer to
the edited region in I ′u,v and the source region in Iu,v ,
respectively. Detailed explanations will be given in Section
4.

Cross-view coherence means that a point on a real scene
should have very similar appearance when observed from

4

different views. In the original light field, for every point
(x, y, u, v) in the 4D space, the points that map to the same
scene point should be on one plane that passes though it, on
which the pixel values are near constant. Figure 4 illustrates
the 2D projection of 4D light field on the (x, u) plane,
where the lines are the projection of those planes. The
slope of each line is determined by the distance between the
scene point and the camera. If the editing operations violate
cross-view coherence, these lines might break, resulting in
sudden visual jumps when switching views. This is shown
in the bottom of Figure 4. Formally, we define the cross-
view coherence for each point (u, v, x, y) as:

Ec(u, v) =
∑

p∈I′
u,v

min
d

∑
m,n

||I ′u,v(p)− I ′m,n(p′)||,

with p = (x, y), p′ = (x+ d(m− u), y + d(n− v)),
(2)

where d is the disparity value, p is a point in the current
view (u, v) and p′ is a corresponding point according to
the disparity, in a different view (m,n). We first find the
disparity of p, i.e. the slope of its coherent line along which
the appearance variation is minimal, and then evaluate the
view consistency along this line. To minimize the impact
of color noise, we use a local 5 ∗ 5 patch instead of a
single pixel to measure the view consistency by calculating
the L2-norm between the patches. Finally, we sum over
all patches in I ′u,v to derive the coherence measurement: a
large value indicates a violation of the cross-view coher-
ence constraint. In this cost function, the variables to be
optimized are the edited pixel value I ′u,v(p).

Our method firstly minimizes Ef for the central view in the
edited light field using a modified layer-based PatchMatch
method (see Section 5). Then the edits are propagated to
other views based on the layered scene approximation,
resulting in low Ec for the modified light field (see Section
6.1). Finally, we use a sub-pixel refinement method to
further minimize Ec across all views (see Section 6.2).

4 LAYERED SCENE REPRESENTATION

4.1 Justification

Our light field editing framework is based on the as-
sumption that the captured light field data can be well
approximated by a fixed number of scene layers at different
depths. While this is not generally true for any light field
data, we have found that it holds well for images captured
by consumer-level light field cameras such as Lytro. To
quantitatively evaluate how well the layered representation
can approximate the original data captured by such camera,
we conduct the following experiment.

We extract different numbers of depth layers from the
original light field data using the optimization approach
proposed in Section 4.2. The number of scene layers ranges

from 1 to 128. We then use the extracted depth layers to
reconstruct the light field using the view synthesis approach
proposed in Section 7.3, and constrain the target views
to be exactly the same as the input views. We compute
the average per-pixel reconstruction error as the means to
evaluate the accuracy of the layered representation. The
results for some examples and the average errors for all
examples used in this paper are plotted as curves in Figure
5.

The results show that when the number of depth layers
are small (less than 8), the reconstruction error quickly
drops as the number of scene layers increases, indicating
that more accurate representation is achieved. However, the
reconstruction error becomes stable after reaching 32 depth
layers, and adding depth layers beyond that does not help.
This experiment suggests that the light field data produced
by the Lytro camera may have already been compressed
and is possibly represented internally using a finite set of
discrete layers. This is a reasonable choice given that the
camera has narrow parallax.

Reconstruction Error

Layer Number
0 2 4 8 16 32 64 128 256

7

6

5

4

3

2

11
Average

Fig. 5. The image reconstruction errors using different
number of scene layers to represent the original light field
data captured by a Lytro camera.

4.2 Layer Extraction

The layered representation consists of a series of soft layer
masks M l defined in the central view image I(0, 0). Each
layer is associated with a disparity value dl, which can be
used for transferring the mask of the current layer to other
views.

We first use the cost-volume filtering method [38] to
generate an initial layered depth map for I0,0. Suppose we
have L depth layers in the scene (by default L = 32),
and each layer l ∈ {1, ..., L} is associated with a unique
disparity value dl. For each pixel p in I0,0, we define its
cost of being assigned to a specific layer l as:

Cl(p) =
I∑

(u,v)

||Iu,v(p′)− I0,0(p)||,

p′ = p+ dl(u, v).

(3)

Here, I is the image array representing the light field.
Intuitively, I0,0(p′) is the corresponding pixel of p in Iu,v

5

under the current disparity value dl. If dl is correct, then
these two pixels should have similar colors, leading to a
lower cost value Cl(p). In this way we can construct a
cost volume with axes (x, y, l), which is noisy given that the
costs of each pixel are computed individually. Note that our
cost function is different from the ones used in [38]. This is
because in applications like optical flow or stereo matching,
the cost function needs to be designed to be robust against
illumination changes, while in our application the light field
data has more consistent color values across the different
views. Note that this cost function is defined over pixels
instead of patches, given that a single patch on the depth
boundary could contain pixels that have different disparity
values. After the initial cost volume is computed, we follow
the approach in [38] and smooth it by applying edge-aware
guided filter [17] on the cost map Cl for each layer, where
the radius of the filter is 9. Afterwords the layer label for
each pixel L(p) is calculated as:

L(p) = argmin
l

Cl(p). (4)

The initial labeling generates hard region boundaries. To
achieve seamless compositing of different layers, we further
process the regions to produce soft boundaries, by applying
the guided image filter again on each layer with a small
radius of 4. Examples of the soft layer mask extraction are
shown in Figure 7. In the work of Zitnick et al. [56], an
alpha matting method is used to extract soft layer masks
in video. We also compare with a latest alpha matting
method [42] for soft mask generation in Figure 7, which
suggests that both methods produce visually similar results.
However, the alpha matting method takes about 2-3 minutes
to compute a soft mask for each layer, while guided image
filtering takes only about 100-200 ms. We thus choose
guided image filtering to produce soft layer masks in our
implementation.

Colors at pixels with mask values between 0 and 1 are
mixtures of object colors in different layers. We therefore
apply color decontamination in each layer by extrapolating
object colors from the interior of the object to its soft
boundary region, under the assumption that object colors
are spatially consistent. This is a common technique in
image matting and compositing [49]. The extended layer
after color decontamination is denoted as I l, which serves
as the basis for our patch-based synthesis process detailed
in the next section.

5 LAYERED SYNTHESIS WITH PATCHES

5.1 Why Layered Synthesis?

To demonstrate why layered synthesis is necessary in our
application, we first consider a simple alternative approach.
We can first synthesize a new central view image based
on user inputs, then propagate edited pixels to all other
views based on their disparities. As shown in the example

in Figure 8, this strategy is likely to introduce artifacts near
object boundaries. This is because different depth layers
have different disparities, and a pixel at the depth boundary
on the central view corresponds to different scene points in
other views. In other words, modifying only the foremost
layers in the central view image is insufficient for light field
editing.

To avoid this problem our system employs a back-to-front
layered synthesis framework for content consistency across
views. To set up the context for explaining this framework,
lets assume the user has specified a region ω on the central
view image for an object removal task. Furthermore, for
simplicity we assume the entire edited region belongs to
depth layer lω . In practice if ω occupies multiple depth
layers, we decompose it into sub-regions where each sub-
region belongs to only a single depth layer, and apply
the following procedures to all sub-regions sequentially.
Given this user input, the depth layer lω and all others
that are behind it are treated as layers that are affected by
this operation, denoted as I l, where l = {0, 1, ..., lω}, in
descending order of depth. For each affected layer I l, we
need to synthesize two things in order to complete it in ω:
(1) the layer mask; and (2) the layer appearance. In other
words, we need to recover a portion from region ω, which
was originally occluded by a foreground object, and now
occupied by a background layer, as well as the appearance
of that portion. The only exception is the deepest layer I0,
for which we assume the layer mask includes the entire ω
region to avoid creating holes in the final result.

The layered synthesis framework also allows us to measure
the cross-view coherence defined in Equation (2) more

Fig. 6. Examples of soft layer mask extraction. Left: the
central view of the light field. Right: the estimated depth
map.

6

(a)

(b)

Fig. 7. Comparisons of soft layer mask generation. Left:
the central view of the light field. Middle: Close-up soft
masks of one layer, extracted by guided image filtering [17].
Right: Close-up soft mask extracted by an alpha matting
method [42].

(a) (b) (c)
Fig. 8. The motivation for layered synthesis on the central
view image. (a) original central view image; (b) edited
central view as a regular image without layered synthesis;
(c) propagate the result in (b) to view (-0.14, 0.24), notice
the artifacts around the original object boundary. See an-
other comparison to a non-layered synthesis result in the
supplementary video.

easily. We can simply compute cross-view coherence in
each edited layer individually without worrying about oc-
clusion among different layers, and then sum the coherence
values of different layers together as the overall coherence
measure.

5.2 Layer Mask Synthesis

We first describe how to complete a layer mask in the
user-specified region ω, which is essentially a shape com-
pletion task. This is done using a multi-scale patch-based
synthesis approach in our system. We treat the layer mask
outside ω as the source mask Ms, which is known and
fixed, and the entire layer mask including ω as the target
mask Mt to be completed. We build Gaussian pyramids
for both masks, denoted as M(0)

s ,M(1)
s , ...,M(n)

s , and
M(0)

t ,M(1)
t , ...,M(n)

t , respectively. As shown in Figure
9, in order to fill in the hole ω(0) in M(0)

t , we find the
boundary of the layer mask in ω(0) first. Specifically, we
start from a pixel p that is on the hole boundary, and denote
the patch centered at p as Nt(p). p is on the hole boundary
only if Nt(p) contains both in-layer pixels (pi ∈ Nt(p)

Algorithm 1 Mask synthesis on M(0)
t

function SYNTHESIZE(M(0)
t)

while p = FindBoundaryPixel(ω(0)) do
if p is valid then

qs ← argminq Dm(Ns(q), Nt(p)), q ∈
M(0)

s

for pi in Ns(p) do
pi ← qi in Nt(qs) if pi is not filled
Set pi as filled pixel

end for
elsebreak;
end if

end while
Fill pixels inside the boundary as 1.
return

end function
function FINDBOUNDARYPIXEL(ω(0))

for p ∈ ω(0) and p is not filled do
if ∃pi ∈ Nt(p) is filled and M(0)

t (pi) = 0

and ∃pj ∈ Nt(p) is filled and M(0)
t (pj) > 0 then

return p
end if

end for
end function

and Mt(pi) = 1) and off-layer ones (pj ∈ Nt(p) and
Mt(pj) = 0). We then search in M(0)

s to find a patch
Ns(q) that is most similar to Nt(p), according to the
distance metric defined as:

Dm(Nt(p), Ns(q)) =
∑
i∈N

||Ms(i)−Mt(i)||, (5)

∀i where Mt(i) is known or already filled. This process
is repeated until no hole boundary pixel remains. The
remaining unfilled pixels are all inside the boundary and are
filled with full opacity. This process is formally described in
Algorithm. 1. Note that when the source mask boundaries
are soft, this above process is capable of generating soft
layer boundaries in ω as well.

Once the top level mask M(0)
t has been completed, it is

upsampled to the next level as an initialization for M(1)
t ,

which is then further refined by finding nearest patches in
M(1)

s according to Equation (5) and using them to update
the target region ω(1). This process continues until the
bottom level of the pyramid is completed.

Our shape completion approach is similar to the shape
synthesis method proposed by Rosenberger et al. [39] in the
sense that both methods use hierarchical layers for shape
synthesis. The difference is that they focus on local details
and use a random initialization for the base layer and only
then transfer the shape feature details in higher levels, while
we need to synthesize a mask with the same structure as
the original mask while satisfying boundary conditions, as
shown in Figure 9.

7

Ms

ss

(0) Mt
(0)MMt
(0)(0)
t
(0)
t Mark the

hole region

p

q

Up scale

Refine

Fig. 9. Mask synthesis. After building the gaussian pyramid-
s of the layer mask, the target region is defined by marking
the hole region on the layer mask and the source region is
taken as the rest of the layer mask. In the coarsest scale,
the hole mask is filled using Algorithm. 1 and then up-scaled
and refined using the corresponding source mask until the
finest scale.

5.3 Layer Appearance Synthesis

The synthesized layer mask Mt defines the shape of
the current layer in the target region, and we need to
further synthesize its appearance for rendering purposes.
The known region of the layer l outside ω is denoted as Al

s,
and the region to be synthesized (containing ω) is denoted
as Al

t. Our goal is to synthesize the appearance of ω so that
Al

t is consistent with Al
s. This objective is mathematically

defined as minimizing the following appearance distance
between Al

t and Al
s:

Dl(Al
t,A

l
s) =

∑

p∈M+
t

min
q∈M+

s

Da(Nt(p), Ns(q)), (6)

where M+
t includes all pixel locations i so that Mt(i) >

0. Similarly, M+
s refers to the non-zero region in Ms. p

and q are pixel indexes in Al
t and Al

s, respectively, and
Nt(p) and Ns(q) are local image patches that center at
them. Da(·) is the appearance distance metric between two
image patches, which plays the central role in enforcing
appearance coherence. We thus can rewrite Equation (1)
using the layered representation:

Ef (u, v) =
∑

l=1,...,L

Dl(Al
t, A

l
s), (7)

The simplest way to define Da(·) is to define it as the
sum of Euclidean distances of corresponding pixel colors.
In our application, considering that the layer appearance
could be spatially-varying towards the boundary of the
region, we prefer to use patches that are on the layer mask
boundary in Al

s to synthesize boundary patches in ω in Al
t.

To achieve this we also include the mask similarity in the
patch appearance distance metric, which is defined as:

Da(Nt(p),Ns(q)) =

α||Ns(q)−Nt(p)||+ (1− α)Dm(Ns(q), Nt(p)),
(8)

where the balancing weight α is set at 0.5 in the system.
We solve this optimization problem using the multi-scale
patch synthesis approach [53] with the modified distance
metric. The target region in the coarsest level is initialized
with random offset values. In the finer levels, the offsets are
initialized by upsampling the offsets in the previous level.
Given the offsets map, the ω region in Al

t are synthesized
using the same pixel voting method as in [53].

In our experiments, we use 5 × 5 patches and set the
default number of pyramid levels to four (image size is
68×68 at the coarsest level). At each level, we perform four
PatchMatch (propagation and random search) iterations [2].
Because the masks provide extra constraints during the
patch search and the search space is limited to the same
layer, a few EM iterations are sufficient for a good conver-
gence - we perform three iterations at the coarsest scale and
two at finer scales. An example of the final synthesis result
is shown in Figure 10. In this way, the energy in Equation
(7) is minimized by assigning the optimized color value for
every pixel in each layer we extracted.

Fig. 10. Layered synthesis results of the example shown in
Figure 2. In each layer, the green region in the mask is the
target region to fill.

6 EDIT PROPAGATION ACROSS VIEWS

After the central view image has been edited, we propagate
the edits to all the other views while keeping the appearance
consistency and the perceived depth.

6.1 Initial Propagation

For a layer l in the central view I0,0, the user-specified edits
may produce two regions: one caused by object removal
(i.e. the hole), denoted as Rl

0,0; the other associated with
object insertion (i.e. synthesized new object), denoted as
R′l

0,0. The goal of edit propagation is to first find the
corresponding regions Rl

u,v and R′l
u,v in another view Iu,v ,

and then accomplish two tasks: (1) synthesize a new object
in R′l

u,v; and (2) fill the remaining hole {R̄l
u,v|R̄l

u,v =
Rl

u,v −R′l
u,v}, as shown in Figure 11.

Color-based propagation. Rl
u,v and R′l

u,v can be found
using the disparity value dl. A straightforward way to
accomplish the above two tasks is: for a pixel p that needs to
be synthesized in Iu,v , find its corresponding pixel location
in I0,0. Then find the topmost layer at this location that is
visible by examining the layer masks, and copy the pixel
value on this layer to p. For the example shown in Figure

8

R 1

R 1

p

p1p0

View (0.14, 0.24)

I 1I 0

p=p0

R 1From

Layers

Result

R 1

R 1’

u,v

u,v

u,v

0,0

0,0

Fig. 11. Edit propagation from the central view (dashed
bounding box) to another view. For pixel p in R̄1

u,v (top-left),
p0 and p1 are the corresponding pixels computed using the
disparity in layer I0 and I1, respectively (bottom-left). Since
M0

p0 > 0 and M1
p1 = 0, the color of p0 is assigned to p.

The final propagated result of the new view is on the right.

error

u v

x

u

u v

error

u v

error

p q
(d) (e) (f)

x

u

x

u

(a) (b) (c)

Fig. 12. Comparing color-based and offset-based editing
propagation. (a-c) The schematic diagrams of 2D-slices for:
original light field, edited results using patch-offset-based
propagation, and results using direct color-based propaga-
tion. (d) The SSD patch distance map for patches centered
at q, an un-edited pixel in the original data (a real example,
shown in the lower left corner). (e) The SSD distance map
for patches centered at p, a pixel edited by offset-based
propagation. (f) The distance map for p by color-based
propagation. Note that (d) and (e) contain similar variations
while (f) is too flat.

11, the corresponding pixel location of p is not visible
on the front layer (layer 1), so the pixel value on layer
0 (denoted as p0) is assigned to p.

The above method can generate plausible results, but one
drawback is that all corresponding pixels across different
views will have exactly the same synthesized color. In
contrast, in the original light field, the same scene point
often has a small appearance variance across views, as the
object surfaces are rarely pure Lambertian. In addition, to
retain a natural image appearance we want to preserve

the original image noise. Such an example is shown in
Figure 12. Lets consider two pixels p and q on I0,0, where
the former is inside the user-edited region and consequently
is assigned to a new color across all views, and the latter is
outside the edited region, and thus is unchanged. If we take
patches centered at them in different views, and compute
the SSD patch distances, we can see for q the typical patch
distances have relatively large variations that naturally exist
in the light field data (Figure 12d), while for p the variations
are much smaller (Figure 12f).

Offset-based propagation. To make the synthesized re-
gions look more realistic, we do not directly copy the pixel
values from I0,0 to other views. Instead, for pixel p that
is edited in I0,0, we look at the location of source patch
S(p) that was chosen during the patch based synthesis
process (the offset value from the nearest neighbor field
in the last EM iteration, see Section 5.3). We then find the
corresponding source location in Iu,v , and use its color for p
in the edited region of Iu,v . In other words, our propagation
process propagates patch offsets to ensure: (1) Iu,v is edited
using pixel colors sampled from the image itself; and (2)
the edits applied in Iu,v are consistent with the ones in I0,0
as well as in other views. It essentially uses 4D-chunks in
the original light field to generated the novel content.

Figure 12 shows a comparison of color-based and offset-
based propagation methods, on their abilities to maintain
the original object appearance variation across views. It
suggests that the offset-based propagation generates more
natural appearance variations that are consistent with the
original data. We thus choose the offset-based propagation
scheme to generate final results. With better cross-view
coherence when assigning pixel values, the cost function
defined by Equation (2) is also minimized. Next, we de-
scribe a sub-pixel refinement method which further reduces
the cost.

6.2 Sub-pixel Refinement

Typical light field data contains evenly distributed views
(Figure 3), where the scene content changes smoothly
across neighboring views. Thus ideally, the edited light field
should maintain the same level of cross-view smoothness.
However the initial editing propagation process does not
consider sub-pixel accuracy, thus small alignment errors
may accumulate and cause noticeable sudden scene change
across certain neighboring views.

Our system adopts an optical-flow-based sub-pixel refine-
ment approach to eliminate such artifacts, based on the
observation that optical flow is capable of detecting the
actual region shifts in the neighboring views. Specifically,
for each edited layer of the current view i in the edited
light field, we compute the optical flow using the method
in [46] from the same layer of all neighboring views j to the
current view i, denoted as Fji, and compute the sub-pixel

9

shift for the current layer in view i as:

δi = − 1

N

N∑
j

Fji, (9)

where N is the number of neighboring views. This is
essentially applying a local smoothing on the region shift
vectors across views.

We iteratively apply the correction for all the views and
update them if necessary, until all corrections are less than
a small threshold δ (set at (0.2, 0.2) in our system). The
effect of this sub-pixel refinement step is shown in the
supplementary video. In our experiments, the refinement
will converge in 2-3 iterations.

7 APPLICATIONS AND RESULTS

We have successfully applied the proposed approach in a
wide range of plenoptic image editing applications, such as
region completion, reshuffling, parallax magnification and
depth manipulation. Due to limited space we only show
a few examples here. Given the difficulty of showing the
light field in still figures, we adopt a visualization method
of showing outputs with different focus planes, to illustrate
that our results contain the correct depth. Complete results
can be seen in the supplementary video.

The complete light field data, both original and synthesized
and an executable for viewing such data, are all included
in the supplementary materials. For the ease of comparison
with the original light field, we chose to use the same
hexagonal layout with 37 views as our outputs. However
technically, our system is not limited to it and we can render
any in-between views using common view interpolation
techniques. Unless specified, all the light field data are
captured using a Lytro camera. We use Lytro’s desktop
software to extract the rendered image arrays containing
37 views from the LFP files exported by the Lytro camera,
and use them as the inputs to our system.

7.1 Completion and Reshuffling/Cloning

To remove an object in the input light field, we mark pixels
in all affected layers in the user specified region as “hole
pixels”, and complete each layer using the layered synthesis
process described in Section 5.

After all affected layers are completed, the entire light
field is modified using the propagation method described in
Section 6. One completion result is shown in Figure 13(a).
A reshuffling or cloning an image region to a target position
is implemented based on the completion algorithm above.
To move an object to another place, we first use the
completion method to fill in the region of the original
object. By adding hard constraints in the target region
of the patch offset map, a new object can be directly
synthesized at the target location using the algorithms in
Section 5. Reshuffling example is shown in Figure 13(b),
more examples are in the supplementary materials.

7.2 Changing Depth

The proposed method can be used to change the depth
of an object in a light field. This is accomplished in two
steps: we first remove the user-specified object from its
original layer using hole filling. Then the object and its
layer mask are copied onto the new depth layer specified
by the user as an initialization, followed by a similar patch-
based synthesis process to blend it into the target depth
layer. An example is shown in Figure 13(c). We can also
combine multiple operations, such as depth changing and
reshuffling, to achieve more sophisticated editing goals, as
shown in Figure 13(d).

7.3 Parallax Magnification

One of the major limitations of existing consumer light
field cameras is their narrow viewpoint range, especially
when the scene is far from the camera. Our system enables
a new important application of parallax magnification, by
synthesizing the appearance of occluded pixels in each
layer. Specifically, given a magnifying factor the user wants
to apply to the viewpoint range, we first compute the
synthesis region in each layer of the central view M l

that will be revealed in the output views. We denote the
inverted mask M̃ l = 1−M l as the region that needs to be
synthesized for this application. Specifically, the maximum
region we need to synthesize is the part in M̃ l that will
be revealed, i.e. cannot be covered by all layers in front of
l, in the farthest perspectives from the central view. It is
computed by:

Rl =
⋃
j∈Sl

((M̃ l −M j
1)

⋃
(M̃ l −M j

2)), (10)

where M j
1 and M j

2 are the shifted masks for layer j
by the vector of (umax, vmax) and (umin, vmin) of the
generated novel views, i.e., the largest disparity vectors. Sl

denotes the set of layers that is in front of l. (M̃ l −M j
x)

means subtracting pixels belonging to M j
x from M̃ l. By

completing each layer in Rl and recovering the entire light
field according to the given new camera coordinates, we
can magnify the parallax in the original light field. This is
shown in Figure 14(c).

In this application, the regions that need to be synthesized
are larger if the user wants a wider range of viewpoints.
Larger “holes” are notoriously harder to fill automatically
so previous patch-based methods employed user constraints
to obtain good results [2]. Similarly, we allow the user to
specify structural constraints that are used to locally limit
the search region of the marked pixels (see [2] for more
details). We include a comparison between results with and
without constraints in our supplemental video. To evaluate
our method, we also render two light fields from a CG scene
with different parallax range. Figure. 14(d) shows the left
and right most views generated by our method and the real
corresponding image rendered from that scene.

10

d = -10.3

d = -3.1

d = -7.2

d = 5.6

d = 7.8

d =8.4

(a)

(b)

(c)

Input Result

(d)

d = -15.0 d = 0.6

Fig. 13. Applying our system to different light field editing tasks. (a) Removing selected objects. (b) Reshuffling the selected
leaf region. (c) Changing object depth. (d) Combining reshuffling with a depth change. The third and fourth columns are
refocusing results to show that our results contain the correct depth. The complete results are shown in the supplementary
video.

7.4 Light Field Super-resolution

Due to hardware limitations, the resolution of curren-
t consumer-level plenoptic cameras is much lower than
the resolution of DSLRs. Using our framework, we can
increase the resolution of the light-field, with the help of a
reference high resolution image taken by a regular camera
from the same perspective, denoted as Ir.

We first increase the resolution of each layer in the central
view I0,0 using Ir. On each layer l, we compute the region
Rl

u that we need to up-scale in a similar way to Equation
(10) (with the magnification rate 1). Since this region

contains pixels that cannot be seen in I0,0, we fill the holes
using corresponding visible pixels from other views. Using
the non-dyadic filter banks proposed in [13], we downsize
Ir to the size of I0,0 to get the low frequency and high
frequency bands for each patch, and up-scale I lu to the size
of Ir. In Ir, we search for the patch whose lower frequency
band is most similar to the patch in up-scaled I0,0. We then
use the corresponding high resolution patches to generate
the up-scaled I lu. In our experiment, the resolution of the
reference picture is 3 times of the resolution of I0,0, and
we use 5:4, 5:4, 4:3, and 3:2 filter banks as in [13]. Using
a similar process to Section 6, the nearest neighbor field is
used to generate an up-scaled image for each view.

11

R =0

M 0~

M 1
1 M 2

1 M 1
2 M 2

2

U

M 0

Input

Layers(a) (b) Original Result(c) Original Our results Ground truth(d)

Fig. 14. Parallax magnification. (a) The central view and its depth layers; (b) The region needs to be synthesized (yellow)
for the background layer (layer 0) computed from the farthest views (see Section 7.3); (c) Top row: the original leftmost
and rightmost views. Bottom row: enlarged parallax of the leftmost and rightmost views by a factor of 8. (d) A comparison
with the ground truth of a synthetic light field.

(a) (b) (c)Reference image

Fig. 15. Light field upscaling. (a) Bicubic upsampling of two
different views. (b) Results of our method. (c) Results of [5].

Figure. 15 shows one super-resolution example. We com-
pare our result with the recent patch-based method of
Boominathan et al. [5]. Their method uses a uniform patch-
based upsampling approach for all pixels, ignoring bound-
ary discontinuities. Our method generates more consistent
results along layer boundaries. See supplemental video for
further examples.

8 DISCUSSION

8.1 More Comparisons

Morse et al. [34] use a patch-based synthesis method to
complete stereo image pairs. They first estimate the dispar-
ities in the hole, then compute the nearest neighborhood
fields (NNF) by considering both appearance and depth
consistency and allowing propagation between different
views. Then a stereo-consistent patch blending step is
applied to produce the final result. One may argue that this
method could be potentially extended to light field editing.

However, when adapting this method to light field com-
pletion, the random nature of the PatchMatch algorithm [2]
used in that method, makes it unlikely to complete a region
so that it appears consistent in different views (even though
the consistency has been considered when computing NNFs
and blending patches). In Figure. 16 we extend this method
from handling stereo pairs to a plenoptic image, by simul-
taneously optimizing all the views in the light field in the

Input
Morse et al.

Ours

Errors

10 -2

10 -2

Fig. 16. Comparison with the stereo inpainting method of
Morse et al. Left: input central view with a user specified
hole. Right: two neighboring views in the completed results
using the method of Morse et al. (top) and our approach
(bottom). The error map shows the sum of content differ-
ence between all other views and the central view. Our
method generates much smaller errors.

hole region. When generating the final image, we generate
the blending weights for each patch by taking into account
all SSD-distances of corresponding patches in other views
(extension of their weighting function to multiple images).

To check the content consistency across different views, we
visualize the difference map of the filled region between
each view and the central view in Figure. 16. As can be
seen, the difference map produced by the generalization of
their method contains large pixel-wise difference, indicating
content jittering of their results when shifting perspectives.
This kind of jitter is not an issue for perceiving stereo but is
a major artifact for viewing a plenoptic image. Please refer
to the supplementary video for the complete comparison.

8.2 Run-time

The light field data used in our experiments was captured
by a Lytro camera. Images of different views were resized
to 544×544. We implemented our approach in C++ on a PC
with an Intel Xeon E5620 CPU with 4 cores (8 threads) at
2.4GHz and 8GB RAM. In our experiments, using a single

12

core, extracting the depth layers takes about 1 second, the
synthesis on each related layer takes about 0.5 ∼ 3 seconds,
and it costs about 3 ∼ 6 seconds to propagate the edits
on each layer to the entire light field. Some components
of our method can be easily parallelized, like the cost-
volume filtering in the depth layers extraction and edit
propagations across views. The synthesis of each layer
can be also trivially parallelized. It takes about 0.2 ∼ 0.4
seconds to extract the depth layers and 0.5 ∼ 0.8 seconds
to propagate edits to all views. The overall run-time using
a parallel implementation for all the examples in the paper
was between 3 to 10 seconds (e.g., the examples from Fig. 1
and Fig. 13(a) took 3.7 and 6.3 seconds, respectively).

8.3 Limitations

The proposed approach does have several limitations. First,
when the captured scene contains a large ground plane or
other non-frontal surface with a smoothly-varying depth, as
the example shown in Figure 17(a), our method might not
work well. The slanted surface cannot be well modeled as
a single depth layer, so applications like completion and
reshuffling might exhibit artifacts, especially if the surface
has visually salient patterns. Furthermore, since we do not
take into account any relation between neighboring layers
in our representation, scenes with contiguous dominant
structures which span across multiple layers might cause
artifacts in applications like parallax widening. Figure 17(b)
shows such an example, where the trail on the ground
cannot be preserved as a continuous line in the farthest
view, and instead is decomposed into discrete segments
contained in different layers. However, our method often
works well for slanted planes that do not contain salient
patterns or strong textures (e.g. in Figure 17(c)).

(a) (b) (c)()
Fig. 17. Our system does not work well if the scene
contains visually salient patterns in a plane with smoothly-
varying depth. (a) Central view of the input, which contains a
large smoothly-varying depth layer; (b) Synthesized farthest
view with a widened parallax where the long line structure
is broken. (c) Our method can still generate fine results for
slanted surfaces that are not highly textured.

In addition, our system requires a rather accurate depth
layer extraction for high quality results. However accurate
automatic depth estimation is a challenging computer vision
problem, especially for complex scenes, even in a structured
setting such as a lightfield camera. In order to obtain more
realistic results and a better consistency of the perceived
depth, our system allows the user to manually specify

additional constraints as shown in Figure. 13(a), and to
adjust the depth values when propagating edits across
different views. Out of all the results shown in the paper,
only the examples in Figure. 13(a) were obtained using
manual adjustments.

Finally, our current system extracts soft layer masks using
guided image filtering with a small radius. It works well
for objects with near-solid or slightly furry boundaries, but
cannot handle large semi-transparent regions such as long
hair blowing in the wind. Additional user input is needed
to specify such regions, and more advanced alpha matting
methods can be potentially employed for creating more
accurate soft masks in such cases.

9 CONCLUSION AND FUTURE WORK

We have demonstrated an interactive system for light field
editing using recent advances in patch-based image syn-
thesis methods. Our method represents the light field as an
image set with a hexagonal layout, and models the captured
scene as overlapping layers with different depths. After the
user specifies an editing task in the central view image, the
method employs a back-to-front layered synthesis to edit
all affected layers. The edits on these layers are then prop-
agated to all other views while maintaining the appearance
consistency and the perceived depth. Experimental results
show that our method allows applications like completion,
reshuffling and parallax magnification to be performed
effectively on plenoptic images for the first time. Additional
results are shown in the supplementary materials.

As future work, we plan to consider additional geometric
features and inter-layer correlations in the layered scene
representation, to handle more complex scenes such as
the one shown in Figure 17. We also plan to extend this
framework to enable new applications such as plenoptic
image compositing and merging.

ACKNOWLEDGMENTS

This work was supported by the National High Technology
Research and Development Program of China (Project
No. 2013AA013903), the Natural Science Foundation of
China (Project No. 61521002, 61272226), Research Grant
of Beijing Higher Institution Engineering Research Center,
the General Financial Grant from the China Postdoctoral
Science Foundation (Grant No. 2015M580100), and Ts-
inghua University Initiative Scientific Research Program.

REFERENCES

[1] Adobe, “Photoshop cc content-aware fill,” 2013,
http://www.adobe.com/technology/projects/content-aware-fill.html.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman,
“Patchmatch: a randomized correspondence algorithm for structural
image editing,” ACM TOG, vol. 28, no. 3, pp. 24:1–24:11, Jul. 2009.

13

[3] C. Birklbauer and O. Bimber, “Light-field retargeting,” in Computer
Graphics Forum, vol. 31, no. 2pt1, 2012, pp. 295–303.

[4] T. E. Bishop, S. Zanetti, and P. Favaro, “Light field superresolution,”
in Proc. ICCP, 2009, pp. 1–9.

[5] V. Boominathan, K. Mitra, and A. Veeraraghavan, “Improving res-
olution and depth-of-field of light field cameras using a hybrid
imaging system,” in Proc. ICCP, 2014.

[6] B. Chen, E. Ofek, H.-Y. Shum, and M. Levoy, “Interactive deforma-
tion of light fields,” in Proc. I3D. ACM, 2005, pp. 139–146.

[7] D. G. Dansereau, O. Pizarro, and S. B. Williams, “Decoding,
calibration and rectification for lenselet-based plenoptic cameras,”
in Proc. CVPR, 2013.

[8] S. Darabi, E. Shechtman, C. Barnes, D. B. Goldman, and P. Sen,
“Image melding: Combining inconsistent images using patch-based
synthesis,” ACM TOG, vol. 31, no. 4, pp. 82:1–82:10, Jul. 2012.

[9] W. Dong, F. Wu, Y. Kong, X. Mei, T.-Y. Lee, and X. Zhang, “Image
retargeting by texture-aware synthesis,” IEEE TVCG, vol. 22, no. 2,
pp. 1088–1101, Feb 2016.

[10] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in Proc. SIGGRAPH, 2001, pp. 341–346.

[11] K. Egan, F. Hecht, F. Durand, and R. Ramamoorthi, “Frequency
analysis and sheared filtering for shadow light fields of complex
occluders,” ACM TOG, vol. 30, no. 2, pp. 1–13, Apr. 2011.

[12] A. Fitzgibbon, Y. Wexler, and A. Zisserman, “Image-based rendering
using image-based priors,” in Proc. ICCV. Washington, DC, USA:
IEEE Computer Society, 2003, p. 1176.

[13] G. Freedman and R. Fattal, “Image and video upscaling from local
self-examples,” ACM TOG, vol. 30, no. 2, p. 12, 2011.

[14] M. Fuchs, M. Kächele, and S. Rusinkiewicz, “Design and fabrication
of faceted mirror arrays for light field capture,” Computer Graphics
Forum, vol. 32, no. 8, pp. 246–257, Aug. 2013.

[15] D. Glasner, S. Bagon, and M. Irani, “Super-resolution from a single
image,” in Proc. CVPR, 2009.

[16] B. Goldluecke and S. Wanner, “The variational structure of disparity
and regularization of 4d light fields,” in IEEE CVPR, June 2013, pp.
1003–1010.

[17] K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE TPAMI,
vol. 35, no. 6, pp. 1397–1409, 2013.

[18] M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Computing
and fabricating multilayer models,” ACM TOG, vol. 30, no. 6, pp.
187:1–9, 2011.

[19] D. R. Horn and B. Chen, “Lightshop: interactive light field manip-
ulation and rendering,” in Proc. I3D, 2007, pp. 121–128.

[20] Y. Itoh and G. Klinker, “Light-field correction for spatial calibration
of optical see-through head-mounted displays,” IEEE TVCG, vol. 21,
no. 4, pp. 471–480, 2015.

[21] A. Jarabo, B. Masia, A. Bousseau, F. Pellacini, and D. Gutierrez,
“How do people edit light fields?” ACM TOG(SIGGRAPH 2014),
vol. 33, no. 4, 2014.

[22] A. Jarabo, B. Masia, and D. Gutierrez, “Efficient propagation of light
field edits,” in Proc. of SIACG, 2011.

[23] C. Kim, A. Hornung, S. Heinzle, W. Matusik, and M. Gross, “Multi-
perspective stereoscopy from light fields,” ACM TOG, vol. 30, no. 6,
p. 190, 2011.

[24] K. Kodama and A. Kubota, “Efficient reconstruction of all-in-focus
images through shifted pinholes from multi-focus images for dense
light field synthesis and rendering,” IEEE Transactions on Image
Processing, vol. 22, no. 11, pp. 4407–4421, 2013.

[25] D. Lanman and D. Luebke, “Near-eye light field displays,” ACM
TOG, vol. 32, no. 6, pp. 220:1–220:10, 2013.

[26] J. Lehtinen, T. Aila, J. Chen, S. Laine, and F. Durand, “Temporal
light field reconstruction for rendering distribution effects,” ACM
TOG, vol. 30, no. 4, pp. 55:1–55:12, Jul 2011.

[27] A. Levin and F. Durand, “Linear view synthesis using a dimen-
sionality gap light field prior,” in Proc. CVPR. IEEE, 2010, pp.
1831–1838.

[28] M. Levoy and P. Hanrahan, “Light field rendering,” in Proc. SIG-
GRAPH. ACM, 1996, pp. 31–42.

[29] M. Levoy, Z. Zhang, and I. McDowall, “Recording and controlling
the 4d light field in a microscope using microlens arrays,” Journal
of Microscopy, vol. 235, no. 2, pp. 144–162, 2009.

[30] Y. Liu, L. Sun, and S. Yang, “A retargeting method for stereoscopic
3d video,” Computational Visual Media, vol. 1, no. 2, pp. 119–127,
2015.

[31] W.-Y. Lo, J. van Baar, C. Knaus, M. Zwicker, and M. Gross,
“Stereoscopic 3d copy & paste,” ACM TOG, vol. 29, no. 6, pp.
147:1–147:10, 2010.

[32] H. Lu, R. Pacanowski, and X. Granier, “Position-dependent impor-
tance sampling of light field luminaires,” IEEE TVCG, vol. 21, no. 2,
pp. 241–251, Feb 2015.

[33] S.-J. Luo, I.-C. Shen, B.-Y. Chen, W.-H. Cheng, and Y.-Y.
Chuang, “Perspective-aware warping for seamless stereoscopic im-
age cloning,” ACM TOG, vol. 31, no. 6, pp. 182:1–182:8, Nov. 2012.

[34] B. Morse, J. Howard, S. Cohen, and B. Price, “Patchmatch-based
content completion of stereo image pairs,” in Proc. 3DIMPVT, 2012,
pp. 555–562.

[35] R. Ng, “Fourier slice photography,” ACM TOG, vol. 24, no. 3, pp.
735–744, 2005.

[36] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanra-
han, “Light field photography with a hand-held plenoptic camera,”
Computer Science Technical Report, vol. 2, no. 11, 2005.

[37] Y. Niu, W.-C. Feng, and F. Liu, “Enabling warping on stereoscopic
images,” ACM TOG, vol. 31, no. 6, pp. 183:1–183:10, 2012.

[38] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, “Fast
cost-volume filtering for visual correspondence and beyond,” in Proc.
CVPR. IEEE, 2011, pp. 3017–3024.

[39] A. Rosenberger, D. Cohen-Or, and D. Lischinski, “Layered shape
synthesis: Automatic generation of control maps for non-stationary
textures,” ACM TOG, vol. 28, no. 5, pp. 107:1–107:9, Dec. 2009.

[40] S. M. Seitz and K. N. Kutulakos, “Plenoptic image editing,” IJCV,
vol. 48, no. 2, pp. 115–129, 2002.

[41] P. Sen, N. K. Kalantari, M. Yaesoubi, S. Darabi, D. B. Goldman,
and E. Shechtman, “Robust Patch-Based HDR Reconstruction of
Dynamic Scenes,” ACM TOG (SIGGRAPH Asia 2012), vol. 31,
no. 6, 2012.

[42] E. Shahrian and D. Rajan, “Weighted color and texture sample
selection for image matting,” in IEEE CVPR, 2012, pp. 718–725.

[43] E. Shechtman, A. Rav-Acha, M. Irani, and S. Seitz, “Regenerative
morphing,” in Proc. CVPR, San-Francisco, CA, June 2010.

[44] L. Shi, H. Hassanieh, A. Davis, D. Katabi, and F. Durand, “Light
field reconstruction using sparsity in the continuous fourier domain,”
ACM TOG, vol. 34, no. 1, p. 12, 2014.

[45] B. M. Smith, L. Zhang, H. Jin, and A. Agarwala, “Light field video
stabilization,” in Proc. ICCV. IEEE, 2009, pp. 341–348.

[46] D. Sun, S. Roth, and M. J. Black, “Secrets of optical flow estimation
and their principles,” in Proc. CVPR. IEEE, 2010, pp. 2432–2439.

[47] R.-F. Tong, Y. Zhang, and K.-L. Cheng, “Stereopasting: Interactive
composition in stereoscopic images,” IEEE TVCG, vol. 19, no. 8,
pp. 1375–1385, 2013.

14

[48] K. Venkataraman, D. Lelescu, J. Duparr, A. McMahon, G. Molina,
P. Chatterjee, R. Mullis, and S. Nayar, “Picam: an ultra-thin high
performance monolithic camera array,” ACM TOG, vol. 32, no. 6,
pp. 166:1–166:12, 2013.

[49] J. Wang and M. Cohen, “Image and video matting: A survey,”
Foundations and Trends in Computer Graphics and Vision, vol. 3,
no. 2, pp. 97–175, 2007.

[50] L. Wang, S. Lin, S. Lee, B. Guo, and H.-Y. Shum, “Light field
morphing using 2d features,” IEEE TVCG, vol. 11, no. 1, pp. 25–
34, 2005.

[51] S. Wanner, C. Straehle, and B. Goldluecke, “Globally consistent
multi-label assignment on the ray space of 4d light fields,” in IEEE
CVPR, 2013, pp. 1011–1018.

[52] G. Wetzstein, D. Lanman, M. Hirsch, and R. Raskar, “Tensor Dis-
plays: Compressive Light Field Synthesis using Multilayer Displays
with Directional Backlighting,” ACM TOG, vol. 31, no. 4, pp. 1–11,
2012.

[53] Y. Wexler, E. Shechtman, and M. Irani, “Space-time completion of
video,” IEEE TPAMI, vol. 29, no. 3, pp. 463–476, Mar. 2007.

[54] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” ACM TOG, vol. 24, no. 3, pp. 765–776,
2005.

[55] Z. Zhang, L. Wang, B. Guo, and H.-Y. Shum, “Feature-based light
field morphing,” ACM TOG, vol. 21, no. 3, pp. 457–464, 2002.

[56] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and R. Szelis-
ki, “High-quality video view interpolation using a layered represen-
tation,” ACM TOG, vol. 23, no. 3, pp. 600–608, Aug. 2004.

Fang-Lue Zhang received his Ph.D (2015) de-
gree from Department of Computer Science from
Tsinghua University and BS degree from the
Zhejiang University in 2009. He is currently a
post-doctor in Tsinghua University. His research
interests include computer graphics, image pro-
cessing and enhancement, image and video
analysis and computer vision. He is a member
of IEEE and ACM.

Jue Wang is a Principle Research Scientist at
Adobe Research. He received his B.E. (2000)
and M.Sc. (2003) from Department of Automa-
tion, Tsinghua University, Beijing, China, and
his Ph.D (2007) in Electrical Engineering from
the University of Washington, Seattle, WA, US-
A. He received Microsoft Research Fellowship
and Yang Research Award from University of
Washington in 2006. He joined Adobe Research
in 2007 as a research scientist. His research
interests include image and video processing,

computational photography, computer graphics and vision. He is a senior
member of IEEE and a member of ACM.

Eli Shechtman is a Senior Research Scientist
at Adobe Research. He received the B.Sc. de-
gree in electrical engineering (magna cum laude)
from Tel-Aviv University in 1996. Between 2001
and 2007 he attended the Weizmann Institute
of Science where he received with honors his
M.Sc. and Ph.D. degrees. He was awarded the
Weizmann Institute Dean prize for M.Sc. stu-
dents, the J.F. Kennedy award (highest award
at the Weizmann Institute) and the Knesset (Is-
raeli parliament) outstanding student award. He

received the best paper award at ECCV 2002 and a best poster award at
CVPR 2004. His research interests include image and video processing,
computational photography, object recognition and patch-based analysis
and synthesis. He is a member of the IEEE and the ACM.

Zi-Ye Zhou received his BS degree from the
Tsinghua University in 2014. He is currently a
Phd candidate in University of Pennsylvania. His
research interests include computer graphics,
image processing and enhancement.

Jia-Xin Shi is an undergraduate student at the
Tsinghua University. His research interests in-
clude computer graphics, image processing and
enhancement and machine learning.

Shi-Min Hu is currently a professor in the de-
partment of Computer Science and Technology,
Tsinghua University, Beijing. He received the
PhD degree from Zhejiang University in 1996.
His research interests include digital geometry
processing, video processing, rendering, com-
puter animation, and computer-aided geometric
design. He has published more than 100 papers
in journals and refereed conference. He is Editor-
in-Chief of Computational Visual media, and on
editorial board of several journals, including IEEE

Transactions on Visualization and Computer Graphics, Computer Aided
Design and Computer & Graphics.

