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Abstract

Indirect inference testing can be carried out with a variety of auxil-
iary models. Asymptotically these di¤erent models make no di¤erence.
However, in small samples power can di¤er. We explore small sample
power with three di¤erent auxiliary models: a VAR, average Impulse Re-
sponse Functions and Moments. The latter corresponds to the Simulated
Moments Method. We �nd that in a small macro model there is no dif-
ference in power. But in a large complex macro model the power with
Moments rises more slowly with increasing misspeci�cation than with the
other two which remain similar.

Keywords: Indirect Inference, DGSE model, Auxiliary Models, Sim-
ulated Moments Method

JEL Classi�cation: C12; C32; C52; E1

1 Introduction

When applying the Indirect Inference (II) test on DSGE models, many choices
for the �data descriptors�, or the �auxiliary model�, are possible. A natural choice
of auxiliary model is an unrestricted VAR, because a VAR is the reduced form
of a DSGE model. One is then comparing the reduced form as restricted by the
model and the unrestricted reduced form found in the data. The II evaluation
criterion is then based on the di¤erences between relevant VAR coe¢cients from
simulated and actual data as represented by a Wald statistic. However, other
data descriptors and auxiliary models might also be considered apart from VAR
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coe¢cients. In particular, the impulse response match has been widely used as a
model evaluation method or for estimating the structural parameters of DSGE
models (see for example, Schorfheide, 2001; Christiano, Eichenbaum and Evans,
2005; Guerron-Quintana, Inoue, and Kilian 2016). Another one, Simulated
Method of Moments, is well-known as a form of II, though experience of its use
has been limited.These two could be used as "data descriptors" in the formal
testing procedures of II.
In this paper, we compare the power of these two alternative ways of apply-

ing II with that of the VAR method which we have explored in previous papers
(see Le et al, 2016). We evaluate the power of these di¤erent methods in small
samples using Monte Carlo simulations (asymptotically they do not di¤er; their
asymptotic equivalence in estimation is noted by Le et al, 2011). We �nd that
in a small macro model there is no di¤erence in power. But in a large com-
plex macro model the power with Moments rises more slowly with increasing
misspeci�cation than with the other two which remain similar.

2 Properties of �rst order VAR

We �rst review the properties of �rst order VAR, as an auxiliary model

yt = A1yt�1 + "t (1)

where "t is assumed to be NID(0; �). The OLS estimates of Â1 and �̂ are:

Â1 = (yt�1y
0

t�1)yt�1yt
0

�̂ =
"̂t"̂

0

t

n� k
=
(yt�1 � Â1yt�1)(yt�1 � Â1yt�1)

0

n� k
(2)

The VAR model can be written as an in�nite moving average process:

yt = A1yt�1 + "t = A
j+1
1 yt�j�1 +

jX

i=0

Ai1"t�i: (3)

If all eigenvalues of have modulus less than 1, the sequence is absolutely
summable (see Lutukepohl (2005) Appendix A, Section A.9.1). Hence,

yt =
/X

i=0

Ai1"t�i (4)

The error "t is related to the structural innovations of the DSGE model ut
as "t=But , where uit is uncorrelated with ujt for i 6= j. We assume B is known
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so that we can identify the structural errors causing the impulses. The impulse
response function(IRF) to the shocks of the structural errors is then:

IRF (h) =
dyt+h

du0t
= A1

(h�1)B; h = 0; 1; 2; ::: (5)

The average of IRF over M periods is de�ned as

IRFAve =
1

M + 1

MX

h=0

IRF (h) : (6)

We can derive the asymptotic second moments of the yt process:

�y(h) = E(yt � �)(yt�h � �)
0

= lim
n!/

nX

i=0

nX

j=0

Ai1E("t�i"
0

t�h�i)A
j
1
0 (7)

=
/X

i=0

Ah+i1 �Ai1
0

(8)

as E("t"s) = 0 for s 6= t and E("t"t) =� for t.
The covariance matrix can be obtained by setting h = 0,

�0 = E(yt � �)(yt � �)
0

=

/X

i=0

Ai1�A
i
1

0

(9)

3 II test

The II test criterion is based on the di¤erence between descriptors, the auxiliary
model, from simulated data and actual data as represented by a Wald statistic,
hence we call it an IIW (Indirect Inference Wald) test. If the DSGE model
is correct (the null hypothesis) then the simulated data, and the data descrip-
tors based on these data, will not be signi�cantly di¤erent from those derived
from the actual data. The simulated data from the DSGE model are obtained
by bootstrapping the model using the structural shocks implied by the given
(or previously estimated) model and computed from the historical data. The
test then compares the data descriptors estimated on the actual data with the
distribution of data descriptors derived from multiple independent sets of the
simulated data. We then use a Wald statistic based on the di¤erence between
aT , the estimates of the data descriptors derived from actual data, and aS(�0),
the mean of their distribution based on the simulated data, which is given by:

WS = (aT � aS(�0))
0W (�0)(aT � aS(�0))
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where W (�0) is the inverse of the variance-covariance matrix of the distribution
of simulated estimates aS and �0 is the vector of parameters of the DSGE model
on the null hypothesis that it is true.
Appendix shows the steps involved in �nding the Wald statistic. A detailed

description of the IIW test can also be found in Le et al. (2016).
When one compares the IIW tests, one �nds:
1) With VAR coe¢cients as the data descriptors, the test uses the estimated

VAR coe¢cients, as given in equation (2).
2) With IRF functions as the descriptors, the test uses the estimated IRF

functions, as given in equation (5), which reveals that the IRF function is a non-
linear combination of VAR coe¢cients and the error covariance matrix (which
is identi�ed by the B matrix). If we considered the IRF over 4 years(16 periods)
and take its average, then this average of IRF has 9 elements for a 3 variable
VAR (1) model. This number equals the number of VAR coe¢cients. So the
test utilises a comparable number of descriptors. We here take averages of IRFs
for di¤erent shock/variable combinations.
3) With the simulated Moments (SM) as the data descriptors, the test uses

the simulated moments of the data. Consider the covariance matrix, and use its
lower triangular elements. For a 3-variable VAR model, we have 3(3+1)/2=6
elements to compare. The �rst order autocorrelation coe¢cients are added as
additional moments. This brings the number of elements in the Wald statistic
again to 9. From the theoretical moments derived above, we know that the
data covariance is a nonlinear combination of VAR coe¢cients and the error
covariance matrix. Again the number of descriptors is comparable with the
number of VAR descriptors.
We know from Le et al (2016) that the DSGE models we are examining are

over-identi�ed, so that the addition of more VAR coe¢cients (e.g. by raising
the order of the VAR) increases the power of the test, because more nonlinear
combinations of the DSGE structural coe¢cients need to be matched. Analo-
gously, adding more elements to the IRF descriptors (e.g. by taking averages
over shorter periods) or to the moment descriptors (e.g. by taking lagged cross-
moments) should do the same. Le et al (2016) noted that increasing the power
in this way also reduced the chances of �nding a tractable model that would pass
the test, so that there was a trade-o¤ for users between power and tractability.

4 Monte Carlo Experiments

We now perform some experiments comparing the power of IIW tests under
these three methods in small samples, using Monte Carlo experiments on two
major DSGE models. One is the three equation New Keynesian model due to
Clarida, Gali and Gertler (1999). The other is the original version of Smets and
Wouters model (2007); both are used with US data. The sample size is chosen
as 200, which is typical for macro data.
We design Monte Carlo simulation following the same approach as Le et al

(2016). Speci�cally, we generate the falseness by introducing a rising degree
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of numerical mis-speci�cation for the model parameters. Thus we construct a
model whose parameters were moved x% away from their true values in both
directions (+/- alternation); similarly the higher moments of the error processes
(standard deviation) are altered by the same x%.1 For all the experiments, the
eigenvalues of reduced form VAR coe¢cients A1 are all strictly less than unity
in modulus, so Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson�s
(2007) condition that the DSGE model has a VAR representation is satis�ed.
We create 1000 samples from the model that is assumed to be true: then we
obtain from these samples the distribution of the Wald statistic by bootstrapping
(the bootstrap number is 500) when the model is true. We use this distribution
to assess how many times the x% False model is rejected with 95% con�dence;
notice that this �xes the size of the test throughout at 5%.
The Monte Carlo simulation results are presented in Tables 1.

Table 1: Rejection Rates at 95% level (falseness is given by +/- alternatation)
Three equation New Keynesian model
Type of IIW 0 1% 3% 5% 7% 10% 15% 20%
VAR Coe¤s 0.05 0.314 1.000 1.000 1.000 1.000 1.000 1.000
Average IRFs 0.05 0.410 1.000 1.000 1.000 1.000 1.000 1.000
Moments 0.05 0.316 0.998 1.000 1.000 1.000 1.000 1.000
The Smets-Wouters model
Type of IIW 0 1% 3% 5% 7% 10% 15% 20%
VAR Coe¤s 0.05 0.128 0.866 0.997 1.000 1.000 1.000 1.000
Average IRFs 0.05 0.140 0.852 0.998 1.000 1.000 1.000 1.000
Moments 0.05 0.114 0.326 0.665 0.913 0.997 1.000 1.000

What is rather remarkable about these comparisons is how similar the power
is across all three methods for the 3-equation model, which has a rather simple
structure. For the Smets-Wouters model, it emerges that the moments IIW has
substantially smaller power than the other two.
To check if our results are stable across di¤erent model mis-speci�cation,

we redo the Monte Carlo experiment by constructing a false model under two
alternative arbitrary falseness criteria:
1) model parameters were moved x% away from their true values in -/+

alternation; this is the oposite ordering of +/- we used before.
2) model parameters were moved x% away from their true values in +/-

randomly; here we randomise the + and the - instead of keeping a �xed sequence.
The Monte Carlo simulation results are presented in tables 2 and 3 respec-

tively.

For the three-equation New Keynesian model, the Monte Carlo results are
very stable across di¤erent experiments. The power is similar across all three
methods, and essentially no di¤erent from those for the original falseness crite-

1See Le et al (2016) section 4.1 for full details of the experiments.
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Table 2: Rejection Rates at 95% level (falseness is given by -/+ alternatation)
Three equation New Keynesian model
Type of IIW 0 1% 3% 5% 7% 10% 15% 20%
VAR Coe¤s 0.05 0.230 0.942 1.000 1.000 1.000 1.000 1.000
Average IRFs 0.05 0.414 1.000 1.000 1.000 1.000 1.000 1.000
Moments 0.05 0.374 1.000 1.000 1.000 0.970 1.000 1.000
The Smets-Wouters model
Type of IIW 0 1% 3% 5% 7% 10% 15% 20%
VAR Coe¤s 0.05 0.112 0.862 0.998 1.000 1.000 1.000 1.000
Average IRFs 0.05 0.119 0.850 0.989 1.000 1.000 1.000 1.000
Moments 0.05 0.064 0.112 0.154 0.440 0.970 1.000 1.000

Table 3: Rejection Rates at 95% level (falseness is given by+/- randomly)
Three equation New Keynesian model
Type of IIW 0 1% 3% 5% 7% 10% 15% 20%
VAR Coe¤s 0.05 0.354 0.964 1.000 1.000 1.000 1.000 1.000
Average IRFs 0.05 0.446 0.996 0.985 0.998 1.000 1.000 1.000
Moments 0.05 0.352 1.000 0.997 1.000 1.000 1.000 1.000
The Smets-Wouters model
Type of IIW 0 1% 3% 5% 7% 10% 15% 20%
VAR Coe¤s 0.05 0.220 0.993 1.000 1.000 1.000 1.000 1.000
Average IRFs 0.05 0.147 0.876 1.000 0.998 1.000 1.000 1.000
Moments 0.05 0.075 0.302 0.479 0.596 0.759 0.934 0.981

rion. For the Smets-Wouters model, it is again clear that the Moments method
has less power than the other two which remain quite similar.
We also tried di¤erent measures of moments (for example, the �rst order

covariance which mirrors the lag structure of the VAR coe¢cients; here we use
the cross-moments at one lag to mirror the VAR coe¢cients: this implies that
the auto-covariance is along the diagonal. The results are presented in table 4.
Again, the results are similar.

Table 4: Rejection Rates at 95% level (falseness is given by+/- randomly)
The Smets-Wouters model
Type of IIW 0 1% 3% 5% 7% 10% 15% 20%
VAR Coe¤s 0.05 0.187 0.615 0.884 1.000 1.000 1.000 1.000
Average IRFs 0.05 0.137 0.422 0.878 1.000 1.000 1.000 1.000
Moments 0.05 0.110 0.178 0.243 0.955 0.999 1.000 1.000

It is not surprising that tests based on IRFs and VAR coe¢cients give similar
power: the IRFs are linear combinations of the VAR coe¢cients as shown above
by equation (5).
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However what is striking is the systematically lower power of tests based
on Moments for a large structural model like Smets-Wouters. Why might this
arise? We may note from equation (9) that the moments are linear combinations
of squared VAR coe¢cients. In the Wald test these numbers are in turn used as
squared deviations from their model-simulated mean values. The distribution
of the Wald for these values may be rather di¤erent in small samples from its
distribution for VAR coe¢cients. So we plot the Wald distributions in Figure 1
(based on the results from experiment 1) .
What we �nd is rather striking. For the true distribution there is no dif-

ference in the Wald distributions. However, as the degree of falseness increases
the Wald distribution for the moments does not shift to the right at all quickly,
unlike that for the VAR coe¢cients. It seems that in a highly restricted model
like Smets and Wouters false parameters do not shift the simulated moments
nearly as much as they shift the simulated VAR coe¢cients; yet in a much sim-
pler model with few restrictions they shift them by similar amounts. We have
no explanation for this small sample �nding.
In deciding whether to use VAR coe¢cients, IRFs, users must consider the

trade-o¤ between power and tractability we mentioned earlier and as discussed
in Le et al (2016). By tractability we mean the chances of �nding a model
that addresses their main concerns and passes the test. Le et al (2016) give
the example of a policymaker concerned to improve the stabilising performance
of monetary policy for the economy; the object is to �nd a model that can
evaluate di¤erent policies accurately. If the power of the test is set very high,
then no model will be found. If the power is lowered and the test focused on the
data features relevant to stability, a model may be found and a possible range
established for its parameters outside which it would bound to be rejected. Then
the policymaker can have con�dence in the evaluation made by models in this
range; supposing all are acceptable for a proposed policy improvement, then
this can con�dently be adopted.
What we can see from this comparative work, however, is that the use of

simulated moments, rather than VAR coe¢cients or IRFs, could involve a sub-
stantial loss of power when using a complex model.
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Figure 1: Wald distribution of Var coe¢cients and moments IIW.
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5 Conclusions

Indirect inference testing can be carried out with a variety of auxiliary models.
Asymptotically these di¤erent models make no di¤erence. However, in small
samples power can di¤er. We explore small sample power with three di¤erent
auxiliary models: a VAR, average Impulse Response Functions and Moments.
The latter corresponds to the Simulated Moments Method. We �nd that in a
small macro model there is no di¤erence in power. But in a large complex macro
model the power with Moments rises more slowly with increasing misspeci�ca-
tion than with the other two which remain similar.
The object of high power is for users such as policymakers to have some

certainty about how wrong their model could be and so calculate the robustness
of their policy proposals. The greater the power the less the range of uncer-
tainty. Our �ndings suggest that VAR coe¢cients and average IRFs are more
or less interchangeable for this purpose; but that Moments give less power in
testing large complex macro models and accordingly create a higher range of
uncertainty.
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Appendix: Steps in deriving the Wald statistic

The following steps summarise our implementation of the Wald test by boot-
strapping:
Step 1: Estimate the errors of the economic model conditional on the ob-

served data and �0.

Estimate the structural errors "t of the DSGE macroeconomic model, xt(�0),
given the stated values �0 and the observed data. The number of independent
structural errors is taken to be less than or equal to the number of endogenous
variables. The errors are not assumed to be normally distributed. Where the
equations contain no expectations the errors can simply be backed out of the
equation and the data. Where there are expectations estimation is required for
the expectations; here we carry this out using the robust instrumental variables
methods of McCallum (1976) and Wickens (1982), with the lagged endogenous
data as instruments � thus e¤ectively we use the auxiliary model V AR. An
alternative method for expectations estimation is the �exact� method; here we
use the model itself to project the expectations and because these depend on the
extracted residuals there is iteration between the two elements until convergence.
Step 2: Derive the simulated data

On the null hypothesis the f"tg
T
t=1 are the structural errors. The simulated

disturbances are drawn from these errors. In some DSGE models, including the
SW model, many of the structural errors are assumed to be generated by au-
toregressive processes rather than being serially independent. If they are, then
under our method we need to estimate them. We derive the simulated data by
drawing the bootstrapped disturbances by time vector to preserve any simul-
taneity between them, and solving the resulting model using Dynare (Juillard,
2001). To obtain the N bootstrapped simulations we repeat this, drawing each
sample independently.
Step 3: Compute the Wald statistic

We estimate the auxiliary model � a VAR(1) � using both the actual data
and the N samples of simulated data to obtain estimates aT and aS(�0) of the
vector �. The distribution of aT �aS(�0) and its covariance matrixW (�0)

�1 are
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estimated by bootstrapping aS(�0). The bootstrapping proceeds by drawing N
bootstrap samples of the structural model, and estimating the auxiliary VAR
on each, thus obtaining N values of aS(�0); we obtain the covariance of the
simulated variables directly from the bootstrap samples. The resulting set of ak
vectors (k = 1; ::::; N) represents the sampling variation implied by the struc-
tural model from which estimates of its mean, covariance matrix and con�dence
bounds may be calculated directly. Thus, the estimate of W (�0)

�1 is

W (�0)
�1 =

1

N
�Nk=1(ak � ak)

0(ak � ak)

where ak =
1
N
�Nk=1ak. We then calculate the Wald statistic for the data sam-

ple; we estimate the bootstrap distribution of the Wald from the N bootstrap
samples.The IIW statistics are given by

IIW = (aT � �as(�o))
0W (as(�o))

�1(aT � �as(�o)) (10)

We note that the auxiliary model used is a VAR(1) and is for a limited
number of key variables: the major macro quantities which include GDP, con-
sumption, investment, in�ation and interest rates. By raising the lag order of
the VAR and increasing the number of variables, the stringency of the overall
test of the model is increased. If we �nd that the structural model is already
rejected by a VAR(1), we do not proceed to a more stringent test based on a
higher order VAR.
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