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Abstract. The ability to accurately locate damage in any given structure is a highly desirable 

attribute for an effective structural health monitoring system and could help to reduce operating 

costs and improve safety. This becomes a far greater challenge in complex geometries and 

materials, such as modern composite airframes. The poor translation of promising laboratory 

based SHM demonstrators to industrial environments forms a barrier to commercial up take of 

technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic 

stress waves released by the growth of damage. It offers very sensitive damage detection, using 

a sparse array of sensors to detect and globally locate damage within a structure. However its 

application to complex structures commonly yields poor accuracy due to anisotropic wave 

propagation and the interruption of wave propagation by structural features such as holes and 

thickness changes. This work adopts an empirical mapping technique for AE location, known 

as Delta T Mapping, which uses experimental training data to account for such structural 

complexities. The technique is applied to a complex geometry composite aerospace structure 

undergoing certification testing. The component consists of a carbon fibre composite tube with 

varying wall thickness and multiple holes, that was loaded under bending. The damage location 

was validated using X-ray CT scanning and the Delta T Mapping technique was shown to 

improve location accuracy when compared with commercial algorithms. The onset and 

progression of damage were monitored throughout the test and used to inform future design 

iterations. 

1. Introduction 

The use of damage detection tools to monitor the health of engineering structures throughout their 

service lives has the potential to facilitate significant cost saving by reducing maintenance and down 

time, whilst improving safety. For example commercial passenger aircraft spend on average 6.6 days 

per year undergoing inspection. A key requirement of such a structural health monitoring (SHM) 

system is the ability to accurately determine the position of any damage occurring within a structure. 

This becomes a very difficult challenge in complex materials and geometries, such as those found in 

modern composite aerospace structures. It is this poor translation from promising laboratory based 
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SHM demonstrators to industrial environments that forms the greatest barrier to commercial up take of 

technology. 

The acoustic emission (AE) technique is a passive damage detection technique with a number of 

advantages that make it well suited to the in service monitoring required for SHM. The technique uses 

piezoelectric transducers to detect elastic stress waves (similar to ultrasound waves) that are released 

by the growth of damage itself and no external excitation is required. As such a damage mechanism 

must be active in order for it to be detected using AE, i.e. when a structure is under load, or in service. 

This means that minimum detectable defect size is very small, because a defect need only be 

active/growing in order for it to be detected.  The most powerful attribute of the AE technique is the 

ability to globally locate damage within a structure using a sparse array of sensors [1]. However, as 

with all other damage detection approaches the accuracy of AE location calculation is seen to reduce 

in complex materials and structures. The observed errors results from the assumptions in current 

commercial algorithms that AE waves travel at a single and constant velocity in all directions and that 

their path from release at a damage site to detection at a transducer is direct and uninterrupted. Neither 

of these assumptions are true in complex geometry composite structures where anisotropic wave speed 

are observed and holes, thickness changes and curvatures can interrupt the propagation path [2]. 

A variety of approaches have been investigated to account for the anisotropic propagation 

behaviour experienced in composite materials. Some improvements have been demonstrated through 

the assumption of an elliptical wave front [3] and commercial software packages now allow the 

specification of an elliptical velocity profile. However, the velocity profiles in composite materials can 

often be more complex than this. Beamforming techniques have been used with localised arrays to 

determine the direction of an arriving wave [4, 5] and Aljets et al used the temporal separation of 

different wave propagation modes to determine the distance, as well as the direction, from the 

array[5]. Ciampa and Meo [6] used a triangular array of three closely spaced sensor pairs (six sensors 

in total), allowing the source position to be described by six non-linear equations. Solving the 

equations with an iterative Newton method provides a source position without the need for prior 

knowledge of the wave velocity behaviour in the material. However, processing times are high, at 

around 2 seconds per event, and sensor numbers required are double for similar coverage. Despite 

very promising results all of the above techniques are flawed by their inability account for geometric 

complexities that invariably exist in an industrial environment. 

An alternative approach to achieving accurate AE source location in complex geometries is that of 

mapping. The concept of mapping requires that a relationship is formed between known physical 

positions of AE sources upon a structure and the resulting wave arrival times (and therefore the 

difference in arrival times between sensor pairs Δts) at an array of transducers from signals 

originating at these positions. Such a methodology has the potential to facilitate accurate source 

location in highly complex materials and structures, accounting for variations in wave speed, changes 

in thickness, holes, etc. Scholey et al [7] approached the mapping concept by analytically determining 

the expected arrival times (and therefore Δts) for an anisotropic composite panel from an array of 

points, or source positions. They describe the best-matched point search method which compares 

measured Δts with the analytically determined map to identify the array point at which the difference 

is minimised and hence give the location. The accuracy is affected by the resolution of the mapping 

array, so small spacings of 1-2mm are used, and it is also important that accurate wave velocities are 

known for a given material. The approach is also not well suited to dealing with complex geometries, 

in which the calculation of arrival times becomes far more problematic. A more robust approach, 

known as Delta T Mapping, was proposed by Baxter et al [8] for location in complex geometries. used 

artificial AE sources to determine Δts from known grid positions and therefore generate a map of  Δts 

to aid source location in complex metallic structures. For Delta T Mapping H-N sources [9, 10], 

generated at known positions, are used to generate contour maps of constant Δt for each sensor pair, 

linearly interpolating between training points improves the mapping resolution. Mapped contours 

corresponding to measured Δts from real AE test data can then be selected for each sensor pair and 

overlaid to find a crossing point and hence a prediction of source location.  Hensman et al [11] 
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followed a similar methodology, but represented the relationship between the Δts and the spatial grid 

using Gaussian processes. Both mapping approaches were shown to improve source location in 

metallic structures with complex geometries and inherently compensate for variations in wave speed 

and any obstructions in the wave propagation path. The Delta T Mapping approach has also been 

demonstrated to improve location accuracy in complex geometry composite structures; detecting and 

locating fatigue damage [12]. 

In this work the authors demonstrate the use of the Delta T Mapping technique on a complex 

geometry composite aerospace component undergoing validation testing in an industrial environment. 

The tubular component is manufactured from carbon fibre composite with varying wall thicknesses 

and multiple holes or cut outs. The tube was loaded under bending and the location of damage was 

validated using X-ray CT scanning. The Delta T Mapping technique was shown to improve location 

accuracy when compared with commercial algorithms. The onset and progression of damage were 

monitored throughout the test and used to inform future design and manufacturing iterations. 

2. Delta T Mapping Location 

The following section details the Delta T Mapping procedure. Firstly the mechanism for wave arrival 

time determination is discussed, then the methodologies for map training and location calculation are 

described. 

2.1. Arrival time determination 

Traditionally the detection of arriving AE waves relies on a user defined threshold level, the crossing 

of which indicates the signal arrival. It is common that some signal is present prior to the first 

threshold crossing and the effects of attenuation can mean different phases of the wave trigger its 

arrival. All of which can lead to additional errors in a calculated location. In this work we adopt an 

Akaike Information Criterion (AIC) based method to determine wave arrival times. The approach aims 

to identify the first wave motion by identifying a change in entropy between the uncorrelated noise 

prior to signal onset and the highly correlated signal after signal arrival. It involves the minimisation 

of equation (1) for a time series x. The minimum of the AIC function corresponds to the signal onset 

time, as can be seen in Figure 1 and has been demonstrated to be a very accurate and reliable measure 

of AE signal arrival time for location calculation [11, 13, 14]. 

                          (1) 

 

Figure 1. Arrival time estimation using AIC based approach. The 

vertical grey line indicates the threshold based arrival time. The 

black trend is the AIC function and the vertical black line indicates 

the estimated arrival time at its minimum. 
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2.2. Delta T Mapping Methodology 

The Delta T Mapping procedure is described in detail by Baxter et al [8] and consists of 5 main steps  

which are outlined in brief below: 

Determine area of interest - Delta-T source location can provide complete coverage of a part or 

structure, or it can be employed as a tool to improve source location around specific areas of expected 

fracture, which could potentially be identified via finite element modelling. 

Construct a Map System - A grid is placed over the area of interest within which AE events will 

be located. It should be noted that sources are located with reference to the grid and not the sensors 

and it is not required that sensors be placed within the grid. 

Obtain time of arrival data from an artificial source – An artificial source (nominally a H-N 

source [9, 10]) is generated at the nodes of the grid to provide AE data for each sensor. An average 

result of several sources is used for each node. Missing data points can be interpolated from 

surrounding nodes. 

Calculate Delta T map – Each artificial source results in a difference in arrival time or Delta T for 

each sensor pair (an array of four sensors has six sensor pairs). The average Delta T at each node is 

stored in a map for each sensor pair. The resulting maps can be visualised as contours of constant 

Delta T. 

Locating real AE data – The Delta T values from a real AE event are calculated for each sensor 

pair. A line of constant Delta T equivalent to that of the real AE event can then be identified on the 

map of each sensor pair. By overlaying the resulting contours, a convergence point can be found that 

indicates the source location. As with time of arrival, a minimum of three sensors is required to 

provide a point location and more sensors will improve the location. In theory all the lines should 

intersect at one location, however in practice this is not the case. Thus in order to estimate a location 

all convergence points are calculated and a cluster analysis provides the most likely location. 

3. Test setup and configuration 

The component under test takes the form of a composite tube, with dimensions in the order of 

550mm in circumference and 600mm in length, shown in Figure 2. The complexity of the structure is 

increased by a number of holes and inserts seen as well as a significant increase in thickness under 

central mounting bracket. The tube was restrained at its centre using the mounting bracket observed in 

Figure 2 and loaded in bending. The mounting orientation and loading direction are shown 

schematically in Figure 3. The tube was subjected to five quasi-static loading cycles and was 

unloading between each cycle. The applied loads represented 11%, 48%, 58%, 77% and 100% of the 

final load achieved. The final failure occurred at the bracket attachment point and failure of the tube 

itself was not achieved. 

 

Figure 2. Sensor layout and Delta T Mapping grid on composite component 
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Figure 3. Schematic of composite tube loading arrangement 

 

The tube was instrumented with eight Pancom P15 AE transducers, attached using a cyanoacrylate 

adhesive that provides an acoustic coupling as well as mechanical attachment. They were arranged in 

two rows along the length of the tube, as shown in Figure 2, placed 100mm circumferentially either 

side of the mounting bracket (200mm total separation). The transducer spacing along the rows was 

160mm and the two rows were offset by 80mm in the axial direction. A Delta T Mapping training grid 

was applied to the structure using a 20mm spacing (Figure 2). The grid was an ‘inverted T’ shape 

spanning up to 380mm in the axial direction and 200mm in the circumferential direction. Five H-N 

sources were conducted at each available grid point and the resulting signals were recorded for the 

training of delta t maps. A MISTRAS PCI-2 AE system was used to record all AE data using a 

threshold level of 45dB. AE waveform data were recorded at 2MHz and used in post processing to 

correct the signal arrival times based on the AIC function in equation (1). AE monitoring was 

conducted throughout all five loading and unloading cycles. 

4. Results and discussion 

Figure 4 presents an image from the X-ray CT inspection undertaken post-test, after completion of all 

five load cycles. The image shown represents a slice through the thicker reinforced section beneath the 

central mounting bracket and reveals the cross-section of a delamination crack identified by the red 

ellipse. A second feature can also be identified in the CT image at the opposite side of the thicker 

reinforced section. It is not clear from the geometry of this feature weather or not it is a crack, it is 

noted that the geometry of this feature is different to that of the identified delamination crack. In 

particular the orientation with which it propagates through the material is different and in previous 

similar the observed damage in these regions is similar to that of the identified delamination crack. 

The image in figure 4 represents the final state of the damage following all loading cycles; however, it 

is cannot be determined from this image at what stage of testing this damage initiated. 

During the first loading cycle only six AE events were recorded hence these results are not 

presented here and instead we first consider the second load cycle. Figures 5 and 6 present the 

traditional time-of-arrival location results and the Delta T Mapping location results, respectively, for 

the second loading cycle. The position of the hanger is represented in both figures by a solid rectangle 

and the position of the hole and insert below the hanger is identified by a solid circle. An area of 

damage identified by post-test X-ray CT inspection is indicated by a light grey rectangle and 

represents a large area of delamination. It can be seen in both cases that significant amounts of AE 

have been detected and located in the locality of this damage. This demonstrates the sensitivity of the 

AE technique to detect the onset of such damage at an early stage of the test and at a load less than 

50% of maximum applied load, which did not induce ultimate failure in the composite structure. The 

TOA locations are located close to the identified damage region but the majority are located outside of 

this area. Whereas the Delta T Mapping locations are centred within the damage region; demonstrating 

the improvement in accuracy achieved. This equates to an improvement in location accuracy over the 

traditional TOA algorithm of approximately 50mm. 
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The presented location results suggest that the second feature identified in figure 4 did not develop 

during the testing undertaken. The origin of this feature is not clear and will be the subject of further 

investigation. It is possible that it is a manufacturing defect existing prior to testing that did not grow 

during these tests or that it is damage that occurred during the failure of the mounting bracket (a 

violent failure that resulted in the decoupling of the transducers). 

 

Figure 4. X-ray CT data from post-test inspection 

of the tube. The image shows a slice through the 

reinforced section of the tube below the attachment 

bracket. The red ellipse identifies the damage 

corresponding to the highlighted regions in figures 

4 and 5. 

 

 

Figure 5. time-of-arrival locations for load cycle 2 – the red rectangle and circle represent the bracket 

location and the bolt hole seen below it, the light blue rectangle represents the region in which damage 

was identified by X-ray CT scanning 
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Figure 6. time-of-arrival locations for load cycle 2 – the red rectangle and circle represent the 

bracket location and the bolt hole seen below it, the grey rectangle represents the region in which 

damage was identified by X-ray CT scanning 

 

The number of AE events located within the region of the identified damage continued to increase 

as the remainder of the loading cycles were completed, suggesting that the damage continued to grow 

throughout the testing. Figure 7 shows a plot of cumulative AE hits located in the region of identified 

damage versus the applied load for all five cycles (cycle 1 is not visible on this scale). Following the 

second load cycle the Felicity effect can be observed, whereby significant AE activity begins at a load 

lower than that of the previously applied maximum. The ratio of the load at which AE activity begins 

again and that of the previous maximum is known as the Felicity ratio and it can be used to quantify 

this effect [1]. Composite materials often demonstrate the Felicity effect during repeated loading, even 

if no significant damage has been induced. As a general rule, if the Felicity ratio is below 0.9 then it 

can be assumed that damage is present in a structure and the lower the Felicity ratio becomes the 

confidence that damage is present becomes greater and its expected severity of damage increases. 

Following the second load cycle Felicity ratios of 0.8, 0.8 and 0.7 were recorded for cycles 3, 4 and 5, 

respectively. This indicates that damage was induced in this region during the second load cycle and 

that reducing Felicity ratio indicates that this damage continued to grow with subsequent load 

applications. It should be noted that this demonstrates a very confident detection of damage using the 

AE technique and this was achieved at a load far below the maximum applied in a test where 

catastrophic failure of the composite structure did not occur. This highlights the potential of the AE 

technique to provide sensitive SHM with the ability to detect and accurately locate damage well before 

ultimate failure of a structure. 

5. Conclusion 

It has been demonstrated that the Delta T Mapping algorithm can improve location accuracy in 

complex structures compared with the traditional TOA algorithm. The ability to detect and accurately 

locate damage within a complex geometry composite aerospace component was demonstrated and 
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validated using X-ray CT inspections. The presented results highlight the potential for the AE 

technique to bridge the gap between laboratory demonstrators and application in challenging industrial 

environments. This is seen as a key barrier to the uptake of SHM technology and systems by industry 

and these results show that the AE technique has the capability to achieve this. 

The AE analysis undertaken was used to informed component designers of the onset and growth of 

damage occurring within the component, which occurred far below the ultimate failure load. CT data 

normally gives a snapshot of the final condition of a component, whereas the AE data informed 

designers when and where damage occurs during the test and has provided valuable understanding to 

support future design and manufacture iterations. 

0 5025 75 100

Percentage of Maximum Load (%)

Load Cycle 2

Load Cycle 5

Load Cycle 3

Load Cycle 4

 

Figure 7. Cumulative AE hits versus applied load for all five load cycles 
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