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Random vibration analysis for coupled vehicle-track 1 

systems with parameter uncertainties based on hybrid 2 

pseudo excitation-polynomial chaos expansion method 3 

4 

Abstract  

This paper proposes a new random vibration-based assessment method for coupled vehicle-track systems 

with uncertain parameters when subjected to random track irregularity. The vehicle system is simplified to a 

spring-mass-damper model defined by physical coordinates, while the uncertainties of the vehicle 

parameters are described as bounded random variables. The track is regarded as an infinite periodic 

structure, and the dynamic equations of the coupled vehicle-track system, under mixed physical coordinates 

and symplectic dual coordinates, are established through wheel-rail coupling relationships. The random track 

irregularities at the wheel-rail contact points are converted to a series of deterministic harmonic excitations 

with phase lag by using the pseudo excitation method (PEM). Based on the polynomial chaos expansion of 

the pseudo response, a new chaos expanded pseudo equation is derived, leading to the combined hybrid 

pseudo excitation method - polynomial chaos expansion (PEM-PCE) method which can efficiently assess the 

impact of uncertainty propagation on the random vibration analysis. The proposed method is compared with 

Monte Carlo simulations and good agreement was achieved. It is an effective means for random vibration 

analysis of uncertain coupled vehicle-track system and has good engineering practicality. 
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1 Introduction 1 

There are many uncertainties in practical train structures due to inaccurate processing and 2 

manufacture and so a deterministic model is only an approximation of the real structure. In order 3 

to achieve more reliable predictions for the dynamic behavior of trains and their relationship to the 4 

railway lines, it is necessary to consider the system uncertainties and to develop a method for 5 

predicting their propagation in the coupled system. Over the last decade, this topic has received 6 

increasing attention. (D'Aveni et al., 1996) established an analytical method for a simply 7 

supported beam with uncertain damping ratio and elastic modulus subjected to a deterministic 8 

excitation. Their work included the expansion of the uncertain quantities by a perturbation 9 

technique, together with the evaluation of the transition matrix of the stochastic system. 10 

(Muscolino et al., 2002) concentrated on the problem of calculating the random response of a 11 

distributed parameter system subjected to a moving oscillator with uncertain mass, velocity and 12 

acceleration. (Chang et al., 2006) investigated the dynamic response of a fixed-fixed beam with an 13 

internal hinge on an elastic foundation when it was subjected to an uncertain moving oscillator 14 

(e.g. random mass, stiffness, damping and acceleration) and a set of approximate governing 15 

equations of motion were developed using modal analysis and Galerkin’s method. They 16 

subsequently adopted an improved perturbation technique in order to evaluate the statistical 17 

responses of the beam. (Gladysz and Śniady, 2009) carried out a power spectral analysis for a 18 

beam with uncertain parameters subjected to a moving force that was assumed to be modeled as a 19 

filtered Poisson process, on the assumption that the natural frequencies of the structure were 20 

uncertain and were modeled by fuzzy numbers, random variables or fuzzy random variables. 21 

General solutions for the spectral density were obtained using a modal dynamic influence function. 22 

(Wu and Law, 2010; 2011) investigated the interaction of uncertain vehicle-bridge systems, with 23 

the bridge modeled as a simply supported Euler-Bernoulli beam with non-Gaussian material 24 

parameters, while the vehicle was modeled by a four degree of freedom mass-spring system. The 25 

road surface roughness was assumed to be a Gaussian random process; the non-Gaussian 26 

uncertainty was handled by means of the Spectral Stochastic Finite Element (SSFE) and the 27 

equations of the vehicle-bridge system were solved using the Newmark method, with suggested 28 

order for both Polynomial Chaos and threshold for truncation in the Karhunen–Loève expansion.  29 

The polynomial chaos expansion (PCE) method, as a non-sampling method, has been widely 30 

used to investigate various uncertain problems. This method was first presented by (Wiener, 1938) 31 

based on homogeneous chaos theory. According to the theorem of (Cameron and Martin, 1947), 32 

the homogeneous chaos expansion converges to any stochastic process with finite second-order 33 

moments, which provides a means for Hermitian polynomials to represent the stochastic process. 34 

In the field of structural dynamics, (Ghanem et al., 1991) presented a spectrum approach for 35 

solution of stochastic mechanics by combining Hermitian chaos and finite element method. In a 36 

series of subsequent developments, (Ghanem and Kruger, 1996; Ghanem and Red-Horse, 1999) 37 

have further promoted research in uncertain structural dynamics. Hermitian polynomials are aimed 38 

at Gaussian distribution parameters and are subject to some limitations in applications. Therefore, 39 

(Xiu and Karniadakis, 2002; 2010) developed the generalized polynomial chaos (gPC) method (i.e. 40 

the Wiener-Askey scheme), by means of which the optimal convergence polynomials were given 41 

according to different probability distributions, and an efficient stochastic collocation method was 42 

developed to overcome the difficulty caused by multiple variables. In the field of vehicle 43 

dynamics, (Kewlani et al., 2012) investigated the random dynamic behavior of 3-D vehicles 44 
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moving on an uneven surface, establishing an evaluation method for system responses based on 1 

the gPC method combined with the efficient collocation method (ECM). The experimental results 2 

and numerical simulation well justified this approach. 3 

The pseudo excitation method (PEM) is a well-established algorithm for analyzing the responses 4 

of deterministic systems under stationary or non-stationary random excitations (Lin et al., 1992; 5 

2001; 2011; 2014). Because of its simplicity and high efficiency, PEM has been widely used in 6 

many engineering fields (Caprani, 2014; Lin et al., 2014; Yu, 2010; Zhang and Xu, 1999; Zhang et 7 

al., 2010). The problem under consideration in this paper is a double-random problem, in that it 8 

deals with a system with uncertainty subjected to random excitations. The parameters of the 9 

coupled vehicle-track system are uncertain, and are characterized as random variables with an arch 10 

probability distribution. Therefore Chebyshev polynomials are the optimal selection for the 11 

orthogonal basis function of which the weight function is equal to the probability density function 12 

(PDF) of the random variable. The track irregularities, as the excitations acting to the system, are 13 

regarded as the spatial random process. The uncertainty of the structural parameters and the 14 

randomness of the excitations are handled in different ways by the proposed PEM-PCE method. 15 

By using PEM in this paper, the track irregularities are converted to harmonic pseudo excitations 16 

and then only the harmonic pseudo governing equation needs to be solved. The Galerkin method 17 

is used to produce the polynomial chaos expansion coefficients of the pseudo responses. To reduce 18 

the dimension of the governing equation, the state equation of a typical substructure is established 19 

in the Hamiltonian space using the symplectic method according to the periodicity of the track 20 

substructures, so that only typical sub-structures need be taken into account in the numerical 21 

computations. 22 

In this paper we establish an effective assessment method of random vibration analysis for 23 

uncertain coupled vehicle-track systems subjected to track irregularity. In section 2, the principle 24 

and application for uncertain system of PEM was introduced. In section 3, the governing equation 25 

of coupled vehicle-track systems under mixed physical coordinates and symplectic dual 26 

coordinates were established through wheel-rail coupling relationships. In section 4, a hybrid 27 

pseudo excitation - polynomial chaos expansion method (PEM-PCE) is proposed to solve the 28 

random vibration problem of uncertain structures. In the numerical example, a 10 degree of 29 

freedom rigid body vehicle model is adopted. The random vibration behavior of the coupled 30 

system due to different parameters at different velocities is discussed. Comparison with the direct 31 

Monte Carlo simulation shows that the proposed method significantly improves efficiency while 32 

preserving very high accuracy. Hence the results show that the proposed method is very promising 33 

in both the accuracy and efficiency. 34 

 35 

2 Pseudo excitation method 36 

2.1 Pseudo excitation method for deterministic systems 37 

The equation of motion of a linear deterministic system subjected to a stationary random 38 

excitation 𝐩(𝑡) is  39 

 𝐦�̈�(𝑡) + 𝐜�̇�(𝑡) + 𝐤𝐱(𝒕) = 𝐩(𝒕) (2.1) 40 

The form in the frequency domain is 41 

 [(𝐤 − 𝜔2𝐦) + i𝜔𝐜]𝐗(i𝜔) = 𝐏(i𝜔) (2.2) 42 

where 𝐗(i𝜔) and 𝐏(i𝜔) are the Fourier transforms of 𝐱(𝑡) and 𝐩(𝑡), respectively; i is the 43 
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imaginary unit. 1 

The response can be expressed as 2 

 𝐗(i𝜔) = 𝐇(i𝜔)𝐏(i𝜔)   (2.3) 3 

where 𝐇(i𝜔) = [𝐤 − 𝜔2𝐦 + i𝜔𝐜]−1is the frequency response matrix. 4 

According to conventional random vibration theory, the power spectrum density function of 5 

response 𝐒𝑥(i𝜔) can be obtained (Clough and Penzien, 1975) from 6 

 𝐒𝒙(i𝜔) = 𝐇(i𝜔)∗𝐒𝑝(i𝜔)𝐇(i𝜔)T  (2.4) 7 

where the asterisk denotes complex conjugate, the superscript T denotes transpose;  𝐒𝑝(i𝜔) is the 8 

power spectral density (PSD) matrix of random excitation 𝐩(𝑡). 9 

For complicated FEM systems, the computational effort is often unacceptable. In order to 10 

overcome this difficulty, the following pseudo-excitation method (PEM) has been proved very 11 

efficient. 12 

Note that 𝐒𝑝(i𝜔) is an 𝑛𝑠 order Hermitian matrix with rank q, which can be decomposed as (De 13 

Rosa et al., 2015，Lin et al., 2014) 14 

 𝐒𝑝(i𝜔) = ∑ 𝜆𝑑𝛙𝑑
∗ 𝛙𝑑

T𝑞
𝑑=1     (𝑞 ≤ 𝑛𝑠)  (2.5) 15 

where λ𝑑 and 𝛙𝑑 are the eigenvalue and corresponding eigenvector of 𝐒𝑝(i𝜔). 16 

Constructing the pseudo excitations 17 

 P̃d(iω) = √λdψde
iωt (d = 1,2,… , q) (2.6) 18 

Substitute (2.6) for �̃�(𝑡) in Equation (2.3) 19 

 �̃�𝑑(i𝜔) = 𝐇(i𝜔)�̃�𝑑(i𝜔) (2.7) 20 

where �̃�𝑑(𝑖𝜔) is called pseudo response. Clearly,  21 

 �̃�𝑑
∗ �̃�𝑑

T = 𝐇(i𝜔)∗𝜆𝑑𝛙𝑑
∗ 𝛙𝑑

T𝐇(i𝜔)T (2.8) 22 

According to Equation (2.4) and (2.5), one obtains  23 

 ∑ �̃�𝑑
∗ �̃�𝑑

T𝑞
𝑑=1 = 𝐇(i𝜔)∗𝐒𝑝(i𝜔)𝐇(i𝜔)T = 𝐒𝑥(i𝜔) (2.9) 24 

As a special and important case, when the random excitations at different points are fully 25 

coherent, the PSD matrix can be decomposed as the product of two vectors, i.e. only one 𝜆𝑑 in 26 

equation (2.5) is non-zero, and so 𝐒𝑝(i𝜔) has the form  27 

 𝐒𝑝(i𝜔) =

[
 
 
 
 𝑎1

2 𝑎1𝑎2𝑒
i𝜔(𝑡1−𝑡2) … 𝑎1𝑎𝑛𝑠

𝑒i𝜔(𝑡1−𝑡𝑛𝑠)

𝑎2𝑎1𝑒
i𝜔(𝑡2−𝑡1) 𝑎2

2 … 𝑎2𝑎𝑛𝑠
𝑒i𝜔(𝑡2−𝑡𝑛𝑠)

⋮ ⋮ ⋱ ⋮

𝑎𝑛𝑠
𝑎1𝑒

i𝜔(𝑡𝑛𝑠−𝑡1) 𝑎𝑛𝑠
𝑎2𝑒

i𝜔(𝑡𝑛𝑠−𝑡2) … 𝑎𝑛𝑠

2
]
 
 
 
 

𝑆𝑝(𝜔) (2.10) 28 

where 𝑎𝑖  (𝑖 = 1,2,… , 𝑛𝑠) represents the strengths at different excitation points, and the pseudo 29 

excitation can be written as  30 

 �̃�(i𝜔) = 𝐕√𝑆𝑝𝑒
i𝜔𝑡 (2.11) 31 

where 𝐕 = {𝑎1𝑒
−i𝜔𝑡1 , 𝑎2𝑒

−i𝜔𝑡2 , … , 𝑎𝑛𝑠
𝑒−i𝜔𝑡𝑛𝑠}

T
. 32 

So the pseudo response is  33 

 �̃�(i𝜔) = 𝐇(i𝜔)𝐕√𝑆𝑝𝑒
i𝜔𝑡 (2.12) 34 

The PSD of 𝐱 can be obtained from 35 

 𝐒𝑥(i𝜔) = �̃�∗�̃�T (2.13) 36 

The above are the basic formulae of the PEM for deterministic systems subjected to stationary 37 

random excitations, which are exactly equivalent to Equation (2.4). However the computation is 38 

much more efficient.  39 
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2.2 Pseudo excitation method for uncertain system 1 

It is assumed that the randomness of the external load is independent of the uncertainty of the 2 

parameters, and that the random load is fully characterized by the PSD. So the construction of 3 

pseudo excitation for uncertain system is the same as that for deterministic system, i.e. as derived 4 

in Section 2.1. 5 

In the framework of the PEM, the governing equation of the uncertain system is expressed as 6 

 [𝐤(𝛂) − 𝜔2𝐦(𝛂) + i𝜔𝐜(𝛂)]�̃�(i𝜔) = �̃�(i𝜔) (2.14) 7 

The uncertainties of parameters are characterized in the frequency-response matrix, 𝐇(i𝜔, 𝛂)  8 

and the pseudo response is 9 

 �̃�(i𝜔, 𝛂) = 𝐇(i𝜔, 𝛂)�̃�(i𝜔) (2.15) 10 

Let {𝜙𝑘(𝛂)}𝑘=0
∞ ⊂ ℙ  be an orthogonal polynomial space. The pseudo response can be 11 

expanded in terms of the basis functions  12 

 �̃�(i𝜔, 𝛂) = 𝝓(𝛂)�̂�(i𝜔) (2.16) 13 

where �̂�(i𝜔) are the coefficients of the basis functions, of which the solution will be derived in 14 

Section 4.3. 15 

By using PEM, the PSD can be expressed as 16 

 𝐒𝑥(i𝜔, 𝛂) = �̃�(i𝜔, 𝛂)∗�̃�(i𝜔, 𝛂)T = 𝝓(𝛂)∗�̂�(i𝜔)∗�̂�(i𝜔)T𝝓(𝛂)T (2.17) 17 

3 Governing equation 18 

The model used for the coupled vehicle-track system is shown in Figure 1 which shows: the 19 

velocity v (from left to right); a multi-rigid model for the two-suspension structures of the 20 

vehicle, the mass of the carriage 𝑀𝑐 and its moment of inertia 𝐽𝑐; the half span of the bogie 21 

spacing 𝑙𝑐；the mass of the bogie 𝑀𝑡 and its moment of inertia 𝐽𝑡; the half span of the wheel 22 

spacing 𝑙𝑡; the mass of the wheels 𝑀𝑤; the primary suspension stiffness and damping 𝑘𝑡
𝑖 and 23 

𝑐𝑡
𝑖  (𝑖 = 1,2,3,4); the secondary suspension stiffness and damping 𝑘𝑐

𝑖  and 𝑐𝑐
𝑖  (𝑖 = 1,2). Figure 1 24 

also shows how the track is regarded as a three layer structure, comprising the rail, sleepers and 25 

ballast, with the rail modeled as a single Bernoulli–Euler beam with bending rigidity 𝐸𝐼 and 26 

uniform mass / unit length 𝑚𝑟; sleeper and ballast masses of  𝑚𝑠 and 𝑚𝑏; rail pad, ballast and 27 

subgrade stiffnesses of 𝑘𝑝 , 𝑘𝑏  and 𝑘𝑓 ; and corresponding damping of 𝑐𝑝 , 𝑐𝑏  and 𝑐𝑓 . A 28 

linearized spring of stiffness 𝑘ℎ = 1.5𝑃0
1/3

/G connects the wheels to the rail, where 𝑃0 and 𝐺, 29 

respectively, represent the static interaction and a connection constant between the wheels and rail 30 

(Thompson, 1993). 31 

 32 

 33 
Figure 1: The coupled vehicle-track systems. 34 
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3.1 Equation of motion of the vehicle 1 

There are ten degrees of freedom on the model, see Figure 1. These are the vertical and rotational 2 

motion of the carriage (𝑢𝑐, 𝜃𝑐)and of its two identical bogies,(𝑢𝑡1, 𝜃𝑡1, 𝑢𝑡2, 𝜃𝑡2) plus the vertical 3 

motions of the four rigid wheels (𝑢𝑤1, 𝑢𝑤2, 𝑢𝑤3, 𝑢𝑤4). The degree of freedom vector used is  4 

 𝐮𝑣 = {𝑢𝑐 , 𝜃𝑐, 𝑢𝑡1, 𝜃𝑡1, 𝑢𝑡2, 𝜃𝑡2, 𝑢𝑤1, 𝑢𝑤2, 𝑢𝑤3, 𝑢𝑤4}
T (3.1) 5 

Denoting the 𝑘th component of vector 𝐮𝑣 by 𝑢𝑘, the equation of motion of the vehicle, using 6 

the Lagrange equation, is 7 

 
𝑑

𝑑𝑡
(

𝜕𝑇

𝜕�̇�𝑘
) −

𝜕𝑇

𝜕𝑞𝑘
+

𝜕𝑉

𝜕�̇�𝑘
+

𝜕𝑄

𝜕�̇�𝑘
= 0 (3.2) 8 

where 𝑇, 𝑉 and 𝑄 respectively denote kinetic energy, elastic potential energy and damping 9 

dissipated energy. 10 

Substituting the energy represented by 𝐮𝒗 into Equation (3.2) gives the equation of motion of the 11 

vehicle as 12 

 𝐌𝑣�̈�𝑣 + 𝐂𝑣�̇�𝑣 + 𝐊𝑣𝐮𝑣 = 𝐟𝑣 (3.3) 13 

where 𝐊𝑣, 𝐌𝑣 and 𝐂𝑣 are the stiffness, mass and damping matrices of the vehicle and 𝐟𝑣 is the 14 

pseudo excitation caused by track irregularity whose specific form will be given by the wheel rail 15 

relationships in a later section. 16 

3.2 Equation of motion of the track  17 

 18 

Figure 2: The periodic arrangement of the elastic track and a typical substructure. 19 

 20 

The track is regarded as an infinitely long periodic chain in which the substructure consists of the 21 

rail between adjacent sleepers, a sleeper and the associated ballast, as shown in Figure 2. The 22 

equation of motion in the frequency domain of each substructure can then be expressed as 23 

 (𝐊 + 𝑖𝜔𝐂 − 𝜔2𝐌){

𝐮𝑖
0

𝐮𝑎
0

𝐮𝑏
0

} = [

𝐆𝑖𝑖
0 𝐆𝑖𝑎

0 𝐆𝑖𝑏
0

𝐆𝑎𝑖
0 𝐆𝑎𝑎

0 𝐆𝑎𝑏
0

𝐆𝑏𝑖
0 𝐆𝑏𝑎

0 𝐆𝑏𝑏
0

]{

𝐮𝑖
0

𝐮𝑎
0

𝐮𝑏
0

} = {

𝐩𝑖
0

𝐩𝑎
0

𝐩𝑏
0

} (3.4) 24 

Here 𝐌, 𝐊 and 𝐂 are the mass, stiffness and damping matrices of the substructure; 𝐮𝑎
0  and  25 

𝐮𝑏
0  are the displacement vectors at the left and right side interfaces; 𝐮𝑖

0 is the internal 26 

displacement vector; and 𝐩𝑎
0 , 𝐩𝑏

0 and 𝐩𝑖
0 are the corresponding nodal force vectors. 27 

Eliminating the internal displacement vector 𝐮𝑖
0，Equation (3.4) can be described by the interface 28 

displacement vectors as 29 

 [
𝐆𝑎𝑎 + 𝐏𝛽 𝐆𝑎𝑏

𝐆𝑏𝑎 𝐆𝑏𝑏 + 𝐏𝛼
] {

𝐮𝑎

𝐮𝑏
} = {

𝐩𝑎
∗

𝐩𝑏
∗ } (3.5) 30 

where 31 
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 𝐆𝑎𝑎 = 𝐆𝑎𝑎
0 − 𝐆𝑎𝑖

0 [𝐆𝑖𝑖
0 ]

−1
𝐆𝑖𝑎

0       𝐆𝑎𝑏 = 𝐆𝑎𝑏
0 − 𝐆𝑎𝑖

0 [𝐆𝑖𝑖
0 ]

−1
𝐆𝑖𝑏

0  1 

𝐆𝑏𝑎 = [𝐆𝑎𝑏]
T           𝐆𝑏𝑏 = 𝐆𝑏𝑏

0 − 𝐆𝑏𝑖
0 [𝐆𝑖𝑖

0 ]
−1

𝐆𝑖𝑏
0  

𝐩𝑎
∗ = 𝐩𝑎𝑒 − 𝐆𝑎𝑖

0 [𝐆𝑖𝑖
0 ]

−1
𝐩𝑖𝑒    𝐩𝑏

∗ = 𝐩𝑏𝑒 − 𝐆𝑏𝑖
0 [𝐆𝑖𝑖

0 ]
−1

𝐩𝑖𝑒 

Here, 𝐏𝛼 and 𝐏𝛽 are the dynamic stiffness matrices at the two interfaces of the substructure, and 2 

𝐩𝑎𝑒, 𝐩𝑏𝑒 and 𝐩𝑖𝑒 are the actual external loads. 3 

Considering the displacement and force as the state vector, when the substructure has no 4 

external loads (i.e. 𝐩𝑎𝑒 = 𝐩𝑏𝑒 = 𝐩𝑖𝑒 = 𝟎) Equation (3.5) has the following form in state space 5 

 {
𝐮𝑏

𝐩𝑏
} = [

𝐒𝑎𝑎 𝐒𝑎𝑏

𝐒𝑏𝑎 𝐒𝑏𝑏
] {

𝐮𝑎

𝐩𝑎
} (3.6) 6 

where 7 

 𝐒𝑎𝑎 = −[𝐆𝑎𝑏]
−1𝐆𝑎𝑎       𝐒𝑎𝑏 = [𝐆𝑎𝑏]

−1 8 

𝐒𝑏𝑎 = −𝐆𝑏𝑎 + 𝐆𝑏𝑏[𝐆𝑎𝑏]
−1𝐆𝑎𝑎          𝐒𝑏𝑏 = −𝐆𝑏𝑏[𝐆𝑎𝑏]

−1  

𝐩𝑎 = −𝐏𝛽𝐮𝑎          𝐩𝑏 = −𝐏𝜶𝐮𝒃 

Equation (3.6) can be denoted as 9 

 𝐲𝑏 = 𝐒𝐲𝑎 (3.7) 10 

It can be verified that 𝐒−T = 𝐉𝐒𝐉−1 or 𝐒T𝐉𝐒 = 𝐉, where 𝐒 is a symplectic matrix which satisfies 11 

the symplectic orthogonality relationships and  12 

  𝐉 = [
𝟎 𝐈𝑛0

−𝐈𝑛0
𝟎

] (3.8) 13 

where 𝐈𝑛0
 is an 𝑛0 order identity matrix; 𝑛0 is the number of degrees of freedom of the 14 

interface. 15 

It is known from symplectic mathematical theory that if |𝜇𝑖| ≤ 1 is an eigenvalue of  𝐒, then 16 

so is μ𝑛0+𝑖 = 1/𝜇𝑖 (Lin et al., 1995). Assume now that  𝐒 has 2𝑛0 eigenvalues and let them be 17 

separated into the following two groups
  18 

  {
𝜇𝑖 𝑖 = 1,2,… , 𝑛0    |𝜇𝑖| ≤ 1

𝜇𝑛0+𝑖 = 1/𝜇𝑖 𝑖 = 1,2,… , 𝑛0    |𝜇𝑖| ≥ 1
 (3.9) 19 

The corresponding eigenvectors can then be used to constitute the matrix 20 

 𝚯 = {𝛙1, 𝛙2, … ,𝛙2𝑛0
} = [

𝐗𝑎 𝐗𝑏

𝐍𝑎 𝐍𝑏
] (3.10) 21 

The state vector 𝐲 can be expanded in terms of the eigenvectors as 22 

  𝐲 = Σ𝑖=1
𝑛0 (𝑎𝑖𝛙𝑖 + 𝑏𝑖𝛙𝑛+𝑖) (3.11) 23 

The coefficients 𝑎𝑖 and 𝑏𝑖 are rewritten in vector forms 𝐚 and 𝐛. 24 

When the substructure is subjected to a harmonic load, the state vector of the interfaces between 25 

substructures can be obtained by harmonic wave propagation theory as 26 

 {
 𝐲𝑘𝑟 = [

𝐗𝑎

𝐍𝑎
] 𝛍𝑘𝐚    𝑘 ≥ 0 (go right)

 𝐲𝑘𝑙 = [
𝐗𝑏

𝐍𝑏
]𝛍−𝑘𝐛    𝑘 ≤ 0 (go left)

  (3.12) 27 

Only when |𝜇𝑖| = 1 can the harmonic wave be propagated in the entire substructure chain, and it 28 

is called a pass wave. The remaining harmonic waves decay rapidly away in the propagation, and 29 

are called obstructed waves. 30 
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When the substructure is subjected to a harmonic excitation, i.e. 𝑘 = 0in Equation (3.12). 1 

 {
𝐮𝑎

𝐮𝑏
} = [

𝐗𝑏 𝟎
𝟎 𝐗𝑎

] {
𝐛
𝐚
} (3.13) 2 

Thus the interface stiffness matrices in Equation (3.5) can be written as 3 

 𝐏𝛼 = 𝐍𝑎𝐗𝑎
−1   𝐏𝛽 = −𝐍𝑏𝐗𝑏

−1 (3.14) 4 

Substituting Equation (3.13) into Equation (3.5) yields the equation of motion denoted by the 5 

symplectic modal coordinate {𝐛T, 𝐚T}T as 6 

 [
𝐆𝑎𝑎 + 𝐏𝛽 𝐆𝑎𝑏

𝐆𝑏𝑎 𝐆𝒃𝒃 + 𝐏𝛼
] [

𝐗𝑏 𝟎
𝟎 𝐗𝑎

] {
𝐛
𝐚
} = {

𝐩a
∗

𝐩b
∗ } (3.15) 7 

3.3 Mixed coordinate equations of motion of the coupled vehicle-track 8 

In the equation of motion of the vehicle, i.e. Equation (3.3), 𝐟𝒗 can be written as 9 

 𝐟𝒗 = {06×1 𝑓1 𝑓2 𝑓3 𝑓4 }
T (3.16) 10 

For the 𝑖th substructure subjected to the wheel-rail force, decomposing the force to the 11 

interfaces, Equation (3.15) can be expressed as 12 

 [
(𝐆𝑎𝑎 + 𝐏𝛽)𝐗𝑏 𝐆𝑎𝑏𝐗𝑎

𝐆𝑏𝑎𝐗𝑏 (𝐆𝒃𝒃 + 𝐏𝛼)𝐗𝑎

] {
𝐛𝑖

𝐚𝑖
} = −𝐍(𝜉𝑖)𝑓𝑖     (𝑖 = 1,2,3,4) (3.17) 13 

where 𝐍(𝜉) is the shape function vector of the Bernoulli-Euler beam element, and 𝜉𝑖 is the local 14 

coordinate of the position of the 𝑖th wheel-rail force. 15 

Based on the Hertz formula, the interaction between wheels and rails is modeled as a linear spring 16 

connection of stiffness 𝑘ℎ. Hence the wheel-rail force of the 𝑖th substructure can be expressed as 17 

 𝑓𝑖 = 𝑘ℎ(𝑢𝑡𝑖 − 𝑢𝑤𝑖
− 𝑟𝑖)    𝑖 = 1,2,3,4 (3.18) 18 

where 𝑢𝑡𝑖
 is the displacement of the pair of rails at the 𝑖th contact point, 𝑢𝑤𝑖

is the displacement 19 

and 𝑟𝑖 is the track irregularity.  20 

Based on the eigenvector expansion method, the left- and right-hand displacement vectors of the 21 

i th substructure, 𝐮𝑎,𝑖 and 𝐮𝑏,𝑖, can be obtained as the sum of the responses caused by each of 22 

the four wheel–rail forces, i.e. 23 

  𝐮𝑎,𝑖 = Σ𝑗
4𝐮𝑎,𝑗𝑖  , 𝐮𝑏,𝑖 = Σ𝑗

4𝐮𝑏,𝑗𝑖 (3.19) 24 

where 𝐮𝑎,𝑗𝑖 and 𝐮𝑎,𝑗𝑖 are the left- and right-hand displacement vectors of the 𝑖th substructure 25 

caused by the responses of the 𝑗th substructure. 26 

For the displacement of the pair of rails at the contact point, such as the displacement of the 𝑖th 27 

substructure, the contact point 𝑢𝑡𝑖
 can be obtained from 28 

 𝑢𝑡𝑖
= 𝐍T(𝜉𝑖) {

𝐮𝑎,𝑖

𝐮𝑏,𝑖
}    (𝑖 = 1,2,3,4) (3.20) 29 

where 𝐍(𝜉𝑖) is 𝑖th substructure beam element shape function vector.  30 

Substituting Equations (3.18)-(3.20) into Equation (3.17), coupling Equations (3.17) and (3.3) 31 

with Equation (3.16) and writing them as a single equation gives the governing equation of the 32 

coupled system as 33 

 �̃��̃� = �̃� (3.21) 34 

where 35 

�̃� = {𝐮𝑣
T 𝐛1

T 𝐚1
T 𝐛2

T 𝐚2
T 𝐛3

T 𝐚3
T 𝐛4

T 𝐚4
T } 

�̃� = {𝟎6×1, 𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝐍
T(𝜉1)𝑟1, 𝐍

T(𝜉2)𝑟2, 𝐍
T(𝜉3)𝑟3, 𝐍

T(𝜉4)𝑟4}
T 

The specific components of �̃� are given as 36 

�̃� = �̃�1 + �̃�2 
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where 1 

�̃�1 = diag(𝐆𝑣, 𝐆𝑡 , 𝐆𝑡 , 𝐆𝑡 , 𝐆𝑡),         𝐆𝑣 = 𝐊𝑣 + i𝜔𝐂𝑣 − 𝜔2𝐌𝑣 

�̃�2 = [

𝟎6×1 𝟎 𝟎

𝟎 −𝐈4×4 −�̃�T𝐖

𝟎 −𝐍 �̃��̃�T𝐖

],   𝐆𝑡 = [
(𝐆𝑎𝑎 + 𝐏𝛽)𝐗𝑏 𝐆𝑎𝑏𝐗𝑎

𝐆𝑏𝑎𝐗𝑏 (𝐆𝒃𝒃 + 𝐏𝛼)𝐗𝑎

]  

�̃� = diag(𝐍(𝜉1), 𝐍(𝜉2),𝐍(𝜉3),𝐍(𝜉4)) 

and 2 

(
𝐰𝑖𝑖 = [

𝐗𝑏 𝟎
𝟎 𝐗𝑎

]

𝑖 = 1,2,3,4
) ; (

𝐰𝑖𝑗 = [
𝐗𝑏𝛍

(𝑘𝑗−𝑘𝑖) 𝟎

𝐗𝑏𝛍
(𝑘𝑗−𝑘𝑖−1) 𝟎

]

1 ≤ 𝑖 ≤ 𝑗 ≤ 4

) ;(
𝐰𝑖𝑗 = [

𝟎 𝐗𝑎𝛍(𝑘𝑖−𝑘𝑗−1)

𝟎 𝐗𝑎𝛍(𝑘𝑖−𝑘𝑗)
]

1 ≤ 𝑗 ≤ 𝑖 ≤ 4

)  

 3 

4 Random vibration analysis of the uncertain coupled vehicle-track system 4 

Equation (3.21) is the deterministic pseudo governing equation of the coupled vehicle-track 5 

system which is established by combining PEM and the symplectic method. In this section, the 6 

uncertain parameters are described by a specific PDF, the pseudo response is expanded in 7 

polynomial space, and finally the stochastic governing equation is solved by the Galerkin method. 8 

4.1 Probabilistic description of the uncertain parameters 9 

For the vehicle model, it is natural to assume that the uncertain kinetic parameters are random 10 

variables obeying some probability distribution. Normal or uniform distributions are commonly 11 

used. However, normal distributions of random variables may lead to negative infinite values, 12 

which can be meaningless for a physical problem, e.g. negative stiffness is not permissible. It is 13 

therefore necessary for the system parameters to be bounded. The value of uniform distribution 14 

variables is from -1 to 1, which does not cause instability. However for the current problem the 15 

system parameters should obey a more concentrated bounded distribution. Therefore, the Wigner 16 

semicircle distribution is adopted. 17 

Denote the random parameter 𝛼 by 18 

 𝛼 = �̅� + �̃� (4.1) 19 

where �̅� is a deterministic constant and �̃� is a random variable obeying the Wigner semicircle 20 

distribution supported on interval [−𝜅, 𝜅] whose probability density function is 21 

 𝑝(�̃�) = {
2

𝜋𝜅2
(𝜅2 − �̃�2)1/2 |�̃�| ≤ 𝜅

0 |�̃�| > 𝜅
 (4.2) 22 

Calculate the mean and variance of 𝛼 as 23 

 E[𝛼] = E[�̅� + �̃�] = �̅� (4.3) 24 

 D[𝛼] = E[(𝛼 − �̅�)2] = 𝜅2/4 (4.4) 25 

where E[∙] is the expectation operator. 26 

 27 

4.2 Pseudo excitation for the track irregularity 28 

Actual track irregularity is a non-ideal smoothness characteristic of the rail surface caused by 29 

many random factors, such as manufacturing and abrasion. For the assumed randomness, the same 30 

class of track will have the same probability characteristic everywhere. Hence when a train runs 31 

along the track at uniform velocity, the excitation caused by the track irregularity can be regarded 32 
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as a stationary random process (Garg, 1984; Iwnicki, 2006). It is assumed that the track 1 

irregularity 𝑟(𝑥) with respect to the space coordinate 𝑥  is a zero-mean stationary random 2 

process with power spectral density function 𝑆𝑟𝑟(Ω). 3 

Assume that the wheel is in contact with the rail at all times, i.e. there is no sliding or derailment. 4 

The track irregularity can be converted from the space domain  𝑟(𝑥) to the time domain  𝑟(𝑡) 5 

by the relationship 𝑥 = 𝑣𝑡. This gives a zero-mean stationary random process with respect to the 6 

time coordinate 𝑡, with the power spectral density function 𝑆𝑟𝑟(ω) obtained from 𝑆𝑟𝑟(Ω) as 7 

  𝑆𝑟𝑟(𝜔) = (𝑆𝑟𝑟(Ω))/𝑣,          ω = Ω𝑣 = 2𝜋𝑣/𝜆 (4.5) 8 

where 𝜆 is the spatial wavelength. 9 

The coupled system is subjected to four excitations at the wheel-rail contact points which are all 10 

from the same source. This fully coherent (multi-phase) random excitation can be regarded as a 11 

generalized single excitation. The pseudo excitation is constructed as 12 

�̃� = {𝟎6×1, 𝑒
−i𝜔𝑡1 , 𝑒−i𝜔𝑡2 , 𝑒−i𝜔𝑡3 , 𝑒−i𝜔𝑡4 , 𝐍T(𝜉1)𝑒

−i𝜔𝑡1 , … 

 𝐍T(𝜉2)𝑒
−i𝜔𝑡2 , 𝐍T(𝜉3)𝑒

−i𝜔𝑡3 , 𝐍T(𝜉4)𝑒
−i𝜔𝑡4}T√𝑆𝑟𝑟(𝜔)𝑒i𝜔𝑡 (4.6) 13 

Without loss of generality, it is assumed that 𝑡1=0, so that 𝑡𝑖  (𝑖 = 2,3,4) is the time lag between 14 

the other excitations and the first excitation.  15 

4.3 Solution of the stochastic governing equation  16 

The stochastic governing equation in frequency domain can be expressed as 17 

 �̃�(𝛂)�̃� = �̃� (4.7) 18 

where 19 

 �̃�(𝛂) = �̅�0 + Σ𝑖=1
𝑛 �̃�𝑖�̃�𝑖    20 

�̅�0 and �̃�𝑖  (𝑖 = 1,2,… , 𝑛)  are the mean value matrix and the nominal variance matrix, 21 

respectively, which are constructed in Equation (3.21); �̃�𝑖 are independence random variables 22 

denoted by Equation (4.1) which are the components of the vector 𝛂. 23 

4.3.1 Polynomial chaos expansion 24 

If we can obtain the pseudo response �̃�, the response PSD can be obtained efficiently from 25 

Equation (2.8). In this section, the pseudo response is expanded in polynomial space to assess the 26 

uncertainty impact on the power spectrum and spectral moments. 27 

From the viewpoint of functional analysis, the dynamic responses of random structures can be 28 

regarded as the locus of solutions in the function spaces. By selecting the appropriate basis 29 

function{𝜑𝑙(𝛂)}𝑙=0
∞ , the random response �̃�(𝛂, 𝑡) in Equation (4.7) can be expanded as 30 

 �̃�(𝛂, 𝑡) = Σ𝑙=1
∞ 𝐱𝑙𝜑𝑙(𝛂)𝑒i𝜔𝑡  (4.8) 31 

where 𝐱𝑙 is the deterministic coefficient vector, which can be understood as the projection of �̃� 32 

on the basis functions
 
. 33 

Consider now the orthogonal polynomials as basis functions:  34 

 𝜑𝑙(𝛂) = ∏ 𝑃𝑙𝑖
(�̃�𝑖)

𝑛
𝑖=1  (4.9) 35 

where, 𝑃𝑙𝑖
(𝛼𝑖) is the 𝑙𝑖th orthogonal polynomial of the random variable α𝑖. Hypothetically there 36 

are 𝑛 independent random variables and each one has an 𝑚𝑖-order orthogonal expansion, with 37 

0 ≤ 𝑙𝑖 ≤ 𝑚𝑖 , 1 ≤ 𝑙 ≤ 𝐿  and with 𝐿 = ∏ (𝑚𝑖 + 1)𝑛
𝑖=1  as the number of polynomial basis 38 

functions. 39 

The choice of orthogonal polynomials depends on the probability distribution of the random 40 

variables, e.g. Hermite polynomials for standard normal distribution and Legendre polynomials 41 
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for uniform distribution.
  

In this work, Chebyshev polynomials (Borwein and Erdēlyi, 1995) are 1 

adopted, whose expression is 2 

 𝐻𝑛(�̃�) = ∑
(−1)𝑘(𝑛−𝑘)!

𝑘!(𝑛−2𝑘)!
(2�̃�)𝑛−2𝑘[𝑛/2]

𝑘=0  (4.10) 
3 

e.g. the first three are: 4 

 𝐻0(�̃�) = 1,𝐻1(�̃�) = 2�̃�,𝐻2(�̃�) = 4�̃�2 − 1,𝐻3(�̃�) = 8�̃�3 − 4�̃� (4.11) 5 

The weight function of the Chebyshev polynomials is 2/π√1 − �̃�2 . This connects the 6 

expectation of the random variable from Equation (4.2) and the orthogonality of the polynomials 7 

giving:  8 

Orthogonality： ∫ 2/π√1 − �̃�2𝐻𝑚(�̃�)𝐻𝑛(�̃�)𝑑�̃� =
1

−1
𝛿𝑚𝑛 (4.12) 9 

Recursiveness： �̃�𝐻𝑛(�̃�) =
1

2
[𝐻𝑛−1(�̃�) + 𝐻𝑛+1(�̃�)] (4.13) 10 

According to Equations (4.8) and (4.9)， �̃�(𝛂, 𝑡) can be expanded on the Chebyshev polynomials 11 

basis function with an appropriate truncation 12 

 �̃�(𝛂, 𝑡) = (∑ 𝐱𝑙1𝑙2…𝑙𝑛 ∏ 𝐻𝑙𝑗(�̃�𝑗)
𝑛
𝑗=1

𝐿
0≤𝑙𝑗≤𝑚𝑗

) 𝑒i𝜔𝑡 (4.14) 13 

which can be re-written in the following matrix form to facilitate derivation 14 

 �̃�(𝛂, 𝑡) = 𝚽(𝛂)𝐱𝑒i𝜔𝑡 (4.15) 15 

where  𝚽(𝛂)  is a block diagonal matrix with each diagonal element being  16 

𝛗(𝛂) = [∏ 𝐻0(�̃�𝑖)
𝑛
𝑖=1 , … ,∏ 𝐻𝑚(�̃�𝑖)

𝑛
𝑖=1 ]1×𝐿  and 𝐱  is a column vector. Equation (4.15) is a 17 

pseudo response polynomial chaos expansion model. If the deterministic coefficient vector  𝐱 is 18 

known, the quantitative assessment of the uncertain impact is achieved by using statistical theory. 19 

4.3.2 Galerkin method 20 

Assume now that the external loads are independent of the vehicle-track system. Substituting 21 

Equation (4.15) into Equation (4.7), left multiplying by  𝚽(𝛂)T on both sides and calculating the 22 

expectation to 𝛂, the governing equation for random response prediction is obtained, according to 23 

Equations (4.12) and (4.13), as  24 

 𝐀�̃�𝐱 = 𝐛�̃� (4.16) 25 

In order to explain the specific forms of 𝐀�̃� and 𝐛�̃�, ⨂ is used to denote the Kronecker-product 26 

and the three matrices 𝐓, 𝐔 and 𝐄 are defined as 27 

 𝐓𝑖 = [

1
1

⋱
1

]

(𝑚𝑖+1)×(𝑚𝑖+1)

𝐔𝑖 = [

0 0.5
0.5 0 ⋱

⋱ ⋱ 0.5
0.5 0

]

(𝑚𝑖+1)×(𝑚𝑖+1)

𝐄 = [

1
0
⋮
0

]

𝐿×1

 28 

Hence   𝐀�̃� = 𝐀�̃�0
+ ∑ 𝐀�̃�𝑖

𝑛
𝑖=1  (4.17) 29 

 𝐀�̃�0
= �̅�0⨂(𝐓1⨂𝐓2⨂⋯⨂𝐓𝑛)  30 

 𝐀�̃�𝑖
= �̃�𝑖⨂(𝐓1⨂𝐓2⨂⋯𝐔𝑖⨂⋯⨂𝐓𝑛)  31 

and 𝐛�̃� = �̃�⨂𝐄 (4.18) 32 

The governing equation given in Equation (4.7) has thus been transformed into the high-order 33 

deterministic equation given by Equation (4.16), which is easy to solve. When the component 34 

column vector 𝐱 has been obtained, the response �̃�(𝛂, 𝑡) can be calculated from Equation (4.15). 35 

It is obvious that the coefficient matrix of the governing equation Equation (4.16) is sparse, which 36 
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yields computational savings.  1 

4.3.3 Statistical assessment  2 

Assume that a specified response is concerned and expand it as 3 

 �̃�(𝛂, 𝑡) = 𝛗(𝛂)�̂�𝑒i𝜔𝑡 = Σ𝑙=1
𝐿 𝜑𝑙(𝛂)�̂�𝑙𝑒

i𝜔𝑡 (4.19) 4 

where �̂� is the projection of the specified response on the basis functions, and is part of the 𝐱 5 

given by Equation (4.16). 6 

The PSD and variance can easily be obtained by using PEM, giving 7 

 𝑆𝑜𝑢𝑡(𝛂,𝜔) = (�̃�(𝛂, 𝑡))
∗
(�̃�(𝛂, 𝑡))

T
= 𝛗(𝛂)�̂�∗�̂�T𝛗(𝛂) (4.20) 8 

 𝜎𝑜𝑢𝑡
2 (𝛂) = 2∫ 𝑆𝑜𝑢𝑡(𝛂,𝜔)𝑑𝜔

+∞

0
 (4.21) 9 

The mean of the random vibration power spectrum caused by the uncertain parameters can 10 

found by taking the expectation on Equation (4.20), by using the orthogonality of the polynomials, 11 

as 12 

 𝑆�̅�𝑢𝑡 = E[𝑆𝑜𝑢𝑡(𝛂,𝜔)] = E[𝛗(𝛂)�̂�∗�̂�T𝛗T(𝛂)] = Σ𝑙=1
𝐿 |�̂�𝑙|

2 (4.22) 13 

where |∙| is the modulo operation. Equation (4.22) shows that the mean of the response PSD of 14 

concern can be obtained by summing up the squares of the modulo of each coefficient, which 15 

yields both very concise expressions and efficient computation.  16 

The mean of the response variance of concern is found by 17 

 �̅�𝑜𝑢𝑡
2 = E[𝜎𝑜𝑢𝑡

2 (𝛂)] = 2∫ 𝑆�̅�𝑢𝑡𝑑𝜔
+∞

0
 (4.23) 18 

Also, the variance of the response PSD or the variance of concern is found by 19 

 D[𝑆𝑜𝑢𝑡(𝛂,𝜔)] = E[(𝑆𝑜𝑢𝑡 − 𝑆�̅�𝑢𝑡)
2] (4.24) 20 

 D[�̅�𝑜𝑢𝑡
2 (𝛂,𝜔)] = E[(𝜎𝑜𝑢𝑡

2 − �̅�𝑜𝑢𝑡
2 )2] (4.25) 21 

When there are many variables, a multi-dimensional integral operation is needed to calculate the 22 

variance of random vibration response caused by uncertain parameters directly from Equations 23 

(4.24) and (4.25). Unfortunately, unlike for the expectation operation, the variance operation 24 

cannot use the orthogonality of the basis functions. Therefore Monte Carlo method integration is 25 

recommended here because, due to the simple form of the statistical functions, it is highly 26 

efficient. 27 

 28 

5 Numerical examples 29 

Vehicle parameters 

Carriage mass 𝑀𝑐 34 × 103kg Primary damping 𝑐𝑡 12 × 103Ns/m 

Carriage inertia 𝐽𝑐 2.277 × 106m4 Secondary stiffness 𝑘𝑐   800 × 103N/m 

Bogie mass 𝑀𝑡 3000kg Secondary damping 𝑐𝑐 160 × 103Ns/m 

Bogie inertia 𝐽𝑡 2710m4 Wheel spacing 2𝑙𝑡 2.4m 

Wheel mass 𝑀𝑤 1400kg Bogie spacing 2𝑙𝑐 18m 

Primary stiffness 𝑘𝑡 1100 × 103N/m Contact constant 𝐺 5.135 × 10−8m/N2/3 

Track parameters 

Rail bending rigidity 𝐸𝐼 13.25 × 106Nm2 Ballast stiffness 𝑘𝑏 4.8 × 108N/m 
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Rail linear density 𝑚𝑟 121.28kg/m Subgrade stiffness 𝑘𝑓 13 × 107N/m 

Sleeper spacing 𝐿 0.545m Rail pad damping 𝑐𝑝 7.5 × 104Ns/m 

Sleeper mass 𝑚𝑠 237kg Ballast damping 𝑐𝑏 5.88 × 104Ns/m 

Ballast mass 𝑚𝑏 1365.2kg Subgrade damping 𝑐𝑓 3.115 × 104Ns/m 

Rail pad stiffness 𝑘𝑝 15.6 × 107N/m   

Table 1The parameters of vehicle and track 1 

 2 

The parameters of the coupled vehicle-track system were given the values shown in Table 1 3 

(Zhang et al., 2010) and the uncertain parameters are shown in Table 2. From front to rear, there 4 

are five locations, head (I), front spring (II), center (III), rear spring (IV) and stern (V) under 5 

consideration as shown in Figure 1. The PSD of the track irregularity is expressed as: 6 

 𝑆𝑟(Ω) = {

0.25×0.0339×0.82452

Ω2(Ω2−0.82452)
  (𝑐𝑚2/𝑟𝑎𝑑/𝑚) when Ω ≤ 2𝜋

0.036(Ω/2𝜋)−3.15  (𝑚𝑚2/𝑟𝑎𝑑/𝑚) when Ω > 2𝜋
 (5.1) 7 

where Ω is the space circular frequency. The power spectral density function in the time domain 8 

was transformed from 𝑆𝑟(Ω) by Equation (4.5). 9 

 10 

Parameter 𝛼 Mean �̅� Standard deviation 𝜅/2 

Primary stiffness 𝑘𝑡 1100 × 103N/m 220 × 103N/m 

Primary damping 𝑐𝑡 12 × 103Ns/m 2.4 × 103Ns/m 

Secondary stiffness 𝑘𝑐  800 × 103N/m 160 × 103N/m 

Secondary damping 𝑐𝑐 160 × 103Ns/m 32 × 103Ns/m 

Carriage mass 𝑀𝑐 34 × 103kg 6.8 × 103kg 

Carriage inertia 𝐽𝑐 2.277 × 106m4 4.554 × 105m4 

Table 2 Uncertain parameters 11 

 12 

5.1 The kinetic parameter sensitivity analysis of the vehicle system 13 

For different kinetic parameters, impacts on any specified response of concern are different. It is a 14 

waste of computing cost to account for all uncertainty of the parameters. So firstly, the important 15 

uncertain parameters were found using response sensitivity analysis as a filter. For the sensitivity 16 

of the vertical acceleration PSD to the connection parameters, the differential sensitivity method 17 

was adopted as Equation (5.2) 18 

 𝜀𝑖 =
Δ𝑆𝑜𝑢𝑡(𝛼𝑖,𝜔)

Δ𝛼𝑖
, 𝑖 = 1,2,… , 𝑛  (5.2) 19 

The differential step used was 0.001 times the mean value. The sensitivities of the vehicle body 20 

acceleration PSD to the primary and secondary stiffness and damping were calculated. The 21 

nondimensionalized sensitivities are shown in Figure 3. It can be seen that the sensitivity curves 22 

change with frequency. The sensitivities can be positive or negative, so that the influence of the 23 

response may be increased or reduced. Figure 3 shows that the system is most sensitive to 24 

secondary damping 𝑐𝑐
𝑖  and primary stiffness 𝑘𝑡

𝑖, and so in the following the focus is on their 25 

uncertainty propagation. 26 
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 1 

Figure 3. 1-order differential sensitivities of acceleration PSD to the connection parameters for locations I and III. 2 

 3 

5.2 Quantitative analysis of impact on vehicle body vibration of different uncertain 4 

parameters 5 

Assume that the uncertain parameter probabilities can be described by Equation (4.1). The vehicle 6 

body acceleration PSDs given by the proposed method are shown in Figure 4 for 𝜅/�̅� = 0.4 and 7 

a velocity of 180km/h. Figure 4 (a) shows the mean, standard deviation (SD) and coefficient of 8 

variance (CV) of the vertical acceleration PSD of location I when secondary damping 𝑐𝑐
𝑖  is 9 

uncertain, whereas Figure 4 (b) gives the mean, SD and CV of the vertical acceleration PSD of 10 

location III when primary stiffness 𝑘𝑡
𝑖 is uncertain. Hence it can be seen that the uncertainties of 11 

the connection parameters do not change the position of the peak of acceleration PSD but they do 12 

change its amplitude. In addition, the mean of the uncertain system PSD may be higher or lower 13 

than for the deterministic system. Sensitivity analysis is only able to achieve a qualitative 14 

description and quantitative analysis should be carried out for the specific impact. In Figure 4 (b3), 15 

the four highest peaks of the CV curve occur at the same frequencies of the valleys with the mean 16 

values close to zero in Figure 4 (b1). Such peaks caused by the denominators (mean values) close 17 

to zero are of little significance. In this case we prefer SD to CV to measure the deviation of the 18 

PSD response. In Figure 4 (a), however, the peaks of mean, SD and CV take place at the same 19 

frequency, which means the dimensionless measure of CV should be a better choice for the 20 

measure of the PSD response deviation.  21 

 22 

  

(a1) (b1) 
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(a2) (b2) 

  

(a3) (b3) 

Figure 4. Mean, SD and CV of acceleration PSD for (a) location I when 𝑐𝑐
𝑖  is uncertain and (b) location III when 1 

𝑘𝑡
𝑖  is uncertain. 2 

 3 

On the other hand, the impacts of uncertain inertia parameters of the system on the vibration were 4 

also investigated. It turns out that the impact of inertia parameter uncertainty to vibration response 5 

is largely local, i.e. it affects the corresponding degree of freedom, but has little effect on others. 6 

Only the vehicle body response is of concern, so considering the uncertainty of the inertia 7 

parameters of the vehicle body, i.e. 𝑀𝑐 and 𝐽𝑐, the mean, SD and CV of the vertical acceleration 8 

PSD of location III are given in Figure 5, which shows that the uncertainty of the vehicle body 9 

inertia parameter has a great influence on the acceleration PSD at location III, exceeding that of 10 

uncertainty of 𝑘𝑡
𝑖. 11 

 12 
Figure 5. Mean, SD and CV of acceleration PSD for location III when 𝑀𝑐 and 𝐽𝑐 are uncertain. 13 

 14 

To verify the correctness of the proposed method, comparison is made with direct Monte Carlo 15 
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results. Figure 4 and 5 show the results of direct Monte Carlo simulation using 1000 samples, 1 

including the statistical analysis of the first two order moments. It can be seen that the 1-order 2 

moment can agree well when the random variables take the 1-order orthogonal expansion; 3 

meanwhile, 2-order orthogonal expansion can satisfy the accuracy of 2-order moment. It turns out 4 

that the 2-order expansion agrees well with Monte Carlo simulation even when the peak of CV of 5 

response is close to 1. Monte Carlo simulation needs to establish and solve the equation repeatedly. 6 

To ensure accuracy, the sample size is considerable, so that it is very time consuming. Instead the 7 

proposed method expands the pseudo response in polynomial space. The original random system 8 

dynamics equation converts into the expanded deterministic equation by using the orthogonality 9 

and recursiveness of the polynomials. The projection in polynomial space is obtained by solving 10 

the expanded deterministic equation only once, then the uncertain response is quantified by using 11 

the effective uncertainty polynomial chaos expansion prediction model, see Equation (4.19). The 12 

CPU times of the two methods are compared in Table 3 to show that the proposed method is much 13 

more efficient than Monte Carlo simulation.  14 

 15 

𝑘𝑡
𝑖 uncertain (4 variables) 𝑐𝑐

𝑖  uncertain (2variables) 

Monte Carlo 1-order  2-order  Monte Carlo 1-order  2-order  

538.16s 4.68s 23.39s 554.29s 1.46s 2.36s 

Table 3 Comparison of CPU time between methods 16 

 17 

5.3 Random vibration analysis of uncertain coupled system at different velocities 18 

The velocity 𝑣 of the train is an important factor which influences the coupled system response 19 

and so the results given in Figure 6 were obtained by using the hybrid pseudo excitation 20 

polynomial chaos expansion (PEM-PCE) method for velocities of 180km/h, 240km/h and 21 

300km/h. Combined with the discussion in the previous section, it can be seen that 𝑐𝑐
𝑖 , 𝑘𝑡

𝑖, 𝑀𝑐 22 

and 𝐽𝑐 are important when calculating the response of the uncertain coupled vehicle-rack system 23 

under the track irregularity. Figure 6 shows the mean and SD of the acceleration PSD for locations 24 

I and III for different velocities. It can be seen that when the velocity increases, the peak and shape 25 

of the PSD curve are changed. This is mainly due to the phase lag between the four wheels 26 

changing significantly as the velocity increases. It can also be seen that the difference between the 27 

mean of uncertain response and the deterministic system response is approximately independent of 28 

velocity. This can be explained by the fact that the system parameter uncertainty and the track 29 

irregularity random excitation are independent. 30 

 31 
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(a)  1 

 2 

(b)  3 

Figure 6. Mean and SD of acceleration PSD for (a) location I and (b) location III for different velocities 4 

when 𝑘𝑡
𝑖 , 𝑐𝑐

𝑖 , 𝑀𝑐 and 𝐽𝑐 are all uncertain. 5 

5.4 Impact of uncertain parameter on the stability index 6 

According to the aforementioned analysis for random vibration responses with respect to the 7 

uncertain parameters, it can be seen that secondary damping  𝑐𝑐
𝑖 , primary stiffness 𝑘𝑡

𝑖  and the 8 

vehicle body inertias 𝑀𝑐 and 𝐽𝑐 are the most important parameters for the random vibration 9 

analysis of the uncertain system. Therefore, we must consider these uncertain parameters in 10 

combination in analysis when assessing running stability. The Chinese Railway vehicle dynamic 11 

performance evaluation and test specification (GB5599-85, 1985) for evaluation of train running 12 

stability was selected. The corresponding index is 13 

 𝑊 = 7.08 [∫ (
𝐹(𝑓)

𝑓
)

2

3
𝐺(𝑓)𝑑𝑓

80

0.5
]

3/20

 (5.3) 14 

where 𝐺(𝑓) is the power spectral density of acceleration, 𝑓 is the frequency in Hz and 𝐹(𝑓) is 15 

the frequency correction factor, with 16 

 𝐹(𝑓) = {
0.325𝑓2 0.5 ≤ 𝑓 ≤ 5.9
400/𝑓 5.9 < 𝑓 < 20

1 𝑓 ≥ 20

 (5.4) 17 

 18 

Figure 7. The mean of the stochastic stability index at different locations 19 
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Figure 7 shows the expectation for the stability index at different locations. Clearly the stability 1 

index at all locations is higher than predicted by the deterministic system and although they all 2 

achieve the standard (i.e. they are lower than 2.5), neglect of the parameter uncertainty will lead to 3 

potentially risky analysis results. In addition, comparing the stability index at different locations 4 

shows that it is lowest in the middle and highest at the ends. Locations I and III are respectively 5 

the worst and the optimum location for the stability index, as investigated below. The mean and 6 

variance of the stability at location I are 2.104 and 0.026, and at location III they are 1.624 and 7 

0.011. The PDF of the random stability index was also investigated by taking the log likelihood 8 

function value as the standard and selecting the inverse Gaussian distribution to fit the PDF. This 9 

better reflects the overall probability characteristics, as shown in Figure 8. Further analysis 10 

showed that the stability index at location I has a 98.94% probability of being less than 2.5, and 11 

the stability index at location III has a 94.89% probability of being less than 1.8. The probability 12 

distribution of the stability index provides a good indicator when performing reliability analysis.  13 

  14 

Figure 8. Probability density fitting of the stability index at locations I and III. 15 

 16 

6 Conclusions 17 

A new effective assessment method has been developed for random vibration of an uncertain 18 

coupled vehicle-track system under track irregularity. The dynamic equation of coupled 19 

vehicle-track systems under mixed physical coordinates and dual coordinates has been established 20 

in the framework of the Hamiltonian system, and the governing equation with respect to the 21 

uncertain parameters has been derived by using orthogonal polynomials for the dynamic analysis 22 

of coupled systems. An assessment of random vibration with respect to the uncertain parameters 23 

has been established for the coupled vehicle-track system by using the pseudo-excitation method. 24 

Numerical results show that the established method has high accuracy and that this work provides 25 

an effective means for solving practical engineering problems that involve the uncertainty of 26 

vehicle-track systems. 27 
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