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Abstract

Quantifying the amount of precipitation and its uncertainty is a challenging task all over

the world, particularly over the African continent, where rain gauge (RG) networks are poorly

distributed. In recent decades, several satellite remote sensing (SRS)-based precipitation prod-

ucts have become available with reasonable spatial and temporal resolutions to be applied in

hydrological and climate studies. However, uncertainties of these products over Africa are

largely unknown. In this study, the generalized “three-cornered-hat” (TCH) method is applied

to estimate uncertainties of gridded precipitation products over the entire African continent,

without being dependent to the choice of a reference dataset. Six widely used SRS-based pre-

cipitation products (at monthly scales) were evaluated over the entire continent during the

period of 2003-2010. The TCH results are further compared to those of the classical evaluation

using the Global Precipitation Climatology Center (GPCC) over entire Africa, as well as to the

RG observations over the Greater Horn of Africa (GHA). Overall, for the study period (2003–

2010), the TCH results indicate that the RG-merged products contain smaller error amplitudes

compared to the satellite-only products, consistent with the GPCC-based evaluation. A mul-

tiple comparison procedure ranking, which was applied based on signal-to-noise ratios (SNR)s,

indicated that PERSIANN contains the highest SNR and thus suitable over most of Africa,

followed by ARCv2, TRMM, CMORPH, TAMSAT and GSMaP. To extract the main spatio-

temporal variability of rainfall over Africa, complex empirical orthogonal function technique
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was applied, from which the extracted patterns of GPCC, TRMM, PERSIANN, and ARCv2

were found to be similar but different from those of TAMSAT, CMORPH and GSMaP. Finally,

the TCH and RG-based validation methods were found to provide similar evaluations for the

SRS-only products (CMORPH and GSMaP) over GHA, with CMORPH emerging to be the

most suitable product, consistent with previous studies.

Keywords: Africa, precipitation, validation, modified three-cornered-hat (TCH), complex

empirical orthogonal function (CEOF), multiple comparison procedure (MCP)

1. Introduction1

Precipitation is a key component of the global hydrological (water) cycle as its spatio-2

temporal distribution plays a significant role in balancing large-scale (e.g., basin-wide) water3

budget, as well as climate variability. Other than being the main source of renewable water4

resources, precipitation is also critical for socio-economic development of nations, especially5

African countries, which depend on rain-fed agriculture (Dinku et al., 2007). In recent decades,6

most parts of the African continent have experienced high variability in precipitation that7

has led to recurrent drought and flood events in different countries (see, e.g., Conway et al.,8

2009; Tschakert et al., 2010; Rojas et al., 2011; Nicholson, 2013; Awange et al., 2014a; Omondi9

et al., 2014). For example, in West Africa, and particularly the area below the Sahel region,10

anecdotal evidence from farmers suggests a forward shift in onset of rainy season over the past11

periods (Giesen et al., 2010), while in the Great Horn of Africa (GHA), the number of extreme12

precipitation events has increased over the last few decades (Omondi et al., 2014). Reliable and13

consistent estimates of precipitation information is, therefore, crucial for timely monitoring of14

water resources within the African continent.15

The distribution of rain gauge (RG) networks within the African continent is, however, not16

adequate to reliably represent precipitation changes with respect to the continent’s varying17

topography and climatic zones (e.g., Hughes, 2006; Nicholson, 2013). The RG observations18

might also not be readily available to the Global Telecommunication Systems (GTS) for onward19

usage in global data archives (Nicholson et al., 2003a). Moreover, large-scale global and regional20

circulation processes (such as the El Niño Southern Oscillation – ENSO and inter-tropical21

convergence zone – ITCZ) have led to pronounced variability in precipitation at a wide range22

of spatial and temporal scales (see, e.g., Awange et al., 2013, 2014b,c; Omondi et al., 2012,23

2
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2013; Forootan et al., 2014), thus making it more difficult to accurately measure precipitation24

changes. It is due to these deficiencies of in-situ RG observations that most meteorological25

and hydrological applications’ needs are currently met by satellite remote sensing (SRS)-based26

precipitation products, although their reliability remains an issue (see, e.g., Sawunyama and27

Hughes, 2008; Li et al., 2009).28

A variety of SRS-based precipitation products from various institutions all over the world are29

readily available, which provide high resolution precipitation estimates with a wide spatial cov-30

erage including the African continent. SRS-based precipitation products are, however, subject31

to various error sources such as; cloud top reflectance, thermal radiance, sampling frequency,32

orbital drifts, topography, and precipitation retrieval algorithms (Joyce et al., 2004; Kummerow33

et al., 2004). Some SRS products utilize the high temporal resolution infrared (IR) measure-34

ments to estimate precipitation. The IR measurements are not directly related to precipitation,35

and hence, do not provide precise estimates at fine scales. The microwave measurements are36

more precise, compared to IR, but with lower temporal resolution (see, e.g., Xie and Arkin,37

1997; Joyce et al., 2004; Dinku et al., 2008). In addition, challenges such as frequent satellite38

and sensor failures, and short life-spans may cause data inhomogeneity (e.g., Kummerow et al.,39

2004), and consequently, long-term inconsistency. Due to the multiple limitations faced by the40

satellite-based products, data validation and uncertainty estimation of rainfall products are,41

therefore, necessary before using them in hydrological and climate studies, drought monitoring,42

and other related applications.43

Various studies have been conducted over Africa, which assess the suitability of several44

SRS-based precipitation products through their comparisons with RG observations. However,45

most of these studies were often faced with lack of access to and/or inadequate RG records and46

have subsequently focused on specific sub-regions or basins within the African continent with47

available RG records. These studies range from West Africa (e.g., Nicholson et al., 2003a), Nile48

Basin (e.g., Dinku et al., 2011; Habib et al., 2012; Haile et al., 2012), East Africa (e.g., Funk and49

Verdin, 2003; Dinku et al., 2007; Romilly and Gebremichael , 2011), Zambezi Basin (e.g, Bowden50

and Semazzi , 2007; Dinku et al., 2008; Liechti et al., 2012), Sahel region (e.g., Dinku et al.,51

2010a) to a collection of basins (Thiemig et al., 2012). Therefore, a continent-wide validation52

of various SRS-based precipitation products is necessary to assess their level of suitability to53

be used in various meteorological and hydrological applications.54

3
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Although RG observations are usually considered as the most accurate rainfall measure-55

ments over a point, both RG and SRS-based precipitation products are vulnerable to errors, i.e.,56

systematic, random, and gross errors (see, e.g., Janowiak et al., 1998; Nicholson et al., 2003a;57

Hughes, 2006). Consequently, both techniques do not produce the ideal rainfall estimates to be58

considered as reference for validation purpose, which is particularly the case for interpolated and59

spatially averaged rainfall products. Therefore, in this paper, the “three-cornered-hat” (TCH)60

method (Gray and Allan, 1974) is applied, in its generalized form (Galindo and Palacio, 1999),61

to evaluate the relative performances of different rainfall products over the African continent.62

The generalized TCH method allows for a relative comparison of at least three datasets based63

on their respective uncertainties without the need of a priori knowledge of their uncertainties64

(e.g., Koot et al., 2006). The performance of TCH (in estimating the uncertainty of rainfall65

products) is compared to that of classical gauge-based validation over the continent in order to66

account for possible artificial skills in the TCH validation method. Due to the inaccessibility of67

continent-wide RG based data, the full data product of the Global Precipitation Climatology68

Centre (GPCC) was used as a proxy for validating six SRS-based rainfall products. These69

products include: (i) African Rainfall Climatology Version 2 (ARCv2), (ii) Climate Predic-70

tion Center (CPC) Morphing Technique (CMORPH), (iii) Tropical Rainfall Measuring Mission71

(TRMM 3B43), (iv) Global Satellite Mapping of Precipitation moving vector with Kalman filter72

(GSMaP-MVK), (v) Tropical Applications of Meteorology using SATellite (TAMSAT), and (vi)73

Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks74

(PERSIANN).75

It should be mentioned here that the distribution of RG stations used in GPCC over the76

continent is rather sparse, and as such, the evaluation of SRS products against GPCC over77

certain regions such as Congo, Angola, Somalia, and the Sahara should be interpreted with78

caution. Additionally, some of the investigated SRS products (i.e., TRMM, ARCv2, and PER-79

SIANN) are merged with the RG observations that are also used in GPCC (e.g., Huffman et al.,80

2010). Consequently, validating such products based on GPCC are likely to be tendentious.81

Nonetheless, such validations are applied in a number of studies worldwide (see, e.g., Smith82

et al., 2006; Kidd et al., 2012; Conti et al., 2014), and over Africa (see, e.g., Adeyewa and83

Nakamura, 2003; Cattani et al., 2014) with some reasonable results. It should be clarified that84

GPCC data are not used as the reference for the TCH method in this study but rather to pro-85

vide independent evaluation upon which the TCH results are compared. The six SRS products86

4
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are further validated over GHA using in-situ RG observations obtained from an external data87

source; the IGAD (Inter-governmental Authority on Development, Africa) Climate Prediction88

and Application Center (ICPAC).89

In order to extract and compare the dominant patterns of precipitation variability (derived90

from different datasets) and their spreading behavior over the continent, the statistical method91

of complex empirical orthogonal function (CEOF) (Preisendorfer , 1988) is applied. CEOF92

serves as an extension of the traditional principal component analysis or empirical orthogonal93

function (PCA/EOF) technique, which allows the extraction of non-stationary (space- and94

time-variable patterns) from precipitation observations (Forootan, 2014, pages 32-36). Thus,95

CEOF is used to identify the propagation patterns of precipitation changes, derived from the96

SRS-based products over Africa.97

The remainder of the study is organized as follows. In Section 2, a brief background on the98

continental climatic regime with specific focus on precipitation variability across the African99

continent is presented. The description of various satellite products and a brief overview of their100

algorithms are provided in Section 3, followed by the methodology in Section 4. In Section 5,101

the results are presented. Finally, in Section 6, the main finding of this study is summarized102

and concluded.103

2. Study area104

The African continent lies astride the equator and almost entirely within the tropics. Its105

northern and southern regions exhibit temperate climate due to the mid-latitude westerly winds106

(Wamukonya et al., 2006). Considered the second driest region in the world after Australia,107

Africa is divided into six wide climatic zones based on the amount, duration, and seasonal108

distribution of rainfall (e.g., Nicholson, 1986; Wamukonya et al., 2006). These zones are referred109

to as the Hyper Arid, Arid, Semi-Arid, Dry Sub-humid, Moist Sub-humid, and Humid, in this110

contribution (cf., Figure 1a for details). Seasonal variations are primarily controlled by the111

movement of the Inter-Tropical Convergence Zone (ITCZ), which is also referred to as the112

tropical rain belt (Nicholson, 2013). The ITCZ shifts between the equator and the Sahara113

Desert during the austral summer (i.e., December, January and February) and boreal summer114

(June, July and August), resulting in a dipolar seasonal rainfall pattern across the continent.115

During the transitional periods of MAM (March, April and May) and SON (September, October116

5
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and November), most rainfall is observed within 10◦ of the equator, reducing polewards.117

3. Data118

In this section, a description of the rainfall products used in the study is given. These119

products include six SRS rainfall products, available as satellite only and merged fields (satellite120

+ RG data). GPCC data and gauge observations over GHA from ICPAC were used to provide121

independent validation of the TCH method. The data used in this study are summarised in122

Table 1.123

3.1. Global Precipitation Climatology Centre (GPCC)124

The GPCC product consists of precipitation data from more than 67,000 gauge stations125

worldwide (Becker et al., 2013), making it one of the most comprehensive gauge-based rainfall126

data available. GPCC, through the World Meteorological Organization (WMO), has been127

collating global gauge records since 1989. In addition, GPCC also incorporates archives from128

the Global Telecommunication Systems (GTS), daily surface synoptic observations (SYNOP)129

messages, and monthly climatological data (CLIMAT messages). It also utilizes published130

global datasets from the Food and Agriculture Organization (FAO) FAOCLIM 2.0, Climate131

Research Unit (CRU) of the University of East Anglia, Global Historical Network (GHCN),132

as well as several regional datasets. GPCC provides various precipitation products at different133

resolutions for a wide range of applications (see, e.g., Becker et al., 2013; Schneider et al., 2013).134

Full Data Product (GPCC-FD) provided at monthly time scales with a spatial resolution of135

0.5◦ were used in this study. This data is the most accurate version of the GPCC products, and136

is intended for validation studies (Becker et al., 2013). Figure 1b shows the spatial distribution137

of gauges with at least 10 years of observations. In Africa, the gauge density varies substantially138

with sparse gauge network distributed in the northern regions (e.g., over Chad, Niger, Libya, and139

Egypt), as well as central parts (e.g., Congo and Somalia) of the continent. The highest gauge140

density is found over Southern Africa, West Africa, and within the Lake Victoria basin, where141

each 0.5◦ grid contains more than 2 gauge stations. Additionally, Figure 1c shows temporal142

variations of number of stations between 2003–2010. The decline in the estimated station in143

2009 is attributed to the fact that most of the WMO member countries contributed data only144

6
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up 2008 with the remaining 2 years (2009-2010) based on GTS records and data from some145

donor countries (Becker et al., 2013, see references therein).146
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Figure 1: (a) Climate zones in Africa based on seasonal rainfall amount and duration, (b) approximate number

of rain gauge stations per 0.5◦×0.5◦ grid in the GPCC-FD product averaged for the period 2003 to 2010, and

(c) number of the gauge stations per month for the period 2003 to 2010.

3.2. African Rainfall Climatology Version 2 (ARCv2)147

ARCv2 is a revised version of Climate Prediction Center’s (CPC) African Rainfall Clima-148

tology (ARC), which provides African precipitation from 1983. It provides daily precipitation149

fields based on a subset of source data from Rainfall Estimate version 2 (RFE2) algorithm150

at a spatial resolution of 0.1◦ (Novella and Thiaw , 2013). ARCv2 input dataset consists of151

7
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data from a 3-hourly geostationary infrared (IR) sensor centered over Africa by the European152

Organization for the Exploitation of Meteorological Satellites (EUMETSAT) and the Global153

Telecommunication System (GTS) gauge observations. The main difference between RFE2 and154

ARCv2 is that, the latter does not contain passive microwave (MW) data in its algorithm.155

3.3. Climate Prediction Center (CPC) Morphing Technique (CMORPH)156

CMORPH is a high resolution global precipitation analysis technique, developed at the157

National Oceanic and Atmospheric Administration (NOAA)’s Climate Prediction Center (CPC)158

for rainfall estimation (see, e.g., Joyce et al., 2004). It produces precipitation estimates between159

60◦N and 60◦S with a spatial resolution of 0.073◦ (at the equator) and a temporal resolution of160

the 30 minutes. Daily fields are produced by accumulating 30-minute segments over a 24-hour161

period. The precipitation estimates from the low earth orbiting (LEO) satellite microwave scans162

are propagated by motion vectors derived from geostationary satellite’s IR data. This technique163

utilizes the advantages of two satellite rainfall estimates, where a more direct measurement but164

a relatively poor resolution passive microwave observations are integrated with low quality but165

high resolution IR precipitation estimates. The CMORPH precipitation estimates have been166

extended back from December 2002 to the TRMM-era (1998-present) and reprocessed from167

2003 using the most recent version of PMW algorithm and IR observations (Xie et al., 2015).168

For this study, we used the earlier version of CMORPH from 2003 to 2010. This dataset is not169

merged with in-situ RG observations.170

3.4. Global Satellite Mapping of Precipitation moving vector with Kalman filter (GSMaP-MVK)171

The GSMaP-MVK (hereafter referred to as GSMaP), a product of the Japan Aerospace172

Exploration Agency (JAXA), is a multi-satellite precipitation data source. A Kalman filter-173

ing technique is used to estimate hourly global precipitation at a spatial resolution of 0.1◦.174

GSMaP merges data from passive microwave sources (i.e., TRMM Microwave Imager - TMI, Ad-175

vanced Microwave Scanning Radiometer for EOS - AMSR-E, Special Sensor Microwave/Imager176

- SSM/I) and infrared (IR) images to compute moving vector fields. Based on the moving vec-177

tor fields calculated from successive IR images, precipitation fields are propagated and refined178

in a Kalman filtering process (see, e.g., Ushio and Kachi , 2010). This product is not merged179

with RG observations. The hourly products from 2003 to 2010 were converted to monthly180

precipitation fields in this study.181

8
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3.5. Precipitation Estimation from Remotely Sensed Information using Artificial Neural Net-182

works (PERSIANN)183

PERSIANN is a product of the Center for Hydrometeorology and Remote Sensing (CHRS) of184

the University of California, and is available from March 2000 at a spatial resolution of 0.25◦, and185

at 3-hourly and 6-hourly temporal scales. The PERSIANN algorithm employs a neural network186

to optimally combine infrared images of the geostationary environmental satellite, the TRMM187

Microwaver Imager (i.e., the TMI 2A12 product), and is calibrated with the Global Precipitation188

Climatology Project product (GPCP) (Sorooshian et al., 2000; Hsu and Sorooshian, 2008). For189

this study, 6-hourly products of 2003 to 2010 were converted to monthly rainfall estimates.190

3.6. Tropical Applications of Meteorology using Satellite data and ground-based observations191

(TAMSAT)192

TAMSAT is an Africa-specific precipitation data source available at 0.0375◦ spatial reso-193

lution. The dataset is available since 1983 at decadal, seasonal, and monthly time scales. Its194

algorithm is based on assumptions that a large portion of precipitation over Africa is usually195

derived as a result of convective clouds, and secondly, the existence of a linear relationship196

between cold cloud duration (CCD) and precipitation events (e.g., Grimes et al., 1999). As197

such, it is well suited for regions characterized mostly by convective rainfall. The algorithm198

estimated rainfall is not merged with contemporaneous RG data but calibrated with historical199

data that is considered time invariant (see, e.g., Maidment et al., 2013).200

3.7. Tropical Rainfall Measuring Mission (TRMM)201

Gridded rainfall estimates from TRMM Multisatellite Precipitation Analysis (TMPA, Huff-202

man et al., 2007) are available from the National Aeronautics and Space Administration (NASA)203

Goddard Space Flight Center (GSFC) since 1998. TMPA precipitation products are an inte-204

grated rainfall estimates from various sensors such as Precipitation Radar (PR), Special Sensor205

Microwave Imager (SSM/I)), and infrared (IR) a board a geostationary satellites. Additionally,206

the products are merged with RG observations from the GPCC. The data is available at a spa-207

tial resolution of 0.25◦ × 0.25◦ with a spatial coverage between 50◦S to 50◦N, at a 3-hourly and208

monthly time scales. Validation of TRMM and its merged precipitation products are crucial209

due to the aging of the satellites, which was initially planned for a 5 year life span (see, e.g.,210

9
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Kummerow et al., 1998), but have now been in orbit for over a decade. For this study, monthly211

precipitation products of TRMM-3B43 version 7 from TMPA are used and are referred to as212

TRMM, hereafter.213

3.8. Rain gauge data over Greater Horn of Africa (GHA)214

Daily in-situ observations from 54 rain gauge stations, spread almost over the entire GHA,215

were obtained from IGAD (Inter-governmental Authority on Development, Africa) Climate216

Prediction and Application Center (ICPAC). The in-situ data covers the duration (1961-2009)217

but with gaps in most individual RG station records, see also Omondi et al. (2014). Of the218

available 54 RG stations, only 30 stations (mainly located in Kenya, Ethiopia, and Tanzania) for219

the period of 2003 to 2007 had consistent records, and were subsequently used in the analysis.220

Table 1: Summary of the data used in this study.

Product
Temporal Spatial Resolution Temporal

Coverage Data used
Availability [lat x lon] Resolution

In-Situ data − 54 stations Daily GHA 2003-2007

GPCC 1900-2010 0.5◦ x 0.5◦ Monthly Global-land only

0.5◦ x 0.5◦ at

monthly scale

between

2003-2010

ARCv2 1983-present 0.10◦ x 0.10◦ 3-hourly Africa

CMORPH 1998-present 0.25◦ x 0.25◦ 3-hourly 50◦S × 50◦N

GSMaP MVK 2002-2010 0.10◦ x 0.10◦ 1-hourly 60◦S × 60◦N

PERSIANN 2000-2014 0.25◦ x 0.25◦ 6-hourly 50◦S × 50◦N

TAMSAT 1983-present 0.0375◦ x 0.0375◦ Monthly Africa

TRMM 3B43v7 1998-present 0.25◦ x 0.25◦ Monthly 50◦S × 50◦N

4. Methodology221

All the high resolution SRS-based products (Table 1; ARCv2, CMORPH, GSMaP, PER-222

SIANN, TAMSAT, and TRMM) were bi-linearly interpolated to the standard grid resolution223

of GPCC data (i.e., 0.5◦× 0.5◦), while 3-hourly or 6-hourly products were summed to monthly224

product. Similarly, daily gauge observations from the GHA region (i.e., Table 1) were converted225

to monthly rainfall accumulations (mm/month). To account for the spatial mismatch between226

RG observations and gridded precipitation estimates over the GHA region, monthly in-situ ob-227

servations and corresponding values from gridded products were spatially-averaged according228
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to the existing climatic regimes as discussed in, e.g., Bowden and Semazzi (2007) and Omondi229

et al. (2014).230

Various approaches were employed to assess the gridded precipitation estimates, including231

comparison with the gauge-based GPCC product. Inter-comparisons of uncertainties in precip-232

itation estimates from individual gridded products were performed using the generalized TCH233

method, and complex empirical orthogonal function (CEOF) employed to assess the spatio-234

temporal behavior of these precipitation products over the African continent. These methods235

are briefly described below.236

4.1. Generalized three-cornered hat method237

While GPCC is considered as a reliable source of gauge-based precipitation data on the238

continental scale, there still exists large data gaps over various regions of Africa (cf. Figure239

1b), mostly caused by lack of data sharing from these regions (Nicholson et al., 2003a). Thus,240

using GPCC product as the reference data to assess the satellite-derived rainfall estimation241

over these regions may be less reliable or even introduce additional bias to the gauge-adjusted242

products. Additional circumstances include the lack of consistency in the number of reporting243

gauges over time (see, Figure 1c) and challenges in timely updating the gauge records in GPCC.244

The three-cornered hat (TCH) on the other hand, can be used to estimate relative uncertainties245

in rainfall products from different sources if at least three products are available (e.g., Tavella246

and Premoli , 1994). The generalized TCH method is particularly relevant in this study as247

it accounts for the dependency between different precipitation estimates. In this particular248

contribution, the TCH method is extended to include the six SRS-based precipitation products249

presented in Table 1. The same approach has been used by Koot et al. (2006) to assess the250

quality of each individual time series of atmospheric angular momentum from five different251

meteorological centers.252

To estimate the uncertainty in precipitation datasets, consider the time series of available253

products stored as {xi}i=1,2,··· ,N , where i corresponds to each product (i.e., N = 6, six SRS-254

based rainfall products in Table 1). Let each time series be expressed as255

xi = s + εi, ∀i = 1, . . . , N, (1)
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where s is the true signal and εi is a zero-mean white noise process representing the measurement256

error of the SRS-based rainfall i. Since no true estimate of s is available, the differences between257

each time series and one of them arbitrarily chosen as the reference is computed as (Koot et al.,258

2006):259

yi ≡ xi − xR = εi − εR, i = 1, . . . , N − 1, (2)

with xR being the arbitrarily chosen reference time series. For this study TRMM time series was260

chosen as the reference time series. It is important to note that the results of the uncertainty261

estimations are independent of choice of reference time series since the computations are based262

on the covariance of the differences in Equation 2. In Example 1, it is demonstrated that the263

choice of the reference does not influence the final results of the TCH method. Therefore,264

selecting any of the remotely sensed precipitation products, other than TRMM time series, as265

reference, will not alter the findings (see, e.g., Tavella and Premoli , 1994; Koot et al., 2006).266

Indeed, GPCC was tested as reference (results not shown) and provided similar results to those267

reported in this study.268

The samples of the N − 1 SRS-based precipitation differences (Equation 2) are stored in269

the columns of a M × (N − 1) matrix as:270

Y =
[

y1 y2 · · · y(N−1)

]

, (3)

where each row is a monthly observation (here M = 96, i.e., 96 months from 2003-2010). The271

covariance matrix S of the series of differences given by272

S = cov(Y), (4)

where cov(◦) is the covariance operator, and elements of S (si,j) being either variance estimates273

(for i = j) or covariance estimates (for i 6= j) otherwise. Introducing the unknown N × N274

covariance matrix of the individual noises R, it is related to S by (Galindo and Palacio, 2003)275

S = J ·R · JT , (5)
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where the matrix J is given by276

J(N−1)N =

















1 0 · · · 0 −1

0 1 · · · 0 −1
...

...
. . .

...
...

0 0 0 1 −1

















. (6)

Equation 5 is undetermined because there are N × (N + 1)/2 unknowns (number of distinct277

elements of R), but only N × (N − 1)/2 equations (number of distinct elements of S). Thus,278

there remain N “free” parameters that must be reasonably determined to obtain a unique279

solution (Galindo and Palacio, 2003).280

An important constraint on the solution domain for the free parameters, however, is that281

the estimated covariance matrix R must be positive definite (Koot et al., 2006), i.e., |R| > 0282

(Galindo and Palacio, 2003). This condition restricts the solution domain for the free pa-283

rameters (riN , . . . , rNN , i = 1, . . . , N − 1), but nevertheless, it is not sufficient to determine284

them (Koot et al., 2006). The free parameters are thus chosen in such a way that the sum285

of the estimated correlations between all the time series is minimal considering the constraint286

|R| > 0. To determine the N free parameters, a suitable objective function should be defined.287

The suggested objective function is given by (Galindo and Palacio, 1999) as288

F (r1N , · · · , rNN ) =
N

∑

i<j

r2
ij

K2
, (7)

where K = N−1

√

|S|. The solution of the minimization problem is found based on the Kuhn-289

Tucker theorem (Galindo and Palacio, 1999). Hence, when the free parameters have been290

estimated, the solution for the other unknown elements of R is given by291

rij = sij − rNN + riN + rjN , i, j = 1, · · · , N − 1, (8)

and sij obtained from Equation 4.292

Example 1 (Choice of the TCH reference): Consider the following numerical example293

where we have 3 time series A, B, and C as shown in Figure 2 whose quality is to be determined.294

Now from Table 2, let the time series “C” in the first column, “B” in the second column, and “A”295

in the third column be chosen as a reference. Considering “C” as the reference, the diagonal of296
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R shows the variances of A, B, and C as diagonal elements, respectively. With “B” as reference,297

the variances of A, C, and B are given respectively as diagonal elements. Finally, with “C” as298

reference, the variances of B, C, and A are given in the diagonal elements in the third column,299

respectively. As can be seen from the results, the choice of the reference is immaterial as the300

same results are obtained irrespective of the chosen reference.301

Figure 2: A sample time series of 3 datasets A, B, and C used to demonstrate the TCH method.

Table 2: Example of TCH algorithm.

C (”reference”) B (”reference”) A (”reference”)

S = cov(A− C, B − C) S = cov(A−B, C −B) S = cov(B −A, C −A)

S =





40.51 23.46

23.46 220.12



 S =





213.72 196.67

196.67 220.12



 S =





213.72 17.05

17.05 40.51





R =











17.05 0 0

0 196.67 0

0 0 23.46











R =











17.05 0 0

0 23.46 0

0 0 196.67











R =











196.67 0 0

0 23.46 0

0 0 17.05











4.2. Performance ranking of the SRS-based precipitation products302

Estimating the magnitude of noise is not adequate to describe the relative quality of each303

rainfall product. Thus, for each SRS product, the signal-to-noise ratio (SNR) is estimated304

considering the time series of precipitation for grid points as (e.g., Seo et al., 2006)305

SNR =
RMS(t)

σ
, or in case of the RMSE as SNR =

RMS(t)

RMSE
, (9)
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where RMS is the root-mean-square of the SRS-based products for the time (t) period 2003 to306

2010 at each grid point, and σ indicates the magnitude of uncertainties from the TCH method.307

In ranking the products, a higher SNR is considered better than a lower SNR.308

4.3. Multiple comparison procedure (MCP)309

In order to rank, as well as to determine the similarities (or dissimilarities) of the available310

precipitations products over Africa, a multiple comparison procedure (MCP) (see, e.g., Day and311

Quinn, 1989) based on the information in the root-mean-squares-errors (RMSE), uncertainties,312

and their respective SNR values was carried out by first performing the non-parametric Kruskal-313

Wallis test (McKight and Najab, 2010) at 95% confidence interval, followed by the Tukey-314

Kramer test (Rafter et al., 2002). The Krustal-Wallis test ranks each of the products based315

on their performance measures, while the Tukey-Kramer test measures the similarities and316

dissimilarities among the precipitation products.317

4.4. Complex empirical orthogonal function (CEOF)318

Given the wide variety of blended precipitation products and different precipitation retrieval319

methods (Table 1), it is important that all the gridded precipitation estimates provide consistent320

spatial and temporal patterns over various regions of Africa. This is examined by applying321

CEOF (Preisendorfer , 1988) to the time series derived from each of the gridded precipitation322

products (7 products of Sections 3.1 to 3.7, i.e., Table 1, individually), and extracting their main323

spatio-temporal behavior. To perform CEOF, the Hilbert Transform of the original rainfall324

time series was added as their imaginary part to produce new sets of complex time series.325

The Hilbert transform introduces a phase shift of π
2 (in the frequency domain) to the original326

rainfall time series. The generated complex data sets therefore contain information on the327

changes in rainfall and their temporal-rates of change (see e.g., Forootan, 2014, pages 32-36328

for details). Singular value decomposition (SVD, Preisendorfer , 1988) method is applied to329

decompose the generated complex data sets resulting in complex spatial patterns, known as330

the complex empirical orthogonal functions (CEOFs), and the temporal patterns of complex331

principal components (CPCs). Both CEOFs and CPCs contain real and imaginary parts, which332

are used to derive the dominant modes of rainfall variability in terms of amplitudes and phases333

that are usually better suited in extracting spreading patterns such as rainfall fluxes (see e.g.,334

Cromwell , 2006).335
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5. Results336

The quality of the available rainfall products is evaluated using three different methods337

over the common period of 2003-2010. First, the SRS-based rainfall products are evaluated338

with respect to the GPCC dataset over the whole African continent using standard statistical339

measures such as relative bias, RMSE, and correlation coefficients. Secondly, the generalized340

“three-cornered-hat” (TCH) method is applied to assess the uncertainties of all the gridded341

precipitation products. The evaluations are carried out on a continent-wide, as well as over342

the six prominent climatological regimes of Africa shown in Figure 1a. Monthly precipitation343

products are then ranked based on the evaluation results using multiple comparison procedure344

(MCP). Additionally, a special case of GHA is considered, where in-situ RG observations are345

used to assess the results of TCH and the classical rain gauge (RG)-based validations (i.e.,346

from GPCC). Thirdly, CEOF is employed to assess the spatio-temporal patterns of rainfall347

variability over Africa. It should be mentioned that the choice of the precipitation products348

depends also on the application, and the recommendations based on the performed analyses,349

may not necessarily benefit all applications, particularly since the evaluations are carried out350

at monthly scales.351

5.1. GPCC-based evaluation of SRS-based precipitation estimates (2003-2010)352

Figure 3 shows the spatial distribution of monthly mean biases, RMSE, and correlation353

coefficients of various SRS-based rainfall estimates with respect to GPCC over Africa for the354

period 2003 to 2010. From Figure 3, it can be seen that gauge-adjusted satellite products355

(TRMM, ARCv2, and PERSIANN) are more consistent with GPCC than the satellite-only356

products (CMORPH and GSMaP). TRMM precipitation estimates are adjusted using the latest357

GPCC re-analysis data, and therefore, indicate the closest agreement in all three metrics (bias358

(Figure 3f), RMSE (Figure 3i), and correlation (Figure 3r)). It is closely followed by the IR-359

reliant PERSIANN product and the African-specific ARCv2 data with relatively low RMSEs360

and higher correlation coefficients over most of Africa. However, PERSIANN tends to deviate361

more (in relation to GPCC) compared to ARCv2 product. Additionally, in relation to GPCC,362

TAMSAT consistently underestimates rainfall over most areas of Africa and also indicates lower363

correlation with GPCC over the Sahara region. In general, among the gauge-adjusted satellite364

rainfall estimates, ARCv2 and PERSIANN tend to show less correlations with GPCC over data-365
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sparse regions of Sahara and Congo, as well as Somalia than those rainfall anomalies derived366

from TRMM (Figure 3 (m), (p), and (r)). Due to the sparse distribution of GPCC products367

over these regions (see Figure 1), however, the derived evaluations have to be interpreted with368

caution.369

Satellite-only products CMORPH and GSMaP, on the other hand, indicate very large pos-370

itive differences (up to 100 mm/month) over the high rainfall regions of central Africa (e.g.,371

Congo), and the African rain belt region. Large negative differences are also found over the oro-372

graphic regions of Ethiopia, Kenya, and Tanzania. Substantial underestimations in relation to373

GPCC are also prevalent over the coastal regions of eastern Madagascar and southern Liberia,374

which are also seen in ARCv2, PERSIANN, and TAMSAT products. Very low correlation375

coefficients are also found in the arid regions and along the coastal regions (see Figure 3).376

a) GPCC vs. ARC

M
e

a
n

 E
r
r
o

r

b) GPCC vs. CMORPH c) GPCC vs. GSMaP d) GPCC vs. PERSIANN e) GPCC vs. TAMSAT f) GPCC vs. TRMM

 

 
mm

−100

−50

0

50

100

g) GPCC vs. ARC

R
M

S
E

h) GPCC vs. CMORPH i) GPCC vs. GSMaP j) GPCC vs. PERSIANN k) GPCC vs. TAMSAT l) GPCC vs. TRMM

 

 
mm

0

20

40

60

80

100

120

m) GPCC vs. ARC

C
o

r
r
e

la
ti

o
n

n) GPCC vs. CMORPH o) GPCC vs. GSMaP p) GPCC vs. PERSIANN q) GPCC vs. TAMSAT r) GPCC vs. TRMM

 

 

0

0.2

0.4

0.6

0.8

1

Figure 3: Mean biases (a-f), RMSEs (g-l), and correlation coefficients (m-r) of six SRS-based precipitation

estimates relative to the GPCC gauge-based rainfall products over Africa for the period 2003 to 2010.

The microwave dominant estimates of rainfall (e.g., CMORPH) are also prone to underesti-377

mate the rainfall amount over local convective zones and orographic regions like those over the378

Ethiopian Highlands and east coast regions of Madagascar. This underestimation is related to379

the local convection during the orographic lifting of the south-westerlies, which are generally380
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characterized by shallow clouds with very low ice content (Nesbitt et al., 2008; Habib et al.,381

2012). This process leads to significant underestimation in microwave-based estimates because382

of their direct relationship with ice-hydrometeors. Equivalent underestimations were also found383

in the IR-dominant products such as ARCv2 over these orographic and local convection regions.384

Dinku et al. (2007) compared RFE versions 1 and 2 (RFE2 is the precursor of ARCv2) and385

reported that RFE1 performed better than RFE2 as it takes into account, the orographic warm386

rain process. On the other hand, the IR-based precipitation estimates (e.g., ARCv2 and PER-387

SIANN) tend to show relatively lower magnitudes of bias and RMSE in the convective regions388

(e.g, Congo region) as opposed to the microwave-based estimates. It is worth mentioning that389

these products incorporate gauge datasets from GTS reporting stations, and subsequently show390

relatively lower RMSE than TRMM over the Congo region.391

Table 3 provides the performance rankings of the individual SRS-based precipitation prod-392

ucts in decreasing order of SNR magnitudes. The SNR values are derived as ratios of individual393

RMS values to RMSE estimates relative to the gauge-based GPCC products (e.g.,Equation 9.394

It can be seen that precipitation estimations from TRMM represent the closest resemblance395

to those of GPCC over all the climatic regimes, as well as over the whole continent due to396

their inter-dependency (i.e., TRMM incorporating GPCC data). The estimations derived from397

PERSIANN also indicate equally good performance for all the regions, while the region-specific398

product ARCv2 tend to perform better over the arid regions. The results of other SRS-based399

products (TAMSAT, CMORPH, and GSMaP) tend to vary over various climatic regions, al-400

though CMORPH seem to be better suited over the arid regions. Therefore, in terms of the401

correctly characterizing spatial and temporal amplitude variations over Africa with respect to402

GPCC for the 2003-2010 study period, the products are ranked in the order: TRMM, PER-403

SIANN, ARCv2, TAMSAT, CMORPH, and GSMaP.404

5.2. Uncertainty analysis using the generalized Three-Cornered-Hat (TCH) method405

As discussed in Section 4.1, the generalized TCH method offers a simple and efficient way406

of quantifying relative error estimates in different datasets of the same variable. While to apply407

the method one still requires to choose a set of observation as a reference data, such choice does408

not affect the overall estimate of error as illustrated in Example 1. In this study the uncertainty409

estimates in Figure 4(a-f) are derived by applying TCH method considering TRMM products410

as the reference. It can be seen from Figure 4 that the magnitude of uncertainties are generally411
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Table 3: Performance of various SRS-based rainfall estimates ranked according to the decreasing magnitude of

SNRs over different climatic regimes (see, Figure 1), as well as for the whole continent. The shaded products

indicate statistically similar order of magnitudes.

REGION\RANK 1 2 3 4 5 6

A) MCP ranks based on RMSE

CONTINENT-WIDE TRMM PERSIANN ARCv2 TAMSAT CMORPH GSMaP

HUMID TRMM PERSIANN ARCv2 TAMSAT CMORPH GSMaP

MOIST SUB-HUMID TRMM PERSIANN ARCv2 TAMSAT CMORPH GSMaP

DRY SUB-HUMID TRMM PERSIANN ARCv2 TAMSAT CMORPH GSMaP

SEMI ARID TRMM ARCv2 PERSIANN TAMSAT CMORPH GSMaP

ARID TRMM ARCv2 PERSIANN TAMSAT CMORPH GSMaP

HYPER ARID TRMM PERSIANN TAMSAT ARCv2 CMORPH GSMaP

B) MCP ranks based on SNR

CONTINENT-WIDE TRMM PERSIANN ARCv2 CMORPH TAMSAT GSMaP

HUMID TRMM PERSIANN CMORPH ARCv2 GSMaP TAMSAT

MOIST SUB-HUMID TRMM PERSIANN CMORPH ARCv2 TAMSAT GSMaP

DRY SUB-HUMID TRMM PERSIANN ARCv2 CMORPH TAMSAT GSMaP

SEMI ARID TRMM PERSIANN ARCv2 CMORPH TAMSAT GSMaP

ARID TRMM PERSIANN ARCv2 CMORPH TAMSAT GSMaP

HYPER ARID TRMM PERSIANN CMORPH ARCv2 GSMaP TAMSAT

higher in the high rainfall regions, while over the arid and semi-arid regions, considerably lower412

magnitudes of uncertainties are found (see the patterns of Figure 4(g-l) and the discussion in413

Section 5.3). Based on these results, the magnitude of uncertainties in PERSIANN and ARCv2414

are found to be lower than those of CMORPH and GSMaP. This is in agreement with the415

general assessment carried out in Section 5.1 (see, e.g., Figure 3), where satellite-only products416

showed large positive biases and RMSEs over these region.417

The distributions of noise estimates over the entire continent are presented in Figure 5a,418

while the results of the MCP ranking are provided in Table 4. From Figure 5a, the uncertainties419

in the PERSIANN estimates represent the smallest median followed by ARCv2, TRMM, and420

TAMSAT products in an ascending order of magnitude. CMORPH and GSMaP products421

indicate high median magnitudes of noise estimates, as well as relatively large inter-quartile422

range (IQR), while ARCv2 and TAMSAT are statistically similar over the continent. It is423

apparent that noise in the merged products (PERSIANN, ARCv2, TAMSAT, and TRMM)424

are lower than those of the un-merged products (CMORPH and GSMaP). This demonstrates425
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Figure 4: (a-f) Uncertainties of various SRS-based precipitation products over Africa based on the TCH method,

and (g-l) their corresponding SNR values based on Equation 9. GPCC is not included as only SRS-based data

are evaluated

the effectiveness of adjusting satellite products with gauge observations, in agreement with426

Nicholson et al. (2003b).427

The uncertainties in the precipitation products are generally reduced from the wet regions to428

the dry areas as seen from the summaries of the relative performances of the different products429

Figure 5(b-g, see the height of box plots). PERSIANN performed better than the other rainfall430

products in all climatic zones followed by ARCv2. A summary of MCP rankings corresponding431

to different products in the climatic zones of Figure 1, as well as the entire continent is provided432

in Table 4 (compare with Table 3 for GPCC). The noise estimates from PERSIANN indicate the433

highest rank (lowest noise magnitudes) over all sub-climatic zones. In all but the semi-arid and434

hyper-arid regions, the rank of the other products are ordered as: ARCv2, TAMSAT, TRMM,435

CMORPH and GSMaP, where GSMaP is ranked the least (with the highest uncertainties). In436

the semi-arid region, noise estimates in TAMSAT are smaller than ARCv2, however, the two437

products along with TRMM are found to be statistically similar. Additionally, TAMSAT and438

TRMM represent better quality than ARCv2 in the hyper-arid zone. The results show that439

PERSIANN and ARCv2 are not significantly different in the humid zone, whereas ARCv2 and440

TAMSAT are similar in the dry-sub humid zone.441
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Figure 5: Box plot summaries of (a-g) average relative noise estimates over Africa, as well as for the six climatic

regimes as shown in Figure 1, and (h-n) represent the corresponding SNR values. The whiskers indicate maximum

and minimum range of the noise estimates while the box shows the interquartile (first and third quartile) range

of variation. The segment inside the box shows the median of the data and the red marks above or below the

whiskers indicate the outliers.

5.3. Signal-to-noise ratios (SNRs)442

5.3.1. Continent-wide SNRs443

As stated in Section 4.2, the noise measurements are by themselves not enough to rank the444

overall performances of different rainfall products as those that represent lower amplitudes of445

rainfall variations usually contain lower noise values. Consequently, the SNR for each product446

was estimated in order to assess their relative performances as a ratio of their respective RMS447

to noise estimates, see Figure 4(g to l). The spatial patterns of SNRs are similar to that of448

the noise distributions, indicating lower values in the drier areas and higher values in wetter449

regions. The spatial average of the noise estimates over the entire Africa is shown in Figure450
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5a. The relative performances over the continent through the MCP rankings are presented in451

Table 4, which indicates that PERSIANN has the highest performance followed by ARCv2,452

TRMM, CMORPH, TAMSAT, and GSMaP in that order. Statistically, ARCv2 and TRMM453

are found to be similar over the continent.454

5.3.2. SNRs within climate zones455

The spatial average of SNRs over the entire continent is presented in Fig 5(h), while the456

performances of the products in all the six rainfall regions (cf., Figure 1a), in terms of SNRs,457

are shown in Figure 5(i to n) and Table 4. From the values in Table 4, one can conclude that458

PERSIANN represents the highest SNR in all regions, while GSMaP is ranked the least in all but459

the hyper-arid areas, where TAMSAT showed the smallest SNR. In the humid region, ARCv2460

was ranked after PERSIANN, while CMORPH outperformed TRMM. In the moist sub-humid,461

the performances of the assessed products after PERSIANN are as follows: ARCv2, TRMM,462

TAMSAT, CMORPH, and GSMaP. TAMSAT and CMORPH are found to be statistically463

similar. In the dry sub-humid and semi-arid zones, the products ranks are ordered as: TRMM,464

ARCv2, TAMSAT, CMORPH, and GSMaP, while the rank in the arid region is found as:465

ARCv2, TRMM, CMORPH, TAMSAT and GSMaP. The order in the hyper-arid zone is similar466

to that of the arid zone, however, GSMaP indicated better results than TAMSAT. It is worth467

noting that SNRs in the arid and hyper-arid regions are found to be lower than those in other468

regions, see Figure 5(m and n). This is consistent with the findings in Dinku et al. (2010a),469

who suggested that sub-cloud evaporation, rainfall suppression by desert aerosols, and surface470

effects among other error sources severely affect satellite rainfall estimation in drier parts of the471

continent.472

5.4. Quality of the rainfall products over the Great Horn of Africa473

The point-based in-situ observations and the corresponding grids values of rainfall from474

available products are spatially averaged according to the three climatological regimes (e.g.,475

Omondi et al., 2014): a) the northern sector (Ethiopia and Eritrea with 8 stations), b) equatorial476

sector (Kenya and Rwanda with 16 stations), and c) the southern sector (Tanzania with 6477

stations mainly over the coastal areas) in order to provide a fair comparison. Figure 6(a-478

c) shows the mean seasonal cycle of rainfall over the three regions. The three climatological479

regimes in GHA represent completely different rainfall regimes with the northern sector showing480
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Table 4: Performance of the six SRS-based rainfall estimates over Africa ranked according to the decreasing

magnitude of SNRs derived from the TCH method. The shaded products indicate statistically similar order of

magnitudes.

REGION \RANK 1 2 3 4 5 6

A) MCP ranks based on uncertainty levels

CON PERSIANN ARCv2 TAMSAT TRMM CMORPH GSMaP

HU PERSIANN ARCv2 TAMSAT TRMM CMORPH GSMaP

MSH PERSIANN ARCv2 TAMSAT TRMM CMORPH GSMaP

DSH PERSIANN ARCv2 TAMSAT TRMM CMORPH GSMaP

SA PERSIANN TAMSAT ARCv2 TRMM CMORPH GSMaP

Ar PERSIANN ARCv2 TAMSAT TRMM CMORPH GSMaP

HA PERSIANN TAMSAT TRMM ARCv2 CMORPH GSMaP

B) MCP ranks based on SNRs

CONTINENT-WIDE PERSIANN ARCv2 TRMM CMORPH TAMSAT GSMaP

HUMID PERSIANN ARCv2 CMORPH TRMM TAMSAT GSMaP

MOIST SUB-HUMID PERSIANN ARCv2 TRMM TAMSAT CMORPH GSMaP

DRY SUB-HUMID PERSIANN TRMM ARCv2 TAMSAT CMORPH GSMaP

SEMI ARID PERSIANN TRMM ARCv2 TAMSAT CMORPH GSMaP

ARID PERSIANN ARCv2 TRMM CMORPH TAMSAT GSMaP

HYPER ARID PERSIANN ARCv2 TRMM CMORPH GSMaP TAMSAT

a unimodal rainfall pattern, while the equatorial and southern sectors indicate a bimodal rainfall481

pattern with varying strengths. This unique characteristics in this subregion of Africa is linked482

to the movement of the ITCZ, where it moves to the north of GHA during February to May,483

and return to the south during October to December resulting in two rainy seasons along the484

equatorial region (e.g., Beltrando and Camberlin, 1993; Nicholson, 2000). These rainy seasons485

are, however, less intense than what is seen over western Africa due to the greater movement486

of the ITCZ.487

GPCC and the SRS-based rainfall estimates are able to clearly reproduce the seasonal cycle488

very well over GHA (see, Figure 6(a-c)). However, they tend to underestimate monthly rainfall489

amounts in the southern sector. Gauge stations in Tanzania are mainly located along the coastal490

areas, where satellite-based products generally tend to underestimate surface precipitation rates491

(e.g., Dinku et al., 2010a). While ARCv2 and GSMaP tends to underestimate rainfall in the492

north (Figure 6a), TAMSAT, CMORPH, and GSMaP products tend to severely underestimate493

rainfall over equatorial and southern sectors. TAMSAT shows the largest mean bias over494
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the southern sector indicating a difference of approximately 200 mm during long rain season495

(March-May). The scatter plots shown in Figure 6(d-f) are consistent with the seasonal rainfall496

pattern over the three climatic regimes. While it is obvious that TRMM and GPCC indicate the497

closest agreement in all the three regions, other SRS-based products also show lower biases in498

the upper two regions. PERSIAN, CMORPH, and GSMaP tend to show the least correlation in499

the southern sector, indicating that underestimations are less systematic over coastal regions.500

Note that 5 of the 6 rain gauges used in this study are located along the coastal regions of501

Tanzania.502
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Figure 6: Comparison of various precipitation products over the GHA region with in-situ gauge data: (a-c)

Mean seasonal cycle of rainfall over three rainfall regions of GHA for the period 2003–2007, and (d-f) scatter

plots of monthly rainfall between in-situ observations and gridded precipitation products.

SNRs derived from RMSE values and TCH-derived noise estimates were used to rank the503

performances of individual gridded precipitation estimates, and the performance rankings based504

on RMSE and TCH-derived noise estimates undertaken in order to understand the limitations of505

these statistical methods. Figure 7a-d represent the MCP rankings of the gridded precipitation506

products over GHA. With respect to RMSE, the products are ranked in the following order:507

TRMM, ARCv2, CMORPH, PERSIAN, TAMSAT, and GSMaP while the TCH method ranked508

the noise estimates as: GSMaP, CMORPH, ARCv2, PERSIANN, TAMSAT, and TRMM. In509
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the context of SNRs (Figure 7 b and d) however, the products are ranked as: TRMM, ARCv2,510

PERSIAN, CMORPH, TAMSAT, and GSMaP; and CMORPH, GSMaP, ARCv2, PERSIANN,511

TRMM, and TAMSAT, for RMSE-derived and TCH-derived SNRs, respectively. Note from512

Figure 7, however, that many of the products are statistically similar to each other. CMORPH513

and GSMaP, which mainly rely on passive MW, are found effective to represent rainfall patterns514

over the complex terrain of GHA (Dinku et al., 2007, 2008, 2010b; Thiemig et al., 2012).515

The comparative evaluation of the products showed that the noise level of rainfall measure-516

ments within the wetter regions of the continent are high, especially for the products that are517

based on microwave measurements. This agrees with the findings of McCollum et al. (2000)518

and Habib et al. (2012), who reported over-estimation over highly convective regions of equa-519

torial central Africa and Guinea regions (see, e.g., Webster , 1983). The central African region520

experiences one of the most intense convections on the Earth, which is a very strong indicator521

of ice-hydrometeors responsible for forming precipitation. McCollum et al. (2000) related this522

inefficient rainfall formation to the physical properties of air masses and cloud structure in the523

region. Convective clouds under dry conditions have relative higher cloud bases forming moist524

environment, which leads to high evaporation of the falling rain. Other factors include possible525

abundance of aerosols as a result of extensive biomass burning in the region (Ekman et al.,526

2004), resulting in high density of cloud condensation nuclei, which leads to an inefficient rain527

process (e.g., McCollum et al., 2000; Ekman et al., 2004; Habib et al., 2012).528

Magnitudes of noise levels in PERSIANN, compared to others in all climate zones, are529

found to be the lowest, while the noise estimates of GSMaP are found to be the highest (cf.,530

Tables 3 and 4). Over the continent, ARCv2 and TAMSAT are found to be statistically simi-531

lar in terms of uncertainties, followed by TRMM. Considering the SNRs, ARCv2 and TRMM532

represent similar quality (Table 4), consistent with the findings of Thiemig et al. (2012), who533

showed that TRMM and RFE2 (ARCv2’s precursor) are similar over the continent. CMORPH534

is ranked above TAMSAT, which is also rated better than GSMaP. This is consistent with the535

findings of Dinku et al. (2007) and Thiemig et al. (2012) that the product (CMORPH) is of an536

appreciable performance over the continent although it is not merged with RG observations.537

However, its tendency to overestimate rainfall in different parts of the continent have been re-538

ported in other studies (e.g., Dinku et al., 2007; Jobard et al., 2011). The CMORPH algorithm,539

which highly relies on passive microwave data, over-estimates rainfall in Africa (see, e.g., Nichol-540
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son et al., 2003a). This is confirmed by the high amplitudes observed for the product from the541

CEOF results discussed in the next section. It is, therefore, possible that its overestimations542

yield higher SNR values. Conversely, TAMSAT’s low performance, relative to CMORPH and543

TRMM, could be due to the lack of microwave data and post-estimation adjustments (see, e.g.,544

Dinku et al., 2007) leading to low signal amplitudes as observed in the CEOF results (see section545

5.5). ARCv2 represents good performance both in noise estimates and SNRs, which can be due546

to the use of various (infra red (IR), microwave, and contemporaneous (RG) information.547
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Figure 7: Performance rankings of the six SRS-based products over the GHA region based on (a) RMSEs, (b)

SNRs derived from RMSE, (c) TCH-derived noise estimates, and d) SNRs derived from TCH noise estimates.

The lower x-axis values in (a) and (c), and higher x-axis values in (b) and (d) indicate better performance.

5.5. Spatio-temporal variability of rainfall over Africa (2003-2010)548

In order to assess the spatio-temporal behavior of rainfall variability over Africa, CEOF was549

applied to each individual gridded precipitation product for the period of 2003-2010. Focuss550

is on the first two leading CEOF modes that accounts for 85% of the rainfall variability over551

Africa. The temporal amplitude, spatial amplitude, and spatial phase of the first CEOF mode552

of all the products are shown in Figures 8, 9, and 10 respectively. The temporal phase patterns553

are not shown here since the temporal components are found to be cyclic, and no meaningful554

changes in the temporal phase evoloution were noted.555

The first mode of all products accounts for more than 65% of the total variance in all the556

datasets, with TAMSAT having the largest variance of 72.8%. The temporal evolutions, shown557
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in Figure 8, indicate annual rainfall variability over the entire African continent. The first and558

last two months were removed after applying the Hilbert transform before the singular value559

decomposition of complex fields to avoid artifacts at the beginning and end of the time series.560

The temporal evolutions indicate high interannual variability with distinct high (e.g., 2007)561

and low (e.g., 2005, 2009) peaks between 2003 and 2010 in their amplitudes. Although the562

temporal patterns are quite similar in all the datasets, their representation of the lower peaks563

are not very consistent in some of the datasets (e.g., ARCv2 and CMORPH). Year to year564

rainfall variations derived from TAMSAT were smaller than the other products.565

The amplitudes of the spatial pattern (Figure 9) indicate the maximum amount of annual566

rainfall over eastern Congo, western borders of Ethiopia, west coast regions of Guinea, and567

coastal regions of northern Madagascar. The lowest rainfall regions include the two desert568

regions at the two ends (Sahara and Kalahari, see Figure 1) of the African continent, which569

include Algeria, northern Mali and Mauritania, western borders of Somalia in the north, and570

southern parts of the African peninsula including South Africa, Namibia, Zimbabwe, Botswana,571

and Angola. The East African region of Somalia is known for its aridity and recurring droughts572

(Maystadt and Ecker , 2014), which is apparent in all the precipitation products.573

From Figure 9, one can see that GPCC, TRMM, and PERSIANN indicate very similar574

spatial patterns while the two regional products namely ARCv2 and TAMSAT indicate equiv-575

alent magnitudes of rainfall over Africa. The satellite-only products (CMORPH and GSMaP)576

on the other hand, represent anomalously high rainfall over the central African region (e.g.,577

Congo, Central African Republic) and the Guinea coast, which are known for large convective578

activities (Webster , 1983). The spatial propagation of the annual rainfall is shown in Figure 10,579

where each degree change in the phase value (-180 to +180◦) corresponds to 1 day. Based on580

the results in Figures 9 and 10, maximum rainfall is observed during the boreal winter (austral581

summer) over the northern Africa peaking in December, while the rest of region sees maximum582

rainfall during the boreal summer. The movement of the rain belt as shown by the CEOF583

agrees with that of the ITCZ, north and south of the equator as noted by Nicholson (2000).584

Figures 11, 12, and 13 show temporal evolutions, the spatial amplitudes, and the associated585

spatial phase propagations of the second CEOF mode. The second mode explains about 20%586

of the rainfall variability over Africa and is related to the intra-annual variability of rainfall587

over Africa. The second mode of various products is found to be more comparable than the588
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first mode.589

The amplitudes of the second CEOF mode (Figure 11) indicate intra-annual changes in rain-590

fall, which are mostly influenced by the high equatorial rainfall regime as can be detected from591

the spatial patterns of Figure 12. Considering Figures 11 and 12, a relatively smaller amplitude592

of rainfall is detected over the two ends of the African continent. The extreme rainfall events are593

better represented by this mode, specially those derived from ARCv2, GPCC, PERSIANN, and594

TRMM. For instance, several African nations have experienced extreme rainfall in 2007 start-595

ing from Southern Africa (austral summer) to the West African nations (boreal summer) (e.g.,596

Tschakert et al., 2010) causing floods and flash floods affecting more than 1.5 million people.597

Extreme droughts were reported especially following very weak rainfall during the long rainy598

months of 2009 over most of Sahel and the GHA region (see, http://earthobservatory.nasa.599

gov/IOTD/view.php?id=39363&eocn=image&eoci=related_image). These extreme events are600

well-captured by most of the products except CMORPH and TAMSAT.601

The spatial amplitudes in Figure 12 depicts mainly two rainfall patterns over the entire602

African continent with North Africa and GHA having one pattern and the rest of the continent603

having the other pattern. This patterns are nonetheless similar to the spatial amplitudes in604

the first mode. Anomalously high rainfall patterns over West African coasts could be related605

to the Atlantic semi-annual dipole structure as it has been found to be highly correlated with606

the Atlantic ocean-atmospheric interactions (Forootan et al., 2014) while similar patterns over607

the GHA region may be indicate the influence of the coupled ENSO (El-Niño Oscillation)-608

IOD (Indian Ocean Dipole) phenomena. The spatial phase (Figure 13) represents the lateral609
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Figure 8: Temporal amplitudes derived from the first CEOF modes of various gridded precipitation estimates.

This pattern represents the annual rainfall variability over Africa (the spatial amplitudes in Figure 9).
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a) ARCv2: 66.2% b) CMORPH: 67.5% c) GPCC: 65.2% e) GSMaP: 64.9%

f) PERSIANN: 67.4% g) TAMSAT: 72.8% h) TRMM: 66.3%
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Figure 9: Spatial amplitudes of various gridded precipitation estimates for the first CEOF, corresponding to

Figure 8.
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Figure 10: Spatial phases of various gridded precipitation estimates for the first CEOF describing the spatial

propagation of annual rainfall over Africa. In this figure, 0◦ corresponds to December while -180◦ and 180◦

represents June and July, respectively.

propagation of the intra-annual signal to the equator. The phase estimations from various610

products are mostly similar over most parts of the continent except the coastal regions of611

Mauritania (West Africa) and the GHA region.612
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Figure 11: Temporal amplitude of the second mode of CEOF, derived from various gridded precipitation

products. The patterns represent the intra-annual rainfall variability over Africa.

a) ARCv2: 21.2% b) CMORPH: 21% c) GPCC: 21.5% e) GSMaP: 19.7%

f) PERSIANN: 21.3% g) TAMSAT: 20.3% h) TRMM: 19.6%
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Figure 12: Spatial amplitudes of various gridded precipitation estimates for the second CEOF describing the

seasonal rainfall variability over Africa.

a) ARCv2 b) CMORPH c) GPCC e) GSMaP

f) PERSIANN g) TAMSAT h) TRMM
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Figure 13: Spatial phases of various gridded precipitation estimates for the second CEOF describing the intra-

annual rainfall variability over Africa.
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The propagating patterns derived from CEOF indicate that all the products represented613

the annual and intra-annual variability in a similar manner. The amplitudes of CMORPH and614

GSMaP, however, were higher than the other products, while TAMSAT and ARCv2 had the615

lowest amplitudes. This agrees with the findings in Section 5.1, which showed the tendency of616

these data to overestimate or underestimate rainfall over the region, compare Figure 3(a-f) and617

Figure 9(a-g). These results also explain the higher SNRs derived from TAMSAT compared to618

those of GSMaP, although the former contains higher noise estimates.619

5.6. Comparing TCH and the classical RG-based validation620

In Section 5.1, considering the classical comparisons, the quality of TRMM was found to be621

better than PERSIANN and ARCv2, both in terms of noise level (i.e., RMSEs) and SNRs (cf.,622

Table 3). A similar result is found by applying the TCH method (cf., Table 4) with the exception623

of TRMM. As earlier stated in Section 3, TRMM is adjusted to GPCC, therefore its closeness624

to GPCC is expected. The TCH method on the other hand, ranks the quality of PERSIANN,625

ARCv2, and TAMSAT above TRMM in terms of noise estimates, and PERSIANN and ARCv2626

(above TRMM) in terms of SNRs. The noise level, found in TAMSAT, is statistically similar627

to that of ARCv2. However, its amplitude is lower, which provides smaller SNRs. It is worth628

mentioning here that, the SNR ranks of CMORPH, TAMSAT and GSMaP are largely consistent629

in both approaches, which proves their comparable performance.630

Based on RMSEs over the GHA, the classical method shows that TRMM and ARCv2 are631

more consistent with gauge observations (cf., Figure 7a), whereas the TCH method ranks noise632

estimates of GSMaP and CMORPH as the lowest (cf., Figure 7c). Considering the fact that633

TRMM and ARCv2 are calibrated using GPCC and GTS, respectively, it is likely that they634

already contain the RG stations used in this evaluation. As such, the RMSEs are expected to635

be low. Considering SNRs, however, both methods show that the microwave reliant products636

are better suited to monitor rainfall in the region.637

6. Summary of results and conclusion638

Generally, from the available rainfall datasets used in this study, over the period of 2003-639

2010, the SRS-merged RG products are ranked high in terms of SNRs as the best over the640

continent from the GPCC- and TCH-based uncertainty estimations. The GPCC ranks based641
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on SNRs showed TRMM, PERSIANN and ARCv2 as the best products over Africa, while TCH642

classified PERSIANN, ARCv2 and TRMM as the best rainfall estimations. Furthermore, the643

efficiency of GPCC and TCH in determining the quality of SRS-rainfall products is evident644

in the evaluation of SRS-only rainfall products (i.e., CMORPH, TAMSAT and GSMaP) as645

shown in Tables 3 and 4, respectively. Table 5 presents a summary of the previous results646

on validation of rainfall products over Africa and/or various climate regions. Continent wide,647

Novella and Thiaw (2013) validated the ARCv2, TRMM-3B42 (version 6), and CMORPH648

with independent gauge data, and found RMSEs of 11.3, 13.4, and 14.0 mm/day, respectively.649

Despite the differences in the temporal resolution and the TRMM version, the findings in650

Novella and Thiaw (2013) are comparable to those of Table 4.651

[TABLE 5 AROUND HERE.]652

Overall, the results reported by Dinku et al. (2008) and Romilly and Gebremichael (2011) in-653

dicated that the CMORPH and TRMM-3B42 are better suited than PERSIANN over Ethiopia.654

These are somewhat comparable with the results presented in Figure 7d, where TCH derived655

SNRs ranked CMORPH as the best product over GHA. From Figure 7d, one can also see the656

overlapping whiskers of TRMM and PERSIANN that is interpreted here as their statistical657

similarity. However, the in-situ derived SNRs ranked TRMM better than PERSIANN and658

CMORPH. Despite the degree of similarity between PERSIANN and CMORPH, in terms of659

RMSE, that of CMORPH is found slightly lower than PERSIANN (Figure 7a). Additionally,660

considering the SRS-only products (i.e., CMORPH and GSMaP) in-situ and TCH based SNRs661

ranking, CMORPH was found to be better than GSMaP over GHA (Figure 7 b and d). These662

findings are consistent with Dinku et al. (2007), who reported CMORPH to be the best rainfall663

estimation over the Eastern Africa, which exhibits a complex topography. Their result also664

indicated that rainfall estimation from CMORPH is more reliable than TAMSAT, which seems665

to be confirmed by the rankings presented in Figure 7 (b and d).666

Overall, considering the results of TCH over the 2003-2010 study period, (i) PERSIANN667

product are found to be reliable product over the African continent, while the GPCC-based668

validation ranked TRMM as the best. However, considering both GPCC- and TCH-based669

evaluation methods, relatively lower quality in GSMaP, TAMSAT and CMORPH (sorted in a670

descending order) were found. (ii) TRMM and ARCv2, are found to be statistically similar and671

are ranked after PERSIANN based on the TCH method. (iii) Over GHA, SNRs derived from672
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both methods ranked CMORPH and GSMaP as the best performing products, while TAMSAT673

and TRMM were ranked the least, although most of the datasets were found to be statistically674

similar.675

The CEOF results indicated that all the evaluated products exhibit similar spatio-temporal676

patterns over the continent. TAMSAT estimates showed smaller annual and semi-annual ampli-677

tudes over the continent, while those of CMORPH were found to be higher, both in agreement678

with the GPCC-based validation. TAMSAT’s low amplitudes could be related to the dry biases,679

which affect its general performance in representing rainfall variability despite its relatively low680

noise estimates. It is worth noting that the reported results obtained are valid for the SRS681

products used for this study between 2003 and 2010 over the whole continent, as well as its682

major climatic zones. Different results could be obtained within different time frames as well as683

geographical locations, as exhibited in the validation over GHA. Further studies, which take a684

new version of TAMSAT (Tarnavsky et al., 2014) into account, will need to be performed. For685

overall applications, the findings of this study supports the choice of SRS-based precipitation686

products enhanced by ground observations.687
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Table 5: Summary of previous works on validation of SRS-based rainfall products over Africa and its regions.

Products Evaluated Region Main Results

GPCP, GPCC, GPI, and SSM/I West Africa GPCC and GPCP show good agreement with gauge data, GPI and SSM/I on the other hand

perform poorly (Nicholson et al., 2003a).

TRMM-merged product, TRMM-AGPI, and

TRMM satellite only products

West Africa TRMM-AGPI shows a bias of 0.2 mm/day while TRMM-merged products shows small or no

bias and the satellite only products tended to overestimate (Nicholson et al., 2003b).

Used GPCC to validate TRMM-PR, TRMM-

3B43, and GPCP-TMPI

Major climatic regions over

Africa

TRMM-3B43 and GPCP-TMPI present superior performance relative to TRMM-PR

(Adeyewa and Nakamura, 2003).

Group I: CMAP, GPCP-MS, GPCP-SG,

and TRMM-3B43. Group II: TAMSAT,

CMORPH, TRMM-3B42, RFE 1 & 2, ARC,

and GPCP-1DD

Ethiopia (complex topogra-

phy)

Group I (descending order of accuracy): CMAP, TRMM-3B43, GPCP-SG, and GPCP-MS;

Group II: CMORPH, TAMSAT, TRMM-3B42, RFE 1, REF 2, ARC and and GPCP-1DD

(Dinku et al., 2007).

PERSIANN, CMORPH, TRMM-3B42,

TRMM-3B42RT, RFE, and NRLB

Zimbabwe and Ethiopian high-

lands

Over Ethiopia CMORPH and TRMM-3B42 showed good performance while RFE and PER-

SIANN were relatively poor and RFE1 outperformed RFE2 while over Zimbabwe RFE2 and

TRMM-3B42 showed good performance whereas PERSIANN had the worst performancea

and RFE2 outperformed RFE1 (Dinku et al., 2008).

CMORPH, PERSIANN, GPCP-1DD,

GSMaP-MVK, TRMM-3B42, TRMM-

3B42RT, EPSAT-SG, RFE2, TAMSAT, and

GPI

West Africa (during the mon-

soon period)

CMORPH, PERSIANN and TRMM 3B42RT present low performance, they were all outper-

formed by GPI (Jobard et al., 2011).

CMORPH, PERSIANN, and TRMM-3B42RT Ethiopian river basins CMORPH and TRMM-3B42 outperform PERSIANN (PERSIANN underestimates by 43%;

CMORPH by 11% and TRMM-3B42 by 5%). TRMM-3B42 and CMORPH tend to overes-

timate at low elevations while they give good results at high elevations. Converse is true for

PERSIANN (Romilly and Gebremichael , 2011).

CMORPH, PERSIANN, GSMaP-MVK,

TRMM-3B42, GPROF 6.0, RFE2, and

ERA-Interim

Zambezi, Volta, Juba-

Shabelle, and Baro-Akobo

River basins, respectively,

in Southern, West and East

Africa

RFE2 and TRMM-3B42 are the most accurate while GSMaP-MVK and GPROF 6.0 are

the least accurate while CMORPH showed strength in the mountainous regions whereas

PERSIANN had large monthly overestimation over Volta and Zambezi (Thiemig et al., 2012).

ARCv2, TRMM-3B42 (version 6), and

CMORPH

African continent Overall, gauge-based validation indicates RMSEs of 11.3, 13.4 and 14 mm/day, respectively

for ARCv2, TRMM-3B42 and CMORPH for the West African summer season. Slightly

lower performance compared to CMORPH and TRMM-3B42 in orographic area (Novella

and Thiaw , 2013).

TAMSAT, GSMaP, CMORPH, PERSIANN,

RFE, and TRMM-3B42 validated with GPCC

GHA TRMM-3B42, best performing product followed by TAMSAT and RFE. PERSIANN and

GSMaP show the worst performance while CMORPH yielded good results over central

Ethiopia (Cattani et al., 2014).
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