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Addressing Unobserved Selection Bias in Accounting Studies: The Bias Minimization 

Method 

 

 

Abstract  

 

This note explains the minimum-biased estimator (MBE), which accounting researchers can use 

to analyse the robustness of regression or propensity score matched treatment estimates to 

unobserved selection (endogeneity) bias. Based on the principles of the Heckman treatment 

model, the MBE entails estimating matched treatment effects within a range of propensity scores 

that minimizes unobserved selection bias. A major advantage of the MBE is that an instrumental 

variable is not required. The potential utility of the MBE in accounting studies is highlighted, 

and a familiar empirical illustration is provided. 
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Addressing Unobserved Selection Bias in Accounting Studies: The Bias Minimization 

Method 

 

1.   Introduction and Background 

A central concern in observational (non-randomized) treatment effect studies is potential 

unobserved selection (endogeneity) bias. Such bias occurs when an omitted variable correlates 

with both the selection (treatment) variable and the dependent variable, leading to a biased 

estimate of the impact of the selection variable (treatment effect) on the outcome of interest. This 

note describes a statistical method whereby accounting researchers employing regression or 

propensity score matching (PSM) estimators can assess the robustness of treatment estimates to 

unobserved (hidden) selection bias. Specifically, hidden bias has its largest effect on treatment 

estimates for matched cases in the tails of the distribution of selection (treatment) probabilities 

that are predicted by a probit model, whereas bias is minimized for matched observations with 

selection probabilities (propensity scores) of 0.5. Consequently, to minimize the potential impact 

of omitted variable bias, PSM treatment estimates are confined to matched cases with selection 

probabilities (p) within a defined interval around 0.5 (e.g. 0.33 < p < 0.67). Millimet and 

Tchernis (2013, p. 983) refer to this method as the ‘minimum-biased estimator’ (MBE). Standard 

PSM and/or regression treatment estimates can then be compared to MBE treatment effects to 

assess their robustness to potential hidden selection bias. 

Accounting studies frequently employ regression and/or PSM methods to estimate 

treatment effects, with the former estimating the average treatment effect and the latter the 

average treatment effect on the treated. Both estimators assume that treatment estimates are not 

confounded by unobserved selection bias, known as the conditional independence assumption 

(CIA). Importantly, Millimet and Tchernis (2013) stress that an advantage of the MBE is that it 

provides unbiased treatment estimates when the CIA holds, but that it minimizes ‘the bias 
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associated with estimators that require the CIA when this assumption fails’ (p. 983). Available 

alternative estimators that account for omitted variable bias rely on quasi-random variation 

produced by an instrumental variable.1 For regression treatment estimates, the Heckman 

treatment model can be employed to control for unobserved selection bias (e.g. Leuz & 

Verrecchia, 2000). Although the Heckman estimator is technically identified via functional form 

restrictions, unlike the MBE, it requires a valid instrumental variable for credible 

implementation2  (Lennox, Francis, &Wang, 2012). Such a variable is a significant determinant 

of the selection (treatment) variable but is not associated with the dependent variable, other than 

via its correlation with the treatment variable. Valid instrumental variables are usually hard (if 

not impossible) to find in accounting studies (Larcker & Rusticus, 2010; Lennox et al., 2012). 

Whilst not controlling for hidden bias, the MBE draws on both the Heckman model and PSM to 

estimate treatment effects where hidden selection bias is minimized.   

Several sensitivity methods can be employed with regression and PSM estimators to 

ascertain how large an impact a simulated unobserved variable must have to render treatment 

effects statistically insignificant (for a review of the methods, see Peel, 2014). As with the MBE, 

sensitivity techniques do not require an instrumental variable; but the MBE differs in its 

approach, in that it aims to gauge the influence of actual (as opposed to simulated) hidden bias. 

Given the increasing use of PSM in accounting research (Tucker, 2010), the MBE has high 

potential utility. In addition to continuous, ordinal and binary dependent variables, the MBE can 

also be employed in studies that use PSM in combination with difference-in-difference 

                                                 
1 The standard method to control for endogenous continuous variables is a two-stage-least-squares regression 

(Larcker & Rusticus, 2010). Unlike the Heckman model, which technically does not require an instrumental 

variable, the two-stage-least-squares and similar techniques (Larcker & Rusticus, 2010) do require an instrumental 

variable (exclusion restriction). 
2 With regard to Heckman selection models, Lennox et al. (2012) comment, ‘We demonstrate empirically that the 

selection model is fragile and that results can be non-robust and therefore unreliable when researchers choose 

exclusion restrictions in an ad hoc fashion or choose none at all’ (p. 590). 
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estimators (e.g. Bandick & Patrick, 2011).  Note, however, that the MBE is not a panacea for the 

omitted variable problem and, as with all methods, is subject to limitations, not least that it may 

be impractical to implement in small samples. 

1.1.   PSM and Regression Adjustment 

To inform the following exposition of the MBE, this section briefly describes the method of 

PSM (Rosenbaum & Rubin, 1983), that is regularly used in accounting studies (Tucker, 2010), 

together with regression-adjusted PSM. With PSM, no model functional form is required. Also, 

because estimates are confined to the common support (where treated and control subjects have 

similar attributes), PSM does not rely on linearity assumptions to extrapolate treatment effects 

outside this region. Typically, nearest-neighbour (NN) matching is employed. Using logit or 

probit model predicted probabilities, treated subjects are matched (with or without replacement) 

to untreated ones with the nearest probabilities. Closer matching may be obtained by using a 

caliper to specify the maximum difference in probabilities for matching treated and untreated 

subjects. After matching, the average treatment effect on the treated (ATT) can be estimated as a 

simple difference in means.  

However, a potential limitation of NN matching (which by design is amplified when 

using the MBE) is that small samples may result, thereby reducing the power of statistical tests. 

This problem may be at least partly circumvented by employing weighted PSM methods that use 

all observations in the common support by weighting untreated outcomes according to the 

distance between the propensity scores of treated and untreated cases. Inverse probability 

weighting is the simplest method, in that it employs inverse selection probabilities to weight 

outcomes in calculating the ATT (Curtis, Hammill, Eisenstein, Kramer, & Anstrom, 2007). A 

more complex method involves applying kernel-function estimated weights (Heckman, 
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Ichimura, & Todd, 1998). All PSM methods can be employed with the MBE (Black & Smith, 

2004; Eren, 2007; Millimet & Tchernis, 2013). As explained herein, NN matching with a caliper 

is preferable, because the closer the treated and untreated subjects are matched, the greater is the 

potential bias reduction using the MBE. 

In accounting studies, the standard approach is to estimate a regression model in the NN-

matched sample (e.g. Ittonen, Johnstone, & Myllymäki, 2015; Minutti-Meza, 2013) to account 

for any covariate imbalance post matching (Imbens & Wooldridge, 2009, p. 37). A less well-

known rationale for this procedure is that treatment estimates are doubly robust ‘in the sense that 

… if either the matching or the parametric model is correct, but not necessarily both, causal 

estimates will still be consistent’ (Ho, Kosuke, King, & Stuart, 2007, p. 215). Hence, when 

employing PSM within a specified radius (herein), a further MBE robustness test is to estimate a 

standard regression model in the matched sample. 

1.2.   The Potential Utility of the MBE in Accounting Research 

Given the increasing employment of PSM in accounting studies (Tucker, 2010), the MBE is a 

useful robustness method, in that it enables assessment of the potential influence of hidden bias 

on PSM treatment effects. Furthermore, a typical research approach in accounting studies is to 

compare ordinary least squares (OLS) regression average treatment estimates to matched ATT 

ones to assess if treatment inferences are consistent (e.g. Lennox & Pittman, 2010). For instance, 

Ittonen et al. (2015), in examining the relationship between audit partner public-client 

specialization and abnormal accruals, report that their PSM results support their regression 

findings. Importantly, they state that the Heckman approach was not adopted because an 

instrumental variable was unavailable (Ittonen et al., 2015, p. 629).3 In such studies, the MBE 

 can be used to gauge the potential impact of hidden selection bias. 

                                                 
3 Lennox and Pittman (2010, p. 236) and Minutti-Meza (2013, p. 793) make similar points. 
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The application of the MBE may also be particularly informative when regression and 

PSM treatment estimates provide conflicting evidence. Specifically, other things equal, 

differences between regression and PSM treatment estimates should arise because of observed 

bias, which is attributable to the unmatched characteristics4 of treated and untreated observations 

in the regression model (Lawrence, Minutti-Meza, & Zhang, 2011, p. 268) and which PSM 

controls for. In these cases, the MBE can be employed to assess the robustness of PSM treatment 

effects to hidden selection bias. For example, in contrast to studies that report a positive 

association between CEO equity incentives and accounting irregularities, Armstrong, Jagolinzer, 

and Larcker (2010) use PSM to find evidence of a negative relationship. Additionally, contrary 

to prior research using standard regression models, two studies use PSM and report no 

significant association between auditor industry specialization (Minutti-Meza, 2013), or big 4 

audits (Lawrence, et al., 2011), on audit quality outcomes.  

2.   The Bias Minimization Method  

2.1.   Linking PSM and the Heckman Treatment Model 

Both the Heckman treatment model and PSM employ a selection into treatment regression 

model. Given that with a selection model, the actual outcomes minus the predicted ones equal 

the residuals (the unexplained variation in the dependent variable), the Heckman estimator uses 

the generalized residuals (inverse Mills ratios) from the first step probit selection model as a 

surrogate for unobserved variables in the second step OLS outcome model (e.g. Lennox et al., 

2012; Tucker, 2010; Peel, 2014). The Heckman method is predicated on the errors of the probit 

and OLS models being jointly and normally distributed. Probit models employ the cumulative 

distribution function of the standard normal distribution, and model errors are assumed to follow 

the standard normal distribution.  

                                                 
4 For instance, this may occur when the linearity assumption does not hold outside the common support region. 

http://en.wikipedia.org/wiki/Standard_normal_distribution
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As previously discussed, PSM uses the predicted probabilities from a selection model to 

match treated and untreated subjects. Importantly, in the case of the MBE, where PSM is based 

on a probit selection model (as per the Heckman approach), a matched case has a predicted 

probability and an associated residual (inverse Mills ratio), which is a proxy for omitted 

variables. As described herein, the rationale of the MBE is that the impact of omitted variable 

bias (probit model residuals) is minimized for propensity score matched subjects over a specified 

range of probabilities centered on 0.5. 

2.2.   Derivation of the Bias Minimization Method  

Rosenbaum (2005) demonstrates analytically that matching may alleviate the impact of 

unobserved bias in that ‘reducing heterogeneity reduces both sampling variability and sensitivity 

to unobserved bias – with less heterogeneity, larger biases would need to be present to explain 

away the same effect’ (p. 6). As shown by Black and Smith (2004, pp. 111–113) and Millimet 

and Tchernis (2013, pp. 986–989), unobserved selection bias can be minimized by matching 

treated and untreated subjects with predicted probabilities (from a probit selection into treatment 

model), which are within specified intervals around 0.5. Given normally distributed errors, the 

unobserved selection bias associated with a given probability B(PX) for matched ATT treatment 

estimates is: 

                                      B(𝑃(𝑋)) = 𝜌𝜎ε0

     𝜙(ℎ(𝑋))

Φ(ℎ(𝑋))[1 − Φ(ℎ(𝑋))]
                                                   (1) 

where X is a vector of matching covariates used in a probit treatment selection model, h(X) are 

predicted selection model values (not transformed into probabilities) using the coefficients 

estimated with the vector of X variables, P(X) are the predicted probabilities, 𝜙 and  are the 

normal density and cumulative distribution functions and ρ, and  estimates the covariance 

(correlation) between the ratio and the error of the outcome model (ε0). With reference to Black 
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and Smith (2004) and Heckman and Navarro-Lozano (2004), Millimet and Tchernis (2013, pp. 

987–988) give a full derivation for (1). From (1), any unobserved selection bias is minimized 

when P = 0.5 or equivalently when h(X) = 0. As stressed by Black and Smith (2004, p. 111) it 

‘will have its largest effects on bias for values of the propensity score in the tails of the 

distribution.’5  

Because potential bias reduction is most marked in intervals centered on 0.5, Black and 

Smith (2004) suggest that matching estimators should be applied to the sample with selection 

probabilities within the range of 0.33 to 0.67. However, if sufficient observations are available, a 

narrower radius would provide an even stricter test, because bias reduces as probabilities 

converge on 0.5. As discussed herein, the downside is that fewer matched observations occur as 

the radius narrows. As Millimet and Tchernis (2013) note, finer intervals ‘should reduce the bias 

at the expense of higher variance’ (p. 989). Importantly, Black and Smith (2004) emphasize that 

whilst the MBE assumes joint normality of error terms, the intuition of the method ‘does not 

depend on distributions’ (of errors), in that ‘when the probability of being in the treatment group 

is high, unobservable factors on average play a larger role than for probabilities near 0.5. Thus, 

when matching estimators must rely on the right tail of the distribution of propensity scores in 

the comparison group, the selection bias may be considerable’ (p. 113). A similar rationale 

applies to the left tail of the distribution. Millimet and Tchernis (2013) make an even stronger 

case that joint normality is not required to establish that the ATT bias-minimizing propensity 

score (referred to as BMPS, P*) is 0.5. They emphasize the following: 

it is trivial to show that P* = 0.5 for the ATT … under a wider class of models than 

joint normality… Because the bias of the ATT … is minimized by minimizing the bias 

                                                 
5 At one level, this is similar to the removal of data outliers which have a disproportionate influence on regression 

estimates (Leone, Minutti-Meza, & Wasley, 2015) However, the MBE differs in that unobserved bias, which has its 

largest effect in the tails of the probability distribution, does not arise from data outliers, but from the distribution of 

residuals.  



 

 

8 

for each component obtaining draws from a particular trivariate normal distribution and 

the BMPS is one-half within each component, the bias of the ATT … is minimized at 

P* = 0.5. Furthermore, because a mixture of a sufficient number of trivariate normal 

distributions can approximate almost any joint distribution, this implies that joint 

normality is not needed to conclude that one-half is the BMPS for the ATT. (p. 990) 

 

Hence, the MBE is a viable technique to assess the robustness of PSM treatment effects 

to hidden selection bias. Other things equal, relative to significant treatment effects estimated 

with standard methods, the interpretation of MBE treatment estimates is as follows: (a) MBE 

treatment effects are similar and significant, implying unobserved bias is not a significant threat 

and offering support for the CIA; (b) MBE treatment effects are higher and significant, implying 

that standard treatment estimates are subject to downward bias (under-estimated) due to the 

presence of an unobserved correlated variable6; (c) MBE treatment effects are lower and 

significant, implying that standard treatment estimates are subject to upward bias (over-

estimated) due to the presence of an unobserved correlated variable7; and (d) MBE treatment 

effects are statistically insignificant and close to zero, implying that standard significant 

treatment estimates arise as a consequence of omitted variable bias. For instance, a statistically 

significant standard PSM treatment effect (e.g. a big 4 audit fee premium) of 10% and significant 

MBE treatment effects of 5% (15%) are consistent with the standard PSM treatment estimates 

being upwardly (downwardly) biased due to an unobserved correlated variable. 

2.3.   Potential Limitations 

Unlike the MBE, the Heckman treatment model controls directly for unobserved bias if 

implemented correctly and thereby provides a bias-free estimate of the treatment effect.  

                                                 
6 Specifically, by omitting a variable that is positively (negatively) correlated with the dependent variable and 

negatively (positively) correlated with the treatment variable, the standard treatment estimate is subject to downward 

bias. Hence, including such a variable increases (inflates) the treatment estimate. 
7 Specifically, by omitting a variable that is positively (negatively) correlated with the dependent variable and 

positively (negatively) correlated with the treatment variable, the standard treatment estimate is subject to upward 

bias. Hence, including such a variable reduces (deflates) the treatment estimate. 
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Furthermore, an axiomatic consequence of employing PSM is that treatment estimates are based 

on smaller samples, such that the power of statistical tests is reduced (e.g. Lawrence et al., 2011), 

although they are generally valid unless very small samples are employed. This may lead, for 

example, to an insignificant PSM treatment effect that might be significant in a larger sample 

with all other things equal. Inherently, the MBE exacerbates this problem, such that in practice it 

may be impracticable to implement the method with confidence in small matched samples. 

However, in addition to using NN matching with replacement, the sample size may be increased 

substantially by employing PSM inverse probability or kernel-weighting estimators (Black & 

Smith, 2004; Millimet & Tchernis, 2013). For instance, when investigating the union wage 

effect, Eren (2007, p. 776) reports statistically significant treatment effects of 0.286 (0.271) using 

NN (kernel) PSM estimators, with a kernel sample size (3,550) that is 3.8 times larger than the 

NN one (937). For small-sample treatment estimates, bootstrap standard errors may also be used 

as a robustness test (Minutti-Meza, 2013, p. 812).  

By construction, a more general limitation of PSM and hence the MBE is that 

information on observations outside the common support (which per se may be of interest8) are 

discarded. This feature also underpins the difference between the average treatment effect and 

the ATT. A further limitation is that, whilst standard PSM ATT estimates are representative of 

ATT population means, MBE ATT estimates are constrained to a range of propensity scores in 

which bias is minimized. Hence, they are representative only of the specific sample (population). 

A further potential limitation is that the difference between standard PSM and MBE treatment 

 

                                                 
8 For instance, in 2014 only two FTSE 100 companies had non-big 4 auditors. Hence in a PSM study of quoted 

companies, with only two counterfactuals, big 4 FTSE 100 auditees would be (at least largely) excluded; 

notwithstanding that they may be of particular interest. For regression models, FTSE 100 treatment (big 4) estimates 

would rely on the linearity assumption.  
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estimates may at least partly reflect heterogeneity.9  Heterogeneity occurs when treatment effects 

vary in accord with subject-specific (idiosyncratic) differential responses10 to selection into 

treatment (within-group variation). However, even in this case, unobserved bias should still be 

minimized using the MBE, because it identifies the parameter (ATT) that ‘can be estimated with 

the least bias’ (Millimet and Tchernis, 2013, p. 988). 

                                                     Tables 1-3 about here  

2.4.   Empirical Illustration 

This section provides an empirical illustration of the MBE with respect to the estimation of big 4 

audit fee treatment effects. An advantage of using audit fee data is that there is reasonable 

consensus on the control variables that should be included in the model and about the expected   

relationship between explanatory variables and audit fees. Corporate size is (unsurprisingly) the 

principal determinant of both selection into treatment and audit fees (e.g. Minutti-Meza, 2013, p. 

789). In addition, a large number of observations (5,640) are available to estimate treatment 

effects. Following typical accounting treatment effect studies, as previously mentioned, big 4 

premium regression estimates are first compared to standard PSM and PSM regression-adjusted 

ones. The robustness of these treatment estimates to potential unobserved selection bias is then 

assessed with reference to MBE treatment estimates. The data are drawn from those used in Peel 

                                                 
9 In this context, it is possible that subjects which are comparatively indifferent regarding selection into treatment 

(i.e. p = 0.5) are those where treatment is less important; and hence ATT estimates for these cases may not represent 

population ones. However, a priori, there is no reason to suspect that treated observations with selection 

probabilities of 0.5 will not attract the same treatment effect (e.g. a big 4 premium) as other treated observations. 

Note also that the rationale of the MBE is that the estimated ATT is the one subject to the least unobserved selection 

bias. As emphasised by Millimet and Tchernis (2013), where ‘relevant regressors are omitted from the model, the 

MB estimator improves upon the performance of commonly used estimators that require the CIA’ (p. 983).  
10 An example is provided Daske, Hail, Leuz, and Verdi (2013), who state that, when studying the impact of the 

adoption of International Accounting Standards (IAS) and International Financial Reporting Standards (IFRS), 

‘some firms may make very few changes and adopt IAS/IFRS more in name, while for others the change in 

standards could be part of a strategy to increase their commitment to transparency’ (p. 495). Interestingly, Athey and 

Imbens (2015) specify a number of machine learning ‘data-driven’ tree-based methods which aim to detect/quantify 

heterogeneous average treatment effects over sub-populations (leaves) of the population. Note also that unobserved 

subject-specific heterogeneity is also a form of omitted variable (endogeneity) bias and that panel (including 

difference-in-difference) estimators can account for time invariant unobserved heterogeneity (Wooldridge, 2010). 
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(2013) and comprise 5,640 UK private independent non-financial companies that had year-ends 

in 2005/6, that were live (not failed/dissolved/dormant) and that had not switched auditors. Of 

the 5,640 companies, 2,890 are big 4 auditees, and the remainder were audited by the four largest 

mid-tier (mid 4) auditors. The OLS model is: 

LnFEE = 0 + 1LnSAL + 2LnTA + 3SQSUBS + 4EXPSAL + 5QUAL + 6PBAL 

+7CONLIAB + 8EXITEM + 9RSAL + 10LOSS + 11TLTA + 12LOND + 13BUSY  

+ 14YR +15IND + 16BIG4 +                                                                                            (2) 

 

where LnFEE is the natural log of audit fees, LnSAL is the natural log of sales, LnTA is the 

natural log of total assets, SQSUBS is the square root of the number of subsidiaries, EXPSAL is 

the ratio of non-UK to total turnover, RSAL is the ratio of profit before tax to sales, and TLTA is 

the ratio of total liabilities to total assets. Binary variables are QUAL, which equals 1 if the 

accounts received an audit qualification; PBAL, which equals 1 if the accounts disclosed a post-

balance sheet event; CONLIAB, which equals 1 if the accounts disclosed contingent liabilities; 

EXITEM, which equals 1 if the accounts disclosed exceptional or extraordinary items; LOND, 

which equals 1 if the company is located in London; BUSY, which equals 1 if  the company’s 

account year-end is in December or March; YR, which equals 1 if the company’s account year-

end is in 2006 (2005 coded as zero); LOSS which equals 1 if the company is loss-making; and 

BIG4, which equals 1 if the company has a big 4 auditor. As shown in Table 1, IND represents 

industry dummies. Binary variables are coded zero for companies without the attribute. 

Table 1 defines the explanatory variables and reports parameters for the OLS LnFEE 

model and the BIG4 probit selection model. NN matching without replacement, imposing a fine 

caliper (0.001), is employed .11 Although the big 4 auditee means of LnSAL and LnTA are 

significantly larger than those of their mid 4 counterparts (see Table 3), the probit estimates show 

                                                 
11 Following Rubin (1997, p. 761), all variables are included in the OLS and probit models, whether or not they are 

significant.  
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that LnSAL has a small but significant negative impact on big 4 auditor selection after 

controlling for LnTA, which hinders close matching of both size variables. Hence, following the 

normal approach of accounting studies that employ PSM, the previously described regression-

adjusted PSM is applied. The OLS model specified in Table 1 is re-estimated in each NN 

matched sample. Table 2 reports big 4 mean premium estimates,12 with results labelled for each 

model (M) employed. The first three rows in the table show standard regression, PSM and 

regression-adjusted PSM premium estimates. The standard regression (M1a) big 4 premium 

estimate is highly significant at 11.11%, but the standard PSM one (M1b) falls to 3.66% and is 

statistically insignificant. 

 However, significant size imbalance remains after matching, with both LnTA and 

LnSAL being larger for mid 4 auditees, thus downwardly biasing the premium estimate. When 

the OLS regression model specified in Table 1 is applied to the matched sample (M1c), the 

premium rises to 9.92% and is highly significant (p  0.001). As Table 2 reveals, a similar 

picture emerges when MBE estimates are confined to the interval of 0.33, 0.67 as per Black and 

Smith (2004), with a size imbalance again remaining after matching. The MBE PSM premium 

(3.98%) is statistically insignificant (M2a), but the premium estimate of its regression-adjusted 

MBE counterpart (9.24%) is highly significant (M2b). Table 3 reports covariate balance statistics 

for unmatched big 4 and mid 4 auditees and matched ones for Model 3a. It shows that the 

application of a finer radius (0.4, 0.6) resulted in close matching13 on the size variables. The 

mean values of LnSAL and LnTA are similar for big 4 and mid 4 auditees and do not differ 

significantly. As Table 2 shows, the MBE PSM premium estimate of 9.34% (M3a) is now 

statistically significant (p = 0.029), with the MBE PSM regression-adjusted one (M3b) being 

                                                 
12 Please see the online Supplement for all unreported results, including covariate balance statistics.  
13 As with M1b and M2a (other than for size), the only matching variable to differ significantly for M3a is NID. 
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highly significant and marginally higher (10.42%). In summary, as described in Section 2.2, the 

similarity of the standard PSM regression-adjusted premium estimates and the MBE ones 

support the CIA, implying that unobserved bias does not impact adversely on ATT treatment 

effects.14 In particular, the MBE premiums estimated within the finest interval (0.4, 0.6), where 

there is close covariate balance, provide especially strong support for this inference.  

3.   Conclusion  

Non-randomized (observational) treatment effect studies are prone to unobserved selection bias. 

The MBE provides accounting researchers with a viable technique to assess the robustness of 

conventionally estimated PSM treatment effects to potential unobserved selection bias. Unlike 

the Heckman treatment model, which is predicated on the assumption of joint normality of errors 

and for which an appropriate instrumental variable is required for credible implementation, the 

application of the MBE is not subject to these constraints. However, the MBE is not a panacea 

for the omitted variable problem. By design, it leads to smaller samples than does standard PSM, 

such that it may be impractical to implement with confidence in some applications. In practice, 

this problem may be at least partially alleviated by employing weighted PSM approaches, such 

as kernel and inverse probability weighting estimators.15  

Supplemental Material 

Supplemental material for this article can be accessed on the Taylor & Francis website. 

 

  

                                                 
14 As a stability test, the OLS models were re-estimated with the Stata robust regression M-estimator (rreg), which is 

resistant to outliers. Though marginally larger than for their OLS counterparts, all BIG4 coefficients are highly 

significant (p < 0.001), with the associated premiums exhibiting the same relative size rankings as the OLS ones 

reported in Table 2: 11.88%, 10.99%, 9.98%, and 11.32% for models 1a, 1c, 2b, and 3b, respectively (see 

Supplement). Similar results were obtained when employing the alternative user-written Stata MM robust estimator 

(mmreg) of Verardi and Croux (2009). 
15 In this context, McCarthy, Millimet, and Tchernis (2014) have written a Stata programme, bmte (bias-minimizing 

treatment effects), which inter alia employs a PSM inverse probability-weighting ATT estimator with the MBE. 
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      Table 1.   OLS audit fee and big 4 probit regression model coefficients 

Model 1: Dependent Variable = LnFEE 

Model 2: Dependent Variable = BIG4 

 

 

Variable definitions 

      (1) 

     OLS   

(n = 5,640) 

     (2) 

   Probit 

(n = 5,640) 

LnSAL: natural log sales (£)   0.265**   -0.038** 

LnTA: natural log total assets (£)   0.124**    0.123** 

SQSUBS: square root of number of subsidiaries   0.170**    0.052** 

EXPSAL: ratio of non-UK to total turnover   0.524**    0.337** 

QUAL: 1 if audit qualification‡   0.102**   -0.154* 

PBAL: 1 if disclosed post-balance sheet event‡   0.182**   0.129* 

CONLIAB: 1 if disclosed contingent liabilities‡   0.082**  -0.081 

EXITEM: 1 if disclosed exceptional/extraordinary 

items‡ 
  0.066**   0.001 

RSAL: ratio of profit before tax to sales    -0.4E-3**       0.3E-3 

LOSS: 1 if loss-making‡   0.182**   0.200** 

TLTA: ratio of total liabilities to total assets   0.011**   0.014** 

LOND: 1 if company is located in London‡   0.313**   -0.162** 

BUSY: 1 if year-end is in December or March‡   0.013   0.080* 

YR: 1 if year-end is 2006‡  -0.036*  -0.074* 

MAN: 1 if manufacturing sector‡   0.036   -0.162** 

RET: 1 if retail/wholesale sector‡  -0.057*   -0.215** 

OIN: 1 if other industrial sector‡  -0.019   0.106 

NIC: 1 if no industry code disclosed‡   0.076   0.264 

SERV: 1 if service sector‡ (base case)       -       - 

BIG4: 1 if big 4 auditor‡    0.105**       - 

Constant    2.910**  -1.330** 

R2 /chi2    0.760     321.4** 

Notes: This table reports the ordinary least squares (OLS) and probit selection 

model regression coefficients for the whole sample. The OLS dependent variable 

is LnFEE, the natural log of audit fees. The probit model dependent variable is 

BIG4, coded as unity for big 4 auditors and zero otherwise.   
‡ Indicates binary variables, where 0 is coded for the remaining observations. 

* Indicates coefficient is statistically significant at the 5% level (two-tailed test). 

** Indicates coefficient is statistically significant at the 1% level (two-tailed 

test). 



     

 

      

 

 

  

   Table 2.   Propensity score matched (PSM) and regression model big 4 premium estimates 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Model 

  

 

Sample and method 

   Big 4  

  premium      

  estimate  

Significance of 

big 4 premium 

   (p-values) 

 

  

 Number of 

 companies 

 

 

OLS   

  R2 

 

 

 

 

 

  1a OLS all companies  11.11%** 

 

 

 

 

 

 

     0.000    5,640 0.760 

  1b PSM all companies    3.66%      0.349    3,018     - 

  1c OLS PSM all companies    9.92%**      0.000    3,018 0.700 

  2a PSM 0.33 < p < 0.67 

 

   3.98%      0.309    2,898    - 

  2b PSM OLS 0.33 < p < 0.67    9.24%**      0.000    2,898 0.695 

  3a PSM 0.4 < p < 0.6 

 

   9.34%*      0.029    2,432 

 

 

- 

  3b PSM OLS 0.4 < p < 0.6 

 

 10.42%**      0.000    2,432 0.689 

Notes: This table reports big 4 premiums estimates and summary statistics for the specified 

models (see also, the online Supplement). OLS refers to the ordinary least squares regression 

model specification reported in Table 1. Table 1 defines the variables. PSM refers to propensity 

score matching using the nearest-neighbour (NN) method without replacement and employing a 

caliper of 0.001. Models 2a to 3b are minimum biased estimates, where NN matching is 

constrained to the sub-samples, as determined by the reported selection probabilities (p). 

Probabilities (propensity scores) used for matching are those estimated with the probit selection 

model, reported in Table 1, for the whole sample (n=5,640). Sub-samples specified with 

reference to p are the probabilities estimated with the probit selection model, reported in Table 1, 

for the whole sample. The transformation ex-1 is employed to calculate premiums, where x = the 

mean difference in the natural log of audit fees (LnFEE) or the OLS BIG4 regression coefficient 

specified to seven decimal places. 

* Indicates coefficient is statistically significant at 5% level (two-tailed test). 

** Indicate coefficient is statistically significant at 1% level (two-tailed test). 

 



                                                  

 

 

 

 
 

                                                 Table 3.    Covariate balance (means) 

        Unmatched (whole sample)  Matched propensity (p) scores: 0.4 < p < 0.6 

 

Variables‡ 

 Big 4 = 1 

(n = 2,890) 

 Big 4 = 0  

(n = 2,750) 

Mean 

difference 

  (p-value) 

  Big 4 = 1 

 (n = 1,216) 

  Big 4 = 0 

(n = 1,216) 

   

Mean difference 

     (p-value) 

LnSAL 15.550 15.128      0.000*** 15.245 15.267      0.798 

LnTA 15.794 15.096      0.000*** 15.192 15.230      0.549 

SQSUBS 1.405  0.996      0.000***   0.879 0.895      0.686 

EXPSAL  0.077  0.054      0.000***   0.043 0.044      0.931 

QUAL  0.047  0.052      0.427   0.053 0.054      0.857 

PBAL   0.152  0.102      0.000***   0.077 0.072      0.644 

CONLIAB   0.252 0.226      0.026**   0.244 0.219      0.136 

EXITEM   0.191 0.155      0.000***   0.142 0.139      0.816 

RSAL -1.403 -2.881      0.512 -2.157 -0.930      0.391 

LOSS   0.335  0.259      0.000***   0.235 0.216      0.265 

TLTA   1.054  0.954      0.313   0.872 0.827      0.529 

LOND   0.244  0.271      0.017**   0.231 0.238      0.702 

BUSY   0.590  0.549      0.002***   0.558 0.550      0.714 

YR   0.448  0.489      0.002***   0.482 0.492      0.627 

SER   0.610  0.564      0.000***   0.527 0.551      0.238 

MAN   0.212   0.227      0.180   0.265 0.257      0.644 

RET   0.138   0.183      0.000***   0.188 0.179      0.600 

OIN   0.025   0.018      0.066*   0.014 0.013      0.861 

NIC   0.014   0.008      0.039**   0.007 0.000      0.005*** 
‡ Table 1 defines the variables. 

* Indicates statistically significant at the 10% level (two-tailed test). 

** Indicates statistically significant at the 5% level (two-tailed test). 

*** Indicates statistically significant at the 1% level (two-tailed test). 

 


